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Abstract – Cross-correlations are thought to emerge through interaction between particles. Here
we present a universal dynamical mechanism capable of generating power-law cross-correlations
between non-interacting particles exposed to an external potential. This phenomenon can occur
as an ensemble property when the external potential induces intermittent dynamics of Pomeau-
Manneville type, providing laminar and stochastic phases of motion in a system with a large
number of particles. In this case, the ensemble of particle-trajectories forms a random fractal
in time. The underlying statistical self-similarity is the origin of the observed power-law cross-
correlations. Furthermore, we have strong indications that a sufficient condition for the emergence
of these long-range cross-correlations is the divergence of the mean residence time in the laminar
phase of the single particle motion (sporadic dynamics). We argue that the proposed mechanism
may be relevant for the occurrence of collective behaviour in critical systems.
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Complex systems usually consist of several dynamical
components interacting in a non-linear fashion. Cross-
correlations are then used in order to explore the inter-
dependence in the time evolution of these components
measured in terms of specific quantities characterizing
each component. In this context, the existence of
cross-correlations has been demonstrated in a wide class of
dynamical systems ranging from nano-devices [1] to atmo-
spheric geophysics [2], seismology [3], finance [4–8], phys-
iology and genomics [8]. Of special interest is the case of
long-range (power-law) cross-correlations (LRCC) which,
being scale free, may be associated with the appearance of
characteristics of criticality in the dynamics of the consid-
ered complex system. Such a behaviour has been observed,
among other examples, in price fluctuations of the New
York Stock Exchange during crisis [8], physiological time-
series of the Physiology Sleep Heart Health Study (SHHS)
database [8], the spatial sequence describing binding prob-
ability of DNA-binding proteins to genes at different loca-
tions on mouse chromosome 2 [8] and in flocks of birds [9].
All these findings indicate that the presence of power-

law cross-correlations is a quite general property of the
dynamics of complex systems. Even more, very recently
geometry-induced power-law cross-correlations have been
also observed in a coarse-grained description of the dy-
namics of an ensemble of non-interacting particles prop-
agating in a Lorentz channel [10]. This clearly poses the
question of the origin and mechanisms of cross-correlations
in particle systems.

Up to now the theoretical treatment of cross-
correlations is based on statistical approaches and their
microscopic origin is to a large extent unclear. In the
following, we identify the dynamical mechanisms leading
to LRCC and show specifically that intermittent dynam-
ics, characterized by long intervals of regular evolution
(laminar phases) interrupted by short bursts of abrupt
evolution (irregular phases), obeyed by each component
separately, generates LRCC between the different compo-
nents, even if they do not interact with each other. It
is argued that the emergence of LRCC is of geometrical
origin: in a system with a large number of particles the
ensemble of their intermittent trajectories forms a ran-
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dom fractal set in time. The two-point correlation func-
tion of this set can be identified with the cross-correlation
function between intermittent trajectories of different par-
ticles which appear in the set with probability one. In
addition we provide strong evidence that a sufficient con-
dition for the emergence of such scale-free LRCC is the
divergence of the mean length of the laminar phase in the
intermittent dynamics of each component.

The prototype model we will use to demonstrate our
arguments is a system of N non-interacting particles each
with an one-dimensional phase space determined by the
variable x(i) (i = 1, 2, . . . , N). We do not further specify
x(i): in a real system it can be for example the position or
the momentum of particle i or any other property char-
acterizing its state (partially or totally). For the time
evolution of x(i) of each particle independently we use a
version of the well-known Pomeau-Manneville map of the
interval [11], which has been employed in the literature for
the description of a wide class of phenomena ranging from
anomalous diffusion to turbulence and spiking behaviour
of neuro-biological networks, given as

x
(i)
n+1 =

{
x

(i)
n + u(i)(x(i)

n )z(i)
; x

(i)
n ∈ (0, x(i),∗);

r
(i)
n x(i),∗; x

(i)
n ∈ (x(i),∗, 1];

(1)

for i = 1, 2, . . . , N . In eq. (1) u(i) are positive constants,
z(i) are characteristic exponents fulfilling z(i) > 1 and r

(i)
n

are random numbers uniformly distributed in (0, 1]. The
quantity x(i),∗ represents the upper border of the phase
space region ((0, x(i),∗)) within which the evolution of
the particle dynamics is laminar. A typical characteris-
tic of the intermittent dynamics is that for any trajec-
tory and for z � 1 the x-values in the laminar region are
very close to the diagonal x

(i)
n+1 = x

(i)
n since the increase

Δx
(i)
n = x

(i)
n+1−x

(i)
n of x

(i)
n there is very slow. Notice that in

eq. (1) there is no coupling term between phase space vari-
ables of different particles since there is no mutual inter-
action. This simple model, based on the normal form for
the description of intermittent dynamics, is very general
and captures all the basic dynamical ingredients necessary
for the development of cross-correlations as we will see in
the following. To avoid unnecessary complexity we further
simplify the model assuming: u(i) = u and z(i) = z for all
i. Note that the end of the laminar region x∗ is not strictly
defined. One possible choice, which we use in the follow-
ing, is to fix x∗ as the pre-image of 1, i.e. as the solution
of the equation x∗ + u(x∗)z = 1. A second choice is to set
it equal to x̃∗ = 1/(uz)1/(z−1) being the x-value for which
the non-linear term in eq. (1) becomes equal in magnitude
with the linear term. These two values (x∗ and x̃∗) are
close to each other (with an at most 20% relative devia-
tion) for almost all values of z and our results for the cross-
correlations, shown below, do not depend on this choice.

Using eq. (1) we evolve the considered particle system
in discrete time. Different particles correspond to different
trajectories, i.e. trajectories starting from a different ini-

tial condition. Thus we propagate a set of N trajectories
forming the corresponding ensemble. We use the notation
x

(i)
n,A in order to indicate with the index A the possibility

for using different representations for an ensemble trajec-
tory for the calculation of the cross-correlation function(s).
For example we will use either the original trajectories gen-
erated by eq. (1) taking real values in (0, 1) (in this case
we use the symbol x for the index A) or a binary repre-
sentation of these trajectories taking the values 0 in the
laminar phase and 1 in the irregular phase (in this case we
use the symbol s for the index A). The cross-correlation
function is then defined as

CCA(m) =
∑
i<j

2(〈x(i)
n,Ax

(j)
n+m,A〉 − 〈x(i)

n,A〉〈x
(j)
n+m,A〉)

N(N − 1)σ
x
(i)
A

σ
x
(j)
A

, (2)

where 〈. . .〉 denotes time averaging while σ
x
(i)
A

and σ
x
(j)
A

are the standard deviations of the trajectories x
(i)
A and

x
(j)
A , respectively.
We calculate the cross-correlation function CCx(m) for

various values of z using ensembles of 104 trajectories with
length 105 for each case ensuring convergence of our re-
sults. For z > 2 we find an algebraic decay of CCx(m)
with increasing m, having an exponent which depends
on z. This conclusion is established by fitting the numeri-
cal results with a power-law model and then performing a
Kolmogorov-Smirnov test for the normality of the residu-
als. The obtained p-values are all higher than 0.5, indicat-
ing that the power-law is indeed a good fit. The behaviour
of CCx(m) for z < 2 is more complicated. For 3/2 < z < 2
long-range cross-correlations exist, however they do not
possess a power-law form. For 1 < z ≤ 3/2 the cross-
correlation function practically vanishes, performing small
amplitude random oscillations around zero. It is worth to
mention here that a distinction between the properties of
intermittent dynamics for z ≤ 3/2, 3/2 < z < 2 and z ≥ 2
has been already discussed in [12] where the term sporadic-
ity is introduced for the description of the z > 2 case.

In order to analyze and understand the different be-
haviour of the cross-correlation functions for z > 2 and
z < 2, we consider the distribution of the laminar phase
lengths, or as it is often also named, the distribution of the
waiting times in the laminar region. It is well known that
this distribution obeys asymptotically (� � 1) a power-
law of the form ρ(�) ∼ �−

z
z−1 [13,14], where � is the lam-

inar phase length. For z > 2 the mean laminar length
〈�〉 diverges, while for z < 2 it is finite1. Thus, the di-
vergence of 〈�〉 should be related with the emergence of
power-law cross-correlations between the particles. As we
will see later utilizing a simple stochastic description al-
lowing also for analytical treatment, this property can be
formulated as follows: if 〈�〉 is infinite, then the condi-
tional probability that the particle j at an instance n +m

1We refer here to the divergence implied by the asymptotic be-
haviour for � → ∞. In the small � region there is always a natural
cut-off since � ≥ 1.
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is in the laminar region, provided that the particle i was
in the laminar region at instance n, is finite and decays
algebraically with increasing m.

To facilitate analysis it is useful to develop a symbolic
code for the intermittent dynamics in eq. (1). Such a
symbolic representation of the dynamics of the Pomeau-
Manneville intermittent map capturing several details
like the re-injection rate in the laminar region (and there-
fore the invariant density in the immediate neighbour-
hood of the marginally unstable fixed point) has been
proposed in [12]. Here we are interested mainly to iso-
late the dynamical properties leading to the emergence of
cross-correlations avoiding the influence of other detailed
aspects of the intermittent dynamics. Therefore, we will
use a much simpler code, mapping x in the laminar re-
gion (x ∈ [0, x∗]) to 0 and x out of the laminar region
(x ∈ (x∗, 1]) to 1. Such a code has been used in [14] to
calculate power-spectra of intermittent systems. In prac-
tice we use the full dynamics of eq. (1) to generate the
ensemble of intermittent trajectories and then we replace
the x-values in each time-series by 0 or 1 according to the
previously described rule. Subsequently, we calculate the
cross-correlation function CCs(m) for different z-values
using the binary sequences generated by the symbolic dy-
namics from the trajectories of the map in eq. (1).

Complementary we introduce a simple stochastic model
containing only the information of the laminar length dis-
tribution to simulate the emergence of cross-correlations.
We assume a process consisting of two phases defined as
follows: i) a stochastic variable ξ takes the value 1 in the
irregular phase and the value 0 in the laminar phase and
ii) the length of the irregular phase is always 1, while
the laminar length probability density is a power-law with
exponent −z/(z−1), z being the exponent in the intermit-
tent map of eq. (1). Then we generate an ensemble of real-
izations of this process and calculate the cross-correlation
function CCr(m) for this ensemble. Here the index r in-
dicates that the ensemble of trajectories used to calculate
this cross-correlation function is generated by the underly-
ing random process. Despite the simple form of both, the
intermittent dynamics in binary representation and the
associated stochastic process, large scale computational
efforts (105 trajectories have been propagated for 106 it-
erations) are needed to achieve convergence of the long-
time behaviour of the cross-correlation function. In fig. 1
we show the results obtained for CCA(m) with A = s, r
for z = 2.5, 3, 4, 5. The coloured triangles correspond to
A = s, while the red lines to A = r. We observe a very
good agreement between the two results for each z value,
providing a strong indication that the key quantity deter-
mining the scale properties of the cross-correlation func-
tion is indeed the laminar length distribution, which is the
only quantity shared by the two descriptions.

A geometrical interpretation of the emergence of power-
law cross-correlations can be obtained by showing that the
ensemble of trajectories generated either by the intermit-
tent model of eq. (1) or by the simplified stochastic model

Fig. 1: (Colour on-line) The cross-correlation function CCA(m)
for the symbolic dynamics generated from the intermittent map
of eq. (1) (A = s, triangles) and for the stochastic process de-
fined in the text (A = r, red lines) for four different values of z:
z = 2.5 (black), z = 3 (blue), z = 4 (olive green), z = 5 (dark
yellow). For the numerical simulations we used an ensemble of
105 trajectories each of length 106.

introduced above, are realizations of a random fractal set.
Thus they can be produced by an automaton [15] and
they can also be mapped to a scale-free network using the
visibility [16], or the recently generalized cross-visibility
algorithm [17]. Adopting this point of view, it is nat-
ural to expect that two intermittent trajectories (corre-
sponding to two different particles) being two different
subsets of a random fractal set or of a scale-free network
are power-law cross-correlated. In fact these long-range
cross-correlations are dictated by the power-law form of
the two-point correlation function of the corresponding
set (random fractal or scale-free network).

To demonstrate the fractal properties of the ensemble of
trajectories of the simplified stochastic model, we employ
techniques used for the calculation of the lower entropy
dimension (LED) [18] for random fractal sets. LED cor-
responds to the “mass dimension” of usual fractal sets
(like for example the Cantor set). Thus, a time-series
of length L represented by a sequence of binary symbols
(0 for laminar phase and 1 for irregular phase in our case)
is interpreted as a set of unoccupied (0) and occupied (1)
non-overlapping cells of the embedding set2. In a large
ensemble of trajectories all of length L and generated us-
ing a fixed value of z, one can calculate the mean number
of “1”s 〈N(1, L)〉 (averaging over the ensemble) determin-
ing the mean number of occupied cells necessary to cover
entirely the so defined random fractal set. Notice that
the concept of the “random fractal set” establishes only
at the level of the ensemble and it is not defined for indi-
vidual trajectories. 〈N(1, L)〉 scales with the length L of
the embedding set as

〈N(1, L)〉 = sLdF , (3)

where s is a positive constant and dF is the associated
fractal LED. To verify that the ensemble of intermittent
trajectories defines a random fractal set, we calculate the

2The embedding set is the set of L cells.
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Fig. 2: (a) 〈NRF (1, L)〉 vs. L for an ensemble of 106 trajectories
generated using z = 3 and (b) the fractal LED dF (z) vs. z.

mean number of “1”s 〈N(1, L)〉 for 106 trajectories gener-
ated with a fixed z-value and possessing a fixed length L.
Then we vary the length of the ensemble trajectories from
102 to 106 calculating for each case 〈N(1, L)〉. We use the
same statistics (106 trajectories) to construct the trajec-
tory ensemble for each L-value. In fig. 2(a) we show the
result for z = 3 on double logarithmic scale.

We observe a linear behaviour corresponding to a per-
fect power-law with dF ≈ 0.5. This suggests the validity
of a general scaling relation of the form

〈NRF (1, L)〉 ∼ LdF (z). (4)

were the fractal LED may depend on z and the index RF
indicates the associated random fractal set. We have per-
formed the fractal LED calculation for several values of
z in the range z > 3/2. Our results are summarized in
fig. 2(b), where we show the dependence of the fractal
LED dF (z) on the exponent of the intermittent dynam-
ics z. Notice that the power-laws 〈NRF (1, L)〉 ∼ LdF (z)

for different z’s are all of the same quality as measured
by the coefficient of determination and the corresponding
chi-square per degree of freedom (χ2/dof) of the fit.

Thus, we conclude that the ensemble of the intermit-
tent trajectories is equivalent with respect to its com-
plexity with a random fractal set with variable dimension
dF (z) depending on the characteristic intermittency ex-
ponent z. Clearly, the observed fractality refers to the
time-dependence, i.e. the considered sets (ensembles of

trajectories) are fractal in time. This geometrical prop-
erty makes transparent the existence of cross-correlations
among the members of the ensemble. The fractal LED be-
comes equal to the embedding dimension for z = 3/2 sig-
nalling the absence of long-range cross-correlations in this
case. As already mentioned, in the region 3/2 < z < 2
long-range cross-correlations still exist, however there is
no clear signal of a power-law form3. This issue requires
more extensive studies and it is left for a future detailed
study.

Going one step further in our analysis, one can
develop a method to find an analytical estima-
tion of the cross-correlation function CCr(m) based
on the above introduced stochastic model. To
achieve this, let us first consider two binary se-
quences {x(i)

r } = {x(i)
1,r, x

(i)
2,r, . . . , x

(i)
k,r, . . .} and {x(jr)} =

{x(j)
1,r, x

(j)
2,r, . . . , x

(j)
n,r, . . .} generated by the stochastic

model. To simplify the notation we will omit the index r of
the trajectory values for the following steps. The function
CCr(m) should be proportional to the joint probability
Pij(x

(i)
k = 1;x(j)

k+m = 1) that the random variable x(i) has
the value 1 at time step k and the random variable x(j)

has the value 1 at time step k+m, averaged over the time

CCr(m) =
1

N − m

N−m∑
k=1

Pij(x
(i)
k = 1;x(j)

k+m = 1). (5)

Obviously it holds

Pij(x
(i)
k = 1;x(j)

k+m = 1) = P (x(i)
k = 1) ·P (x(j)

k+m = 1) (6)

since x(i) and x(j) are statistically independent. To calcu-
late P (x(i)

k = 1) one can use the method introduced in [14]
writing

P (x(i)
k = 1) =

k−1∑
n=1

P (x(i)
k−n = 1) · P1|1(n|x(i)

k−n = 1), (7)

where P1|1(n|x(i)
k−n = 1) is the conditional probability to

have a laminar phase of length n directly after the instant
k − n if x(i) has the value 1 at the time instant k − n.
The appearance of a laminar phase with duration n is
independent of the value of x(i) at the instant k−n. Thus,
we find

P1|1(n|x(i)
k−n = 1) = ρ(n); ρ(n) ∼ n− z

z−1 ; n � 1, (8)

where ρ(n) is the laminar length distribution normalized
to one. Inserting eq. (6) into eq. (5) we obtain

P (x(i)
k = 1) =

k−1∑
n=1

P (x(i)
k−n = 1) · ρ(n), (9)

which can be solved recursively using as initial condition
P (x(i)

1 = 1) = p0 with p0 ∈ (0, 1). A similar equation is
3This may be attributed to the fact that the corresponding fractal

LED approaches the embedding one.
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Fig. 3: The cross-correlation functions CCs(m) (symbolic dy-
namics, intermittent map, black circles) and the analytical es-
timation of CCr(m) (solid line) for z = 3.

obtained also for P (x(j)
k+m = 1) replacing simply k with

k + m. Having solved eq. (9) one can calculate the left-
hand site of eqs. (6), (7) and insert the obtained results
in eq. (5) to get an analytical approximation for CCr(m)
containing three sums. The validity of the introduced an-
alytical scheme is tested in fig. 3, where we show the sym-
bolic dynamics result CCs(m) together with the analytical
estimation for CCr(m) using z = 3.

We observe a very good agreement between the ana-
lytical result and the numerical simulations for CCs(m).
Notice that numerically calculated CCr(m) is not shown
in this plot. However, as illustrated in fig. 1 the numeri-
cal results for CCr(m) and CCs(m) are very close to each
other for any considered z and therefore, the analytical
estimation of CCr(m) can be also used as an analytical
estimation of the cross-correlation CCs(m). The analyti-
cal treatment leads us to the conclusion that it is the long-
range character of the correlation between P (x(i)

k = 1) and
P (x(j)

k′ = 1) existing for any pair of intermittent trajecto-
ries which generates the observed cross-correlations. Note
that this property has been discussed in [19] in a different
context.

With our analysis we have demonstrated a mechanism
to establish power-law cross-correlations between parti-
cles which do not interact with each other. This phe-
nomenon is induced by the strong intermittent dynamics
performed by each of the particles independently. The re-
sulting ensemble of trajectories for all particles, despite
the absence of a coupling between trajectories of different
particles, forms —in a binary representation— a fractal
set in time and the underlying self-similarity leads to the
establishment of algebraically decaying cross-correlations.
Strong intermittency (sporadicity) discussed here is a re-
sult of the interaction of a particle with a suitable external
potential (field)4. The appearance of long-range cross-
correlations deems sporadic dynamics a plausible mecha-
nism for the collective behaviour emerging in a N -particle
system. Furthermore, since such a collective behaviour

4This could be also a mean field generated by particle-particle
interactions.

is accompanied by scale-free inter-particle correlations, it
could be related to the emergence of critical behaviour in
the considered system. In fact, a connection of intermit-
tent dynamics with criticality has already been established
in [20] using the example of the 3D Ising model. There
it has been shown that the order parameter fluctuations
at the critical point can be efficiently described by an in-
termittent map of Pomeau-Manneville type —similar to
that of eq. (1)— with additive noise. The exponent z in
this intermittent map is related to the isothermal critical
exponent δ associated with the second-order transition.
This property sets a bound z ≥ 2 necessary for the oc-
currence of critical behaviour. It is remarkable that this
bound coincides with the bound obtained by our present
analysis in order to have a divergent mean laminar length.
An astonishing feature of our results is that the power-law
cross-correlations emerge even without interaction among
the particles. In the context of critical phenomena such
a property is welcome, since it could explain universality
aspects. Indeed the microscopic interactions between the
elementary degrees of freedom of a critical system do not
play any role for the determination of the critical expo-
nents and the associated scaling laws describing the phe-
nomenology of an extended system at the critical point.

In the framework of our approach the obtained correla-
tions are determined by the time evolution of the trajecto-
ries of two different particles. To enable a closer relation
to equilibrium critical phenomena one should extend these
ideas also to the case of a field depending both on time
and on space. Such an extension requires the use of matrix
equations for the field evolution replacing the variable x

(i)
n

by a scalar field φ(i, n), where i is a spatial variable, while
n is the time variable. At a first glance one could argue
that for the calculation of the spatial cross-correlations
one might exchange the role of spatial and temporal vari-
ables in the dynamics, use eq. (1) to describe changes of
the field φ in space and average over the time variable.
This would lead to power-law cross-correlations between
the field values at different locations, which is typical for
a critical system. However, a consistent treatment of this
case requires more elaborate and extensive studies left for
future investigations.
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