
A Proximity-Based Framework for Mobile Services

Justin Lewis Salmon Rong Yang
Department of Computer Science and Creative Technologies

University of the West of England
Bristol, United Kingdom

Email: justin2.salmon@live.uwe.ac.uk
rong.yang@uwe.ac.uk

Abstract—Peer-to-peer proximity-based wireless networking
can provide improved spatial and temporal semantics and inde-
pendence over alternative wireless topologies that rely on static
network infrastructure, and can potentially enable new classes
of mobile applications. However, the difficulties of setting up
such ad-hoc connections has thus far been a development
barrier. There is currently a need for an abstraction tool to
allow application developers to exploit the potential advantages
of such networks with minimal knowledge of the underlying
connectivity. We present Proxima, a framework for the Android
platform, which employs ad-hoc device-to-device connections
and proactive mesh routing for a decentralised topology
with solely proximity-based rich content dissemination. The
framework is designed to be developer- and user-friendly
with minimal configuration effort, lightweight, reusable and
hardware independent. After compilation, the size of its binary
distribution is only 6MB. We have further developed a real-life
application, named TuneSpy, based around sharing music with
local peers. The development of TuneSpy has produced two
positive outcomes. Firstly, it strongly demonstrates the ease of
writing proximity-based applications with Proxima. Secondly, it
has served as a testing platform for all framework functionality.

Keywords-Networking; proximity-based; mobile; ad-hoc;
peer-to-peer.

I. INTRODUCTION

Location-based applications have had several successes in
the mobile arena. These applications have usually relied on
traditional infrastructure networks such as Wi-Fi or cellular
towers for timely publication of the location information to
a centralised server, where the location information is de-
termined by the users current GPS location. Some location-
based applications, such as Foursquare [1], have traditionally
oriented around the mobile device user arriving within
proximity of a particular fixed location, while others have
also oriented around the location of other nearby devices.

A. The proximity-based paradigm

This paper aims to explore a different paradigm, whereby
reliance is solely upon mobile users being within proximity
of one another, in a peer-to-peer orientation. Publication
of information is also solely to proximal neighbours, and
thus does not rely on additional networking infrastructure.
We refer to this paradigm as the proximity-based paradigm
throughout the remainder of the paper.

The concept of purely local, ephemeral, decentralised
information dissemination has several apparent advantages.
The ability to sense and connect with those around us
allows purely real-time and real-space communication and
collaboration. It gives us additional spatial and temporal
semantics, i.e. a sense of ”here-and-now”, on which to build
applications upon [2]. The lack of infrastructure dependence
also enables communication in a far wider range of loca-
tions.

There are unique potentials for mobile applications that
might necessitate or otherwise exploit these ”here-and-now”
semantics, such as social, multimedia, crisis management,
and gaming. There are some scenarios where dissemination
onto the wider Internet is not desired, not useful, or simply
not necessary due to the inherent importance of the temporal
aspect.

B. A scenario

To illustrate the idea of proximity-based computing, let
us imagine a scenario where this paradigm might apply.
Consider, for example, a hypothetical train journey. Two
people, Alice and Bob, are both passengers on this journey.
Bob happens to be using his smartphone to listen to a track
by his favourite music artist through a pair of headphones.
Alice, who also has a smartphone, notices Bob, and begins to
wonder what he might be listening to. She wishes that there
were some way for her to tune-in to what Bob is currently
listening to (assuming that Bob has pre-authorised this type
of sharing behaviour), as if Bob were able to broadcast his
current track to the people around him. Assuming that this
train does not have a Wi-Fi access point available, how is
Alice able to listen to Bob? How might their smartphones
be able to connect directly to each other, simply based
on the fact that they are in proximity to each other? The
advanced capabilities of their devices should surely allow
this behaviour.

The ”here-and-now” semantics of this encounter are clear.
Alice must be spatially close to Bob, and the information
she is able to retrieve is temporally dependent, i.e. Bob will
only be listening to a particular track for a certain period
of time; after that time, the information is irrelevant and



unobtainable. Such is the ephemeral nature of the proximity-
based paradigm.

C. The problem

As it stands today, there is a lack of a reusable platform
on which to build applications that can make use of the
aforementioned functionality. This is in part due to the
complexity and difficulty of setting up such peer-to-peer
connections, and the various underlying technologies that
could potentially be used. Additionally, unlike traditional
infrastructure connections, issues such as IP address assign-
ment and service discovery do not have standard precedents
in peer-to-peer networks.

This paper aims to tackle these issues, using modern tools
to create a platform that is capable of operation regardless
of infrastructure availability, and reaches as close to zero-
configuration as possible. We present a reusable platform to
allow future application developers to exploit this temporal
and spatial information. Due to the myriad of available
mobile devices and their varying levels of compatibility
and interoperability, we will initially build on the Android
platform, whilst still aiming to support as wide a range of
devices as possible.

The rest of the paper is organised as follows. The next
section discusses the background to the paper and related
work. Section 3 describes our work, the from the top level
view to implementation details. Section 4 discusses testing
and evaluation. Finally we conclude with Section 5.

II. BACKGROUND AND RELATED WORK

This section analyses the technologies that one might
use to implement peer-to-peer mobile connectivity and the
rationale behind the selections that have been made for our
implementation. Some existing solutions are outlined and
compared with our implementation.

A. Background

Two major technologies that allow wireless connection
between mobile devices are Bluetooth and Wi-Fi. The for-
mer is standardised by the Bluetooth Special Interest Group,
and the latter standardised by the IEEE. Both are available
on most modern mobile phones, tablets, laptops, and other
electronic devices.

Bluetooth uses short-wavelength radio waves; the data
transmission speed is comparatively slow. It is best suited to
low-bandwidth peer-to-peer applications. Wi-Fi can achieve
much higher transmission speed and wider range than Blue-
tooth. Therefore Wi-Fi technology has dominated for most
high-bandwidth internet-based applications.

However, we know that under standard Wi-Fi (otherwise
known as Basic Service Set (BSS) for single access points or
Extended Service Set (ESS) for multiple access points), the
connection usually relies upon being within range of a fixed
wireless network access point. This is something against our

Basic Service Set (BSS) 
- Single Cell

AP AP
WN

Extended Service Set (ESS) - Multiple Cells

WN

WN

WN
WN

WN

WN

IEEE Infrastructure Mode

IEEE Ad-hoc Mode

Independent Basic Service Set (IBSS)

AP = Access Point
WN = Wireless Node

Figure 1. IEEE 802.11 operational modes.

proximity-based paradigm. For a modern mobile platform,
we need a technology like Bluetooth which allows direct
device-to-device connection but with the speed and operable
range benefits of a technology like Wi-Fi.

The proposed solution is to use Wi-Fi ad-hoc mode,
otherwise known as Independent Basic Service Set (IBSS),
which is an alternative operation mode allowing connection
without an access point. With Wi-Fi ad-hoc mode, we
can achieve device-to-device communication like Bluetooth
yet at a high efficient Wi-Fi speed. See Figure 1. for an
illustration of infrastructure Wi-Fi vs ad-hoc Wi-Fi. This
mode of operation is supported by most network interface
drivers. It is, however, not supported by default on Android
devices. Some configuration is needed to enable it, including
gaining root access to the device.

This is exactly what we need for achieving a real-time
mobile platform. However, Wi-Fi ad-hoc mode only provides
the basic connectivity infrastructure. In order for it to be



useful for complex applications, more software is needed
to build on to achieve functions such as automatic network
configuration, routing and service discovery. These problems
have burdened mobile application developers wishing to
write applications leveraging the potential benefits of Wi-Fi
ad-hoc mode. This is largely factored by the tediousness of
configuring such networks, and by the diversity of competing
strategies and protocols.

Our goal was to build a general framework on top of
ad-hoc Wi-Fi, which allows people to enjoy the benefits of
ad-hoc Wi-Fi without worrying about any low level issues.
Our aim is to make the framework user-friendly, hardware-
independent, powerful, lightweight and reusable.

B. Related Work

Wi-Fi Direct [3] is a piece of software which does not use
ad-hoc Wi-Fi. It provides a good interface allowing people to
develop mobile applications. The main idea of Wi-Fi Direct
is to create a software access point to active connectivity
without a real access point. It is a well established software
and available only on newer mobile devices. So Wi-Fi Direct
is hardware-dependent, that is against one of our initial aims.
Moreover, Wi-Fi Direct is not capable of multi-hop routing,
and requires a manual setup procedure (Wi-Fi Protected
Setup). These are the major differences from our work.

The Serval Project [4] aims to bring infrastructure-free
mobile communication to people in need, such as during
crisis and disaster situation when vulnerable infrastructure
like phone cell tower and mains electricity are cut off. This
is also one of our aims. We want to our framework to be
more generic and reusable, while the Serval Project is only
dedicated to this special purpose.

Commotion Wireless [5] is an open-source communica-
tion tool that uses mobile phones, computers, and other
wireless devices to create decentralised mesh networks. We
share one common aim that is decentralisation. However we
are focusing more on a framework to allow people to develop
applications rather than just communications.

Open Garden [6] is another free piece of software which
creates an overlay mesh network using Bluetooth and Wi-
Fi connections across a range of mobile devices, from
smartphones to tablets to laptops and desktops. The aim of
Open Garden is to provide connection to internet without an
Wi-Fi access point, while our aim is more general than just
accessing the Internet.

Project SPAN [7] is an Android API for ad-hoc networks.
While actively developed, it does not provide any mecha-
nisms for automatic IP configuration, service discovery or
name resolution.

The findings from our field study show that the exist-
ing work on proximity-based wireless networks is either
application-specific, i.e. based around a specific use case; or
it is not quite functionally adequate to meet our requirements
for a useful framework for proximity-based computing.

III. PROXIMA–A GENERAL FRAMEWORK FOR
PROXIMITY-BASED COMMUNICATION

In this section we describe the Proxima framework from
an application developers viewpoint, in terms of how to
integrate proximity-based functionality into an Android ap-
plication. We then describe some of the low-level detail and
design decisions that were made during development.

A. Developer Viewpoint

The Proxima framework provides a fully asynchronous,
thread-safe API and can be used by multiple client appli-
cations on a single device. It acts like a ”neighbours and
resources finder” server. It is not necessary for API users to
worry about how to discover neighbors and what services
are available; the framework will take care of these low-
level details.. Communication with the framework is done
using asynchronous method calls with user-supplied callback
functions. Users are sent broadcast intents when changes
occur, such as a new device coming into proximity.

Registering a client application and retrieving a list of
neighbors is demonstrated in Listing 1. The client-facing
API takes inspiration from the Android Wi-Fi P2P API.
This is a simplified version; the calls to initialize() and
discoverNeighbors() both take nullable callback arguments
to notify the user of success or failure. These calls are
usually placed into the onCreate() method of an Android
activity.

The framework also sends periodic broadcasts to all reg-
istered client applications when there is a neighbor change,
so clients should implement a broadcast receiver to listen
for these specific broadcasts. Neighbors can be retrieved at
any point once the discovery process has begun.

Listing 1. Example usage of the Proxima API.

ProximityManager mProximityManager
= ProximityManager.getInstance();

// This must be the first call into the API
Channel mChannel = mProximityManager

.initialize(this);

// Begin the neighbor discovery procedure
mProximityManager.discoverNeighbors(mChannel);

// Retrieve the list of neighbors
mProximityManager.retrieveNeighbors(mChannel,

new NeighborListListener()
{

@Override
public void onNeighborsAvailable

(NeighborList neighbors)
{

// ...
}

});



Each neighbour in the retrieved list represents a device
detected by the routing daemon. Prior to passing this list
to the user via the callback, the framework queries the a
service on each neighbour and retrieves metadata such as
the user-specified device name, the device GPS coordinates
and the available services (Proxima applications) provided
by the device. The metadata service is described below.

In summary, as a mobile application developer, to use the
Proxima framework, all you need to do is to register the
application with the framework as a client at the beginning.
Then, the framework will send the devices found in the
neighbourhood to you, and any changes in the network
will be updated via self-defined callback function. In Sec-
tion IV, we will present a real-world application which was
developed on top of the Proxima framework. The swift and
successful development of the application has demonstrated
that the framework is very simple and easy to use.

B. Design

This section gives brief details on the design of the frame-
work. We begin by analysing the requirements from the point
of view of the stakeholders who will use the framework.
Figure 2 shows an overview of these requirements, given
in the format of a standard UML use case diagram. Note
the provision of requirements for service registration and
discovery. Also note the role of the mobile device end-user
in the diagram; this is due to the requirement that mobile
devices must be identifiable on the network with a human-
readable name, therefore this name must be user-specifiable.

Application 
Developer

System

Retrieve 
neighbour 

details

Register 
service

Activate/
deactivate 

PBF

Set device 
name

<extends>

Retrieve 
neighbour IP 

address

Retrieve 
neighbour 

GPS details
<extends>

Retrieve 
neighbour 

device name

<extends>

Unregister 
service

User

Retrieve 
neighbour 
services

<extends>

Register 
application

Figure 2. UML use case diagram.

Figure 3 shows a compact version of the UML class
diagram for the framework. In this design, all client in-
teraction is done via the ProximityManager class, which
communicates with the background ProximityService via a
number of Channel objects (one per client application). This
client interaction is handled asynchronously with the use of

callback listeners. Listing 1 reflects this client interaction
pattern.

NativeHelper RoutingHelper

<<singleton>>
ProximityManager

<<service>>
ProximityService

LocationHelper

<<service>>
MetadataService

MetadataServer

Channel

0..1 0..1 0..*

<<callback>>
ChannelListener

<<callback>>
ActionListener

<<callback>>
NeighbourListListener

«bind»

0..1

1

RoutingConfiguration

1

0..*

Figure 3. Proxima compact UML class diagram.

To illustrate the asynchronous client interaction pattern
further, we can use UML sequence diagrams. Figure 4 is an
example of such, illustrating the use case whereby a client
application registers itself with the framework. Note the half-
head arrow, which represents an asynchronous method call.
The ProximityManager can be seen taking control of binding
a Channel object for the ProximityService for the purposes
of future inter-process communication. Once bound, the
client callback listener is invoked and the client is thereby
notified that his/her application has been successfully regis-
tered with the framework.

This interaction pattern is kept consistent throughout the
entire Proxima API.

: ClientApplication ChannelListener ProximityManager Channel ProximityService

onServiceConnected()

onChannelConnected()

initialize(listener)

connect()

bindService()

Figure 4. UML sequence diagram for the RegisterApplication use case

C. Implementation Details

As mentioned in the background section, ad-hoc Wi-
Fi is used for the underlying connectivity. To enable ad-
hoc Wi-Fi mode on Android, it is necessary to have root
access to the device. This is because the network interface
must be switched from infrastructure to ad-hoc mode. Other
parameters, such as IP address and channel must also be
configured in this manner. Native binaries required for this
were compiled for the ARM processor and packaged with
the framework. Core binaries include ifconfig, iwconfig,
olsrd and dnsmasq. Utility/testing binaries include busybox
and tcpdump.



1) Routing: For the routing mechanism, we chose to use
the Optimized Link State Routing (OLSR) protocol [8]. It is
widely tested, scalable, reliable, and is open source. It is a
proactive routing protocol, as opposed to reactive or hybrid
routing protocols [9]. It allows multi-hop routing, and is
fully decentralised and self-healing. It also allows routing
of traffic onto the Internet via gateway nodes if desirable;
this is not, however, one of our key requirements. The olsrd
implementation of OLSR has been used [10] , following
recompilation of the code for Android.

The olsrd implementation features a plugin
system. The jsoninfo plugin [10] is used to interact
with the olsrd daemon. It listens on the localhost
interface on port 9090 and takes a URL of the
form: http://127.0.0.1:9090/command
where command is the command to be given to
the plugin. Many commands are available. To get
a list of nearby devices, the links command is
used, i.e. http://127.0.0.1:9090/links.
Multiple commands can be supplied at once, e.g.
http://127.0.0.1:9090/links/routes. The
Jackson JSON library is used to parse the output from
the olsrd daemon. A configuration file packaged with the
framework specifies the plugins to be used and wireless
interfaces to be used.

2) Name resolution: DNS-like name resolution was ini-
tially handled using a combination of the olsrd nameservice
plugin and the dnsmasq program. The olsrd plugin modified
the /etc/hosts and /etc/resolv.conf files and sent a SIGHUP
signal to the dnsmasq process when there was a change
in local devices. Each node was then effectively a DNS
server; it would resolve its own hostname when asked,
and kept a cache of hostnames for other nodes. Other
such solutions exist, such as described in [11], [12], but
the functionality was already in the OLSR implementation
and is open-source and extendable. However, we found this
solution to be too brittle. For example, if a node changed
IP address, then it would take a while for each node to
update its DNS cache, causing inconsistencies. Additionally,
this solution only allows names composed of the small
subset of characters allowed by the DNS protocol, which
does not include Unicode characters or even whitespace
characters. Following these discoveries, name resolution has
been absorbed into the metadata service, which is explained
below.

3) Service discovery: We have decided to incorporate
UPnP-like service discovery into the metadata service. Ser-
vice discovery could potentially be implemented using an
extension to the olsrd nameservice plugin, and having addi-
tional framework API methods for registering/searching/un-
registering services. However, this puts additional reliance
upon the particular routing protocol, making any future
changes more difficult. Other methods for service discovery
in ad-hoc Wi-Fi networks are described in [13], [14], [15].

4) Geolocation: Previous approaches to GPS coordinate
sharing in ad-hoc networks have tried to modify the OLSR
protocol to pass GPS coordinates, such as in [16]. However,
we feel that this approach is disruptive to the protocol and
hence becomes less cross-compatible. Geolocation informa-
tion is distributed on request via the metadata service.

5) IP autoconfiguration: DHCP-like IP autoconfiguration
is currently done in a very rudimentary way. The subnet
ID is simply randomly generated (i.e. 192.168.1.x where
x is randomly generated from 1-254). Will need to have a
collision resolution strategy. Several such strategies currently
exist, such as [17]. These solutions will be explored in future
iterations.

In the next subsection, we propose a solution for the name
resolution, geolocation and service discovery problems. Our
approach is conceptually simple; we embed a HTTP server
on each device which acts as a metadata server.

Mobile Device
{OS = Android}

deployment Proxima Framework

Mobile Device
{OS = Android}

deployment Proxima Framework

ProximityService

MetadataService

ProximityService

MetadataService

<<HTTP/JSON>><<OLSR>>

olsrd

olsrd

Client 
Application

Client 
Application

Client 
Application

Client 
Application

Figure 5. Proxima architectural overview.

D. The metadata service

The metadata service functions as a HTTP server and is
responsible for serving information about its parent node,



such as GPS coordinates, and human-readable node identi-
fiers. The metadata service also acts as a service discovery
layer. Client applications can register their services, and can
even specify custom per-application metadata to be served.

See Figure 5 for a high-level overview of the architecture
of the Proxima framework, shown as a UML deployment
diagram. Figure 5 shows the Proxima framework being
used by multiple clients on multiple devices. It shows the
communication between two metadata services, and the
underlying OLSR daemon communication mechanism.

The Proxima API was written using the Android Java
SDK. It is compatible with Android 1.6 (codename Donut,
API level 4). It is deployed as an Android Library Project. It
requires a rooted device. Development was done using the
Eclipse IDE (Kepler) with the Android ADT plugin on a
machine running Ubuntu 10.04 (Lucid Lynx) x86 64 with
kernel version 2.6.32. The Java Process.exec() class is used
to interact with the native system, to modify the network
interface into ad-hoc mode, set the IP address and netmask,
and to start/stop the olsrd and dnsmasq daemons. It is also
used to make calls to the olsrd jsoninfo plugin.

IV. RESULTS

We have successfully implemented a real-world applica-
tion which uses all the functionality of the framework. The
application demonstrates the ease of use of the Proxima
framework and serves as a platform for functional testing.
Development was done on the following devices:

• Samsung Galaxy S4, running Android version 4.3 (Jelly
Bean)

• Samsung Galaxy Tab 10.1 running Android version 3.2
(Honeycomb)

• HTC Wildfire running Android version 2.2.3 (Froyo)

A. TuneSpy

Our sample application, named TuneSpy, allows users in
proximity to one another to stream their current music track
to each other. The application uses the Proxima framework
to broadcast metadata about itself to surrounding neighbours.
Upon request from a neighbour, the application will directly
stream the actual track data. An illustration of this is given in
Figure 6. The application was inspired by the initial scenario
given above, and is designed to operate on a purely local,
ephemeral, peer-to-peer basis.

Note that the TuneSpy application is designed for sharing
music between individuals in a streaming fashion; no data
is stored permanently on the listening neighbour. By using
the application, users agree that sharing music via TuneSpy
is not for commercial use.

B. Testing

The three development devices were placed in a trian-
gular orientation, 30 metres apart from one another. They
were then tested by continuous music streaming using the

TuneSpy application. The streaming performance was unin-
terrupted at a distance of 30 metres. When the distance was
increased to 40 metres, connectivity became variable as is
nominally expected from ad-hoc Wi-Fi connections. Overall
the performance of the application on top of the framework
is stable and reliable at the designed operational distances.

C. Energy consumption

As with any software designed for mobile use, energy
consumption must be taken into consideration. The energy
consumption of the Proxima framework is equivalent to
other software using OLSR routing, and scales with the
number of network nodes [18]. The configuration parameters
given to the OLSR routing daemon are relatively standard.
From our testing work on TuneSpy, it is clear that com-
pared with the power used for music streaming the energy
consumption by the framework is negligible.

PEOPLE NEAR ME

John Doe

Come Together
The Beatles - Abbey Road

10m

Alice Jones

Time
Pink Floyd - Dark Side Of …

15m

TuneSpy

Joe Bloggs

John Doe
The Beatles - Abbey Road

Come Together

TuneSpy

Alice Jones

Pink Floyd - Dark Side Of ...

Time

TuneSpy

Figure 6. TuneSpy operational overview.

V. CONCLUSION AND FUTURE WORK

A. Conclusion

We have created a useful abstraction tool for mobile peer-
to-peer proximity-based networking, following our initial
vision of the proximity-based paradigm. We believe that
our work is a significant contribution to the collaborative
mechanism and architecture. This belief is held for the
following reasons.



Firstly, a framework such as this, with its unique se-
mantics of purely-local information dissemination, could
potentially allow application developers to incorporate this
proximity-based functionality into their existing applica-
tions, or develop entirely new classes of unique mobile ap-
plications. Based on our current research, we have not found
any other system with matching generality or functionality
of the Proxima framework.

Secondly, Proxima provides a nearly zero-configuration
interface. The only aspect that needs to be configured
is the device/user name (similar to that of the Bluetooth
device name) which can be achieved programmatically with
a simple API call. This ease of configuration makes the
framework both user- and developer-friendly.

Thirdly, our separation of underlying connectivity mech-
anism, routing functionality and higher-level services gives
us flexibility to potentially change any one of these elements
in the future. Since we are currently using the OLSR
protocol as a routing backend, applications developed using
the framework benefit from all the scalability and resilience
of the protocol. The framework takes care of the transport
mechanics, device specifics and configuration issues, leaving
the application developer to focus solely on implementing
their application.

Finally, the framework is very lightweight at only 6MB
(including all necessary native binaries and compiled code),
representing a small overhead for addition into applications.

B. Future work

We hope in the future to extend the framework, im-
proving the IP autoconfiguration strategy and implementing
improved security mechanisms, amongst other things.

One significant limitation is the lack of built-in support
for ad-hoc mode on Android and hence the necessity for
extensive modifications to gain root access to the device. It is
not likely for this support to be added in the future. Thus we
hope to explore alternative ad-hoc connectivity mechanisms
that do not require extensive device modification but still
endow us with the proximity-based semantics that we desire.

We will continue to test and support the framework on a
wider variety of Android devices and larger networks. We
also hope to implement a version of the framework for Apple
iOS, and another version for desktop operating systems.

ACKNOWLEDGMENT

The authors would like to thank the Computer Science
and Creative Technologies department at the University
of the West of England for funding this research. They
would additionally like to thank the anonymous reviewers
of MS2014 for their encouraging and constructive feedback
on this paper.

REFERENCES

[1] Foursquare, “Foursquare web page [online],” Available:
https://foursquare.com/ [Accessed 17 February 2014].

[2] B. Bostanipour, B. Garbinato, and A. Holzer, “Spotcast – a
communication abstraction for proximity-based mobile ap-
plications,” in Network Computing and Applications (NCA),
2012 11th IEEE International Symposium on, Aug 2012, pp.
121–129.

[3] WiFi Alliance, “Wi-fi peer-to-peer (p2p) technical 7 specifi-
cation [online],” Available: http://www.wi-fi.org/discover-wi-
fi/wi-fi-direct [Accessed 17 February 2014].

[4] P. Gardner-Stephen and S. Palaniswamy, “Serval mesh
software-wifi multi model management,” in Proceedings of
the 1st International Conference on Wireless Technologies
for Humanitarian Relief, ser. ACWR ’11. New York,
NY, USA: ACM, 2011, pp. 71–77. [Online]. Available:
http://doi.acm.org/10.1145/2185216.2185245

[5] A. Reynolds, J. King, S. Meinrath, and T. Gideon, “The
commotion wireless project,” in Proceedings of the 6th ACM
Workshop on Challenged Networks. ACM, 2011, pp. 1–2.

[6] Open Garden, “Open garden web page [online],” Available:
http://opengarden.com/ [Accessed 17 February 2014].

[7] J. Thomas, J. Robble, and N. Modly, “Off grid communica-
tions with android meshing the mobile world,” in Homeland
Security (HST), 2012 IEEE Conference on Technologies for,
2012, pp. 401–405.

[8] T. Clausen, P. Jacquet, C. Adjih, A. Laouiti, P. Minet,
P. Muhlethaler, A. Qayyum, and L. Viennot, “Optimized Link
State Routing Protocol (OLSR),” 2003, network Working
Group Network Working Group. [Online]. Available:
http://hal.inria.fr/inria-00471712

[9] M. Campista, P. Esposito, I. Moraes, L. Costa, O. Duarte,
D. Passos, C. de Albuquerque, D. Saade, and M. Rubinstein,
“Routing metrics and protocols for wireless mesh networks,”
Network, IEEE, vol. 22, no. 1, pp. 6–12, Jan 2008.

[10] A. Tonnesen, T. Lopatic, H. Gredler, B. Petrovitsch, A. Ka-
plan, and S. Turke, “Olsrd: An adhoc wireless mesh routing
daemon [online],” Available: http://olsrd.org [Accessed 14
February 2014], 2008.

[11] S. G. Hong, S. Srinivasan, and H. Schulzrinne, “Accelerating
service discovery in ad-hoc zero configuration networking,” in
Global Telecommunications Conference, 2007. GLOBECOM
’07. IEEE, Nov 2007, pp. 961–965.

[12] X. Hong, J. Liu, R. Smith, and Y.-Z. Lee, “Distributed naming
system for mobile ad-hoc networks,” contract, vol. 14, no.
01-C, p. 0016, 2005.

[13] X. Shao, L. H. Ngoh, T. K. Lee, T. Chai, L. Zhou, and J. Teo,
“Multipath cross-layer service discovery (mcsd) for mobile
ad hoc networks,” in Services Computing Conference, 2009.
APSCC 2009. IEEE Asia-Pacific, 2009, pp. 408–413.



[14] N. Le Sommer and Y. Mahéo, “OLFServ: an Opportunistic
and Location-Aware Forwarding Protocol for Service
Delivery in Disconnected MANETs,” in Fifth International
Conference on Mobile Ubiquitous Computing, Systems,
Services and Technologies (Ubicomm 2011), X. P. Services,
Ed., Lisbon, Portugal, Nov. 2011, pp. 115–122. [Online].
Available: http://hal.archives-ouvertes.fr/hal-00663455

[15] U. Aguilera and D. López-de Ipiña, “A parameter-based
service discovery protocol for mobile ad-hoc networks,” in
Ad-hoc, Mobile, and Wireless Networks. Springer, 2012, pp.
274–287.

[16] W. Anbao and Z. Bin, “Realize 1-hop node localization based
on olsr protocol in ad hoc networks,” in Computer Science
and Network Technology (ICCSNT), 2012 2nd International
Conference on, Dec 2012, pp. 1475–1478.

[17] C. Bernardos, M. Calderón, and H. Moustafa, “Survey of
ip address autoconfiguration mechanisms for manets,” IETF
Internet Draft, October 2007.

[18] A. McCabe, A. Cullen, M. Fredin, and L. Axelsson, “A power
consumption study of dsr and olsr,” in Military Communica-
tions Conference, 2005. MILCOM 2005. IEEE, Oct 2005, pp.
1954–1960 Vol. 3.


