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Abstract: In the first stage studies, this paper proposes a new piecewise linear discrete time dynamic model for describing global urine 

flow rate profiles against time sequence. The establishment of model has been guided by physician meaningful principles and measured 

data. To obtain the model parameters from measured data sequence, a number of existing approaches have been tailored/integrated 

including least squares algorithm for model time constant and gain estimation, Butterworth filter with specified cut off frequencies, for 

reducing noise effect induced by abdominal and bladder squeezing, then to facilitate counting the number of peaks. A few of real case 

studies are selected to demonstrate the effectiveness and efficiency of the proposed procedure. 
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1 Introduction1 

With worldwide population growing, the ratio of aging 

population has raised continuously. There is an increased 

number of patients linked to urinary system diseases, 

especially for male. Urodynamic tests have been 

predominantly used to check the function of the bladder 

and help to investigate the cause of urinary incontinence. 

Urine flow rate is one of the most significant parameters 

for assisting physicians to diagnose urinary system 

status/symptoms, such as normal, underactive and 

obstructive. In the meanwhile, various current urodynamic 

tests still remain an invasive way for recording the pressure 

and flow rate by inserting tubes through urinary tract to 

patient’s bladder, which is painful and stressful for patients 

and causes test result inaccurate. Furthermore, there are a 

large amount of artefacts while a patient takes the 

urodynamic test, causing massive fluctuations in the urine 

flow rate curve, so that these add uncertainty in diagnose 

when a physician tries to analyse the urine flow rate curve. 

For instance, even an experienced physician may have a 

quarter misdiagnose in distinction between underactive and 

bladder outlet obstruction. To reduce such disturbances in 

measurement, non-invasive tests have been adopted [1-5]. 

In the last two decades, there have been several non-

invasive measurement based urodynamic models have been 

set up [1-5]. Started from 1989 [7, 8] and formally 

established in 2013, a mathematical model called VBN (the 

initials of the first three authors) [6] has been applied to 

various studies, which is useful for the modelling of 

urodynamic function but has some intrinsic limitations, 

such as limited descriptions of sudden entry of the urine 

into the urethra and abdominal pressure. The other 
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representative urodynamic model by analysing of detrusor 

pressure-flow measurements with the aid of the IBM 

compatible software package CLIM [9] was proposed in 

1991, however it has been observed to have quarter 

inaccuracy from using the existing software package to 

analyse those measured data in obstructed cases. In general 

most of the current non-invasive methods have used 

complicated mathematical models of bladder but had 

limitation in utilization. Therefore, development of a 

concise and physician meaningful model has been a widely 

demanded research and clinical practice. 

To justify the study on the above challenging issues, a 

few of research questions are listed below, which 

subsequently guides the study to provide possible solutions. 

Research question one: Can a concise and physician 

meaningful global urine flow rate model be proposed with 

good fitting to measure data? 

Research question two: Is there any method can reduce 

the artefacts caused by squeezing but remain the true 

characteristics of the urine flow rate curve? 

Research question three: Is a model obtained from the 

data sequence with reducing artefacts to improve accuracy 

compared with the model obtained from raw data? 

With such insight, this study proposes a new Urine flow 

rate Model, where the model has concise and physician 

meaningful structure and the parameters in the model can 

be estimated by the Least Squares algorithms with 

measured data. To reduce the noise effect with the 

measured data, a Butterworth filter is adopted and selection 

of its cut-off frequency is linked to the explanation of 

physician meanings. Consequently the artefact caused by 

abdominal squeezing and bladder squeezing can be 

effectively reduced. Compare to previous method, 

proposed urine flow rate model mainly focus on the 

modelling and noise reducing instead of the bladder model 

establishment. 

The rest of the studies are organised with model 

structure determination and parameters estimation (Section 

2), filter design and test (Section 3), and summary of the 

study and future research (Section 4). 
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2 Urine flow rate model and parameter estimation 

This section proposes a new global urine flow rate model 

to describe whole urine process which consists two 

piecewise linear dynamic sub-models. Consequently it 

tailors a least squares algorithm to be able to estimate the 

model parameters from measured data. 

2.1 Urine flow rate model 

To understand the urodynamic for modelling, inspect a 

measured typical normal male urine flow rate curve in 

Figure 1. It can be observed the shape likes a bell added 

with slight fluctuations. Deviation from the normal shape 

could suggest some problems in urine flow process. 

 
Figure 1 Measured normal urine flow rate curve 

 

The observation gives guidance in determining a model 

structure with the following characteristics 1) it is a 

dynamic again time that could be represented by first order 

dynamic principle, 2) it is piecewise linear that has 

physician meaning to separate a urine process into upward 

rate flow session and downward rate flow session from the 

pick value (that is the top of the bell shape), which the time 

instance arriving at the pick value is defined as ridge point 

in the following descriptions. 

Accordingly the global urine flow rate model is proposed 

as 
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where t(1, 2, …) is the discrete time index, model output

( 1,2)iQ i   and model input ( 1,2)iP i   are the observed 

urine flow rate value and the virtual input value 

respectively, parameter ( 1,2)ia i  are linked to the 

corresponding time constants of the associated dynamic 

models and  parameters ( 1,2)ib i  are the gain associated 

with the inputs, the coordinate ( , )r rn Q  is the ridge point 

time index and the value. It should be explained that the 

model parameters have physician meanings and can be 

estimated from measured data. In dynamic principle time 

constant value determines how quickly a urine process 

moves toward to steady state, the greater of time constant 

value, the lower speed urine flow rate can be observed. It 

has been observed that even two patients have different 

urine flow rate curves and the maximum values, the 

proximate time constant value still can indicates these two 

patients may have the same symptom. Also the time 

constant value can be related with the pressure of the 

detrusor, and links with the pressure in the bladder. 

2.2 Model parameter estimation 

The work of model parameter estimation is to obtain the 

parameters ( 1,2)ia i  and ( 1,2)ib i   in model of (2.1) by 

using a statistic algorithm with measured data. For this 

research, a classical Least Squares (LS) algorithm [10] is 

tailored to implement the data driven computations.  

Consider a general linear in parameters regression model 

( ) ( ) ( )    1,2,...,Ty t t e t t N                                    (2.2) 

where t is a discrete time index, N is the length of measured 

data sequence, dependent variable ( )y t  is a measurable 

quantity, regression variable

1 2
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L

T t t t t       is a measurable 

L-vector, and error variable ( )e t  is an unmeasurable 

quantity to represent modelling error caused from various 

factors such as measurement noise and external 

disturbance, and parameter vector  1 2

T

L
     is 

a L-vector to be estimated from measured ( )y t  and ( )t  

in terms of the least squares errors, the difference between 

measured dependent variable ( )y t and model output 

variable ( )T t  . 

In the computation algorithm, to find an estimate ̂  of 

the parameter vector   from measurements

(1) (1) ( ) ( )y y N N  , a set of linear equations are 

formed, namely, 
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This can be written in matrix notation as 

 

ˆ( ) ( )Y N N                                                                (2.4) 

 

Where 
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The normal equations take the form 

 
T TY                                                                  (2.6) 

 

Therefore the estimation for the parameters can be 

determined by 

 
1ˆ [ ]T TY                                                                (2.7) 

 



In regarding to the research, the parameter estimation 

work includes 1) by inspecting measured urine flow rate 

data sequence, identify the ridge point coordinate ( , )r rn Q , 

which split the sequence into upward and downward sub-

sequences, 2) with reference to ( , )r rn Q , setup virtual 

stimulate inputs for each sub-sequence, 3) form the 

associated matrices and vectors from each of the sub-

sequences, 4) use equation (2.6) to calculate the parameter 

vectors. The step by step procedure is illustrated below. 

1) Let N be the measured data sequence, determine 

ridge point coordinate ( , )r rn Q  

2) Setup virtual step stimulate inputs 

For upwards session ( 1 rt n ), setup 
1( )P t as a step 

input *1rn  vector with amplitude of 
rQ  and zero initial, 

which represents a urine flow process driven by an internal 

force from bladder. Accordingly the sub-data sequence is 

formed as 

1( ) [1 1]TP t                                                           (2.8) 

For downward session (
rt n N ), setup 2 ( )P t  as a 

step input ( )*1rN n  vector with amplitude of 0 and initial 

amplitude of 
rQ , which represents the remaining session of 

a urine flow process after diminish of the internal force 

from bladder. Accordingly the sub-data sequence is formed 

as 

2 ( ) [0 0 0 0]TP t                                              (2.9) 

3) Form normal matrices ( 1,2)i i  and output 

vectors ( 1,2)iY i   
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Let the parameter vectors be expressed as 
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4) Then substitute the formed matrices and vectors 

into equation (2.7) to obtain the parameter estimates. 

2.3 Calculation of time constants 

Time constant is defined by a first order Laplace transfer 

function (a representative to a first order linear differential 

equation) below [11]. 
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where s is the Laplace operator, ( )iQ s and ( )iP s  are the 

Laplace transforms of the observed urine flow rate value 

and the virtual input value in terms of continuous time, 

respectively. 
iT  is defined as time constant. 

The proposed model (2.1) is in form of discrete time 

description and it corresponding Z transform (a 

representative to a first order linear difference equation) 

can be expressed as 
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With reference to residue theorem to convert to 

continuous transfer function ( )F s from discrete time 

transfer function ( )F z  
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where normalised sampling period 1sT  . For the proposed 

discrete time first order urine flow rate model, 1  , 1m  ,

( 1,2)i iz a i   and then the time constants of the 

continuous time model (2.19) can be obtained by 

1
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lni
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Therefore from the above analysis, the procedure to 

obtain the time constants of model (2.1) is consist of two 

steps 1) estimate ( 1,2)ia i  of model (2.1) from measured 

data and 2) calculate 
iT  from the relationship of (2.16). 

 

Example 1, To demonstrate the modelling procedure, 

chose the data shown in Figure 1. Follow the above steps, 

the resultant plots are shown in Figure 2. The fluctuated 

line and smooth line stand for original urine flow rate curve 

and estimated model output plot respectively. 

 
Figure 2 original curve and estimated model plot 

3 Filter design and data processing 

3.1 Filter design 

In the real urodynamic tests, during micturition process 

there are fluctuations, caused by abdominal squeezing and 

bladder squeezing called artefacts, which may affect the 



their estimated characteristics, consequently produce 

incorrect diagnoses.  

In the ICS (International Continence Society) guideline 

on urodynamic equipment performance [12], it states the 

clinical requirements for a standard urodynamic system to 

lead to technical recommendations, which also specified 

the frequency of abdominal squeezing and bladder 

squeezing. As a matter of fact, the specified frequencies 

provide guidance on selection of cut-off frequency in filter 

design to reduce noise effect. 

There are several types of digital filters can be used to 

reduce signal noise. Compared to the other digital filters, 

Butterworth filter rolls off more slowly around the cut-off 

frequency than Chebyshev filter or the Elliptic filter, but 

without ripple, which can effectively reduce the artificial 

noise but uttermost keeps the original characteristic in raw 

data. The two filter’s frequency responses are shown in 

Figure 3. 

 

 
 

Figure 3 Butterworth comparison with other filters [13] 

 

Therefore Butterworth filter can be considered as a 

suitable candidate for reducing the artefacts, which shows 

that a low pass filter could be designed whose cut-off 

frequency is normalized to 1 radian per second and whose 

frequency response (gain) is 

2
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                                                           (3.1) 

Where  is the angular frequency in radians per second 

and n is the number of poles in the filter—equal to the 

number of reactive elements in a passive filter. 

When used in forms of digital filter, a Z transfer function 

of an n-order Butterworth low pass filter can be expressed 

as [14] 
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where n is the order of the filter. 

 

Furthermore, the order selection of the filter has been 

proposed and tested according to the proposed model 

structure. In the initial test, the third order Butterworth 

filter has been chosen as it is a wildly used to effectively 

reduce the noise level. However in the after filtered real 

data processing there was shown negative value for the 

time constant but positive in the raw data, which means the 

urine flow rate shows an infinite trend. Since the 

urodynamic model is represented as a first order discrete 

time dynamic model, if the data after the third order filter 

estimated is fitted with a first order system, the result may 

be inaccurate and distort. Therefore the third order 

Butterworth filter was changed to the first order one. 

In Matlab code design, the cut-off frequency
n

  must be 

0.0 < 
n

 < 1.0, with 1.0 corresponding to half the sample 

rate. The sampling rate in the urodynamic test is 10Hz, so 

the coefficient in Matlab filter design has inputted as 0.2 

for 1Hz filter to reduce abdominal squeezing fluctuation 

and 0.02 for 0.1Hz filter to reduce bladder squeezing 

fluctuation. The digital filter transfer functions for two 

sessions have been identified below. 
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The frequency and phase response plots are shown 

below respectively. 

 
Figure 4 Frequency and phase response plots for 1Hz filter 

 
Figure 5 Frequency and phase response plots for 0.1Hz 

filter 

3.2 Filter effectivity analysis 

Example 2 An original urine flow rate curve is shown in 

Figure 6. 



 
Figure 6 Original data and estimated model plot 

 

This curve apparently has a large amount of fluctuation 

and interrupted urination in the half way of micturition 

process. The time constant values for the upward part and 

the downward part of estimated urine flow rate model are 

23.6189 and 187.1409 respectively from the raw data 

sequence. It can be observed the max value has been 

chosen around the point 200, at the first half part of 

urination. 

The filtered data and estimated urine flow rate model 

plot shows below. 

 
Figure 7 0.1Hz filtered urine flow rate curve and estimated 

model plot 

After 0.1Hz filter, the max value point has been chosen 

by the time around 500, just with small curve changing that 

the maximum value goes down from 6.9 to 6.8. The value 

for time constant in the upward part and down ward part of 

the estimated filtered urine flow rate model are 343.5801 

and 168.2998 respectively, showing a drastically changing 

from the original data’s upward part time constant value. 

The reason for this can be recognised as the curve has been 

marginally changed and the ridge value has been re-chosen 

as well. If take an analysis with the raw data, since the 

interrupted urination happened, meanwhile the main urine 

flow came in the second half part. Therefore the max point 

should be chosen in the second half part instead of the 

point almost at the start of urination.  

The data processing results show that the fluctuation can 

be effectively reduced and the proposed urine flow rate 

model and the filer design can be successfully implemented 

for the urine flow rate modelling tasks. Furthermore, it can 

be recognized using the model after filter is more reliable 

than the raw data estimated model. 

4. Analysis of peak account 

To have further analysis of the after filtered, it can be 

proposed another quantitative parameter for diagnosing 

disease if the number of peaks in the original data and after 

reducing fluctuations data can be compared. In this 

research, the peak point is defined as a data sample is larger 

than the neighbouring samples and greater than 1ml to 

avoiding tiny fluctuation induced by urodynamic 

measurement equipment. 

 

 
 

Figure 8 Peak numbers per 100ml comparison between 

raw data and filtered data 

 

Taking analyse of the peak account between raw data 

and filtered data from 10 patient’s data, it can be observed 

from Figure 8 the blocks of normal patient locate in the left 

bottom corner of the figure, and  the blocks of underactive 

and obstructed patients locate above or around the diagonal 

line and below the diagonal line respectively. It should be 

noted that this is currently happening under 10 samples, the 

further analysis of more patients’ data need to be surveyed. 

5 Conclusions and future work 

This paper has proposed an empirical procedure for 

modelling and analysis of measured urine flow rate data.  

Although it is developed for medical engineering 

applications, the study has paid more attention to the 

aspects in data processing and modelling. Applications for 

urine flow rate research and diagnosis will be reported in 

the other follow up papers. 

It should be clearly indicated that the new procedure is 

still under development and due to insufficient patients’ 

measured data. There are a number of issues, associated 

with measurement of urine rate processes, to be 

accommodated in the future studies. It has been observed 

that during the real data processing there are several special 

cases, which show a large amount of fluctuation 

characteristic, need to be comprehensively studied. And the 

other characteristic parameters should be further studied, 

which cannot be obtained by the current procedure, but 

could be used for medical diagnosing or prediction. The 

future work will be focused on studies of more possible 

shape recognition/classification techniques, some of the 

combinational methodologies to cover global model and 

local models. Wavelet analysis will be considered as a tool. 
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