Neurocognitive Function Following Out-of-Hospital Cardiac Arrest: A systematic review

Nancy Zook¹, Sarah Voss¹, Erik Blennow Nordström², Stephen J. Brett³, Elizabeth Jenkinson¹, Pauline Shaw¹, Paul White¹ and Jonathan Benger^{1,*}

- ¹ Health and Applied Sciences, University of the West of England, Bristol, UK
- ² Lund University, Skane University Hospital, Department of Clinical Sciences Lund, Neurology, Lund, Sweden
- ³ Department of Surgery and Cancer, Imperial College London, London, UK
- Correspondence: nancy.zook@uwe.ac.uk

Abstract:

11

12

13

14

15

16

17

18

19

20

23

24

25

26

27

28

29

30

31 32

33

44

1

2

3

4

5

6

7

8

9

10

Objectives: The primary aim of this review was to investigate neurocognitive outcomes following out-of-hospital cardiac arrest (OHCA). Specifically, the focus was on identifying the different neurocognitive domains that are assessed, the measures used, and the level of, and criteria for, impairment.

Design and review methods: A systematic review of the literature from 2006 to 2021 was completed using Medline, Cinahl and Psychinfo. Criteria for inclusion were studies with participants over the age of 18, OHCA and at least one neurocognitive function measure. Qualitative and case studies were excluded. Reviewers assessed criteria and risk of bias using a modified version of Downs and Black.

Results: Forty-three studies were identified. Most studies had a low risk of bias (n=31) or moderate 21 risk of bias (n=11) and one had a high risk; however, only six reported effect sizes or power analyses. 22 Multiple measures of neurocognitive outcomes were used (>50) and level of impairment criteria varied considerably. Memory impairments were frequently found and were also more likely to be impaired followed by executive function and processing speed.

Discussion: This review highlights the heterogeneity of measures and approaches used to assess neurocognitive outcomes following OHCA as well as the need to improve risk of bias concerning generalizability. Improved understanding of the approaches used for assessment and the subsequent findings will facilitate a standardized evaluation of neurocognitive outcomes following OHCA.

Keywords: out-of-hospital cardiac arrest, neurocognitive outcomes, memory, executive functions

1. Introduction

Outcomes from out of hospital cardiac arrest (OHCA) are poor with high mortality; 34 survival rates at hospital discharge are on average 8%, varying from 0% to 18%¹. For those 35 who survive, neurocognitive impairment is often a concern; however, understanding of 36 the type and level of impairment is limited. A systematic review by Moulaert et al² found 37 that the frequency of impairments reported after OHCA varied considerably, from 6% to 38 100%. The authors note the paucity of high-quality studies assessing neurocognitive out-39 comes. Specific weaknesses included: concerns with the patient populations used, the 40 small sample size, the heterogeneity of assessments, and the lack of consideration of fac-41 tors such as age, sex, and treatment. A more recent review over a seven-year period also 42 notes the difficulty of generalizing findings across cardiac arrest studies³. 43

Deficits in neuropsychological domains (e.g., attention, memory, executive function) are likely associated with damage to areas that are particularly vulnerable to the effects of 45

Citation: Received: date Accepted: date Published: date

63

hypoxia, associated with out-of-hospital cardiac arrest. This is supported by studies show-46 ing specific decreases in the volume of areas of the brain such as the hippocampus, the 47 anterior cingulate cortex, the dorsolateral prefrontal cortex, and the striatum 4.5. These ar-48 eas are associated with core deficits identified following OHCA in the neuropsychological 49 domains of memory, attention and executive functions. Deficits in these areas for patients 50 classified as having a 'good outcome' may be overlooked or underestimated, particularly 51 when measures are used that are not sensitive to minor or subtle changes in neurocogni-52 tive function are used, creating a "ceiling effect" 6. The patient may therefore be dis-53 charged without appropriate rehabilitation, or inadequately prepared to deal with the 54 challenges that will follow in carrying out daily activities. 55

This systematic review of recent studies extends findings from the previous review 56 by considering recent studies specifically focused on OHCA. The primary aims of this 57 review were to identify: (1) the areas of neurocognitive function assessed following 58 OHCA; (2) the specific measures used; (3) the timing of the assessment; (4) the prevalence 59 and degree of impairment identified, and the criteria used to identify impairment. Studies 60 were also reviewed for risk of bias in order to determine the strength of the evidence. 61

2. Methods

2.1 Search Strategy

Using Medline, Cinahl and PsycInfo a systematic literature review was completed 64 (Prospero CRD42019149075). This included articles from January 2006 to August 2021. 65 Additional searches were conducted over this time period using reference lists from pa-66 pers selected and Google scholar (NZ). No additional papers were identified through 67 these searches. The search terms included both cardiac arrest population terms and neu-68 rocognitive outcomes (Appendix 1). Articles were selected if they included at least one 69 neurocognitive assessment in OHCA survivors over the age of 18 years and were either 70 written in English or there was a translation available. Studies including both in- and out-71 of-hospital cardiac arrest were excluded if it was not possible to identify neurocognitive 72 outcomes specific to the OHCA group. Functional outcome measures typically used at 73 discharge -i.e., Cerebral Performance Category (CPC)⁷, Glasgow Outcome Scale⁸ (GOS) 74 and modified Rankin Scale (mRS)9- were also excluded as the focus here was on measures 75 of neurocognitive performance beyond discharge. Case studies and qualitative studies 76 were also excluded. 77

Initially, articles were reviewed for inclusion and exclusion criteria using titles and 78 abstracts (NZ). Following this, full texts were reviewed independently by two researchers 79 (NZ, SV). Where consensus was not reached, input was sought from other reviewers (JB, 80 SJB, EJ).

2.2 Quality appraisal

Quality was independently assessed using a modified version of a Downs and Black 84 checklist for nonintervention studies^{10,11} by two reviewers (NZ, EBN). A third reviewer 85 (SV) assessed articles by EBN and co-authors. Quality was assessed using fifteen items 86 scored as either 0 (absent or unable to determine) or 1 in the following categories: report-87 ing (0-7), external validity (0-3), internal validity (0-4) and statistical power (0-1). Overall 88 scores were used to identify the quality of the study in relation to the risk of bias. Those 89 scoring 0-6 (40%) were considered low quality/high risk of bias, those scoring 7-9 (40-60%) 90 being medium quality and over 10 as high quality/low risk for bias (60%). This quality 91 appraisal was based specifically on the reporting of neurocognitive assessments rather 92 than the overall focus of the study (e.g., other outcomes). Therefore, some studies with 93 low ratings for the purposes of this review may be considered high quality when rated on 94 other criteria for the study overall. Where quality appraisal differed, a third reviewer ar-95 bitrated (SV). 96

97

82

104

112

2.3 Data extraction

Data extracted from articles included the following: authors and date; study type; 99 criteria for inclusion/exclusion; participant numbers and characteristics (age, sex, ethnic-100 ity, therapeutic hypothermia); functional outcome measures; follow-up times; objective 101 and subjective neurocognitive outcome measures; other measures used; how impairment 102 was defined; the type and degree of impairment found. 103

3. Results

The initial search yielded 5393 records which were imported for screening. Prior to 105 review, 177 duplicates were removed leaving 5216 studies for title and abstract screening. 106 From these, 517 studies were assessed for full-text eligibility; 474 studies were excluded 107 leaving 44 studies for inclusion. Two articles^{12,13} contained overlapping results and only 108 one was included in the full review to give a total of 43 studies (see Figure 1 for Prisma 109 flowchart and Table 1 for the included studies). The study designs varied and included 110 prospective studies (32) and retrospective studies (11). 111

3.1 Quality Assessment

Quality assessment scores from the Modified Downs and Black were found to have 113 quality (risk of bias) percentage ranges from 33% to 93% with higher scores indicating 114lower risk of bias. Papers were then rated as having either a high (<40%), moderate (40-115 60%) or low level (>60%) of risk of bias (see Table 1). There were twenty-eight studies 116 rated as low risk of bias, ten as moderate, and one as high. Cohen's K was run to identify 117 agreement between the rater's judgment; K= 0.89, p <0.01. The mean score across the 15-118 items was 10.08 (SD=2.84). For the reporting subscale (7 questions), the mean was 5.45 119 (SD=1.77); for external validity subscale (3 questions) the mean was 1.52 (SD=0.90); for 120 internal validity (4 questions) the mean was 2.95 (SD= 1.06). Only six studies reported a 121 power calculation¹⁴⁻¹⁹. Proportions on the external validity scores (.51) were lower than 122 those on the reporting (.77) and internal validity (.73) subscales. 123

3.2 Study population

The mean age of participants ranged from 50 (SD=15)²⁰ to 72²¹. The number of OHCA 125 participants varied from 8²¹ to 287²². All the articles reviewed reported a higher percent-126 age of males than females, ranging from 66^{14, 16,23} to 100%.²¹ Ethnicity was not reported in 127 most studies. Most (n=29) studies reported that participants, or a subset of participants, 128 had received some form of therapeutic hypothermia. The inclusion and exclusion criteria 129 for OHCA patients varied between studies, with some restricting inclusion to a CPC of 1 130 or 2 (good outcome); however, others either did not specify criteria and likely included 131 survivors with more severe outcomes.

3.3 Outcome measures and follow-up

Follow-up time for the neurocognitive measures varied from hospital discharge²⁴ to 134 eighteen years²¹. Fifty-four different measures were used to assess neurocognitive func-135 tion. The types of measures ranged both in relation to the method of administration (in-136 terview, self-report questionnaire, informant questionnaire, neuropsychological test) and 137 the domain of function being measured (see Table 1). The criteria used to identify impair-138 ment varied across studies making direct comparisons, even when using similar 139 measures, difficult. Given the heterogeneity of studies reviewed, a narrative synthesis ap-140 proach is used to summarise main findings. 141

When assessing overall and global cognitive function screening tools, the Mini-Men-142 tal Status Exam (MMSE)²⁵, the adapted version for use via telephone (MMSE-Adult Life-143 styles and Function Interview, MMSE-ALFI)²⁶, and the Montreal Cognitive Assessment 144 (MoCA)²⁷ were used. Where MMSE was reported, the percentage ranged from no partic-145 ipants showing impairment²⁸ (cut-off of 28) to 50% of participants (cut-off of 26) showing 146

124

impairment.21The MoCA impairment rate ranged from 54%29 to 88%21 using the standard147cut-off criteria of 26. It should be noted that the higher rates of impairment reported by148Andersson et al21 need to be interpreted with caution due to the low sample size (n=8) and149long follow-up time (15-18 years) compared with other studies.150

When assessing specific domains of neurocognitive impairment, memory (23), exec-151 utive function (17) and attention/information processing (10) were assessed most fre-152 quently. Studies also included measures of general neurocognitive ability, motor function, 153 language, and visuo-perceptual measures. Memory measures varied and included both 154 short- and long-term memory measures as well as working memory and visuospatial 155 memory. Participants showing memory impairment ranged from 10% on the Rey CF³⁰ to 156 94%³¹ using a memory composite variable (RAVLT, DSF, and BVRT). The most common 157 memory measures were verbal learning tests (i.e., CVLT, RAVLT) which assess both epi-158 sodic learning and memory and delayed recall. All of the studies reviewed identified some 159 degree of impairment. Participants showing executive function impairment ranged from 160 8%32 to 62%31. For attention and information processing, impairment levels ranged from 161 0%^{31,20} to 57%³³. Most studies used performance-based measures, though others used self-162 report measures (e.g., CFQ³⁴, DEX¹⁹) from survivors or informants (e.g., IQCODE^{6,29,33,35}, 163 IQCODE-CA^{36,37}) or questions relating to recovery (e.g., 2SQs³⁵, Perception of Recovery³⁸). 164 Again, there was a range of impairment reported; from 0% (DEX)¹⁹ to 62% (IQCODE)³⁵. 165

Participant characteristics (age, sex) and treatment varied (therapeutic hypothermia, type of CPR, etc.), as did the time to follow-up (e.g., discharge³⁸ to 18 years²¹). Multiple studies included measures of depression, anxiety and quality of life.

Figure 1. Prisma flowchart of the literature search and selection process.

166

167

168 169

	Risk						
Reference (au-	of	study		Follow-up		Impairment and/or differences	
thor & year)	Bias	type	N (cog tests)	(days/months)	Cognitive domain assessed (measure) ^a	from other populations	Criteria Used
Alexan der et al., 2011 ³⁹	low	Pros	OHCA: 30, Controls:30	Ps: 113 days (26.5), Cs: 109 (17.5)	Premorbid function (NART) Memory (RAVLT, BVMT-R); EF (Trails B, VF, WCST); Semantic (BNT, PPV); Perceptual (JOL, Number location, Visual Discrimi- nation); Psychomotor (Trails A, GP, Finger tapping)	OHCA composite scores lower than coronary controls on all domains; Memory 37%; Motor 27%; Semantic (21%), EF 13%	Norms; 2 SDs
Anderrson et al.,							MMSE <27; MoCA
2015 ²¹	mod	Retro	8	15-18 years	Global cognitive function (MMSE, MoCA)	MMSE 50%; MoCA 88%	< 26
Aufderheide et al., 2011 ¹⁴	mod	Pros	OHCA: 48 Controls: 74	90 days, 365 days	Global cognitive function (CASI)	NR, did not find a sig difference be- tween treatment groups (CPR/Inter- vention)	Cut-off scores
Beesems et al., 2014 ⁶	low	Pros	220	6-13 mos, median 9	Global cognitive function (IQCODE or TICs)	IQCODE/TICS 18%	NR
Blennow Nordstrom et al., 2017 ³⁶	low	Pros	268	180 days +/- 14	Global cognitive function (MMSE, IQCODE-CA), Memory (RBMT)	53%	MMSE <27 and RBMT profile score <17; IQCODE CA: >3.04
Bro-Jeppesen et al., 2009 ¹⁵	low	Pros	G1: 28; G2: 26	6 mos	Global cognitive function (MMSE)	<1%	MMSE < 24
Brønnick et al., 2021 ⁴⁰	low	Retro	*see Evald et al., 2019		Premorbid function (Vocabulary, WAIS-IV);	22%	Norms; impaired = below cut-off ≥ 3 measures

						· · · · · · · · · · · · · · · · · · ·	
					Memory (RAVLT, Rey CF);		
					Attention (Trails A & B; DS WAIS-IV);		
					EF (D-KEFs verbal fluency)		
			OHCA: 9,	OHCA: 13.78			
Byron-Alhassan et			Controls: 12	(13.04), MI:		NR, mean scores did not show im-	
al., 202041	low	Pros	MI: 19	40.52 (21.96)	NAB Global Score	pairment	Norms
						Overall 42.9%; Attention 55.8%;	
Byron-Alhassan					NAB (Attention, Memory, Language, Executive,	Memory 45.5%; Language 41.6%; EF	
et al., 202142	mod	Pros			Spatial)	29.9%; Spatial 16.9%	Norms
					Global cognitive function (MoCA; Modified		
Caro-Codon et				3.1 yrs (1.7-	IQCODE);	MoCA 54.4%; Trails B: 24%;	Trails: Population
al., 2018 ²⁹	low	Pros	79	4.4)	Executive function (Trails B)	IQCODE 12%	Norms; MoCA <26;
				~6 mos			
Cronberg et al.,			G1: 213; G2:	(median: 186	Global cognitive function (MMSE; MMSE ALFI,	MMSE 31%; IQCODE 62%; 2SQ	MMSE <27;
201535	low	Pros	206	days)	IQCODE, 2 Simple Questions, recovery)	33.5%	IQCODE >78
				~3 months, 4			
Davies et al.,				at mos, 1 at 9	Global cognitive function (MMSE);	MMSE M=27.5 (2.37); % under cutoff	
201744	low	Retro	41	mos	Visuo-spatial memory (DMS:Cantab)	NR	NR
				G1: M=187	Premorbid function (Vocabulary, WAIS-IV);		
				(181-204	Memory (RAVLT, Rey CF);		Norms; impaired =
				days); G2;	Attention (Trails A & B; DS WAIS-IV);		below cut-off ≥ 3
Evald et al, 2019 ¹⁶	low	Retro	79	188 (181-198)	EF (D-KEFs verbal fluency)	G1: 33%; G2: 12%	measures
Evald et al., 202144	low	Pros	79	187 (181-201)	Subjective Cognitive Function: CFQ	6.8%	CFQ raw scores
Fugate et al,				19.5 mos			
201323	low	Pros	56	(14.3-24 mos)	Global cognitive function (TICs)	40%	TICs <32
Grand et al.,		T					MMSE <27;
201937	low	Retro	237	6 mos	MMSE; IQCODE-CA	MMSE 35%; IQCODE-CA 28%	IQCODE >83

				within 24-hrs			
				of discharge,			
Grubb et al.,				(5-26 days	Premorbid function (NART);		
2007 ³⁸	low	Pros	49	postarrest)	Memory (RBMT, WMS-RD-S)	RBMT:57%	RBMT Norms >21
					Memory (Logical memory WMS),		
Harve et al.,					Visuo-constructive and visuomotor speed (Block	Memory 40%; Visuo-constructive	
2007 ²⁰	high	Retro	10	~15 yrs	design and Dig-Sym WAIS)	20%	Norms, 2 SDs
				MRIs at 2 h,			
				24 h and 96			
Heradstveit et al.,				h; M=22 (15-			
201128	mod	Pros	9	26) mos	MMSE	0%	MMSE <27
			3 mos:				
			G1:96, G2:				
			182 at 12				
			mos				
			G1(mech):	3 mos, 12		M=26.9 (3.7) & M=28 (2.3); % under	
Ji et al., 201713	mod	Pros	89; G2:175	mos	MMSE	cutoff NR	NR
					Subjective general function (Perception of recovery);		
					Memory (CVLT, Doors and People, DSF WAIS-IV,		
					block tapping WMS-3rd);		Norms, SDs 1.65;
					Language (Naming subtest Lexis);		Global Cognitive
					Productivity (5 points test),		Impairment: # of
					Processing Speed (D-Sym WAIS-IV),	Subj function: 30%; Neurocognitive	domains impaired
					Attention (Alert and Divided subtest, Test battery	tests: 26% overall; Processing speed	out of 13, >3 sub-
			50 (42		for attn performance),	21%, Language 21%, LTM 19%, EF	stantial cog impair-
Juan et al., 201845	low	Pros	complete)	6 mos	EF (verbal fluency, Trails, Stroop, FAB GREFEX)	19%, STM verbal 5%, attention 5-29%	ment

			G1: 278;		Global cognitive function (MMSE, IQCODE, 2SQ);	NR; Sig correlations between neu-	
Lilja, Nilsson, et			control		Memory (RBMT); EF (FAB); Processing Speed	rocognitive performance and psy-	
al., 2015 ³³	low	Pros	STEMI: 119	180 days	(SDMT)	chological distress (HADS)	NR
			G1: 287;				
			G2(control)		Memory (RBMT); EF (FAB); Processing Speed		RBMT < 22; FAB <
Lilja et al., 2018 ²²	low	Pros	119	6 mos	(SDMT)	47%; specific details NR	14; SDMT 1.5 SDs
Lilja, Nielsen et					Memory (RBMT); EF (FAB); Processing Speed	RBMT 51-58%; FAB 20-23%; SDMT	RBMT < 22; FAB <
al., 201546	low	Pros	as above	~6 mos	(SDMT)	52-57%	14; SDMT 1.5 SDs
					Premorbid function (ANART);		
					Memory (RAVLT, BVMT-R);		
					EF (Trails B, VF, WCST);		
					Language (BNT, PPV);		
			G1: 25; G2		Visuo-perceptual (JOL, Number location, Visual	T1: see Alexander et al., 2011;	
			(con, ACS):	3 mos, 12	discrimination);	T2: Memory 64%; EF 32%; Semantic	Norms, Composite
Lim et al., 201447	mod	Pros	27	mos	Psychomotor (Trails A, GP, Finger tapping)	24%; V-P 28%; Psychomotor 52%	z-score
Longstreth et al.,							
201048	mod	Pros	32	~3 mos	Global cognitive function (ALFI-MMSE; 2SQs)	2SQs 25%	Raw scores
					Global cognitive function (MMSE),		
					General cognitive ability (WASI -MR, block design),		
					Memory (RAVLT),		
Mateen et al.,				7.8 yrs	Language (COWAT),	MMSE 4%; WASI: 4%; AVLT: 24-	
201149	low	Retro	47	(median)	EF (Stroop, Trails A & B)	38%; Trails 17%, Stroop 11%	Norms; 1 SD
				Mean: 60			
Moulaert et al.,				mos (18.8);			
201034	low	Retro	63	range 1-6 yrs	CFQ	Mean 29.8 (18.4), %NR	CFQ >43

			644				
			(completed				
Nichol et al.,			at least 1				
201550	low	Pros	assessment)	1, 3, 6 mos	ALFI MMSE	17.30%	<17
					General cognitive ability (WASI);	Overall 44%; WASI 15.9%; CVLT	
					Memory (CVLT; Rey CF; WMS-3 DS);	13.3%; Rey CF 30.8%; WMS -DS 9.8%;	
				3 mos (114	EF (D-Kefs Trail-making test, Color-Word, Verbal	D-Kefs TMT 8.9%, color-word 15.4%,	
				days, range	fluency);	verbal fluency, 12.5%; grooved peg	
Orbo et al., 2014 ⁵¹	low	Pros	45	80-131)	Psychomotor (GP)	board 12.2%	Norms, 1.5 SDs
					General cognitive ability (WASI);	Composite scores: Visual memory T1:	
					Memory (CVLT; Rey CF; WMS-3 DS;	21%, T2: 10%; Verbal memory T1:	
				cog 3 & 12	EF (D-Kefs Trail-making test, Color-Word, Verbal	18%, T2: 15%; Psychomotor T1:3%,	
				mos, QoL 12	fluency);	T2: 0; EF T1: 12%, T2 10%; WASI T1	
Orbo et al., 2016 ³⁰	low	Pros	33	mos	Psychomotor (GP)	and T2 12%	Norms, 1.5 SDs
					Memory (CVLT, Rey CF);	CVLT 10-33%; Rey CF 17%, D-KEFs	
					Executive (D-KEFs TMT, Color-Word);	TMT 5-8%, Color-word 10%; Grooved	
Orbo et al., 2015 ³²	low	Pros	42	3 months	Psychomotor (GP)	pegboard 7-10%	Norms, 1.5 SDs
						Compared with healthy controls: sig-	
					Memory (CVLT, Rey CF);	nificantly lower performance on ver-	
			13 ohca; 19		Executive (D-KEFs TMT);	bal memory and psychomotor	
Orbo et al., 2019 ⁵²	low	Pros	controls	3 months	Psychomotor (GP)	measures	NR
			G1: 13, G2:			Sig lower OHCA-unconsious arrival	
			13; Controls:			compared with conscious arrival/con-	
Orbo et al., 201817	low	Pros	19	3 months	Memory (CVLT)	trols	NR
			few days; 3		General cognitive ability (ACE-R)		
			mos:21; 6		Memory (RAVLT, DSF, BentonVRT);	Overall 57.2%; Memory 64-94%; At-	
Polanowska et al.,			mos: 17; 12	OHCA, 3, 6,	Attention (Trails A);	tention 0-48%; EF 21-62%; Visuo-spa-	
2014 ³¹	mod	Pros	mos: 14	12 mos	EF (WCST, Trails B);	tial 14-33%; Language 14-48%	Norms

Language (speech/naming); Visuo-spatial (Rey CF) T1=2-4 days; T2=12-14 days; T3=45 days; T4=3 OHCA=21: months; T5=1 control = 21Rosen et al., 2014²⁴ Pros MMSE 60% <28 mod vear General cognitive ability (WAIS-III MR); Visual processing (Hooper, Rey CF); 5 mos, one at 20 days, Memory (Rey CF, CVLT, CANTAB-Paired Associate OHCA=9, 8 average: 46 Learning, Camden Memory Test, WMS-III Verbal for months for Paired Associates and Logical Memory); EF (Trails, PASAT, COWAT, CANTAB Intra-Extra Dimensional Sig difference between groups neuropsych: MI; 27 mos Stamenova et al., 2018^{5} Pros MI = 7 for OHCA Set Shift, WAIS-III DS) (OHCA lower than MI) on memory mod Norms Sig difference between groups OHCA: 33; (OHCA lower than healthy controls) on immediate and delayed recall, controls Memory (RAVLT, WAIS-RDSB, red-pencil-test, working memory, prospective Sulzgruber et al., (age/ed/sex Raw scores by matched): 33 201553 low Pros 4 weeks post WMS logical memory) memory group Norms, 1.5 SDs; patient's intact if 70% Global cognitive function (MMSE); (6/8) scores above Memory (WMS-R logical memory; AVLT, RBMT); cut-off; specific cog MMSE: day EF (Stroop, Trails B, verbal fluency); functions impaired hypothermia 14; cog tests: Processing Speed (WAIS-R digit-symbol, Trails A, Overall: 33-56%; Learning and if 50% of tests below Tiainen et al. Stroop-congruent, GP) 2007^{50} Pros : 27; non: 18 3 months memory 24%; EF: 33%, 19% speed cut-off low

-			1		· · · · · · · · · · · · · · · · · · ·		
					General cognitive ability (WAIS-R: Similarities,		Norms, 1 SD; Im-
				6-8 mos,	Blocks, digit-symbol, visual search);		paired if perfor-
Tiainen et al.,				median 7	Memory (WMS-R (logical passages, list learning);		mance on >1 test
201554	mod	Pros	n=41	mos	EF (Trails, Stroop, semantic fluency)	51%, specific area NR	was below norms
							MMSE <24; Norm <i>s,</i>
							1.5 SD on at least 3
				13-28 mos	Global cognitive function (MMSE);		measures or 2 SDs
Torgersen et al.,				(mean=20.4	General cognitive ability (CANTAB motor screening	52%; deficits in EF and episodic	on 2 measures (out
201055	low	Retro	26	mos)	test, delayed matching to sample, stockings, PAL)	memory compared with norm data	of 10)
Wachelder et al.,							
200956	low	Retro	63	36 mos (18.8)	CFQ	21%	>/= 44
Wilson et al.,				25.81 - 27.78			
201419	low	Retro	56	mos	DEX, EMQ-R	EMQ-R 9-16%	NR

Note: Norms=normative data; SD = standard deviation; Pros = prospective design; Retro = retrospective design; MI=Myocardial Infarction 174 Key for Measures: ACE-R, Addenbrooke's Cognitive Examination-Revised; AVLT, Auditory Verbal Learning Test; BNT, Boston Naming Test; BT, Block tapping, Weschler Memory 175 Scale; BVMT, Brief Visual Memory Test; BVRT, Benton Visual Retention Test; CANTAB, Cambridge Neuropsychological Test Automated Battery; CASI, Cognitive Abilities Screening 176 Instrument; CFQ, Cognitive Failures Questionnaire; CMT, Camden Memory Test; CNB, Computerized Neurocognitive Battery; COWAT, Controlled oral word association test; 177 CVLT, California Verbal Learning Test; DEX, Dysexecutive Questionnaire; D-KEFs, Delis-Kaplan Executive Function System; EMQ-R, Everyday Memory Questionnaire; FAB, Frontal 178 Assessment Battery; HVOT, Hooper Visual Organisation Test; IQCODE/IQCODE-CA, Informant Questionnaire on Cognitive Decline in the Elderly-Cardiac Arrest; JOL, Judgement 179 of Line Orientation; NAB, Neuropsychological Assessment Battery, NART/ANART, National Adult Reading Test; PAL, Paired Associates Learning; PASAT, Paced Auditory Serial 180 Addition Test; PPV, Peabody Picture Vocabulary; RAVLT, Rey Auditory Verbal Learning Test; Rey CF, Rey-Osterrieth Complex Figure Test; RBMT, Rivermead Behavioural Memory 181 Test; SDMT, Symbol digit modalities test; TICs, Telephone Interview for Cognitive Status; VF, Verbal Fluency; WAIS, Wechsler Adult Intelligence Scale: Dig-Sym, digit symbol, DS, 182 Digit Span; WASI, Wechsler Abbreviated Scale of Intelligence; WCST, Wisconsin Card Sorting Test; WMS, Wechsler Memory Scale. 183

4. Discussion

Forty-three articles were identified that included cognitive assessment after OHCA.186Following on from the review of 28 articles by Moulaert et al. in 2009², this review sought187to identify progress in this area since 2006. Moulaert identified key challenges when at-188tempting to generalize findings across studies including studies having a high risk of bias,189low sample size, lack of a standard protocol, and not accounting for possible confounding190factors. There has been some progress in our understanding of neurocognitive outcomes;191however, issues persist in all these areas.192

Whilst most studies had a low risk of bias overall, there remain concerns over the 193 generalizability of findings given the sampling approaches and sample sizes used as well 194 as the lack of reporting of effect sizes and power analyses. Findings from papers with low 195 sample sizes need to be interpreted with caution. In addition, there are also possible con-196 founding factors such as age, premorbid status, comorbidities, and treatment differences 197 that may also reduce generalizability of findings to the broader OHCA population. The 198 timing of the assessments varied considerably, from days to years after the OHCA. Crite-199 ria for selection were similar to those used in the prior review; however, this review in-200 cluded assessments conducted from hospital discharge rather than starting from 3 201 months. When comparing findings, the time of the assessment needs to be considered and 202 future work should focus on looking at change over time. The premorbid characteristics 203 of those being studied (cognitive reserve, pre-existing conditions, etc.), and how these in-204 fluences neurocognitive outcomes following OHCA, merits further consideration. Cogni-205tive reserve estimates may help to understand differences in outcome between individu-206 als. When classifying survivors into severe and mild groups based on composite cognitive 207 tests, it has been found that those in the more severe groups also have lower reading score, 208 which can be used as a proxy measure of premorbid function^{e.g., 39, 43}. Therefore, deficits in 209 high reserve individuals may be masked and underestimated when not accounting for 210 this reserve. 211

Studies that included both in- and out of hospital cardiac arrest were excluded if it 212 was not possible to identify cognitive outcomes specific to the OHCA group. Whilst this 213 was necessary because those with IHCA may differ in a substantive way to patients with 214 OHCA, it also likely means that high quality studies that could add to our knowledge 215 base were excluded. In future studies it would be valuable to differentiate outcomes be-216 tween these two populations. 217

It is also crucial to consider how representative survivors participating in research 218 are of the entire population they represent. Studies are likely to report education level and 219 gender; however, it is not standard to report variables such as race, ethnicity and socioec-220 onomic background which makes it difficult to assess the inclusivity and generalizabil-221 ity of the findings. This risk of selection bias has been discussed in other work^{e.g.,33,41}. Sur-222 vivors with poorer outcome may be excluded or unable to perform the neurocognitive 223 tests while survivors with good outcome may not be identified due to non-granular in-224 struments used (e.g., ceiling effects) that were not designed to be sensitive to subtle im-225 pairment or decline participation due to not experiencing any perceived problems in their 226 cognitive function. These issues should be addressed in future work. 227

There continues to be a heterogenous approach to the domains of cognitive function 228 assessed and the measures used. Even studies using the same measures often have vary-229 ing levels of impairment reported. It is difficult to tell if this is due to a range of cognitive 230 impairment after OHCA or to other factors such as the population included in the study, 231 the timing of the assessment, or the treatment protocol used. In addition, the threshold for 232 classifying patients as impaired varies across studies depending on the cut-off criteria 233 adopted. For example, some studies have a cut-off score for impairment based on estab-234 lished test norms whereas others compare performance to population or patient norma-235

tive data. Even within this latter category, there are discrepancies with some studies identifying cut-off criteria as performance 1 SD below the mean and others at 2-3 SDs below the norm. A greater degree of standardization in cognitive assessment following OHCA would allow different studies and treatments to be assessed and compared more effectively.

Neurocognitive impairment following OHCA is associated with lower societal par-241 ticipation, fatigue and restricted mobility²². Studies also report associations between neu-242 rocognitive impairment and depression^{19,22}, while others do not^{38,47}. Since the Moulaert et 243 al (2009) review, the MoCA has been recommended by the European Resuscitation Coun-244 cil as a neurocognitive screening tool after CA53. The Core Outcome Set for Cardiac Arrest 245 (COSCA) statement⁵⁴ recommends that core outcomes in CA effectiveness studies should 246 include survival, neurological function, and health-related quality of life, with neurologi-247 cal function measured by the mRS⁹ at hospital discharge, at 30 days, or both. Most studies 248 included in this review were focused on neurocognitive function and performed after 30-249 days. The frequent neurocognitive problems identified in the studies of this review em-250 phasise the need for a neurological screening at an early stage that could indicate neu-251 rocognitive impairment. Our findings are therefore in line with the COSCA⁵⁸ recommen-252 dations. Furthermore, using measures such as the CPC and the mRS, whilst useful, lack 253 sensitivity and specificity in relation to identifying areas of potentially subtle cognitive 254 impairment, increasing the risk of both Type I and Type II errors. Including multi-dimen-255 sional measures of function decreases Type-II errors though potentially increases Type I 256 error, especially as additional measures are added to a battery of tests. Thus, future work 257 should endeavour to cast a wide net initially and then identify specific measures across 258 areas of function to appropriately balance Type I and Type II errors when identifying neu-259 rocognitive decline associated with OHCA. 260

Specific recommendations for further neurocognitive instruments with acceptable psychometric properties assessing specific neurocognitive domains do not currently exist and are needed for use in clinical trials and where indicated in clinical practice.

5. Conclusions

The need for neurocognitive assessment that is more sensitive to a wide range of 265 OHCA outcomes is clear. A standardized framework for evaluation should incorporate 266 inclusive approaches to recruitment, information on premorbid status and comorbidities, 267 and specific factors related to the cardiac arrest. This should be combined with a consistent 268 and efficient approach to the assessment of memory, executive functions, and atten-269 tion/processing that is related to, and predictive of, quality of life and daily function. Im-270 proved understanding of the optimal approach to assessment and interpretation of the 271 subsequent findings will facilitate the development of recommendations for the standard-272 ized evaluation of neurocognitive outcomes following OHCA. 273

Funding: This research was funded by the University of the West of England Bristol (Quality Research funding) 275

Conflicts of Interest: The authors declare no conflict of interest.

278

277

274

261

262

263

Appendix A: Search Approach and Terms:	279
	280
Index Language Terms:	281
Medical Subject Headings (MesH); Embase subject headings (biomed/life science) and key words	282
	283
Databases:	284
Medline, Cinahl, PsychInfo, follow-up with Google Scholar	285

Key words:

POPULATION	OUTCOMES
Heart arrest	Cognitive function
Asystole	Cognition disorders
Cardiac arrest	Cognitive impairment
Cardiopulmonary arrest	Neuropsychological assessment
Circulatory arrest	Neuropsychological evaluation
Cardiac sudden death	Neuropsychological test
Sudden cardiac death	Neuropsychological function
Resuscitation	Neurocognitive deficits
Cardiopulmonary resuscitation	Neurocognitive assessment
CPR	Executive function
Out-of-hospital cardiac arrest	Executive control
	Executive attention
	Working memory
	Memory disorders
	Attention
	Concentration

	References	292
1	Gräsner IT. Herlitz I. Tielmeland IB. Wnent I. Masterson S. Lilia G. Bein B. Böttiger BW. Rosell-Ortiz F. Nolan	293 294
1.	IP Bosspert I Furopean Resuscitation Council Guidelines 2021: Enidemiology of cardiac arrest in Europe	294
	Resuscitation 2021 Apr 1:161:61-79 https://doi.org/10.1016/j.resuscitation.2021.02.007	295
2	Moulaart VR Verbunt IA van Heugten CM Wade DT Cognitive impairments in survivers of out of hespital	290
۷.	cardiac arrest: a systematic review. Resuscitation, 2009 Mar 1:80(2):297-205. https://doi.org/10.1016/j.resuscita	297
	tion 2008 10 024	290
2	Modrzycka Dobrowska WA Czyż Szybanbejl K Kwiecień Lezyń K Lewandowska K Prediction of comitive	299
3.	Mędrzycka-Dąbrowska WA, Czyz-Szybenbeji K, Kwiecien-Jagus K, Lewandowska K. Prediction of cognitive	300
	Later and a systematic review. Advances in Interventional Cardiology/Postepy Karloi	301
4	Interwencyjnej. 2018;14(3):225., 2018. https://dx.doi.org/10.5114%2Faic.2018.78324	302
4.	byron-Alhassan A, Tulloch HE, Collins B, Quinian B, Fang Z, Chakraborty S, Le May M, Duchesne L, Smith	303
	AM. Exploratory Analyses of Cerebral Gray Matter Volumes After Out-or-Hospital Cardiac Affest in Good	304
-	Outcome Survivors. Front Psychol. 2020 May 6;11:856. https://doi.org/10.3389/fpsyg.2020.00856	305
5.	Stamenova V, Nicola R, Aharon-Peretz J, Goldsher D, Kapeliovich M, Gilboa A. Long-term effects of brief hy-	306
	poxia due to cardiac arrest: Hippocampal reductions and memory deficits. Resuscitation 2018:65–71.	307
	https://doi.org/10.1016/j.resuscitation.2018.02.016.	308
6.	Beesems SG, Wittebrood KM, de Haan RJ, Koster RW. Cognitive function and quality of life after successful	309
	resuscitation from cardiac arrest. Resuscitation. 2014 Sep 1;85(9):1269-74. https://doi.org/10.1016/j.resuscita-	310
	tion.2014.05.027	311
7.	Jacobs I, Nadkarni V, Bahr J, Berg RA, Billi JE, Bossaert L, Cassan P, Coovadia A, D'este K, Finn J, Halperin H.	312
	Update and simplification of the Utstein templates for resuscitation registries: A statement for healthcare pro-	313
	fessionals from a task force of the International Liaison Committee on Resuscitation. Resuscitation.	314
	2004;63(3):233-49. https://doi.org/10.1161/01.cir.0000147236.85306.15	315
8.	Teasdale G, Jennett B. Assessment of coma and impaired consciousness: a practical scale. The Lancet. 1974 Jul	316
	13;304(7872):81-4. https://doi.org/10.1016/s0140-6736(74)91639-0	317
9.	Van Swieten JC, Koudstaal PJ, Visser MC, Schouten HJ, Van Gijn J. Interobserver agreement for the assess-	318
	ment of handicap in stroke patients. Stroke. 1988 May;19(5):604-7.	319
10.	Downs SH, Black N. (1998) The feasibility of creating a checklist for the assessment of the methodological	320
	quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community	321
	Health 52:377–384.	322
11.	Ferro MA, Speechley KN. Depressive symptoms among mothers of children with epilepsy: a review of preva-	323
	lence, associated factors, and impact on children. Epilepsia. 2009 Nov;50(11):2344-54.	324
12.	Gates S, Lall R, Quinn T, Deakin CD, Cooke MW, Horton J, Lamb SE, Slowther AM, Woollard M, Carson A,	325
	Smyth M. Prehospital randomised assessment of a mechanical compression device in out-of-hospital cardiac	326
	arrest (PARAMEDIC): a pragmatic, cluster randomised trial and economic evaluation. Health technology as-	327
	sessment (Winchester, England). 2017 Mar 1;21(11):1-76.	328
13.	Ji C, Lall R, Quinn T, Kaye C, Haywood K, Horton J, et al. Post-admission outcomes of participants in the	329
	PARAMEDIC trial: A cluster randomised trial of mechanical or manual chest compressions. Resuscitation	330
	2017;118:82–8. <u>https://doi.org/10.1016/j.resuscitation.2017.06.026</u> .	331

14.	Aufderheide TP, Frascone RJ, Wayne MA, Mahoney BD, Swor RA, Domeier RM, et al. Standard cardiopulmo-	332
	nary resuscitation versus active compression-decompression cardiopulmonary resuscitation with augmenta-	333
	tion of negative intrathoracic pressure for out-of-hospital cardiac arrest: a randomised trial. Lancet	334
	2011;377:301–11. https://doi.org/10.1016/S0140-6736(10)62103-4.	335
15.	Bro-Jeppesen J, Kjaergaard J, Horsted TI, Wanscher MC, Nielsen S, Rasmussen LS, et al. The impact of thera-	336
	peutic hypothermia on neurological function and quality of life after cardiac arrest. Resuscitation 2009;80:171-	337
	6. https://doi.org/10.1016/j.resuscitation.2008.09.009.	338
16.	Evald L, Brønnick K, Duez CHV, Grejs AM, Jeppesen AN, Søreide E, et al. Prolonged targeted temperature	339
	management reduces memory retrieval deficits six months post-cardiac arrest: A randomised controlled trial.	340
	Resuscitation 2019;134:1–9. https://doi.org/10.1016/j.resuscitation.2018.12.002.	341
17.	Ørbo MC, Vangberg TR, Tande P, Anke A, Aslaksen PM. Memory performance, global cerebral volumes and	342
	hippocampal subfield volumes in long-term survivors of Out-of-Hospital Cardiac Arrest. Resuscitation	343
	2018:21–8. https://doi.org/10.1016/j.resuscitation.2018.02.011.	344
18.	Torgersen J, Strand K, Bjelland TW, Klepstad P, Kvåle R, Søreide E, et al. Cognitive dysfunction and health-	345
	related quality of life after a cardiac arrest and therapeutic hypothermia. Acta Anaesth Scand 2010;54:721–8.	346
	https://doi.org/10.1111/j.1399-6576.2010.02219.x.	347
19.	Wilson M, Staniforth A, Till R, das Nair R, Vesey P. The psychosocial outcomes of anoxic brain injury follow-	348
	ing cardiac arrest. Resuscitation 2014;85:795–800. https://doi.org/10.1016/j.resuscitation.2014.02.008.	349
20.	Harve H, Tiainen M, Poutiainen E, Maunu M, Kajaste S, Roine RO, et al. The functional status and perceived	350
	quality of life in long-term survivors of out-of-hospital cardiac arrest. Acta Anaesth Scand 2007;51:206–9.	351
21.	Andersson A-E, Rosén H, Sunnerhagen KS. Life after cardiac arrest: A very long term follow up. Resuscitation	352
	2015;91:99–103. https://doi.org/10.1016/j.resuscitation.2015.01.009.	353
22.	Lilja G, Nielsen N, Bro-Jeppesen J, Dunford H, Friberg H, Hofgren C, et al. Return to Work and Participation	354
	in Society After Out-of-Hospital Cardiac Arrest. Circ-Cardiovasc Qual 2018;11:e003566–e003566.	355
	https://doi.org/10.1161/CIRCOUTCOMES.117.003566.	356
23.	Fugate JE, Moore SA, Knopman DS, Claassen DO, Wijdicks EFM, White RD, et al. Cognitive outcomes of pa-	357
	tients undergoing therapeutic hypothermia after cardiac arrest. Neurology 2013;81:40–5.	358
	https://doi.org/10.1212/WNL.0b013e318297ee7e.	359
24.	Rosén C, Rosén H, Andreasson U, Bremell D, Bremler R, Hagberg L, et al. Cerebrospinal fluid biomarkers in	360
	cardiac arrest survivors. Resuscitation 2014;85:227–32. https://doi.org/10.1016/j.resuscitation.2013.10.032.	361
25.	Folstein MF, Folstein SE, McHugh PR. Mini-mental state: A practical method for grading the cognitive state of	362
	patients for the clinician. J Psychiatr Res. 1975 Nov 1;12(3):189-98.	363
26.	Roccaforte WH, Burke WJ, Bayer BL, Wengel SP. Validation of a telephone version of the Mini-Mental State	364
	Examination. J Am Geriatr Soc. 1992 Jul;40(7):697-702. https://doi.org/10.1111/j.1532-5415.1992.tb01962.x	365
27.	Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H.	366
	The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geri-	367
	atr Soc. 2005 Apr;53(4):695-9. https://doi.org/10.1111/j.1532-5415.2005.53221.x	368
28.	Heradstveit B, Larsson E-M, Skeidsvoll H, Hammersborg S-M, Wentzel-Larsen T, Guttormsen AB, et al. Re-	369
	peated magnetic resonance imaging and cerebral performance after cardiac arrest a pilot study. Resuscitation	370
	2011;82:549–55. https://doi.org/10.1016/j.resuscitation.2011.01.018.	371

29.	Caro-Codón J, Rey JR, Lopez-de-Sa E, González Fernández Ó, Rosillo SO, Armada E, et al. Long-term neuro-	372
	logical outcomes in out-of-hospital cardiac arrest patients treated with targeted-temperature management.	373
	Resuscitation 2018;133:33–9. <u>https://doi.org/10.1016/j.resuscitation.2018.09.015</u> .	374
30.	Ørbo M, Aslaksen PM, Larsby K, Schäfer C, Tande P, Anke A. Alterations in cognitive outcome between 3	375
	and 12 months in survivors of out-of-hospital cardiac arrest. Resuscitation 2016;105:92–9.	376
	https://doi.org/10.1016/j.resuscitation.2016.05.017.	377
31.	Polanowska KE, Sarzyńska-Długosz IM, Paprot AE, Sikorska Ś, Seniów JB, Karpiński G, et al. Neuropsycho-	378
	logical and neurological sequelae of out-of-hospital cardiac arrest and the estimated need for neurorehabilita-	379
	tion: a prospective pilot study. Polish Heart Journal / Kardiologia Polska 2014;72:814–22.	380
	https://doi.org/10.5603/KP.a2014.0087.	381
32.	Ørbo M, Aslaksen PM, Larsby K, Schäfer C, Tande P, Vangberg TR, et al. Relevance of Cognition to Health-	382
	Related Quality of Life in Good-Outcome Survivors of Out-Of-Hospital Cardiac Arrest. Journal of Rehabilita-	383
	tion Medicine (Stiftelsen Rehabiliteringsinformation) 2015;47:860–6. https://doi.org/10.2340/16501977-1998.	384
33.	Lilja G, Nilsson G, Nielsen N, Friberg H, Hassager C, Koopmans M, et al. Anxiety and depression among out-	385
	of-hospital cardiac arrest survivors. Resuscitation 2015;97:68–75. https://doi.org/10.1016/j.resuscita-	386
	tion.2015.09.389.	387
34.	Moulaert V, Wachelder EM, Verbunt JA, Wade DT, van Heugten C M. Determinants of quality of life in survi-	388
	vors of cardiac arrest. J Rehabil Med 2010;42:553–8. <u>https://doi.org/10.2340/16501977-0547</u> .	389
35.	Cronberg T, Lilja G, Horn J, Kjaergaard J, Wise MP, Pellis T, et al. Neurologic function and health-related	390
	quality of life in patients following targeted temperature management at 33°C vs 36°C after out-of-hospital	391
	cardiac arrest: A randomized clinical trial. JAMA Neurology 2015;72:634–41. https://doi.org/10.1001/jamaneu-	392
	<u>rol.2015.0169</u> .	393
36.	Blennow Nordström E, Lilja G, Årestedt K, Friberg H, Nielsen N, Vestberg S, et al. Validity of the IQCODE-	394
	CA: An informant questionnaire on cognitive decline modified for a cardiac arrest population. Resuscitation	395
	2017;118:8–14. <u>https://doi.org/10.1016/j.resuscitation.2017.06.012</u> .	396
37.	Grand J, Lilja G, Kjaergaard J, Bro-Jeppesen J, Friberg H, Wanscher M, et al. Arterial blood pressure during	397
	targeted temperature management after out-of-hospital cardiac arrest and association with brain injury and	398
	long-term cognitive function. Eur Heart J. Acute Cardiovasc Care 2019:2048872619860804–2048872619860804.	399
	https://doi.org/10.1177/2048872619860804.	400
38.	Grubb NR, Simpson C, Sherwood RA, Abraha HD, Cobbe SM, O'Carroll R E, et al. Prediction of cognitive	401
	dysfunction after resuscitation from out-of-hospital cardiac arrest using serum neuron-specific enolase and	402
	protein S-100. Heart (British Cardiac Society) 2007;93:1268–73.	403
39.	Alexander MP, Lafleche G, Schnyer D, Lim C, Verfaellie M. Cognitive and functional outcome after out of	404
	hospital cardiac arrest. J Int Neuropsychol Soc 2011;17:364–8. <u>https://doi.org/10.1017/S1355617710001633</u> .	405
40.	Brønnick K, Evald L, Duez CH, Grejs AM, Jeppesen AN, Kirkegaard H, Nielsen JF, Søreide E. Biomarker prognosti-	406
	cation of cognitive impairment may be feasible even in out-of hospital cardical arrest survivors with good neurolog-	407
	ical outcome. Resuscitation. 2021 May 1;162:396-402. https://doi.org/10.1016/j.resuscitation.2021.02.025	408
41.	Byron-Alhassan A, Collins B, Bedard M, Quinlan B, Le May M, Duchesne L, Osborne C, Wells G, Smith AM,	409
	Tulloch HE. Cognitive dysfunction after out-of-hospital cardiac arrest: Rate of impairment and clinical predic-	410
	tors. Resuscitation. 2021 May 12. https://doi.org/10.1016/j.resuscitation.2021.05.002	411
42.	Byron-Alhassan A, Tulloch HE, Collins B, Quinlan B, Fang Z, Chakraborty S, Le May M, Duchesne L, Smith	412

	AM. Exploratory analyses of cerebral gray matter volumes after out-of-hospital cardiac arrest in good out-	413
	come survivors. Frontiers in Psychology. 2020 May 6;11:856. <u>https://doi.org/10.3389/fpsyg.2020.00856</u>	414
43.	Davies SE, Rhys M, Voss S, Greenwood R, Thomas M, Benger JR. Psychological wellbeing in survivors of car-	415
	diac arrest, and its relationship to neurocognitive function. Resuscitation 2017:22–5.	416
	https://doi.org/10.1016/j.resuscitation.2016.11.004.	417
44.	Evald L, Brønnick K, Duez CH, Grejs AM, Jeppesen AN, Søreide E, Kirkegaard H, Nielsen JF. Younger age is	418
	associated with higher levels of self-reported affective and cognitive sequelae six months post-cardiac arrest.	419
	Resuscitation. 2021 Apr 19. https://doi.org/10.1016/j.resuscitation.2021.04.009	420
45.	Juan E, De Lucia M, Beaud V, Oddo M, Rusca M, Viceic D, et al. How Do You Feel? Subjective Perception of	421
	Recovery as a Reliable Surrogate of Cognitive and Functional Outcome in Cardiac Arrest Survivors. Crit Care	422
	Med 2018;46:e286–93. <u>https://doi.org/10.1097/CCM.00000000002946</u> .	423
46.	Lilja G, Nielsen N, Friberg H, Horn J, Kjaergaard J, Nilsson F, et al. Cognitive Function in Survivors of Out-of-	424
	Hospital Cardiac Arrest After Target Temperature Management at 33°C Versus 36°C. Circulation	425
	2015;131:1340–9. https://doi.org/10.1161/CIRCULATIONAHA.114.014414.	426
47.	Lim C, Verfaellie M, Schnyer D, Lafleche G, Alexander MP. Recovery, Long-Term Cognitive Outcome and	427
	Quality of Life Following Out-Of-Hospital Cardiac Arrest. Journal of Rehabilitation Medicine (Stiftelsen Reha-	428
	biliteringsinformation) 2014;46:691–7. https://doi.org/10.2340/16501977-1816.	429
48.	Longstreth W Jr, Nichol G, Van Ottingham L, Hallstrom AP, Longstreth WTJ, Nichol G, et al. Two simple	430
	questions to assess neurologic outcomes at 3 months after out-of-hospital cardiac arrest: experience from the	431
	public access defibrillation trial. Resuscitation 2010;81:530–3. https://doi.org/10.1016/j.resuscita-	432
	tion.2010.01.011.	433
49.	Mateen FJ, Josephs KA, Trenerry MR, Felmlee-Devine M, Weaver AL, Carone M, et al. Long-term cognitive	434
	outcomes following out-of-hospital cardiac arrest: A population-based study. Neurology 2011;77:1438–45.	435
	https://doi.org/10.1212/WNL.0b013e318232ab33.	436
50.	Nichol G, Guffey D, Stiell IG, Leroux B, Cheskes S, Idris A, et al. Post-discharge outcomes after resuscitation	437
	from out-of-hospital cardiac arrest: A ROC PRIMED substudy. Resuscitation 2015;93:74–81.	438
	https://doi.org/10.1016/j.resuscitation.2015.05.011.	439
51.	Ørbo M, Aslaksen PM, Larsby K, Norli L, Schäfer C, Tande P, et al. Determinants of cognitive outcome in sur-	440
	vivors of out-of-hospital cardiac arrest. Resuscitation 2014;85:1462-8. https://doi.org/10.1016/j.resuscita-	441
	tion.2014.08.010.	442
52.	Ørbo M C, Aslaksen PM, Anke A, Tande P, Vangberg TR. Cortical Thickness and Cognitive Performance Af-	443
	ter Out-of-Hospital Cardiac Arrest. Neurorehabil Neural Repair 2019;33:296–306.	444
	https://doi.org/10.1177/1545968319834904.	445
53.	Sulzgruber P, Kliegel A, Wandaller C, Uray T, Losert H, Laggner AN, et al. Survivors of cardiac arrest with	446
	good neurological outcome show considerable impairments of memory functioning. Resuscitation	447
	2015;88:120–5. https://doi.org/10.1016/j.resuscitation.2014.11.009.	448
54.	Tiainen M, Poutiainen E, Kovala T, Takkunen O, Häppölä O, Roine RO, et al. Cognitive and neurophysiologi-	449
	cal outcome of cardiac arrest survivors treated with therapeutic hypothermia. Stroke 2007;38:2303-8.	450
55.	Tiainen M, Poutiainen E, Oksanen T, Kaukonen K-M, Pettilä V, Skrifvars M, et al. Functional outcome, cogni-	451
	tion and quality of life after out-of-hospital cardiac arrest and therapeutic hypothermia: data from a random-	452
	ized controlled trial. Scand J Trauma, Resusc Emerg Med 2015;23:12–12. https://doi.org/10.1186/s13049-014-	453
	<u>0084-9</u> .	454

56.	Wachelder EM, Moulaert VRMP, van Heugten C, Verbunt JA, Bekkers SCAM, Wade DT. Life after survival:	455
	long-term daily functioning and quality of life after an out-of-hospital cardiac arrest. Resuscitation	456
	2009;80:517–22. https://doi.org/10.1016/j.resuscitation.2009.01.020	457
57.	Nolan, J.P., Sandroni, C., Böttiger, B.W. et al. European Resuscitation Council and European Society of Inten-	458
	sive Care Medicine guidelines 2021: post-resuscitation care. Intensive Care Med 47, 369–421 (2021).	459
	https://doi.org/10.1007/s00134-021-06368-4	460
58.	Haywood K, Whitehead L, Nadkarni VM, Achana F, Beesems S, Böttiger BW, Brooks A, Castrén M, Ong ME,	461
	Hazinski MF, Koster RW. COSCA (Core Outcome Set for Cardiac Arrest) in adults: an advisory statement	462
	from the International Liaison Committee on Resuscitation. Circulation. 2018 May 29;137(22):e783-801.	463
	https://doi.org/10.1161/CIR.0000000000000562	464