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Abstract
Standard tests for comparing two sample proportions of a dichotomous dependent variable where there is a combination of paired and unpaired samples are considered. Four new tests are introduced and compared against standard tests and an alternative proposal by Choi and Stablein (1982). The Type I error robustness is considered for each of the test statistics. The results show that Type I error robust tests that make use of all the available data are more powerful than Type I error robust tests that do not. The Type I error robustness and the power among tests introduced in this paper using the phi correlation coefficient is comparable to that of Choi and Stablein (1982). The use of the test statistics to form confidence intervals is considered. A general recommendation of the best test statistic for practical use is made.   
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Introduction







Tests for comparing two sample proportions of a dichotomous dependent variable with either two independent or two dependent samples are long established. Let  and  be the proportions of interest for two populations or distributions. The hypothesis being tested is  against . However, situations arise where a data set comprises a combination of both paired and unpaired observations. In these cases, within a sample there are, say a total of ‘’ observations from both populations, a total of ‘’ observations only from population one, and a total of ‘’ observations only from population two. The hypothesis being tested is the same as when either two complete independent samples or two complete dependent samples are present. This situation with respect to comparing two means has been treated poorly in the literature (Martinez-Camblor et al, 2012). This situation with respect to comparing proportions has similarly been poorly treated.
Early literature in this area with respect to comparing proportions, refers to paired samples studies in the presence of incomplete data (Choi and Stablein, 1982; Ekbohlm, 1982), or missing data (Bhoj, 1978). These definitions have connotations suggesting that observations are missing only by accident. Recent literature for this scenario refers to partially matched pairs (Samawi and Vogel, 2011), however this terminology may be construed as the pairs themselves not being directly matched. Alternatively, the situation outlined can be referred to as part of the ‘partially overlapping samples framework’ (Martinez-Camblor et al, 2012). This terminology is more appropriate to cover scenarios where paired and independent samples may be present by accident or design. Illustrative scenarios where partially overlapping samples may arise by design include:
i) Where the samples are taken from two groups with some common element. For example, in education, when comparing the pass rate for two optional modules, where a student may take one or both modules. 
ii) Where the samples are taken at two points in time. For example, an annual survey of employee satisfaction will include new employees that were not employed at time point one, employees that left after time point one and employees that remained in employment throughout. 
iii) When some natural pairing occurs. For example, a survey taken comparing views of males and females, there may be some matched pairs ‘couples’ and some independent samples ‘single’.
Repeated measures designs can have compromised internal validity through familiarity (e.g. learning, memory or practise effects). Likewise, a matched design can have compromised internal validity through poor matching. However, if a dependent design can avoid extraneous systematic bias, then paired designs can be advantageous when contrasted with between subjects or independent designs. The advantages of paired designs arise by each pair acting as its own control helping to have a fair comparison. This allows differences or changes between the two samples to be directly examined (i.e. focusing directly on the phenomenon of interest). This has the result of removing systematic effects between pairs. This leads to increased power or a reduction in the sample size required to retain power compared with the alternative independent design. Accordingly, a method of analysis for partially overlapping samples that takes into account any pairing, but does not lose the unpaired information, would be beneficial. 
Historically, when analysing partially overlapping samples, a practitioner will choose between discarding the paired observations or discarding the independent observations and proceeding to perform the corresponding ‘standard’ test. It is likely the decision will be based on the sample sizes of the independent and paired observations.  Existing ‘standard’ approaches include:
Option 1: Discarding all paired observations and performing Pearson’s Chi square test of association on the unpaired data. 
Option 2: Discarding all unpaired observations and performing McNemar’s test on the paired data. 
Option 3: Combining p-values of independent tests for paired and unpaired data. This can be done by applying Fisher’s inverse Chi square method or Tippett’s test. These approaches make use of all of the available data. These techniques were considered by Samawi and Vogel (2011) and are shown to be more powerful than techniques that discard data. However, it should be noted that the authors did not consider Type I error rates. 
Other ad-hoc approaches for using all available data include randomly pairing any unpaired observations, or treating all observations as unpaired ignoring any pairing. These ad-hoc approaches are clearly incorrect practice and further emphasise the need for research into statistically valid approaches.
Choi and Stablein (1982) performed a small simulation study to consider standard approaches and ultimately recommended an alternative test making use of all the available data as the best practical approach. This alternative proposal uses one combined test statistic weighting the variance of the paired and independent samples, see Section 3.2 for definition. The authors additionally considered an approach using maximum likelihood estimators for the proportions. This approach was found to be of little practical benefit in terms of Type I error rate or power. Others have also considered maximum likelihood approaches. For example Thomson (1995) considered a similar procedure, using maximum likelihood estimators, and found the proposed procedure to perform similarly to that of Choi and Stablein (1982). It was noted by Choi and Stablein (1982) that given the additional computation, the maximum likelihood solution would not be a practical solution.



Tang and Tang (2004) proposed a test procedure which is a direct adaption of the best practical approach proposed by Choi and Stablein (1982).  This adaption is found to be not Type I error robust in scenarios considered when  +  + = 20. The test proposed by Choi and Stablein (1982) is found to be Type I error robust in this scenario. The literature reviewed suggests that a solution to the partially overlapping samples case will have to outperform the best practical solution by Choi and Stablein (1982). Tang and Tang (2004, p.81) concluded that, ‘there may exist other test statistics which give better asymptotic or unconditional exact performance’. 
In this paper, we introduce four test statistics for comparing the difference between two proportions with partially overlapping samples. These test statistics are formed so that no observations are discarded. The statistics represent the overall difference in proportions, divided by the combined standard error for the difference.

This paper will explore test statistics for testing , in the presence of partially overlapping samples. In Section 2, existing ‘standard’ approaches and variants of are defined.  In Section 3, our alternative proposals making use of all the available data are then introduced, followed by the most practical proposal of Choi and Stablein (1982).
In Section 4, a worked example applying all of the test statistics is given, followed by the simulation design in Section 5.



In Section 6.1, for all of the test statistics, the Type I error robustness is assessed when  is true. This is measured using Bradley’s (1978) liberal criteria. This criteria states that the Type I error rate should be between0.5.



There is no standard criteria for quantifying when a statistical test can be deemed powerful. The objective is to maximise the power of the test subject to preserving the Type I error rate . If Type I error rates are not equal it is not possible to correctly compare the power of tests. The preferred test where Type I error rates are not equal should be the one with the Type I error rate closest to  (Penfield 1994). In Section 6.2, power will be considered under  for the test statistics that meet Bradley’s liberal criteria.

There is frequently too much focus on hypothesis testing. Confidence intervals may be of more practical interest (Gardner and Altman 1986). Confidence intervals allow insight into the estimation of a difference and the precision of the estimate. In Section 6.3, the coverage of the true difference under  within 95% confidence intervals is considered. This is considered only for the most powerful test statistics that are Type I error robust.

Definition of standard test statistics
Assuming a dichotomous dependent variable, where a comparison in proportions between two samples is required, the layout of frequencies for the paired and the independent samples would be as per Table 1 and Table 2 respectively. 
Table 1. Paired samples design for two samples and one dichotomous dependent variable. 
	
Response Sample 1
	Response Sample 2

	
	Yes
	No
	Total

	Yes
	a
	b
	m

	No
	c
	d
	
- m

	Total
	k
	
-k
	




Table 2. Independent samples design for two samples and one dichotomous dependent variable. 
	
	Response

	
	Yes
	No
	Total

	Sample 1
	e
	f
	


	Sample 2
	g
	h
	





Option 1: Discarding all paired observations

For two independent samples in terms of a dichotomous variable, as per Table 2, a Chi-square test of association is typically performed. This test will be displayed in standard textbooks in terms of . A chi square distribution on one degree of freedom is equivalent to the square of the z-distribution. Therefore under the null hypothesis an asymptotically N(0,1) equivalent statistic is defined as:




  where ,   and .
For small samples, Yates’s correction is often performed to reduce the error in approximation. Yate’s correction is given by:

.

The statistic  is referenced against the upper tail of the standard normal distribution. 
An alternative to the Chi square approach is Fisher’s exact test. This is computationally more difficult. Furthermore, Fisher’s exact test is shown to deviate from Type I error robustness (Berkson, 1978). Fisher’s exact test will not be considered for the analysis of the partially overlapping samples design in this paper.

Option 2: Discarding all unpaired observations
For two dependent samples in terms of a dichotomous variable, as per Table 1, McNemar’s test is typically performed. Under the null hypothesis, the asymptotically N(0,1) equivalent to McNemar’s test is:

.
When the number of discordant pairs is small, a continuity correction is often performed. McNemar’s test with continuity correction is the equivalent to:

.

The statistic is referenced against the upper tail of the standard normal distribution. 
Test statistics based on Option 1 and Option 2 are likely to have relatively low power for small samples when the number of discarded observations is large. A method of analysis for partially overlapping samples that takes into account the paired design but does not lose the unpaired information could therefore be beneficial. 

Option 3: Applying an appropriate combination of the independent and paired tests using all of the available data
Given that test statistics for the paired samples and dependent samples can be calculated independently, an extension to these techniques which makes use of all of the available data would be some combination of the two tests. 


In terms of power, Fisher’s test and Tippett’s test are comparable to a weighted approach using sample size as the weights (Samawi and Vogel, 2011). Tippett’s method and Fisher’s method are not as effective as Stouffer’s weighted z-score test (Kim et al, 2013). Stouffer’s weighted z-score, for combining  and  is defined as:  



 where = .

Under the null hypothesis, the test statistic  is asymptotically N(0,1).
Many other procedures for combining independent p-values are available, but these are less effective than Stouffer’s test (Whitlock, 2005). 
The drawbacks of Stouffer’s test are that it has issues in the interpretation and confidence intervals for the true difference in population proportions cannot be easily formed.

Definition of alternative test statistics making use of all of the available data
The following proposals are designed to overcome the drawbacks identified of the standard tests. In these proposals observations are not discarded and the test statistics may be considered for the formation of confidence intervals.

Proposals using the phi correlation or the tetrachoric correlation coefficient.
It is proposed that a test statistic for comparing the difference in two proportions with two partially overlapping samples can be formed so that the overall estimated difference in proportions is divided by its combined standard error, i.e. 





where , ,  

and  is a correlation coefficient.

Test statistics constructed in this manner will facilitate the construction of confidence intervals, for example a 95% confidence interval  would be equivalent to:


.

Pearson’s phi correlation coefficient or Pearson’s tetrachoric correlation coefficient are often used for measuring the correlation  between dichotomous variables. 

Pearson’s phi correlation coefficient is calculated as .




The result of  is numerically equivalent to Pearson’s product-moment correlation coefficient and Spearman’s rank correlation coefficient applied to Table 1, using binary outcomes ‘0’ and ‘1’ in the calculation. In this 22 case,  is also numerically equivalent to Kendall’s Tau-a and Kendall’s Tau-b as well as Cramér's V and Somer’s d (symmetrical). This suggests that  would be an appropriate correlation coefficient to use.
Alternatively, assuming the underlying distribution is normal, a polychoric correlation coefficient may be considered. A special case of the polychoric correlation coefficient for two dichotomous samples is the tetrachoric correlation coefficient. 
An approximation to the tetrachoric correlation coefficient as defined by Edwards and Edward (1984) is:


 where .



Other approximations are available, however there is no conclusive evidence which is the most appropriate (Digby, 1983). In any event,  is likely to be more practical than  because if any of the observed paired frequencies are equal to zero then the calculation of  is not possible.


Constructing a test statistic using correlation coefficients  and  respectively, the following test statistics are proposed:






where:  and .


Under, , therefore two additional test statistics that may be considered are defined as:





where.




The test statistics , ,  and are referenced against the standard normal distribution.









In the extreme scenario of , it is quickly verified that . Under, in the extreme scenario of , as  then . This property is not observed for . The properties of  give support from a mathematical perspective as a valid test statistic to interpolate between the two established statistical tests where overlapping samples are not present.

Test statistic proposed by Choi and Stablein (1982).
Choi and Stablein (1982) proposed the following test statistic as the best practical solution for analysing partially overlapping sample:





where  , and .

The test statistic  is referenced against the standard normal distribution.


The authors additionally offer an extension of how optimization of  and  could be achieved, but suggest that the additional complication is unnecessary and the difference in results is negligible.



In common with the other statistics presented,  is computationally tractable but it may be less easy to interpret, particularly if +. 

Worked example



The objective of a Seasonal Affective Disorder (SAD) support group was to see if there is a difference in the quality of life for sufferers at two different times of the year. A binary response, ‘Yes’ or ‘No’ was required to the question whether they were satisfied with life. Membership of the group remains fairly stable, but there is some natural turnover of membership over time. Responses were obtained for 15 paired observations and a further 9 and 6 independent observations. The responses are given in Table 3.
Table 3. Responses to quality of life assessment.
	
	Response Time  2

	Response Time 1
	Yes
	No
	Total

	Yes
	8
	1
	9

	No
	3
	3
	6

	Total
	11
	4
	15

	
	Response

	
	Yes
	No
	Total

	Time 1
	5
	4
	9

	Time 2
	6
	0
	6















The elements of the test statistics (rounded to 3 decimal places for display purposes), are calculated as: 0.556, 1.000, 0.733, 0.583, 0.810, 0.689, 0.431, 0.673, 0.333, 0.375, 0.286, 0.002. The resulting test statistics are given in Table 4.
Table 4. Calculated value of test statistics (with corresponding p-values).
	
	

	

	

	

	

	

	

	

	

	


	z-score
	-1.907
	1.311
	-1.000
	0.500
	-1.747
	-2.023
	-2.295
	-1.937
	-2.202
	-1.809

	p-value
	0.057
	0.190
	0.317
	0.617
	0.081
	0.043
	0.022
	0.053
	0.028
	0.070







At the 5% significance level, whether  is rejected depends on the test performed. It is of note that the significant differences arise only with tests introduced in this paper, ,  and . 
Although the statistical conclusions differ for this particular example, the numeric difference between many of the tests is small. To consider further the situations where differences between the test statistics might arise, simulations are performed. 

Simulation design






For the independent observations, a total of  and unpaired standard normal deviates are generated. For the  paired observations, additional unpaired standard normal deviates are generated where i = (1,2) and j = (1,2,…., ). These are converted to correlated normal bivariates  so that:




  and 


where   correlation between population one and population two.




The normal deviates for both the unpaired and correlated paired observations are transformed into binary outcomes using critical values  of the normal distribution. If,, otherwise  





10,000 iterations of each scenario in Table 5 are performed in a 445557=14000 factorial design. 
Table 5. Values of parameters simulated for all test statistics. 
	Parameter
	Values

	

	0.15, 0.30, 0.45, 0.50

	

	0.15, 0.30, 0.45, 0.50

	

	10, 30, 50, 100, 500

	

	10, 30, 50, 100, 500

	

	10, 30, 50, 100, 500

	

	-0.75, -0.50, -0.25, 0.00, 0.25, 0.50, 0.75

















A range of values for ,  and  likely to be encountered in practical applications are considered which offers an extension to the work done by Choi and Stablein (1982).  Simulations are conducted over the range  from 0.15 to 0.5 both under  and . The values of have been restricted to  <= 0.5 due to the proposed statistics being palindromic invariant with respect to  and . Varying  is considered as it is known that  has an impact on paired samples tests.  Negative  has been considered so as to provide a comprehensive overview and for theoretical interest, although  < 0 is less likely to occur in practical applications.   



Two sided tests with 0.05 is used in this study. For each combination of 10,000 iterations, the percentage of p-values below 0.05 is calculated to give the Type I error rate . The Type I error rate under ,  for each combination considered in the simulation design, should be between 0.025 and 0.075 to meet Bradley’s liberal criteria and to be Type I error robust.   
All simulations are performed in R.  


Simulation Results
A comprehensive set of results with varying independent and paired sample sizes, correlation, and proportions was obtained as outlined in Section 5.

Type I error rates








Under , 10,000 replicates were obtained for 45557=3500 scenarios. For assessment against Bradley’s (1978) liberal criteria, Figure 1 shows the Type I error rates for all scenarios where  using 0.05.
[image: ]Figure 1: Type I error rates for each test statistic.








As may be anticipated,  is Type I error robust because matched pairs are simply ignored. Similarly,  performs as anticipated because the unpaired observations are ignored. Deviations from robustness for  appear when  is small and  is large. Although deviations from stringent robustness are noted for , this is not surprising since the cross product ratio is likely to be small when the proportion of success is low and the sample size is low. Crucially, the deviations from Type I error robustness of  are conservative and will result in less false-positives, as such the tests statistic may not be considered unacceptable.





The corrected statistics,  and , generally give Type I error rates below the nominal alpha, particularly with small sample sizes. Ury and Fleiss (1980) found that  is Type I error robust even with small samples, however applying Yate’s correction is not Type I error robust and gives Type I error rates less than the nominal alpha. It is therefore concluded that  and  do not provide a Type I error robust solution. 
















The statistics using the phi correlation coefficient,  and , are generally liberal robust. For  there is some deviation from the nominal Type I error rate. The deviations occur when min{,,} is small, max{,,}  min{,,} is large and .   In these scenarios the effect of this is that  is not liberal robust and results in a high likelihood of false-positives. It is therefore concluded that  does not universally provide a Type I error robust solution to the partially overlapping samples situation.









The statistics using the tetrachoric correlation coefficient,  and , have more variability in Type I errors than the statistics that use the phi correlation coefficient. The statistics using the tetrachoric correlation coefficient inflate the Type I error when and  is large. When min{,,} is small the test statistic is conservative. A test statistic that performs consistently would be favoured for practical use. It is therefore concluded that   and  do not provide a Type I error robust solution to the partially overlapping samples situation.



Three statistics making use of all of the available data, ,  and , demonstrate liberal robustness across all scenarios. Analysis of Type I error rates show near identical boxplots to Figure 1 when each of the parameters are considered separately. This means these statistics are Type I error robust across all combinations of sample sizes and correlation considered.

Power












The test statistics , , ,  and are not Type I error robust. Therefore only , , ,  and  are considered for their power properties (where  is true). Table 6 summarises the power properties where 0.5. 
Table 6. Power averaged over all sample sizes.
	

	

	

	

	

	

	

	


	0.5
	0.45
	

	0.095
	0.173
	0.208
	0.221
	0.221

	
	
	

	
	0.133
	0.168
	0.186
	0.186

	
	
	

	
	0.112
	0.150
	0.166
	0.166

	0.5
	0.3
	

	0.509
	0.653
	0.807
	0.856
	0.855

	
	
	

	
	0.569
	0.772
	0.828
	0.827

	
	
	

	
	0.508
	0.746
	0.801
	0.801

	0.5
	0.15
	

	0.843
	0.874
	0.975
	0.989
	0.989

	
	
	

	
	0.834
	0.970
	 0.985
	0.986

	
	
	

	
	0.795
	0.966
	0.980
	0.982



For each of the test statistics, as the correlation increases from -0.75 through to 0.75 the power of the tests increase. Similarly, as sample sizes increase the power of the test increases. 



Clearly,  is more powerful than the other standard tests  and , but it is not as powerful as the alternative methods that make use of all the available data. 




The power of  and  are comparable. Separate comparisons of  and  indicates that the two statistics are comparable across the factorial combinations in the simulation design. Either test statistic could reasonably be used for hypothesis testing in the partially overlapping samples case. 

Confidence interval coverage




For  and , the coverage of the true difference of population proportions within 95% confidence intervals has been calculated as per the simulation design in Table 5 where . The results are summarised in Figure 2.
[image: ]
Figure 2: Percentage of iterations where the true difference is within the confidence interval.






Both  and  demonstrate reasonable coverage of the true population difference . However, Figure 2 shows that  more frequently performs closer to the desired 95% success rate. Taking this result into account, when the objective is to form a confidence interval,  is recommended as the test statistic of choice in the partially overlapping samples case.

Conclusion
Partially overlapping samples may occur by accident or design. Standard approaches for analysing the difference in proportions for a dichotomous variable with partially overlapping samples often discard some available data. If there is a large paired sample or a large unpaired sample, it may be reasonable in a practical environment to use the corresponding standard test.  For small samples, the test statistics which discard data have inferior power properties to tests statistics that make use of all the available data. These standard approaches and other ad-hoc approaches identified in this paper are less than desirable. 
Combining the paired and independent samples z-scores using Stouffer’s method is a more powerful standard approach, but leads to complications in interpretation, and does not readily extend to the creation of confidence intervals for differences in proportions. The tests introduced in this paper, as well as the test outlined by Choi and Stablein (1982) are more powerful than the test statistics in ‘standard’ use.




The alternative tests introduced in this paper, , ,  and , overcome the interpretation barrier, in addition confidence intervals can readily be formed. 




Tests introduced using the phi correlation coefficient,  and , are more robust than the equivalent tests introduced using the tetrachoric correlation coefficient,  and . 






The most powerful tests that are Type I error robust are  and . The empirical evidence suggests that  is better suited for forming confidence intervals for the true population difference than . Additionally,  has relative simplicity in calculation, strong mathematical properties and provides ease of interpretation. In conclusion,  is recommended as the best practical solution to the partially overlapping samples framework when comparing two proportions.
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