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Abstract 

This research provides an algorithm to analyse structures composed of solids that are directly extracted 

from Computer Aided Design (CAD) environment. The analysis assumes linear elastic material and small 

displacements, being the result the displacements field of the structure under a set of forces and 

constraints. Since the equation to obtain such displacements is not analytically solvable, the solution is 

approximated by a linear combination of the so-called basis functions. The use of domains from CAD in 

analysis without additional meshing is the original purpose of the Isogeometric Analysis (IGA). The basis 

functions used by IGA are Non-uniform Rational B-splines (NURBS). Since any model developed in CAD is 

geometrically defined by NURBS, it already comes discretized into NURBS, and can be used directly by IGA 

to obtain the displacement field without additional meshing. 

Therefore this work is based on IGA techniques. Solids are defined in CAD as a set of faces that wrap their 

volume. This arrangement is valid for representation, but not for analysis as the solid itself does not exist 

(only the hollow volume). Therefore the first challenge that appears in this work is the generation of the 

solid enclosed by those faces, or solid parametrization. In addition, the solids can be trimmed by surfaces to 

achieve the final shape of the domain. The existence of such trimming surfaces presents two challenging 

aspects. Firstly, the discretization with NURBS as they come from CAD is not valid anymore, being necessary 

to find an alternative discretization scheme. Secondly, the trimming surfaces that bound the discretization 

are unknown in the discretization space, being necessary to approximate them. The domain may be formed 

by multiple solids that are coupled in a weak manner using Lagrange multiplier approach on the coupling 

interfaces. Apart from tackling these problems, two novel techniques have been implemented in this 

algorithm: a new triangulation technique for surfaces to allow the representation of results on the faces of 

the solids, and a new approach to calculate coordinates in the solid parameter space (point projection) that 

brings more robustness to the computation. 

The first part of the algorithm is devised to read the content of the CAD files and transform into suitable 

data for analysis. This transformation includes the solid parametrization. Then the trimming surfaces are 

approximated to allow the accurate definition of the limits of the discretization, which is carried out by 

tetrahedral mesh. The application of constraints and coupling with Lagrange multiplier approach follows the 

process to end up in the analysis results, which are the displacements of the domain. The stresses are also 

computed by a post-processor developed in this work. The performance of this algorithm is proved by a set 

of examples at the rear of the thesis. 

Although the trimmed solids need discretization different from NURBS, which vanishes partially the IGA 

original purpose, this thesis stands as another step forward in the IGA development towards the CAD-

analysis integration for solids. 
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 Introduction 1.

1.1. Background and the research problem 

This work lies within the Computational Mechanics field whose purpose is to simulate and predict 

the response of one domain under a set of constraints. In this work, the domain, called 𝛺, is one 

structure in static equilibrium composed of solids (and no other forms such as beams or shells). 

The solid is bounded by surfaces called 𝛤. The domain is subjected to constraints which are 

prescribed displacements and forces. The former are also called essential or Dirichlet boundary 

conditions and are applied on a portion of the boundary called 𝛤𝐷. The forces may be applied 

within the domain (body forces) or may be tractions on the surface, also known as natural or 

Neumann boundary conditions. The tractions are applied on surfaces 𝛤𝑁 . 

The response is the displacement field within the domain (𝒖). One example is illustrated in Fig. 

1.1, where one domain subjected to boundary conditions and body forces is illustrated at the left-

hand side. The response, depicted at the right-hand side, is the deformed configuration after the 

points of the domain have suffered displacements. Displacement at 𝑎 and 𝑏 locations are also 

shown, being decomposed into its orthogonal components for location 𝑎. 

 

Fig. 1.1 Solid subjected to constraints (left) and its response (right). 

The displacement field 𝒖 is the solution of a partial differential equation (PDE) that describes de 

equilibrium of the domain. That PDE is, in general, not analytically solvable for complex domains 

and needs numerical approximation. 

The stress field is also of interest and it is obtained from the derivatives of the displacement field. 

The material is assumed linear elastic and the displacements sufficiently small such that the 

geometrical non-linearities can be ignored. The small displacements allow taking as reference for 
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the integration of the governing equations either the un-deformed or the deformed 

configuration. 

1.1.1. Design process and Isogeometric approach 

In practice engineering, the design of a structure or mechanical part involves two stages as shown 

in Fig. 1.2. The first stage, CAD modelling, targets the definition of the geometry to comply with 

the functional requirements such us size or shape. In the second stage, analysis, the 

displacements and stresses under certain constraints are computed to check if the geometry and 

material are acceptable. The modelling stage is done by computer-aided design (CAD) tools (e.g. 

AutoCAD®, SolidWorks®, etc.) and the analysis requires solving the equilibrium PDE using 

numerical methods to approximate the solution. 

 

Fig. 1.2 Scheme of design process with two steps (CAD modelling and analysis). FEA and IGA are compared. 

The most popular numerical method to approximate PDE is the finite element analysis (FEA), 

developed within the last 70 years (Clough, 2001). In FEA, the domain is divided into portions 

called elements, where the displacement field is calculated at certain locations of the elements 

called nodes. Then, the displacement field can be approximated within each element by 

interpolation between nodes using traditionally polynomials. This process of division into 

elements is called spatial discretization. 

FEA has been exploited in many applications for structures, fluids, heat conduction or 

electromagnetism with excellent performance (Hughes, 2000; Zienkiewicz and Taylor, 2000). 

However, FEA has an important drawback: the CAD geometry developed in the modelling stage is 

not directly usable by FEA (Hughes, Cottrell and Bazilevs, 2005). By contrast, the suitable domain 

for FEA needs to be constructed again with elements defined by polynomials. In other words, the 

model needs to be done twice: one for modelling and another for analysis (Fig. 1.2 top-right). 
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Isogeometric analysis (IGA), that was introduced in 2005 (Hughes, Cottrell and Bazilevs, 2005), 

was devised to use the CAD model directly for the analysis. IGA avoids constructing the domain 

twice since the model from CAD itself is suitable for analysis. This suitability occurs because IGA 

uses NURBS1 functions instead traditional polynomials to approximate the displacement field 

being those NURBS the same functions used in CAD to define the model. Therefore, once the 

model is finished in CAD, it is ready for IGA with no additional treatment (Fig. 1.2 bottom). In IGA 

there is also a spatial discretization, as in FEA, with the displacements computed at the so-called 

control points. 

1.1.2. NURBS entities 

Geometries in CAD are defined by two types of entities: curves and surfaces, that are visible for 

the CAD user in the so-called physical space. Let us call both of them NURBS entities. These 

entities are parametric, i.e. each position of the entity is mapped to the physical space 

(coordinates 𝑥, 𝑦, 𝑧) from its parameter space (coordinate 𝜉 for curves and 𝜉, 𝜂 for surfaces). Fig. 

1.3 shows one NURBS surface with its parameter and physical spaces. NURBS entities are 

discretized into elements that come from the parametrization: one element corresponds to one 

non-void knot span (Hughes, Cottrell and Bazilevs, 2005). One element is highlighted with grey 

colour in Fig. 1.3. 

 

Fig. 1.3 NURBS surface. 

The mapping from the parameter to the physical space is a linear combination of NURBS 

functions, whose coefficients are the coordinates of certain points called control points. The shape 

in the physical space is controlled by the control points positions. The mapping is represented in 

Fig. 1.3 by the top arrow. This mapping is the same used by IGA to approximate the displacement 

field, and hence it allows using NURBS directly in analysis. 

                                                           
1
 NURBS is the acronym of non-uniform rational B-splines. 
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Mapping is one-directional from the parameter to the physical space, i.e. the inverse mapping has 

no definition. Therefore, it is not possible to find the exact parameter coordinates for a given 

physical coordinates. The unique possibility is to calculate an approximate parameter position by 

iterative techniques known as point projection (Piegl and Tiller, 1996). This approximation process 

is represented by the bottom arrow in Fig. 1.3. 

In IGA, the elements arrangement of one NURBS entity is the same as the parameter space 

partition. This partition is given by the NURBS parametrization as detailed in Chapter 2.  

Control points are linked to the parameter space arrangement. For surfaces they are generated as 

tensor product of control points in both parameter directions. The tensor product impedes the 

insertion of one single control point, i.e. it forces to insert a whole row of control points. In 

addition, this row must run parallel to one of the directions in the parameter space. Fig. 1.4 gives 

four examples of control points insertions in a NURBS surface. Insertions (a) and (b) are 

permitted, since the row is parallel to 𝜉 and 𝜂 directions respectively. Insertion of isolated control 

points (case c) or rows not parallel to one parameter direction (case d) are not possible. 

 

Fig. 1.4 Control points insertions in NURBS surface. 

1.1.3. CAD information exchange 

NURBS features, including the position of the control points, can be extracted as specific files 

called Initial Graphics Exchange Specification (IGES). These IGES files are devised to interchange 

information between different CAD packages. 
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1.1.4. Challenges in isogeometric analysis for solids 

The parameter space of one NURBS surface, and therefore its elements, is contained in the IGES 

files. Then, IGA is applicable directly to NURBS surfaces, since the domain discretization 

(elements) was already defined during the CAD modelling stage. The only step that needs to be 

made is to transfer IGES files information from CAD packages to the analysis code2. 

For CAD volumes the case is different. The volume geometry is represented by a collection of 

surfaces forming a hollow carcass that wraps the solid. Therefore, the information stored in the 

IGES files is not the solid itself but its enclosing surfaces, as shown in Fig. 1.5. This geometric 

representation, called B-rep modelling, is well settled in CAD environment. B-rep description can 

be found in CAD reference books (Hoschek, Lasser and Schumaker, 1993; Stroud, 2006). 

 

Fig. 1.5 The volume drawn in CAD is in reality a set of surfaces with no solid inside. 

As a consequence of this volume representation, IGA is not applicable directly to solids because 

there is not a solid domain (𝛺) but only the boundary surfaces (𝛤). Subsequently the solid 

parameter space, its elements, and the domain itself do not exist (recall elements in IGA are 

generated from the parameter space, section 1.1.2). 

Therefore, the first step to apply IGA to a volume modelled in CAD is to create that solid or fill 

with domain the volume enclosed by the envelope surfaces. This process is called solid 

parametrization, resulting in a NURBS solid, with its parameter space, physical space and control 

points as illustrated in Fig. 1.6. The non-existence of NURBS solids in CAD models constitutes one 

of the main challenges of this thesis.  

                                                           
2
 Rigorously speaking, NURBS surfaces may need some processing previous to the analysis if they are 

trimmed by curves. However, that process is simpler than volumes as will be shown in this section. 
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Two more pitfalls appear in IGA for solids that are outlined in this section. Let us assume that the 

volume is already parametrized. Then the solid elements and control points are given by the 

parametrization (see Fig. 1.6). 

 

Fig. 1.6 Example of NURBS solid parameter and physical spaces. One element is highlighted in both spaces. 

In the majority of the cases, solids in CAD need to be trimmed to achieve the final shape. The 

trimming brings another issue: the solid elements that come from parametrization do not match 

the trimmed version. One example is shown in Fig. 1.7. At the left-hand side the solid with spatial 

discretization as the parameter space is depicted, while at the right-hand side the trimmed solid 

to achieve final shape is shown. The discretization from the left configuration is not valid, observe 

for example the highlighted element that sticks out of the domain in the trimmed case. As a result 

of this situation, a discretization scheme different from the parametrization is required, with this 

issue being another challenge in IGA for solids. 

 

Fig. 1.7 Trimmed solid does not fit elements arrangement from the parametrization. 

Further to trimming, coupling solids is often required to achieve the final shape. Two patches are 

conformal if their parametrization matches at the coupling interface, i.e. control points coincide, 

as shown in Fig. 1.8 (left). Otherwise, if they have different parametrization at the interface, they 

are not conformal as shown in Fig. 1.8 (right). 
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Fig. 1.8 Two conformal (left) and two not conformal (right) solids at the coupling surface 

Coupling of two conformal solids is straightforward by linking coincident control points from both 

domains. It might be the case that previous insertion of control points is required to achieve 

conformity at the coupling interface. Control points insertion in NURBS domains is a well-settled 

technique (Piegl and Tiller, 1996). Fig. 1.9 provides one example for the coupling of two conformal 

solids. At left, the interface to couple is shown in both solids. At the centre, control points in solid 

2 are inserted to match arrangement of solid 1 at the coupling surface. At the right-hand side of 

the figure both solids are coupled with linked control points, represented with filled dots. 

 

Fig. 1.9 Coupling of conformal solids. 

Coupling non-conformal solids does not allow the mentioned control points linking approach. 

Control points conformity cannot be achieved by control points insertion since the 

parametrization is different in both solids at the coupling surface. This impossibility stems from 



 

8 
 

the fact that control points insertion must follow one of the parameter directions (recall Fig. 1.4). 

Fig. 1.10 shows one example where the coupling surface is trimming one of the patches. At the 

left-hand side the coupling surface is identified. At the right-hand side both solids are coupled but 

the linking of the control points is not possible because there is no permitted insertion to 

reproduce the coupling surface. In general, when one solid is trimmed it loses any potential 

conformity with other solids.  

 

Fig. 1.10 Coupling of non-conformal solids. 

The imposition of boundary conditions on a surface of the solid domain presents similar problems 

to coupling if such surface (the interface) is non-conformal with the solid. Therefore, alternative 

approach to impose constraints to interfaces non-conformal with the solids is required, being 

another major challenge tackled by this thesis. 

To sum up, the three major challenges in IGA for solids are: solid parametrization, discretization 

of trimmed solids and constraints to non-conformal interfaces. 

1.1.5. Why trimmed-coupled domains? 

Creating NURBS solids suitable for IGA is challenging, especially for trimmed non-conformal solids. 

Then, why tackle this problem? 

The answer lies in the CAD practise. When defining geometries in CAD, trimming and coupling 

appear as the most efficient strategies. For certain cases, the former strategy yields simpler 

domains, while for other cases, the second route is the easiest. Indeed, combining both 

techniques leads to a powerful tool to obtain any shape in a relatively simple manner, being the 

most common way to proceed in CAD. As a consequence, these trimmed-coupled domains should 

be suitable for IGA. 
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Two examples are presented in order to illustrate the power of trimmed-coupled techniques. 

Both are bi-dimensional for the sake of clarity, but the explained concepts can be extended to 

three-dimensional domains. Let us indicate that un-trimmed NURBS surfaces need to have 

typically four edges to keep their simplicity, it might be five in some circumstances. For un-

trimmed NURBS solids six faces are required. 

Fig. 1.11 illustrates the efficiency of trimming. A plate with a hole and notch is generated by five 

non-trimmed patches (left) and by a single trimmed patch. In the trimmed option the number of 

control points is lower, which involves low computational cost. Observe that the trimming length 

is relatively small. Trimming involves iterative processes that penalize the computational cost, 

therefore abusing of trimming is not recommended. 

 

Fig. 1.11 Plate with hole and notch. Left: multi-patching. Right: single patch and trimming entities. 

Fig. 1.12 illustrates the efficiency of coupling. The domain may be defined in two manners: 

coupling two un-trimmed patches (left) or trimming the whole contour of a single patch. In the 

second case the trimming contour would be too large which increases the computational cost. 

Hence the first option is more efficient. 

 

Fig. 1.12 Hammer. Left: coupling of two domains. Right: single trimmed domain. 
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1.2. Research aim and objectives 

Given the difficulties on the IGA applied to solids exposed in the previous sections, next question 

arises: is it possible to apply IGA on trimmed-coupled solids generated in CAD? 

The aim of this thesis is to implement a procedure to read IGES files from trimmed-coupled 

volumes in CAD and generate from them a solid domain for elastic-linear IGA, without user 

intervention in the transformation from IGES files to analysis suitable data. 

The implementation of this procedure involves seven objectives: 

a) Codification of an algorithm that encompasses all the processes: from IGES files 

interpretation to results visualization. 

b) Creation of a translator from IGES files to numerical data readable by the algorithm. 

c) Parametrization of the volumes that are enclosed by the surfaces given by the IGES 

files. The resultant parametrized volumes are analysis suitable solids. 

d) Discretization of the solids with adaptability to capture any trimmed shape. 

e) Application of constraints to surfaces non-conformal with the solid domain. 

f) Improvement of point projection technique to increase its robustness. 

g) Representation of the surfaces efficiently and independently of their parametrization. 
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1.3. Contribution of this thesis 

We create an IGES translator, which reads the IGES files, transfer the information to numerical 

arrays readable by the code and generate a solid from the enveloping surfaces that wrap the 

volume. This process is presented in Chapter 4. 

The solid parametrization is done by treating the NURBS control net as a 3D lattice. This lattice is 

deformed until it achieves the target shape. The quality of the parametrization is measured by 

Jacobian of the lattice cells instead the solid itself, which reduces the computational cost. The 

method is constrained to a solid with six faces volume and genus-zero topology. Wang and Qian 

(2014) used similar approach but their structure is not a lattice of control points but a solid 

composed of hexahedrons which is computationally more expensive. The solid parametrization is 

explained in section 4.2. 

To carry out the discretization of the solids, we discretize the whole domain into linear and mixed-

degree tetrahedrons, with the purpose of gaining accuracy at the trimmed surfaces and do not 

add additional nodes or control points that would raise the computational cost. 

Mixed-degree tetrahedrons have some edges quadratic and other linear. Mixed-degree is used in 

those tetrahedrons that lie at the trimming surfaces. The approximation accuracy is based on 

Taylor´s series. The solid is not reparametrized as per works from Xia and Qian (2017). Instead the 

parametrization remains as it comes from CAD. 

Discretization of trimmed solids into tetrahedrons involves constrained tetrahedralization (Lee 

and Lin, 1986). The imposition of facets to the tetrahedral mesh is no trivial and involves new 

nodes insertion (Shewchuk, 2009). Tetrahedralization of trimmed solids is explained in chapters 5 

and 6. 

The coupling of trimmed solids, as well as the Dirichlet boundary conditions, is applied by the 

Lagrange multiplier approach proposed by Apostolatos et al. (2014) but extended to solid 

domains. Constraints to trimmed solids are presented in Chapter 7. 

The work by Zuo et al. (2015) is very similar to this thesis, but there are some differences that we 

remark in Table 1.1. 
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Table 1.1 Differences of this work with respect to Zuo et al. (2015) 

Question Zuo et al. (2015) This thesis 

Does the domain admit 

any shape? 

No, volumes are created by extrusion, 

revolving or sweeping. User post-edition 

of surfaces is not permitted. 

Yes, including customized 

surfaces 

How is the solid 

parametrized? 
By sweeping of one surface. 

By lattice deformation or by linear 

sweeping (sandwich algorithm) 

How is the solid 

integrated? 
By octree decomposition By mixed-degree tetrahedrons. 

 

The point projection technique is used repeatedly in this thesis. If traditional methods (based on 

Newton-Raphson interations) are used in point projection, non-convergence might appear in 

many cases. To gain robustness we propose a version of the marching method (Hoschek et al., 

1993), which is extended to solids. This approach improves the robustness compared to the 

Newton-Raphson iterations. The method is presented in Appendix 10A. 

To represent the solids we use triangulation of their surfaces, then surface triangulation is used in 

this work. Most of the approaches of surface triangulation start from preliminary mesh that is 

refined to increase its isotropy. This thesis includes a new algorithm for computing quasi-isotropic 

triangulation3 on a given set of NURBS surfaces at once, with no preliminary mesh. It provides 

high isotropy regardless of the surface shape or parametrization. There is one front that advances 

in a divergence manner such that front collisions do not happen. Quasi-isotropic triangulation 

algorithm is outlined in Appendix 10B, that is based on the work done by Adan and Cardoso 

(2020), which was developed during this thesis. 

1.4. Thesis organization 

This thesis is organized in nine chapters plus a number of appendixes. 

Chapter 2 outlines the theoretical background, sets the state of the art and highlights the 

contributions of this thesis. 

                                                           
3
 In a quasi-isotropic triangulation only the triangles in the vicinity of the edges are not equilateral, the rest 

(inner triangles) are equilateral and with the same size. 
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Chapter 3 provides an overview of the algorithm and discloses information for the rest of the 

thesis facilitating the comprehension of the next chapters. This chapter is related to objective a 

since it briefs the whole code. 

Chapter 4 describes the translation from IGES files to numerical data readable by the code and the 

volume parametrization, thus covering objectives b and c.  

Chapters 5 and 6 provide details of how the trimmed solids are discretized. In Chapter 5 the 

treatment to trimming surfaces is explained. The approximation to those surfaces is critical for 

achieving accurate discretization of the solid. In Chapter 6, the solid discretization itself is 

detailed. Chapters 5 and 6 cover the objective d. 

The application of constraints and coupling to surfaces of solids (objective e) is explained in 

Chapter 7.  

To validate the procedure a set of examples is exposed in Chapter 8. These examples are 

compared to an alternative model solved with FEA in order to check the validity of the results. 

Finally, Chapter 9 highlights the main conclusions and future work. 

The appendixes contain further details that facilitate the comprehension of this thesis. It is 

relevant to highlight Appendixes 10A and 10B. 

Appendix 10A contains the improved point projection technique used in this research, which is 

related to the objective f. In Appendix 10B the surfaces representation technique independent of 

the parametrization, which is related to the objective g, is briefed. The algorithm developed in 

Appendix 10B was presented in a journal paper that has been published and referenced in that 

appendix. These two objectives are treated in appendixes, and not in the thesis’ main body, 

because they are transversal, i.e. they support the algorithms provided in the other chapters. 

The code is fully implemented in Matlab® from scratch, from the routines that read the IGES files 

to the representation of the results. The used CAD package is AutoCAD®. 

All the routines, except for those ones embedded in Matlab®, are developed by the author and 

are attached to the thesis submission on line. The coding approach is object-oriented 

programming (OOP), which eases the variables and code organization. For more details on OOP 

refer to specialized bibliography (Budd, 2002). Schemes of the code, its functions and variables 

are shown in Appendix 3A. The code is in a work in progress state, hence some functions are not 

used in this thesis since they are devised for future applications. In addition, some routines may 

appear incomplete because they are prepared for future extension. 



 

14 
 

The purpose of this thesis is to present the fundamentals of the algorithms, but not the code 

itself. However, in chapters 3 to 7, there is a section that links, briefly, the formulation developed 

in the chapter to the main functions of the code. 

1.5. Nomenclature assumptions 

Formulation is given where possible in matrix notation. At some points tensor or indicial notation 

may be used. When representing matrices, components equal to zero might be omitted for the 

sake of clarity. Most common symbols used in the text are listed in Table 1.2, at the rear of this 

chapter. 

The abbreviation of ‘with respect to’ is indicated as w.r.t. 

Some routines and variables of the code are mentioned in this thesis. To clearly distinguish them, 

are written in courier type.  
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Table 1.2 List of symbols 

𝒃 Body forces vector 

𝑐 Number of parameter space dimensions 

𝑑 Number of physical space dimensions 

�̂� Control points forces vector 

𝒏 Surface normal versor 

𝑛,𝑚, 𝑙 Number of control points in each parameter direction 

𝑝, 𝑞, 𝑟 Degree of basis functions 

𝒒 Traction vector 

�̅� Prescribed traction 

𝒖 Displacement field 

𝒖ℎ Displacement field approximation 

�̂� Control points displacement vector 

�̅� Prescribed displacement 

𝑤 Control point weight, Gauss point weight 

𝒘 Weighting function 

𝒘ℎ Weighting function approximation 

𝒙 Spatial coordinates 

  

𝑩 Strain-displacement matrix 

𝑫 Elastic constitutive tensor 

E Young modulus 

𝒥 Jacobian 

𝑲 Stiffness matrix 

ℵ Aggregated number of control points 

𝑁,𝑀, 𝐿  B-spline basis function 

𝑷 Control point coordinates 

𝑅 NURBS basis function 
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Table 1.2 (cont.) 

𝝈  Stress tensor 

𝜕 Strain operator 

𝜺 Strain tensor 

𝜆 First parameter of Lamé 

𝝀 Lagrange multiplier field 

�̂� Control points Lagrange multiplier vector 

𝜇 Shear modulus 

𝜈 Coefficient of Poisson 

𝜉, 𝜂, 𝜒 Parameter space coordinates 

 

𝛤 Boundary 

𝛺 Physical space  

�̂� Parameter space  

�̃� Parent space 

𝛺′ Index space 

𝛯,𝛨, 𝛸 Knot vectors 
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 Theoretical background and literature review 2.

This chapter reviews the fundamentals behind the algorithms developed in this thesis and the 

related works. The problem to be solved by the algorithm is the equilibrium equation in 

Continuum Mechanics, which constitutes the Initial Boundary Value Problem (IBVP). The 

equilibrium equation is a Partial Differential Equation (PDE). First attempts to solve analytically 

the equilibrium equation appeared in the XVII century (Timoshenko, 1983) when they were 

applied to a variety of structural types (trusses, beams, plates etc.) until the XX century. These 

analytical methods provide the exact solution to the problem, but they are restrained to relatively 

simple shapes. For complex domains the analytical solution is, in general, not available. The Finite 

Element Analysis (FEA) appeared in the 50’s of past century to tackle this problem (Clough, 2001). 

The FEA is a Galerkin´s method, as well as the Isogeometric Analysis (IGA). The Galerkin’s method 

discretizes the domain into portions or elements (spatial discretization) and approximates the 

solution at certain points called control points4. The domain is subjected to boundary conditions 

and body forces. The boundary conditions can be imposed displacements (Dirichlet boundary 

conditions) or imposed tractions (Neumann boundary conditions). 

The spatial discretization allows the boundary conditions to be applied to the control points and 

the IBVP is transformed into a linear system of equations as follows: 

𝑲 �̂� = �̂� (2.1) 

where: 

𝑲 represents the resistance of the control points to the displacement (stiffness); 

�̂� are the displacements of the control points due the forces �̂� applied on the control points. 

The Galerkin´s method is well settled in the field (Hughes, 2000; Zienkiewicz and Taylor, 2000; 

Felippa, 2004; Bathe, 2006). The Appendix 2B explains in detail how to obtain the linear system of 

equations (2.1) from the PDE of equilibrium. In this thesis, the approach to impose the boundary 

conditions and couplings follows the work from Apostolatos et al. (2014). 

Fig. 2.1 shows one domain under boundary conditions (a) that is discretized in two portions with 

the boundary conditions applied on the control points (b). The results are the displacement of the 

control points (c). 

                                                           
4
 In FEA they are called nodes, but we will follow the nomenclature for IGA. 
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Fig. 2.1 Discretization of the domain and results of the analysis. 

Once the displacements of the control points are calculated, the displacement field within each 

element (𝒖ℎ𝑒) is estimated by linear combination of the displacements of the involved control 

points as follows: 

𝒖ℎ𝑒 = 𝑹𝑒 �̂�𝑒  (2.2) 

where: 

𝑹𝑒: is the matrix of the so-called basis functions. Each control point has associated one basis 

function; 

�̂�𝑒: is the vector of the displacements at the control points that influence on the element. 

The Computational Mechanics deals with the development and implementation of these 

approximation methods. Then, this work lies in the Computational Mechanics field. 

The rest of this chapter covers the next contents. In section 2.1 the Isogeometric Analysis and its 

application for elasticity are introduced. Sections 2.2 to 2.7 revise the topics directly related to the 

chapters and annexes of this thesis as listed below: 

Section 2.2: Basics of CAD information and its exchange formats. 

Section 2.3: Parametrization of solid NURBS. 

Section 2.4: Integration of trimmed solids NURBS. 

Section 2.5: Constraints to non-conformal domains. 

Section 2.6: Point projection techniques. 

Section 2.7: Triangulation of NURBS surfaces. 
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2.1. Isogeometric analysis 

Isogeometric analysis (IGA) was introduced by Hughes, Cottrell and Bazilevs (2005) to use CAD 

domains directly for analysis. IGA has rapidly extended to areas such as structural analysis,  

vibration, fluid dynamics or fluid structure interaction (see for example Dede, Jaggli and 

Quarteroni, 2015; Weeger, Wever and Simeon, 2013; Bazilevs, Hsu and Scott, 2012; Kiendl et al., 

2010). IGA has been also applied for fracture mechanics, in particular using extended 

isogeometric analysis (XIGA), as shown by Ghorashi et al. (2015); Ghorashi, Valizadeh and 

Mohammadi (2012) and Singh et al. (2018). 

Knot insertion (h-refinement) and degree elevation (p-refinement) are suitable for NURBS (Piegl 

and Tiller, 1996) in a similar manner as FEA. In addition, NURBS possesses the k-refinement 

technique (Cottrell, Hughes and Bazilevs, 2009), which is a sequence of p-refinement and h-

refinement. This combined refinement raises the degree of NURBS and the number of knots 

keeping the inter-elemental continuity equal to p-1 (p is the NURBS degree). 

Variations and improvements for IGA have appeared in the last decade. This section provides the 

most relevant publications for IGA, but previously briefs the fundamentals of IGA itself. Since IGA 

uses Non-uniform rational B-splines, they are firstly introduced. 

2.1.1. Non-uniform rational B-splines (NURBS) 

NURBS entities5 are defined in the parameter (�̂�) and the physical (𝛺) spaces. The parameter 

space lies in ℝ𝑐, with 𝑐 equal to one, two and three for curves, surfaces and solids respectively. 

The physical space lies in ℝ𝑑 such that 𝑑 ≥ 𝑐. Table 2.1 shows one example for each permitted 

combination of 𝑐 and 𝑑. 

The parameter and physical coordinates are referred as 𝝃 and 𝒙 respectively. In this thesis, the 

physical space is three-dimensional (𝑑 = 3) unless noted otherwise. 

The parametrization of one NURBS entity is given by the knot vector in each parameter direction. 

One knot vector is a set of non-decreasing numbers (knots), i.e. 𝜩 = {𝜉1  𝜉2   ⋯ 𝜉𝑎  ⋯ 𝜉𝑛+𝑝+1} 

with 𝜉𝑖  ≤  𝜉𝑖+1. If the first and last 𝑝 + 1 knots are repeated, it is called open knot vector, which 

is the case of this thesis. In this work the knots vary from 0 to 1. The number of knots in each 

parameter direction is  𝑛 + 𝑝 + 1, being 𝑛 the number of control points and 𝑝 the degree of the 

basis functions in the corresponding parameter direction. 

  

                                                           
5
 Entity refers to curve, surface or solid. 
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Table 2.1 Physical spaces representable for each parameter space. 

𝑐 
parameter 

representation 

Number of physical dimensions and examples  

𝑑 = 1 𝑑 = 2 𝑑 = 3 

1 

    

2 

 

- 

  

3 

 

- - 

 

One NURBS entity has a set of control points whose coordinates define its shape in the physical 

space. The lines jointing these points form the control net. Each control point has attached one 

NURBS basis function whose degree is denoted by 𝑝. NURBS basis functions are made of B-spline 

functions (Piegl and Tiller, 1996). 

B-spline functions are computed with the parametric equations (2.3) and (2.4) also known as Cox-

De Boor equations (Cox, 1972; De Boor, 1972). Fig. 2.2 illustrates a set of these functions. 

For zero degree (p = 0): 

𝑁𝑖
0 (𝜉) = {

1 if 𝜉𝑖 ≤  𝜉 <  𝜉𝑖+1
0             otherwise

 (2.3) 

For degrees 1 and higher (p > 0) these functions are obtained recursively: 
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𝑁𝑖
𝑝

=
𝜉 − 𝜉𝑖
𝜉𝑖+𝑝 − 𝜉𝑖

 ( 𝑁𝑖
𝑝−1

)(𝜉) +
𝜉𝑖+𝑝+1 − 𝜉

𝜉𝑖+𝑝+1 − 𝜉𝑖+1
 ( 𝑁𝑖+1
𝑝−1

)(𝜉) (2.4) 

 

Fig. 2.2 Seven cubic basis functions. 

NURBS functions (𝑅) are obtained from B-splines functions by considering an extra dimension for 

the control points called weight (𝑤). The B-splines functions are weighted obtaining rational B-

splines as per equations (2.5), (2.6) and (2.7), that are for curves, surfaces and volumes 

respectively. Table 2.2 provides the nomenclature followed in this work for NURBS entities. 

𝑅𝑖
𝑝 (𝜉) =

𝑁𝑖
𝑝

 (𝜉) 𝑤𝑖

∑ 𝑁�̂�
𝑝 (𝜉) 𝑤�̂�

𝑛
�̂�=1

 (2.5) 

𝑅𝑖,𝑗
𝑝,𝑞 (𝜉, 𝜂) =

𝑁𝑖
𝑝 (𝜉)   𝑀𝑗

𝑞 (𝜂)  𝑤𝑖,𝑗

∑ ∑ 𝑁�̂�
𝑝 (𝜉)   𝑀�̂�

𝑞 (𝜂)  𝑤�̂�,�̂�
𝑚
�̂�=1

𝑛
�̂�=1

 (2.6) 

𝑅𝑖,𝑗,𝑘
𝑝,𝑞,𝑟 (𝜉, 𝜂, 𝜒) =

𝑁𝑖
𝑝 (𝜉)   𝑀𝑗

𝑞 (𝜂)  𝐿𝑘
𝑟 (𝜒)  𝑤𝑖,𝑗,𝑘

∑ ∑ ∑ 𝑁�̂�
𝑝 (𝜉)   𝑀�̂�

𝑞 (𝜂)  𝐿�̂�
𝑟 (𝜒)   𝑤�̂�,�̂�,�̂�

𝑙
�̂�=1

𝑚
�̂�=1

𝑛
�̂�=1   

 (2.7) 

Table 2.2 Nomenclature for NURBS entities 

Entity  

volume 

surface - 

curve - - 

Parameter direction 1 2 3 

Coordinate 𝜉 𝜂 𝜒 

B-spline basis function 𝑁 𝑀 𝐿 

NURBS basis function 𝑅 

Number of control points 𝑛 𝑚 𝑙 

Degree  𝑝 𝑞 𝑟 

Knot vector 𝜩 𝛨 𝛸 
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NURBS entities are obtained by linear combination of NURBS functions, using the coordinates of 

control points as coefficients. Equations (2.8) to (2.10) provide the expressions for NURBS curves, 

surfaces and volumes. 

𝑪(𝜉) =∑𝑅𝑖(𝜉)𝑷𝑖

𝑛

𝑖=1

 (2.8) 

𝑺(𝜉, 𝜂) =∑∑𝑅𝑖,𝑗(𝜉, 𝜂)𝑷𝑖,𝑗

𝑚

𝑗=1

𝑛

𝑖=1

 (2.9) 

𝑽(𝜉, 𝜂, 𝜒) =∑∑∑𝑅𝑖,𝑗,𝑘(𝜉, 𝜂, 𝜒)𝑷𝑖,𝑗,𝑘

𝑙

𝑘=1

𝑚

𝑗=1

𝑛

𝑖=1

 (2.10) 

where: 

𝑷𝑖 are the 𝑖th control point coordinates for curves; 

𝑷𝑖,𝑗 are the 𝑖-jth control point coordinates for surfaces; 

𝑷𝑖,𝑗,𝑘 are the 𝑖-j-kth control point coordinates for volumes. 

These three equations might be expressed for any general entity 𝜴 as (2.11)6, where the 

aggregated index 𝛪 may refer to (𝑖), (𝑖, 𝑗) or (𝑖, 𝑗, 𝑘) for curves, surfaces and volumes respectively, 

and ℵ is the total number of control points. Equation (2.11) represents a mapping from the 

parameter to the physical space. 

𝜴 =∑𝑅𝛪𝑷𝛪

ℵ

𝛪=1

 (2.11) 

NURBS surfaces and solids are formed by the tensor product of two and three NURBS curves 

respectively. Therefore, their parameter domains are calculated as per equations (2.12) and 

(2.13). Fig. 2.3 illustrates one NURBS surface which spans the parameter space {0 1}⊗ {0 1}. 

Each non-void knot span can be seen as one element (in Fig. 2.3 one element is grey hatched). 

𝑺�̂� = 𝜩  ⊗  𝜢 (2.12) 

𝑽�̂� = 𝜩  ⊗  𝜢 ⊗  𝜲 (2.13) 

                                                           
6
 The dependency on 𝝃 is removed for clarity. 
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Fig. 2.3 NURBS surface in parameter and physical spaces. 

NURBS entities are the evolution of Bézier entities. Bézier curves (Bézier, 1970; Forrest, 1972) 

were used by mid-20th century for engineering representation. Bézier curves are parametric 

curves formed by linear combination of basis functions that are Bernstein polynomials (Bernšteın, 

1912). Fig. 2.4 shows one example of bi-dimensional curve. 

   

Fig. 2.4 Bi-dimensional Bézier curve of cubic degree. Left: Bernstein polynomials. Centre: curve (blue thick) 

and control points (red circles). Right: modification of curve (green is the previous curve). 

Bézier entities lack localized shape control: a single control point modification varies the whole 

entity, i.e. it is not possible to carry out a localized shape variation (Fig. 2.4 right). B-splines 

overcome this pitfall since they are a sequence of Bernstein polynomials with small support, i.e. 

each basis function does not span along the whole domain but onto a localized portion. Hence, 

local shape modification is allowed (see Fig. 2.5). 
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Fig. 2.5 Bi-dimensional B-spline curve of cubic degree and seven control points. Left: basis functions, whose 

support, in general, is not the whole span. Centre: curve (blue thick) and control points (red circles). Right: 

local modification of curve (green is the original curve). 

2.1.2. Aspects of implementation of IGA 

Spaces in IGA 

Four spaces are defined in IGA: physical (Ω), parameter (Ω̂), index ( ΩI) and parent space (Ω̃). The 

physical space contains the actual geometry mapped from the parameter space. The parameter 

space contains the arrangement of the knot vectors where only non-zero knot spans are depicted. 

In the index space all the knot spans are depicted (including zero knot spans). The spacing 

between knots in the parameter space is proportional to its span length, but in the index space all 

the knots are equally spaced. Each knot span has its own parent space which will be used for 

integration by Gauss rule. Fig. 2.6 illustrates these four spaces for a typical NURBS surface. The 

fourth element (knot span) is hatched in grey colour. 

 

Fig. 2.6 Spaces in IGA. 
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The index space is relevant for local insertion of control points in the so called T-splines (Bazilevs 

et al., 2010). Since this thesis works with B-splines, and not T-splines, the index space is not used. 

Spatial discretization using NURBS 

IGA is a Galerkin’s method that uses NURBS as basis functions. The PDE solution is approximated 

by spatial discretization of the domain with the displacement field estimated with the equation 

(2.2). 

IGA is isoparametric: same basis functions are used for both, geometry definition and 

approximation to the solution of the PDE. That is patent by comparing equation (2.2) against 

equation (2.11), where both the domain 𝛺 and the solution approximation 𝒖ℎ𝑒 are defined as 

linear combination of the basis functions 𝑅𝑖. The key of IGA is that NURBS are used in CAD for 

defining the geometry. Therefore, IGA potentially allows to use domains drawn in CAD directly for 

analysis without meshing, since the division into elements (mesh), is already generated when the 

CAD model is drawn. 

Originally in IGA, the parent spaces were square and hexahedrons7, which follows the 

arrangement of knot spans in NURBS surfaces and solids (Hughes, Cottrell and Bazilevs, 2005). 

However, for trimmed domains those parent spaces might not be acceptable as shown in section 

2.4. 

Numerical integration in IGA 

The components of the system of equations (2.1) are obtained by integration of the domain and 

the boundary entities8. These integrals are approximated by the Gauss-Legendre quadrature9. Let 

us call 𝜑 to the integrand, then the integral 𝕀𝜑 is approximated as: 

𝕀𝜑 ≈ ∑𝜑𝑔𝒥𝑔𝑤𝑔  

𝑁𝑔

𝑔=1

 (2.14) 

where: 

sub-index 𝑔 indicates that the value is computed at the Gauss point location; 

 𝑁𝑔 is the number of Gauss points involved; 

𝜑𝑔 is the function evaluated at the 𝑔th Gauss point; 

𝑤𝑔 is the Gauss point weight. 

                                                           
7
 Appendix 2E reviews the most common parent elements. 

8
 See Appendix 2B. 

9
 Gauss-Legendre quadrature will be referred as Gauss rule for brevity. 
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The Jacobian (𝒥𝑔) is required because the domain is mapped onto the parent domain to set the 

same integration limits for all the integrals to facilitate the implementation. The locations of the 

Gauss points and its weights depend on the type of parent element and on the number of Gauss 

points per element10. 

In IGA there are two mappings involved: from the parent to the parameter space, and from the 

parameter to the physical space, which introduce the Jacobians 𝓙2 and 𝓙1 respectively (see Fig. 

2.7). The form of both Jacobians depends on the parent element and on the type of NURBS 

entities. 

 

Fig. 2.7 Jacobians involved in IGA. 

With these two Jacobians at hand, the Gauss quadrature in IGA takes the form: 

𝕀𝜑 ≈ ∑𝜑𝑔 𝒥1𝑔 𝒥2𝑔 𝑤𝑔  

𝑁𝑔

𝑔=1

 (2.15) 

where: 

𝒥1𝑔 𝒥2𝑔 are the Jacobians evaluated at the Gauss point location. 

Strain-displacement matrix 

The components of the strain-displacement matrix (𝑩) are the derivatives of basis function w.r.t. 

the physical space which are calculated as follows: 

{

𝑅𝑖,𝑥
𝑅𝑖 ,𝑦
𝑅𝑖,𝑧

} = 𝓙1
−1 {

𝑅𝑖,𝜉
𝑅𝑖,𝜂
𝑅𝑖,𝜒

} (2.16) 

The Jacobian 𝓙1 is required because basis functions (𝑅𝑖) depend on the parameter coordinates11. 

 

                                                           
10

 Jacobian calculation is given in Appendix 2F and Gauss points arrangements in Appendix 6A. 
11

 See Appendix 2B for details of the strain-displacement matrix. 
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2.1.3. State of the art of IGA 

IGA for different types of domains 

For structures of beam type, IGA is particularly suitable for curve beams because it captures the 

exact geometry. See for example works done by Nagy, Abdalla and Gürdal (2010); Luu, Kim and 

Lee (2015); and Cazzani, Malagù and Turco (2016). 

Shell structures have been extremely developed on IGA since NURBS represent exact geometry 

and the parametrization itself provides curvilinear coordinates. However, special care must be 

considered since the degrees of freedom (control points) do not lie on the physical shell. The 

single patch NURBS domains fit the Kirchhoff-Love C1 continuity requirement between knots 

spans, as the basis functions are 𝐶𝑝−𝑚 continuous across those boundaries. IGA applied to 

Kirchhoff-Love shells was introduced by Kiendl et al. (2009), and extended to multi-patching with 

C1 continuity by the strip method by Kiendl et al. (2010). Reissner-Mindlin shells have been also 

developed in IGA by Uhm and Youn (2009); and Benson et al. (2010), and both types mixed by 

Benson et al. (2013). Solid shells with IGA were presented by Bouclier, Elguedj and Combescure 

(2013); Hosseini et al. (2013); and Bouclier, Elguedj and Combescure (2015). Laminated materials 

are suitable for IGA as shown in Thai et al. (2012); Yin et al. (2015); and Leonetti et al. (2018) 

Literature for IGA applied to solid type structures is scarcer. Yusuf et al. (2015); and Lai et al. 

(2017) applied IGA to solids achieving satisfactory results, but still some related processes such as 

parametrization or integration of trimmed solids are not fully addressed. Further exploration of 

these items is provided in sections 2.3 and 2.4 of this thesis. 

In the last 8-10 years two techniques has been developed to improve some of the IGA limitations: 

Bézier extraction and local refinement. These two techniques are not used in this thesis. However, 

most relevant publications on them are briefed because they are two major aspects in the current 

IGA development. 

Bézier extraction 

Since FEA has been implemented in the industry for a few decades, it would be interesting to 

insert IGA within FEA routines, then all the infrastructure already existing can be reused for IGA. 

Bézier extraction operator maps a piece-wise base made of Bernstein polynomials into B-spline 

basis functions. Borden et al. (2011) proposed Bezier extraction to NURBS. Scott et al. (2011) 

extended the technique to T-splines. Bernstein polynomials can be treated exactly the same as 

conventional polynomials, and therefore they can be implemented in FEA routines. Bézier 

extraction has been applied also for local refinement procedures (de Borst and Chen, 2018). 
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Local refinement 

Knot insertion in NURBS suffers an important drawback for 2D and 3D domains: any control point 

insertion cannot be carried out solely, but a full row of control points needs to be inserted due to 

the B-splines tensor product nature. Some of the new inserted control points may result 

superfluous raising the computational cost without adding more accuracy. To circumvent this 

limitation variations of B-splines have been introduced. 

Sederberg et al. (2004) firstly introduced T-splines for representation purposes, afterwards 

Bazilevs et al. (2010) used them for analysis. Not any arrangement is valid in T-splines: the 

resulting blending functions need to form linearly independent basis, becoming analysis suitable 

T-mesh (ASTM) (X. Li et al., 2012). Proposals to find ASTM in two and three-dimensional domains 

are given by Scott et al. (2012); and Morgenstern (2016) respectively. T-splines have been used to 

simulate damage mechanics (Verhoosel, Scott, Hughes et al., 2011) and cohesive fracture 

problems (Verhoosel, Scott, Borst et al., 2011). Bezier extraction has been used to obtain ASTM 

(May, Vignollet and De Borst, 2015). 

Other types of splines have been introduced to allow local refinement. Locally refined B-splines 

were introduced by Dokken (2010); and Johannessen, Kvamsdal and Dokken (2014), hierarchical 

T-splines by Evans et al. (2015) and hierarchical B-splines by Vuong et al. (2011).  

2.2. CAD entities and the IGES files 

The graphical information contained in one CAD drawing can be extracted in two types of files: 

IGES and STEP. The former, which is an acronym of Initial Graphic Exchange Specification, was 

born in 1979 from the necessity of common language between different CAD packages (Goldstein, 

Kemmerer and Parks, 1998). The first handbook was published in 1980 (Nagel et al., 1980) and the 

last version by Kennicott (1995). IGES file stores the information in a text format that is detailed in 

Appendix 2G. 

STEP files, that are more recent, overcome some pitfalls of the IGES such as ambiguity, loss of 

information during exchange, or potential incompatibility with earlier IGES version (Marussig and 

Hughes, 2018). Since most of the efforts have focused on STEP files (Pratt, Anderson and Ranger, 

2005; Kim, Seo and Youn, 2009; Pratt and Kim, 2006; Skytt and Haenisch, 2013) we focus on IGES. 

One can read the content of a CAD drawing from IGES and use that information to construct an 

analysis suitable domain for IGA as demonstrated in this thesis. 

This section outlines the IGES files content for solids and bounded surfaces. For further 

information refer to work from Kennicott (1995). Here object refers to any IGES graphical object, 
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e.g. vertexes, surfaces, curves. The term NURBS features encompasses the number of control 

points, degree, knot vectors and control points coordinates. 

IGES information is stored in a hierarchical tree scheme, with larger objects containing the 

references for smaller ones. The rough idea of this arrangement, for solids, is that one solid is a 

set of shells that contain several faces, each face contains several curves and each curve contains 

two end-vertexes. 

Curves are used to contour the surfaces leaving the visible (or computable) portion at the left-

hand side. They might trim the surface or not. This type of representation is called B-rep. These 

surfaces have a NURBS surface in the background and one or more contours loops of curves to 

define the visible portion (see section 2.2.3). For further information on B-rep surfaces refer to 

the work by Stroud (2006). 

For clear identification of the objects, they are written in bold-italic in this section. Table 2.3 

provides the name and type number of each object in the IGES system. 

Table 2.3 Type number corresponding to IGES objects. 

Type number in IGES system Graphic object 

186 manifold solid B-rep 

514 shell 

510 face 

128 rational B-spline surface (surface) 

508 loop 

504 edges 

126 curve 

502 vertex 

143 bounded surface 

141 boundary 

 

2.2.1. Content of IGES files for solids 

This section describes the arrangement of the objects that form one solid12. Fig. 2.8 shows one 

example with two solids. Fig. 2.9 depicts the corresponding tree scheme. This example will be 

used in the forthcoming explanation for clarity. 

                                                           
12

 As we will see, the solid itself does not exist in the IGES but only its enveloping surfaces. 
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Fig. 2.8 CAD drawing composed of two solids. 

Let us suppose a CAD drawing with two solids13. Each solid is stored in one Manifold solid B-rep, 

called here patch for brevity. Each patch points to one shell and each shell points to a set of faces 

that form the boundary that wraps of the patch volume. Fig. 2.8 shows two patches, with seven 

and six faces each. Only faces of patch 1 are shown separately. 

Each face points to one single rational B-spline surface (or surface) and to one or more loops. See 

face 2 in Fig. 2.8 which has attached surface 2 and loops 2 and 3. Each surface stores its NURBS 

features and a flag indicating if it is a closed or not. For example, in Fig 2.8 face 7 is the only closed 

surface. 

                                                           
13

 We use two solids but the explanation can be extended to any number of them. 
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Fig. 2.9 Example of tree scheme. The objects underlined contain information used in this thesis. 

One loop is a closed contour of curves that lie onto the surface. The loop points to curves and 

vertexes through the edge objects. There is one edge per patch. Each edge contains the number 

of curves and points to them and to the start and terminating vertex of each curve. 

Each curve hosts its NURBS features and a flag indicating if it is a closed or not. Vertexes are 

stored in different collections, one collection per patch, and they contain their coordinates. 

Vertexes are attached to the initial and final points of each curve, by a reference that is contained 

in the edge. 

Fig. 2.8 shows loops 2 and 3, that are attached to face 2. Each of them points, via edge 1, to 

curves and vertexes forming a closed contour. Edge 1 also links each curve to its start and 

terminating vertexes, for example curve 5 has vertexes 6 and 2 allocated. Both vertexes belong to 

vertexes collection 1. 
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Fig. 2.9 illustrates the relationship between different objects in a tree-fashion. Faces, surfaces, 

loops and curves are stored each one in a unique group independently from the patches. They are 

linked to each other and to patches using pointers. By contrast edges and vertexes are grouped 

by patches: there is one edge group and one vertex group per patch. Within each group, each 

item (edges or vertex) is identified by one index. 

The type of relations between these objects is listed below (see Fig. 2.9 for clarity): 

- 1 to 1 for manifold solid B-rep–shell and face–surface. 

- 1 to n for shell–faces, where n is the number of faces. 

- 1 to n for face–loops, where n is the number of loops. 

- 1 to n for loop–curves, where n is the number of curves. 

- 1 to 2 for curve–vertexes. 

The arrangement is such that one object cannot be pointed from two different objects (except 

vertexes as explained below). This arrangement leads to duplicated curves at intersection of 

surfaces, one curve per face but with opposite senses. In Fig. 2.10 the intersection curve between 

faces 2 and 3 is not unique, instead curve 5 lies on face 2, and curve 21 on face 3, both with 

opposite senses. The vertexes may be shared by several curves. In Fig. 2.10 the sixth vertex of 

collection 1 is pointed by curves 5, 9, 21 and 22. 

 

Fig. 2.10 Curves and vertexes. 

The underlined items in Fig. 2.9 contain the information used in this thesis, which is: 

- NURBS features from rational B-splines surfaces; 

- NURBS features from curves; 

- physical coordinates of vertexes.  

2.2.2. Content of IGES files for bounded surfaces 

This section describes how objects are related in one bounded surface. These surfaces are not 

part of one solid, instead they are either drawn from scratch (using CAD available techniques as 

line extrusion or sweep) or extracted and separated from one existing solid face. 

Fig. 2.11 shows one example. One bounded surface points to a set of boundaries and one 

rational B-spline surface. One boundary stores the number of curves and their references that 
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form the contour to define the visible surface. Each curve contains its NURBS features. One 

rational B-spline surface contains the surface NURBS features. This thesis uses the NURBS 

information from both of them: curves and rational B-spline surfaces. 

 

Fig. 2.11 Example bounded surface with two contour loops. 

2.2.3. B-rep arrangement and trimmed surfaces in CAD 

The background surfaces of a face and a bounded surface are contoured by a set of curves, called 

loops and boundaries respectively (see section 2.2.1 and 2.2.2). There may be one or several 

contours, being the first one always the outer contour. 

The contours might trim the background surface. If it is not the case, then the contour is unique 

and coincident with the background surface edge limits, being an edging contour. If there is a 

single contour it might be edging or trimming (see Fig. 2.12 a and b). If there are several contours, 

only the first listed on the IGES files can be edging, the posterior contours are trimming (see Fig. 

2.12 c and d). This arrangement of trimmed surfaces by contours is called B-rep. 

 

Fig. 2.12 Four cases of contours: (a) single edging contour, (b) single trimming contour, (c) two contours 

being the outer edging, (d) two contours being the outer trimming. Visible surface is hatched in grey. 
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Table 2.4 describes when one background surface is trimmed or not depending on its 

construction. The criterion shown applies to bounded surfaces and to faces of solids. Fig. 2.13, 

illustrates one example of a solid with four faces extracted, which are trimmed or not according 

to Table 2.4. 

Table 2.4 Cases of trimmed and non-trimmed surfaces. 

Surface Construction Examples* 

Non-trimmed 

Non-planar surface generated by extrusion, 

revolution or sweep of a line (these are 

typical tools of CAD packages) 

 

Planar surface rectangular 

 

Trimmed 

Planar surface not rectangular 

 

Any surface intersected and trimmed by 

other object 

 

* Thick blue line is the revolving axis and thick red the generatrix. Background control net is represented. 
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Fig. 2.13 Left: generation of solid by loft of three contours. Right: view of four extracted faces with their 

control net. 

2.3. Solid parametrization 

Achieving analysis-suitable solids for IGA is challenging and is still under development. Volumes 

drawn in CAD are represented by a collection of boundary surfaces instead a tri-variate 

parametrized solid, therefore one needs to generate that parametrization suitable for IGA. One 

parametrization is valid when the mapping is not folding, i.e. there is not self-intersection 

(injective parametrization). That involves the determinant of the Jacobian to have the same sign 

at any location of the domain or, in other words, the Jacobian must not vanish. Many efforts have 

been done in the last decade on this topic. 

Cohen et al. (2010) provided guidelines for the CAD modeller to achieve domains, either surface 

or solid, that enhance the quality of the posterior parametrization for IGA. In particular for solids, 

they proposed the generation of them by sweep to obtain a cylinder-like objects. 

Some of the existing works use as input for the parametrization a set of triangulated boundary 

surfaces that encloses the volume to parametrize, as shown by Martin, Cohen and Kirby (2009); 

and Escobar et al. (2011). This approach can use T-splines to refine locally the parametrized solid 

as shown by Zhang, Wang and Hughes (2012); and Zhang, Wang and Hughes (2013). 

Another approach is to start with a geometry encompassing the solid to parametrize and reduce 

gradually its volume to fit the solid. Chan, Anitescu and Rabczuk (2017) used this approach with 

the advantage of PHT-splines for local refinement. Chen et al. (2019) applied polycubes to this 

approach. 

Xu, Mourrain, Duvigneau and Galligo (2013a) parametrized solids assuming six NURBS surfaces 

enclosing the domain. The solution of the problem is known in advance and the control points 



 

36 
 

positions are based on minimizing the difference between the IGA solution and the exact solution. 

The method is an iterative process that stops when the error reaches a value lower than a 

tolerance. Xu, Mourrain, Duvigneau and Galligo (2013b) extended to problems with unknown 

solution. In both cases they used the coons method (Farin and Hansford, 1999). 

Wang and Qian (2014) proposed an optimization of the Jacobian based on gradient-based 

optimization approach. The technique consists of making positive the Jacobians of all Bézier 

elements of the patch. The initial control points configuration is improved so that they reduce the 

number of iterations. They used two different methods for initial control points location: coons 

patch interpolation (Provatidis, 2005; Shih et al., 2005) and deformation method. In the 

deformation method one initial enveloping cuboid is deformed until achieves the final shape, 

using FEA for solving the deformation. 

In this work we introduce the lattice algorithm to create the control net of the solid, as explained 

in section 4.2. 

2.4. Integration of trimmed domains 

NURBS untrimmed domains might be discretized into portions that coincide with the non-void 

knot spans (Cottrell et al., 2009), being the Gauss points location derived from such arrangement. 

Hughes, Reali and Sangalli (2010); and Auricchio et al. (2012) proposed the half point rule that 

reduces the number of required Gauss points. However the reduction of computational cost is not 

so effective since the location of Gauss points according to this rule requires preliminary 

calculation. 

Integration of trimmed domains cannot follow the knot span scheme neither the half point rule 

because they would include non-computable portions of the domain in the integration. Different 

solutions have been proposed within the last decade. 

The first attempts were devised for trimmed surfaces. Kim et al. (2009) applied localized 

triangulation only to trimmed knot spans, refining preliminarily the trimmed zone with T-splines. 

Triangles affected by the trimming edge are adjusted by a NURBS curves to that edge in the 

parameter space. Schmidt, Wuchner and Bletzinger (2012) proposed local re-parametrization of 

the trimmed knot spans. Nagy and Benson (2015) generated specific quadrature for the trimmed 

elements, using optimisation techniques to locate the integration points in the vicinity of the 

trimmed edges. Jaxon and Qian (2014); and Xia, Wang and Qian (2015) proposed a decomposition 

of the whole surface into Bézier triangles. 
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The Finite Cell Method (Parvizian, Düster and Rank, 2007; Düster et al., 2008) is a technique to 

integrate trimmed domains (surfaces or solids). It was used in IGA for structures (Schillinger et al., 

2012; Schillinger and Ruess, 2015) and for fluids (F. Xu et al., 2016; Varduhn et al., 2016). The 

strategy of this technique is to detect which elements are trimmed and divide them into octants. 

After a few iterations finer element sizes are obtained where the trimming entity lies. Only the 

elements inside the domain are integrated. Kudela et al. (2016) increased the accuracy of the 

octants sub-division approach by moving the octrees near the trimming surface. 

The discretization of solids into tetrahedrons has been proposed by different authors. Xia and 

Qian (2017) used tetrahedrons for both integration and parametrization of the solid. Previous to 

the parametrization a conversion of solid surfaces to Bézier triangles is done. This conversion 

brings a significant number of control points because for each Bézier rectangle of the surface that 

has degree 𝑝𝑥𝑞, the degree of the triangle needs to be 𝑝 + 𝑞 (Goldman and Filip, 1987). Since 

these triangles are used as facets of tetrahedrons, the latter inherits the high number of control 

points. Therefore, the number of control points resultant from this discretization is typically high. 

Scholz and Jüttler (2019) proposed discretization with linear tetrahedrons, each one with its own 

parametrization and its own Gauss points. The integration rule is corrected to reduce the error 

due to linear approximation. Antolin, Buffa and Martinelli (2019) used higher order tetrahedrons. 

Firstly the domain is divided into the Bézier elements and then only the trimmed elements are 

approximated by tetrahedrons with degree according to shape of the element. To approximate 

the tetrahedral surfaces they used the Gmsh software (Geuzaine and Remacle, 2009). 

In this work we discretize the domain into mixed-degree tetrahedrons. The approach followed in 

this work has similarities with the NURBS enhanced finite element method (NEFEM), proposed by 

Sevilla et al. (2008) and Sevilla et al. (2011) for surfaces and volumes respectively. The NEFEM 

uses NURBS entities as boundaries of the domain, being the facets of the triangles / tetrahedrons 

that lie on those boundaries approximated by Lagrangian polynomials. In this work we 

approximate also those facets with the same type of polynomials but there are remarkable 

differences. First, we introduce a method to estimate the number of required nodes of the 

Lagrangian polynomials to control the error (distance between the Lagrange approximation and 

the actual NURBS entity). Second, we use mixed-degree tetrahedrons, meanwhile Sevilla et al. 

(2011) used standard tetrahedrons (i.e. linear, quadratic, cubic, etc.). In addition we perform the 

approximation in the parameter space and not in the parent space. 

It is worth to mention that there are alternatives to Galerkin’s method in IGA, which require 

different approaches for the integration. See for example collocation methods by Auricchio et al. 

(2010); and Kiendl et al. (2015). 
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2.5. Constraints to trimmed solids 

Constraints (prescribed displacements or couplings) can be strongly imposed, by control point’s 

restraint, or weakly imposed. The strong approach requires specific locations of the control points 

at the boundary, contouring the zone where the constraint is applied. For coupling, in addition, 

both patches must be conformal at the interface. The weak imposition of constraints allows 

coupling regions independently on the control points and the parametrization of the patches. It 

forces the displacements to be the same in both domains over the whole interface. There are two 

manners of imposing weakly the condition: by Lagrange multipliers and by penalty method. 

Coupling was first weakly imposed in FEA by Bernardi, Debit and Maday (1990), and then 

improvements were developed, see for example works by Belgacem and Maday (1997); or 

Belgacem (1999). 

The implementation of Lagrange multipliers approach in the Finite Cell Method to impose 

essential boundary conditions in has been applied by Ruess et al. (2013) and for coupling not 

conformal domains discretized with NURBS by Ruess et al. (2014). Brivadis et al. (2015) proposed 

three different spaces for the Lagrange multipliers discretization. Coox et al. (2017) coupled non-

conformal untrimmed 2D-patches by virtual uncommon knot insertion, that equates control 

points at the common edges of both patches. 

The weak imposition of constraints, using both Lagrange and penalty approaches, has been used 

for three-dimensional surfaces extracted directly from CAD by Breitenberger et al. (2015). They 

coined the term Isogeometric B-rep analysis (IBRA). Teschemacher et al. (2018) integrated IBRA in 

a process that involves CAD design. 

The weak imposition of constraints in IGA contact problems has been also implemented 

successfully, see for example the works from Temizer, Wriggers and Hughes (2012); and Kim and 

Youn (2012). 

For solids, Zuo et al. (2015) used also the weakly imposed constraints. They introduced the 

concept of Constructive Solid Isogeometric Analysis (CSIGA), where IGA is applied to constructed 

solids geometry (CSG) models. 

In this work we apply the constraints using the Lagrange multipliers approach similarly to 

Apostolatos et al. (2014), but extending it to solids. 
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2.6. Point projection 

The mapping inversion from the physical space to the parameter space in NURBS entities does not 

have exact solution. The alternative is the so-called point projection technique, which 

approximates the parameter coordinates iteratively. According to Ko and Sakkalis (2014), point 

projection techniques may be classified in iteration-based and subdivision-based methods, the 

latter ends up with iterations. 

2.6.1. Iteration-based methods 

The most common iteration-based method is Newton-Raphson, that approximates the solution of 

a non-linear system of equations (Piegl and Tiller, 1996). These equations need the initial trial 

point sufficiently close to the solution to converge, i.e. the Newton-Raphson approach might have 

a poor robustness. There are other options of iteration-based methods as presented here. 

Limaiem and Trochu (1995) provided an approach based on Kriging method (Matheron, 1980) to 

find intersections between two surfaces. Hoschek, Lasser and Schumaker (1993) tackled the 

problem for surfaces by iterative parameter adjustment in what they called the marching method. 

Other variation consists of approximating a known geometry to the actual curve or surface. Hu 

and Wallner (2005) approximated a circle locally to the curve and find the solution on such circle. 

Local circles are iteratively used until the difference between the circle and the curve is less than a 

tolerance. For surfaces, they used spheres. Liu et al. (2009) varied the method using a torus 

instead, which improves the speed and stability. 

2.6.2. Subdivision-based methods 

Subdivision-based methods divide the domain selecting in each step the portion that contains the 

solution. After a few divisions, the iteration approach (section 2.6.1) is used to obtain the final 

answer. There is a variety of procedures to divide the domain as shown below. 

Piegl and Tiller (2001) subdivided surfaces into quadrilaterals, with their sizes depending on the 

curvature. Ma and Hewitt (2003) proposed a division of the domain into Bézier elements and find 

the initial estimation using their control points. Selimovic (2006) subdivided the domain based on 

the control polygon. Chen et al. (2008) proposed a method based on circular clipping algorithm, 

which sets a circle centred at the point and reduces its radius until does not contact the curve. Oh 

et al. (2012) extended this clipping idea to surfaces, using spheres. 

In this work we extend the marching approach, used by Hoscheck et al. (1993) for surfaces 

intersection, to curves and solids, as presented in appendix 10A. 
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2.7. Triangulation of surfaces 

Triangulation of NURBS surfaces represents an open problem which is continuously evolving 

(Baker, 2005). The triangulation techniques can be classified in three types (Shimada, 2011): 

direct, purely parametric and hybrid approaches. 

2.7.1. Direct approaches 

Direct approaches compute the vertexes of triangles on the surface physical space. The three 

main methods within this type are Delaunay triangulation (Du, Faber and Gunzburger, 1999; Frey, 

Borouchaki and George, 1998), advancing front technique (Löhner and Parikh, 1988; Tristano, 

Owen and Canann, 1998; Frey, Borouchaki and George, 1998) and octree division (Yerry and 

Shephard, 1984; Shephard and Georges, 1991). Collision of two different fronts may appear in 

advancing front methods, which generates conflicts in the computation of the vertexes. 

2.7.2. Parametric approaches 

Parametric approaches compute the triangulation in the parametric domain. Then, they are 

projected into the physical domain (Sheng and Hirsch, 1992; Borouchaki, Laug and George, 2000; 

Cripps and Parwana, 2011). These methods lack uniformity on the resultant triangles in case the 

parametrization of the surface is not uniform. 

2.7.3. Hybrid approaches 

Hybrid approaches, which mix the two other types, cover most of the publications within the last 

two decades. For example, Béchet, Cuilliere and Trochu (2002); and Wang et al. (2006) tessellated 

surfaces by primary coarse triangulation in the parameter space and then increase the quality by 

Delaunay methods. Yang and Choi (2010) developed sequential triangulation to reduce the 

computational cost. Initial mesh is generated by Delaunay triangulation and then extra vertexes 

are added where curvature is more pronounced in the physical space. Marchandise, Remacle and 

Geuzaine (2014) presented three different linear parametrization techniques for refining one 

initial triangulation and increase its quality. Aubry et al. (2015) triangulated surfaces with the 

initial state assuming the edges already discretized. Then vertexes are added in the interior of the 

surface according to the curvature of the surface. Guo et al. (2019) presented the automatic 

triangulation which starts from a preliminary coarse triangulation that is refined and improved in 

two sequential stages. 
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2.7.4. Isotropic meshes 

Isotropic mesh does not apply only to triangulation, but to other types such as quads or 

hexahedral, see for example the works done by Li et al. (2011); and Ebeida et al. (2011). For 

triangulations, the ideal isotropic mesh achieves vertexes valences equal to six and angles of 60 

degrees. One ideal regular mesh has all triangles of the same size14. 

Surazhsky, Alliez and Gotsman (2003) developed a remeshing technique to gain isotropy. The 

technique is to be applied to an initial mesh in three stages: generation of vertexes, initial vertex 

partition and modification based on density function. The error diffusion algorithm was used for 

initial geometry sampling and then modifying that mesh to approximate to isotropic arrangement. 

Yan et al. (2009) applied the restricted Voronoi diagram (RVD) repeatedly to improve the isotropy 

of a given mesh. 

In this work we introduce a new algorithm called Quasi-isotropic initial triangulation presented in 

appendix 10B. 

  

                                                           
14

 Refer to Appendix 5A for further information on isotropic surfaces. 



 

42 
 

 Algorithm overview 3.

This chapter sets the concepts and conventions used within the rest of the thesis and provides a 

general view of the algorithm. In addition, the generation of the geometry in CAD to be analysed 

in the algorithm is explained. This geometry is an input but not part of the algorithm itself. 

However, it is not a trivial process that is subject to rules and, therefore, requires explanation. 

There are two appendixes directly related to this chapter. Appendix 3A contains schemes of the 

code itself, showing the most relevant routines and variables. This appendix might be seen as a 

developer hand book. Appendix 3B describes how the patches and surfaces are referenced. These 

references are used to allocate boundary conditions and apply refinement to the patches (see 

Appendix 8A). 

This chapter is structured as follows. Section 3.1 presents the main definitions and conventions. 

Section 3.2 outlines the main stages of the algorithm. Section 3.3 describes the generation of the 

CAD geometry. In section 3.4 the relation of this chapter with the code is briefed. Finally, a 

summary is given in section 3.5. 

3.1. Terms and conventions 

3.1.1. Definitions 

Definitions of basic concepts are listed below. Fig. 3.1 to Fig. 3.3 illustrate examples for clarity. 

- Patch: solid geometry with tri-variate parametrization. 

- Domain: set of patches that form the geometry to be analysed. 

 

Fig. 3.1 Domain composed of two patches. 

- Gross patch: patch bounded by six faces that coincide with the parametrization limits. 

- Trimming surface: surface that trims one gross patch and contributes to its final shape. 

- Computable side: opposite side to the normal vector of one trimming surface (the normal 

vector is assumed to point outwards the computable domain). 

- Computable domain: portion of the gross patch that lies at the computable side of the 

trimming surfaces. The non-computable domain is the rest of the patch. 
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- Trimmed patch: patch that has trimming surfaces. 

- Bounded face: remaining face of gross patch within the computable domain after 

trimming. 

 

Fig. 3.2 Gross patch trimmed by two surfaces. 

- Boundary surface: surface used to apply boundary conditions: Dirichlet, Neumann or 

coupling. 

- Coupling surface: it is a particular case of boundary surface, which is used to couple two 

patches. 

- Bounded patch: trimmed patch plus boundary surfaces on it. 

The example illustrated in Fig. 3.3 shows two patches, and their trimmed and bounded versions. 

Boundary surfaces are marked by numbers. Note that surface number 2 is a coupling surface. 

Boundary surfaces might coincide with trimming surfaces (surface 4), with bounded faces (surface 

2) or with none of them (surfaces 1 and 3). In this example, one could apply Dirichlet boundary 

conditions to surface 1 and Neumann boundary conditions to surfaces 3 and 4. 

 

Fig. 3.3 Gross, trimmed and bounded patches. 

- Contour loop: set of curves enclosing a region of one surface. The contour may coincide 

with the surface edges15 or may trim the surface. 

                                                           
15

 They were called edging contours in section 2.2.3. 
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- Background surface: surface without considering the contour loops. 

- Computable surface: portion of background surface that lies at the left-hand side of the 

curves of the contour loop (curves sense is given by their parametrization). 

These three last items reflect the B-rep arrangement explained in section 2.2.3. Fig. 3.4 illustrates 

one surface contoured by two loops, where part of the first loop is not trimming. The parameter 

sense of the curves is represented to highlight the computable surface is at the left-hand side. 

 

Fig. 3.4 Surface trimmed by contour loops. 

3.1.2. Conventions for NURBS 

The conventions listed below apply to NURBS. Some of them have been already mentioned in 

section 3.1.1, but they are stated here for clarity. 

- The term NURBS features refers all the data necessary to define a NURBS object: number 

of control points, degree, knot vector and control points coordinates and weights. In 

addition, indicators of closed and planar domain might be included. 

- All knot vectors span from 0 to 1. 

- Control points might be referred with multi-indexes (one per parameter direction) or with 

a single index. In the latter case, the numbering follows the hierarchical order of 

parameter directions: numbers are allocated in rows along the last parameter direction, 

and the rows advance according to the previous parameter directions. One example is 

given in Fig. 3.5, for a volume with 3, 2 and 3 control points in parameter directions 1, 2 

and 3 respectively. The control point 8 has multi-index (2,1,2). 

 

Fig. 3.5 Numbering of control points in hierarchical order.  
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- The positive side of a surface is the one where its normal vector commences, i.e. the 

negative side is the opposite to the normal vector. 

- Surfaces that enclose a volume have its normal vectors opposite to the volume. 

- Curves that contour one surface, trimming it or not, leave the computable portion of the 

surface at the left-hand side, looking at the surface from the positive side. 

- NURBS consistency of one contour of curves (for surfaces) or one shell of surfaces (for 

volumes) is achieved if in each parameter direction the number of control points, degree 

and knot vector are the same. This concept only applies to surfaces contoured by four 

curves and volumes bounded by six faces. Fig. 3.6 shows one example of non-consistent 

contour (left), where the number of control points is not the same in curves 3 and 4. At 

the right-hand side the consistency is achieved (it is assumed the same degree and knot 

vectors for curves 1-2 and for curves 3-4). 

 

Fig. 3.6 Non-consistent and consistent contours. 

3.2. Algorithm stages 

The algorithm is composed by a sequence of five well-defined stages as shown in Fig. 3.7. The 

figure also indicates the chapters of this thesis involved in each stage. This section briefs the 

stages A to E to facilitate the comprehension of the rest of the thesis. 
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Fig. 3.7 Algorithm scheme. 

  



 

47 
 

There is a preliminary stage: the CAD design and extraction of IGES files, which is required to 

define the geometry inputs. Both operations (design and IGES extraction) are detailed in section 

3.3, but we provide a summary here to understand the rest of the present section. The user is to 

draw the gross patches (restrained to have six faces) and extract their IGES file (called G.igs). 

Then, the user trims the gross domain to achieve the final shape, and attach any other boundary 

surfaces to the trimmed patches. The IGES file for the bounded patch is then extracted (called 

B.igs). This process is depicted in Fig. 3.8. 

 
Fig. 3.8 CAD design and IGES extraction. 

Sections 3.2.1 to 3.2.5 brief the stages of the algorithm itself. Each section corresponds to one of 

the stages, from A to E, indicated in Fig 3.7. In all the stages the point projection technique is 

required in multiple occasions. The used method, called Marching point projection (MPP), is 

presented in Appendix 10A. 

3.2.1. Stage A - Generation of solid NURBS 

With the IGES files at hand the solid patches and the surfaces (trimming and boundary) are 

generated in terms of NURBS. This stage is described in Chapter 4. 

The solid information is taken from the G.igs file, and is generated from its faces in a process 

called solid parametrization, that is of special interest in this work. Fig. 3.9 provides one example 

of solid parametrization. The starting point are the six faces, each one is a NURBS surface. The 

result is the NURBS solid: a three-variate parametric domain called gross patch. 

 

Fig. 3.9 Solid parametrization. 
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The B.igs file is used to define the trimming surfaces (and hence the trimmed patches) and 

boundary surfaces. 

3.2.2. Stage B - Initiation of patches and representation 

The NURBS features of both, the gross patches and the trimming surfaces, are allocated to the 

corresponding variables of the code (refer to Appendix 3A). These NURBS features will allow 

discretizing the trimmed patches in the next stage. This transference of information is not 

relevant from the theoretical point of view and that is why there is not chapter devised to it. 

The solid parametrization corresponds to the gross patch regardless if it is trimmed or not. 

However the solid discretization applies only to the computable domain. One example is shown in 

Fig. 3.10. 

 

Fig. 3.10 Parameterization and discretization of a trimmed patch. 

Visualization of the domain is necessary for displaying the results after the analysis: deformed 

shape and stresses. Bounded faces and trimming surfaces are triangulated to allow this 

representation. The triangles are linear, i.e. three nodes per triangle, and their sizes are pre-

established by the user. The triangulation for each surface is called skin. Fig. 3.11 illustrates one 

example of this triangulation procedure. 

To allow for a high-quality triangulation a new scheme has been develop in this thesis, which is 

called Quasi-isotropic initial triangulation (QIT) and is briefed in Appendix 10B. 
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Fig. 3.11 Triangulation of bounded faces and trimming surfaces. 

3.2.3. Stage C - Discretization of patches 

In order to compute the stiffness matrix, Gauss points are needed within the computable domain. 

Therefore, patches need to be discretized into elements to place within them the corresponding 

Gauss points. We use different approaches for non-trimmed and trimmed patches. The former 

are discretized into hexahedrons according to the parametrization (recall section 2.1.2). The latter 

are discretized into tetrahedrons which have inherent adaptability to any shape of the trimming 

surfaces. Recall that this discretization, although it has similarities with the tretrahedralization 

proposed by Sevilla et al. (2011), it presents important differences as explained in section 2.4. 

Let us highlight that this discretization is not the same as the triangulation of the skins presented 

in section 3.2.2, indeed both are independent. Skins triangulation is devised merely for 

representation meanwhile the solid discretization is used for analysis. 

Trimming surfaces are unknown in the parameter space of the patch. Hence they are 

approximated (Chapter 5) prior to the discretization (Chapter 6). The tetrahedrons facets that lie 

at trimming surfaces coincide with them. One example of trimmed patch discretization is 

provided in Fig. 3.12. 

 

Fig. 3.12 Trimmed patch discretization. 
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3.2.4. Stage D - Allocation of boundary conditions 

Boundary conditions and coupling between patches are applied onto surfaces. To consider these 

constraints in the analysis, the basis functions from the affected patches are integrated over these 

surfaces16. Therefore we need to define Gauss points on the boundary surfaces to carry out the 

integration. These surfaces are discretized into linear triangles where Gauss points are placed. The 

process is shown in Chapter 7. 

The triangulation is done with the Quasi-isotropic initial triangulation (QIT) algorithm, presented 

in Appendix 10B. The sizes of the triangles are defined by the user. This triangulation is 

independent from the representation skins (section 3.2.2) and the tetrahedral discretization of 

the solid (section 3.2.3). It is devised exclusively to apply constraints. 

In this stage, the values of the boundary conditions (defined previously by the user) are inserted 

in the algorithm. These values may be prescribed displacements (Dirichlet boundary conditions) 

or tractions (Neumann boundary conditions). Fig. 3.13 provides one example, where one coupling 

surface and two boundary surfaces are discretized. Tractions are allocated to the boundary 

surfaces. 

 

Fig. 3.13 Discretization of boundary and coupling surfaces, and allocation of tractions. 

3.2.5. Stage E - Analysis 

Once the patches are discretized and their Gauss points defined, their stiffness matrices can be 

computed. The material of the domain is considered in this stage. Boundary conditions can be 

added to the system because the boundary and coupling surfaces have their own Gauss points 

also defined. The aggregated linear system17 is solved obtaining the displacements at each control 

point of the patches. Chapter 7 details the construction of the aggregated system of equations. 

To represent the results, the positions of the skins nodes are recomputed with the deformed 

configuration of the control points. The stresses are derived from these displacements (see 

                                                           
16

 See Appendix 2B. 
17

 Equation (2B.54) of Appendix 2B. 
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Appendix 7A). Chapter 8 presents a set of examples that validates the algorithm proposed in this 

thesis. 

3.3. CAD stage and IGES files extraction 

The geometry is passed to the algorithm in form of IGES files, extracted directly from CAD, which 

is aligned with the main idea of IGA (recall section 2.1). Two IGES files are to extract from CAD. 

The first one, called G.igs, contains the gross patches that will be used for solid parametrization. 

The second file, called B.igs, contains the bounded patches that will establish the computable 

domain and the boundary surfaces. 

To illustrate the process, the example shown in Fig. 3.14 will be mentioned along with the 

explanations. In addition, Appendix 8A details this CAD stage for the examples given in Chapter 8 

of this thesis. 

 

Fig. 3.14 Bounded domain to achieve. 

3.3.1. Gross patches 

The gross patches are created by common CAD techniques18 but considering next restrictions: 

- Each gross patch must have six faces. 

- Angles between faces must be greater than 0 degrees and less than 180 degrees. 

- Each face must be smooth with minimum continuity C1. 

- In case of two or more patches, they must be in contact by a surface (not a single line) or 

have their volumes intersecting. 

Non-valid gross patches are shown in Fig. 3.15 where these restrictions are violated as explained 

here (from left to right). The first has more than six faces (eight faces). The second possesses one 

angle greater than 180 degrees. The third has one non-smooth surface, it can be seen also as a 

patch with eight faces, which is neither valid. The fourth is a gross domain composed by two valid 

patches, however they are not in contact or intersecting. 

                                                           
18

 The most common CAD techniques used for solids generation are extrusion, revolving, sweep and loft. 
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Fig. 3.15 Non-valid gross patches. 

Ideally, the final shape should be achieved by gross patches, without trimming surfaces. These un-

trimmed patches present faster analysis since there are no trimming surfaces to deal with. 

However that is not possible in the majority of the cases. Indeed, the restrictions of the gross 

patches listed above make them very rigid to achieve any shape and trimming surfaces are 

normally needed. 

There are multiple valid gross patches for a certain final shape. Fig. 3.16 shows two valid gross 

patches for the patch 1 of the example. Above, the gross patch is a cube that needs to be fully 

trimmed to achieve the final shape. Below, the gross patch is almost the same as the final shape 

because it needs only one trimming surface. The second option is computationally cheaper since 

there is only one trimming surface to deal with. In general terms, the more similar the gross patch 

to the trimmed patch the less trimming surfaces are required and therefore the lower 

computational cost. 

 

Fig. 3.16 Two valid options for gross patch 1. 
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The gross patch must envelope the volume of the trimmed patch because trimming surface will 

remove non-computable portions, but never provide additional volume. In Fig. 3.17 the proposed 

gross patches used for the example are shown. Note that they are in contact at one face that will 

become a coupling surface. 

 

Fig. 3.17 Proposed gross patches for the example. 

Once the gross patches are designed, their IGES file is extracted. In this work we call to this file 

G.igs, however the name may be different as long as it coincides with the algorithm input data. 

Before presenting the construction of the bounded patches, let us remark that once the G.igs is 

extracted, the gross patches cannot be moved. This means that trimming and adding boundary 

surfaces must be done to the gross patches placed at the same location. This is required because 

the surfaces identification checks their location with respect to the gross patches (see section 

4.3). 

3.3.2. Bounded patches 

Bounded patches are constructed in CAD from gross patches in two steps: 

- Trimming to achieve final shape. The so-called trimming surfaces are used here. 

- Attaching surfaces onto the final shape to apply boundary conditions or coupling. These 

are the boundary surfaces. 

To trim the gross patches any technique available in CAD is valid, as long as the final shape is 

obtained. For example, in Fig. 3.18 substraction (Boolean operation with CAD volumes) is applied. 

In Fig. 3.18 the trimmed patches are also shown. These patches achieve the final shape, but the 

process is not yet finished since we need the boundary surfaces. 
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Fig. 3.18 Trimming of patches and resultant shape. 

Boundary surfaces are placed onto trimmed patches. Again, there is not a unique manner to 

generate boundary surfaces. In this work the procedure used is: copy and extract a patch surface, 

trim if required and placed back onto the patch19. The process is shown in Fig. 3.19. 

 

Fig. 3.19 Generation of boundary surfaces and allocation to the domain. 

Once the bounded patches are finished, the IGES file is extracted. In this work we call to this file 

B.igs, however the name may be different as long as it is reflected in the algorithm input data. 

Coupling surfaces will be detected automatically by the algorithm (see section 4.3). Boundary 

conditions are attached to the corresponding boundary surfaces by the user as shown in Appendix 

8A. Boundary surfaces and patches are referred by numbers that are allocated as detailed in 

Appendix 3B. 

                                                           
19

 In some CAD packages (as in AutoCAD®) the surface generated by extraction of a solid is initially not a 
NURBS surface. If that is the case, the surface need to be converted to NURBS by the user. 
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3.4. Relation with the code 

The code is structured in five main functions, each one corresponding to one main stage (recall 

Fig. 3.7). The first stage is the generation of solid NURBS from the IGES files, the routine 

i3100_IGES hosts this procedure. The other four stages are all related to the buttons of a user 

form created for this thesis. Initiation of patches and representation stage lies within the 

B_Generate_Skins button, the discretization of patches is under the B_DomainIni button, 

boundary conditions allocation happens under the B_BCs button and the analysis stage under 

the B_Analysis button. Within each button there are multiple routines to carry out the 

computations defined in this thesis. The routines related to each chapter are further explained in 

them. 

To start running the code, once the IGES files are transferred to the ‘TXT’ folder of Matlab®, the 

user is to type FirstRoutine in the command window. Then the i3100_IGES is executed and 

the user form is shown in the screen. 

3.5. Summary of the chapter 

In this chapter the concepts and conventions used along the rest of the thesis are defined. The 

algorithm main stages are established such that the reader knows in advance how the chapters 

are connected. This general view will enhance understanding of the subsequent chapters. In 

addition, the construction of geometry in CAD, that is necessary to create the geometry input for 

the algorithm, is presented. In this CAD design process there are two distinguished steps, one for 

gross patches and one for bounded patches. This distinction is necessary because gross patches 

will be used for solid parametrization, as shown in Chapter 4, and bounded patches will define 

trimming and boundary surfaces. The trimming surfaces are used to discretize the computable 

domain, as shown in Chapters 5 and 6, meanwhile the boundary surfaces are used to apply 

constraints as explained in Chapter 7. 
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 Parametrization of solids and identification of surfaces 4.

This chapter describes the parametrization of the solid domain and the identification of surfaces, 

both trimming and boundary surfaces. Fig. 4.1 shows one portion of the main diagram, extracted 

from section 3.2. In view of Fig. 4.1, the G.igs file is used for solid parametrization and the B.igs 

file for identification of surfaces. 

 

Fig. 4.1 Extraction from main scheme. 

The G.igs file contains manifold solid B-Rep objects (section 2.2.1) with the gross patches, which 

is used to parametrize the solid. B.igs file contains manifold solid B-Rep objects with the trimmed 

patches, and bounded surfaces (section 2.2.2) with the boundary surfaces. Fig. 4.2 presents a 

scheme of this information. 

 

Fig. 4.2 Content of G.igs and B.igs. 
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This chapter is organized as follows. Section 4.1 describes the key points of the transformation of 

IGES files into numerical arrays. Section 4.2 details the solid parametrization of gross patches. 

Surfaces identification is explained in section 4.3. The relation of the presented procedures with 

the code is briefed in section 4.4. Finally section 4.5 summarizes the chapter content. 

4.1. Transfer of IGES information to the algorithm 

The transfer of information from the IGES files to the code has three key points explained here. 

For further details of the code and variables involved in this process refer to Appendix 3A. 

The first point affects to the format of the information. The IGES information, that are text format 

(see Appendix 2G), must be moved to numerical arrays readable by the algorithm. This 

information is stored in numerical arrays with similar structure to the IGES.  

The second point regards to the arrangement of NURBS features in surfaces: parameter directions 

in the IGES files and in this work are swapped. Due to this discrepancy, knot vectors, degrees and 

numbering of control points need to be interchanged between the parameter directions to match 

the desired arrangement. Fig. 4.3 shows one surface as it comes from IGES and as it is used in this 

work where the parameter directions are swapped. 

 

Fig. 4.3 Arrangement of surfaces in IGES files (left) and in this work (right). 

The third point is about knot vector span. In IGES files, the span limits of the knot vectors vary. In 

order to meet this work conventions (section 3.1.2), they need to be scaled to span from 0 to 1. 

4.2. Parametrization of gross patches 

Gross patches are parametrized using their enveloping faces, which are given as NURBS surfaces 

and NURBS contour curves in the G.igs file. The content of this file needs processing since it is not 

devised for the solid parametrization as shown in section 4.2.1. In this work we create the object 

Gross Patch Shell (GPS). Each patch has its own GPS, which forms a shell of surfaces arranged to 

facilitate the ulterior solid parametrization. GPS is obtained from the G.igs file, by modification to 
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the NURBS surfaces and curves as explained here. This section details the generation of the GPS 

(section 4.2.1) and the solid parametrization (section 4.2.2). In section 4.2.3 the specific algorithm 

called lattice fitting, used in some cases for solid parametrization, is presented. 

4.2.1. Gross patches shells (GPS) 

Each GPS contains the next information of the corresponding gross patch: 

- Coordinates of the eight vertexes. 

- NURBS features of the 12 curves that form the edges. 

- NURBS features of the six surfaces (gross patch faces). 

Differences between GPS and IGES information 

The GPS is not a mere copy of the surfaces contained in G.igs, but an improved version. Each GPS 

is a collection of six NURBS surfaces forming a watertight regular boundary20, with genus-zero 

topology (Bauer, Catanese et al. 2011), that bounds the gross patch. Each of those surfaces is 

contoured by four curves which are the intersection with the contiguous surfaces. 

The surfaces contained in G.igs are defined independently from each other. In GPS, by contrast, 

the opposite surfaces have the same degree, number of control points and knot vector in each 

parameter direction. This consistency enables an easier parametrization of the enclosed solid as 

shown in section 4.2.2. 

Fig. 4.4 outstands the differences between G.igs and the GPS. In IGES files (left) the NURBS 

surfaces are not in general ending where the contiguous surface starts, i.e. it is not a regular 

boundary. This is due to the B-rep system: some CAD surfaces are trimmed by the contour loop 

that encloses the visible portion (section 2.2.3). However the GPS (the right-hand side of Fig. 4.4) 

removes the non-computable portions of surfaces to achieve regularity. In addition, opposite 

surfaces do not have necessarily the same parametrization in G.igs, meanwhile in GPS they do. 

This latter difference is represented in Fig. 4.4 for the top and bottom surfaces, where one can 

see the orientations of the parameter coordinates coincide in GPS but not in the IGES file. 

                                                           

20
A regular boundary is made of surfaces that do not intersect pairwise, except at their contour curves, and 

they have no self-intersection points. 
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Fig. 4.4 Comparison between G.igs and GPS.  

Features of patches stored in G.igs 

In the case of G.igs, due to the restrictions established when drawing gross patches (section 3.3.1) 

and the structure of IGES files (sections 2.2.1 and 2.2.2) next conditions are always fulfilled: 

- The reference of face, NURBS surface and loop coincide (there is one loop of four curves 

per face). 

- Edge list indexes coincide with NURBS curves references. 

- The number of faces is six. 

- The number of vertexes is eight. 

- The number of contour curves is 24 (four curves per face). 

Generation of GPS 

The allocation of face 1 and vertex 1 in the GPS object obeys to the next arbitrary rule21: face 1 of 

GPS is the surface of G.igs whose average of its four vertexes coordinates is the closest of the 

origin of the physical space. The closest vertex to the origin among those four is defined as vertex 

number 1. The other faces and parameter directions are designated by their relative position to 

face 1 and vertex 1 by the next rules: 

- Origin of parameter directions coincides with vertex 1. 

- Face 1 is perpendicular to the third parameter direction (𝜒). 

- First (𝜉) and second (𝜂) parameter directions are orientated w.r.t. 𝜒 according the right 

hand side rule (𝜒 = 𝜉 × 𝜂). 

- Faces 2 and 3 are perpendicular to 𝜂 and 𝜉 respectively and share vertex 1 with face 1. 

- Faces 4, 5 and 6 are opposite to 1, 2 and 3 respectively. 

                                                           
21

 Other rules may have been applied. 
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The references of the faces result as illustrated at the left-hand side of Fig. 4.5. At the right-hand 

side the local parameter orientations that each face must have are also represented, as well as 

the contour curves (with orientation and references local to the surface). Contour curves for each 

face of GPS are referred locally by two indexes, the first one relates the parameter direction of 

the curve within the face and the second the position. 

 
Fig. 4.5 Faces references in GPS and local orientation of faces and contour curves. 

The rest of the vertexes references are allocated by the parameter directions hierarchy (recall 

section 3.1.2) and their coordinates are transferred directly from G.igs. Edge curves are grouped 

in three sets, one per parameter direction with four curves each. Curves 1 to 4 are parallel to 𝜉 

direction, 5 to 8 to 𝜂 and 9 to 12 to 𝜒. Within each set the curves are numbered according to the 

parameter directions hierarchy (see Fig 4.6). 

 

Fig. 4.6 Curves and vertexes references in GPS. 

Number of control points, degree and knot vector of edge curves must be the same within each of 

the three groups, i.e. they must be consistent (recall NURBS consistency concept in section 3.1.2). 

However, in general it is not the case in the IGES file. Therefore, the four curves within each group 

are compared and refined, if required, to achieve consistency as listed below in a homogenization 

process: 

- Degree: the target degree is the maximum among the four curves. Any of them with a 

lower degree needs p-refinement to meet the target degree (see Fig. 4.7). If one curve is 
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p-refined, knots removal is applied afterwards to remove the repeated internal knots due 

to the degree elevation (Piegl, Tiller 1996). 

 

Fig. 4.7 Homogenization of degree for set of curves in 𝜉 direction. 

- Number of control points: the target number of control points is the maximum among the 

four curves. Any of them with a lower number of control points needs h-refinement to 

equal the target number (see Fig. 4.8). New knots inserted are selected among the 

envelope knot vector (see next step). 

 

Fig. 4.8 Homogenization of number of control points for set of curves in 𝜉 direction. 

- Knot vector: the envelope knot vector possesses all knots from the four curves. If one 

curve lacks of any of the envelope knots it needs h-refinement with knots inserted where 

required to match the envelope (see Fig. 4.9). 
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Fig. 4.9 Homogenization of knot vector for set of curves in 𝜉 direction. 

Each of the six faces must have its local orientation as per Fig. 4.5 right. One face has four contour 

curves, referred as (1,1), (1,2), (2,1) and (2,2) as per same figure, and a NURBS surface. The 

features of the surface need to be consistent with the contiguous surfaces, i.e. same degree, 

number of control points and knot spans at the intersection curves. To achieve this consistency 

the surface is compared to its contour curves (already homogenized). There are three cases 

depending on the surface characteristics: 

- Case A: non-planar surface. This type of surface is untrimmed in gross patches (recall 

section 2.2.3). The surface features are directly transferred from G.igs with the precaution 

of flipping the orientation (recall Fig. 4.5 criterion). When correct orientation is achieved, 

degree, control points and knot vector are compared to its edge curves. In case of 

discrepancy, the surface needs refinement to match the curves features. Fig. 4.10 

illustrates one example: (a) the surface is highlighted in the gross patch with the required 

parameter local orientations for GPS; (b) the surface comes from IGES file with different 

parameter orientations; (c) the orientation of first parameter is inverted and the node 

insertion is done in the second parameter direction to match the edge curve (drawn 

adjacent to the surface); (d) the surface obtained is oriented following the criterion of this 

work and it is consistent with the edge curves. 

 

Fig. 4.10 Face generation. Case A. 



 

63 
 

- Case B: planar surface with both directions non-linear. As mentioned in section 2.2.3, 

these NURBS surfaces are stored in IGES files as a plane rectangle trimmed by contour 

curves. Since the GPS object requires non-trimmed surface, that trimmed arrangement 

would not be valid. Then the surface is created by the procedure that is called plane 

lattice fitting. This routine consist of creating a quadrilateral initial grid of control points 

and then apply displacements to its contours to match the contour control points of the 

desired surface in a 2D lattice structure fashion. The procedure is detailed in section 4.2.3. 

Fig. 4.11 illustrates one example: (a) the surface is highlighted in the gross patch; (b) the 

background surface is a rectangle with trimming contour curves; (c) the initial lattice of 

control points is set (independent from the IGES rectangular contour); (d) the final lattice 

is consistent with the edge curves. 

 

Fig. 4.11 Face generation. Case B. 

- Case C: there is at least one linear direction. The surface features are read from the pair of 

contour curves that are not linear (degree >1), with previous flipping of orientation if 

required (recall Fig. 4.5 criterion). Knot vector in the linear direction is {0011}. Fig. 4.12 

illustrates one example: (a) the surface is highlighted in the gross patch with the 

parameter required orientations for GPS; (b) the non-linear edge curves are prepared and 

jointed to form the surface (c). 

 

Fig. 4.12 Face generation. Case C. 
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Note that GPS does not follow some of the conventions presented in section 3.1.2: not all the 

contour curves leave the surface to the left-hand side and not all the surfaces have their normal 

pointing outwards the enclosed volume. This special arrangement of GPS is convenient for the 

solid parametrization (as shown in section 4.2.2), and is the only exception in the whole thesis to 

the NURBS conventions. 

4.2.2. Parametrization of solid patches 

This section describes the solid parametrization using the GPS (section 4.2.1). The number of 

control points, degree and knot vector in the solid parameter directions 1, 2 and 3 can be directly 

transferred from GPS curves 1, 4 and 9 respectively. The coordinates of control points that do not 

belong to the edges have different treatment depending on the type of solid as follows. According 

to the number of parameter directions that are linear (NLD) we establish four cases: 

- Case A: NLD = 3. The gross patch is a tri-linear cuboid. Control points coordinates are 

transferred directly from the GPS vertexes, and all weights are all equal to 1. 

- Case B: NLD = 2. The parametrization is achieved by the sandwich algorithm: GPS is linear 

between two faces called generation faces. The solid is achieved by re-arrangement of 

NURBS features of those faces. The sandwich algorithm is explained below. 

- Case C: NLD = 1. Same procedure that case B, therefore the sandwich algorithm is also 

used. 

- Case D: NLD = 0. Control points coordinates are computed by the volume lattice fitting 

algorithm described in section 4.2.3. 

These cases are summarized in Table 4.1, which includes also comments on the potential 

construction techniques. 
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Table 4.1 Cases considered for solid parametrization. 

C
as

e
 

Examples 

Construction comments NLD 
CAD construction* 

Solid 

parametrization** 

A 

  

Formed by any 6 plane sides 

achieved by linear extrusion. 

Admits plane trimming as long 

at the tri-linear cuboid is kept. 

3 

B 
  

Constructed by revolution or 

sweep of basis face. Basis face 

has two linear directions. 

2 

  

Constructed by extrusion of 

basis face. Basis face has one 

non-linear direction. 

C 
  

Constructed by extrusion of 

basis face. Basis face has two 

non-linear directions. 

1 

  

Constructed by revolution, 

sweep or loft of basis face. 

Basis face has one linear 

direction. 

D 

 

 
Constructed by revolution, 

sweep or loft of basis face. 
0 

* Hatched face indicates basis face for construction 

** Hatched face indicates generation face. Red line indicates linear edge (or linear parameter direction). 

Sandwich algorithm: 

To apply the sandwich algorithm, the GPS must have one or two parameter directions with 

degree=1 (cases B and C in Table 4.1). Hence, the GPS has one pair of faces that are perpendicular 
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to the linear direction, referred here as generation faces. In case B there are two pairs of 

generation faces, selecting one or another is not relevant. The solid is linear between the 

generation faces: no control points are needed between them. Therefore the control points and 

other NURBS features from generation faces are re-arranged to attain the parametrized solid. 

Knot vector in the linear direction is {0011}. See Fig. 4.13 with one example, where GPS is linear 

between faces 2 and 5. 

 

Fig.5.13 Parametrization by the sandwich algorithm. 

4.2.3. Lattice fitting algorithms 

These algorithms parametrize one target NURBS entity (plane surface or solid) given the NURBS 

features of the boundary entities. The algorithm is called plane lattice fitting for plane surfaces 

and volume lattice fitting for solids, being the boundary entities curves and surfaces respectively. 

Let us designate the target NURBS entity as 𝛺 (unknown) and the NURBS boundary entities as 𝛤, 

which are known and have NURBS consistency (see section 3.1.2). Due to this consistency, knot 

vectors and degrees of 𝛺 are directly inherited from 𝛤. Control points of 𝛺 are unknown except 

those ones at the boundary entities, called in this section external control points. The remaining 

unknowns of 𝛺 are the inner control points coordinates (the weights of the inner control points 

are all assumed to be 1). Fig. 4.14 illustrates a bi-dimensional example. 

 

Fig. 4.14 2D NURBS surface and its boundary entities. 
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The strategy to find the coordinates of the inner control points is to treat the control net as a 

lattice structure. Prescribed displacements are applied to external nodes of one initial truss, called 

𝛬0, resulting in a final configuration, called 𝛬1, with its external nodes at the same position as 𝛤. 

After application of these displacements, the inner nodes of 𝛬1 have been moved accordingly. 

Nodal displacements, from 𝛬0 to 𝛬1, are computed by direct stiffness method (DSM) which is 

outlined in Appendix 4A (for further information of DSM refer to Nagarajan (2019)).  

Let us define the cell as the space confined by four nodes (surfaces) or eight nodes (volumes). We 

introduce two types of bars in the lattice: rods, that joint the nodes to form the cells edges, and 

diagonals, that pass across the cells joining diagonally opposite nodes. Fig. 4.15 illustrates 

examples in 2D and 3D. In the 3D case the diagonals run on the cell faces, but not internally. 

Therefore one 3D cell has 12 diagonals (6 faces x 2 diagonals/face). The 2D cells have 2 diagonals. 

 

Fig. 4.15 Cells, rods and diagonals, in 2D and 3D. 

Let us remark the role of the rods and diagonals within the lattice fitting algorithm. The rods 

restraint mostly the volume change, i.e. the change in lengths of the cells without varying the 

corner angles. By contrast, the diagonals restraint mostly the distortion change, i.e. the variation 

of the corner angles. Fig. 4.16 (a) illustrates a volumetric change in the cell, where the rods vary 

their lengths but the diagonals barely change. Fig. 4.16 (b) illustrates a distortion of the cell, 

where the diagonals change their lengths while the rods lengths remain the same. 

 

Fig. 4.16 Constraints produced by rods and diagonals. 
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The ratio between the stiffness of the rods and the diagonals dictates the prevalent variation in 

the lattice after applying the DSM: the stiffer the diagonals the larger volumetric change and 

lesser distortion. Conversely, the stiffer the rods the larger distortion and lesser volumetric 

change. Hence depending on that ratio, the shape of the lattice varies, achieving different 

qualities (the quality is measured by the Jacobian of the obtained mesh, as show in afterwards in 

this section). 

Previous to the detailed explanation of the lattice fitting algorithm, a couple of examples are 

provided in Fig. 4.17 and Fig. 4.18, which illustrate 2D and 3D cases respectively. The sequence 

shown in these figures is: 

(a) region confined by boundary entities;  

(b) quadrilateral/cuboid fitted to control points of boundary entities (thick lines); 

 (c) initial truss (𝛬0) with rods in thick and diagonals in thin lines;  

(d) prescribed displacements (arrows);  

(e) final truss (𝛬1) to use as 𝛺 control points. 

 

Fig. 4.17 Lattice fitting algorithm in 2D. 

 

Fig. 4.18 Lattice fitting algorithm in 3D. Control points of 𝛤3 are moved to visualize the interior of the truss. 

In view of the examples, two questions arise: 

- How to define the initial lattice (𝛬0)? 

- How to select the stiffness of rods and diagonals to arrive to the best parameterization? 
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Next sub-sections detail the algorithm and provide the answers for these two questions. 

Arrangement of outer entities 𝜞 

For plane lattice fitting there are four boundary curves (𝛤) arranged by parameter directions in 

pairs 1,2 and 3,4 as per Fig. 4.17 (a). Recall from 4.2.1 that those curves achieved NURBS 

consistency in the GPS generation. 

For volume lattice fitting there are six boundary surfaces (𝛤) arranged as per the GPS, and also 

have NURBS consistency. See Fig. 4.18 (a). 

Initial lattice (𝜦𝟎) 

For surfaces case, one quadrilateral with one straight line per 𝛤 curve is computed (Fig. 4.17 (b)). 

Each quadrilateral line is fitted by the Least Square Method (LSM)22 to the control points of each 𝛤 

curve. The average of the 𝛤 control points 𝒙𝑎𝑣𝑔 is to belong to the fitted line and the function to 

minimize is the normal distance to each 𝛤 control point. The LSM delivers the direction of the line 

𝒗, that is defined as (4.1) where is 𝑡 a free parameter. 

𝒍(𝑡) =  𝒙𝑎𝑣𝑔 + 𝒗 𝑡   (4.1) 

To set the initial truss (𝛬0), nodes are placed first on edge lines of the quadrilateral lines, they are 

the so-called external nodes. The number of nodes in each direction equals to the number of 

control points of 𝛤 curves in each direction. They are spaced proportionally to the corresponding 

control points spacing, measured on the control polygon. Then, the distribution of the control 

points is reflected in the initial lattice. Internal nodes of the quadrilateral are obtained by 

intersection of lines between opposite external nodes. Once all the nodes are placed, the rods 

and diagonals are set (Fig. 4.17 (c)). 

For 3D case the process is analogous. The initial lattice is a cuboid grid of nodes that equals the 

number of control points of 𝛤 surfaces in each direction. The face of each cuboid is fitted by LSM23 

using the average of the 𝛤 surface control points 𝒙𝑎𝑣𝑔 as a point of the plane, and the function to 

minimize is the normal distance to each point of 𝛤 (Fig. 4.18 (b)). The LSM delivers the normal 

direction of the plane 𝒏, defined as parametric equation (4.2), where 𝒂 is any location in the 

plane. 

𝒏 ∙ (𝒙𝑎𝑣𝑔 − 𝒂) = 0   (4.2) 

                                                           
22

 See Appendix 4B. 
23

 See Appendix 4B. 
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Nodes on the cuboid edges are posed proportionally to the spacing of the control points of the 𝛤 

surface edges, considering lengths measured on the control polygon. Nodes on the cuboid faces 

are obtained by intersection of lines between opposite edge nodes. Nodes within the cuboid are 

obtained by location of closest point to three lines between opposite face nodes. These points are 

computed by LSM. With all the nodes localized the rods and diagonals can be defined (Fig. 4.18 

(c)). 

Computation of control points location for final configuration (𝜦𝟏) 

Once the initial lattice 𝛬0 is set, the vectors from its external nodes to the 𝛤 control points are 

imposed displacements in the DSM (Fig. 4.17 (d) and Fig. 4.18 (d)). The output of the DSM is the 

vector of displacements of all the nodes. The final lattice configuration 𝛬1 is obtained after adding 

to the nodes of 𝛬0 the computed displacements (Fig. 4.17 (e) and Fig. 4.18 (e)). These displaced 

nodes will became the control points of 𝛺. 

The result depends on the bars properties: length, cross sectional area and elastic modulus (𝐸). 

Length is given by initial configuration, area is assumed equal to 1 throughout and elastic modulus 

is to be different between rods (𝐸𝑟) and diagonals (𝐸𝑑). The ratio 𝐸𝑟 𝐸𝑑⁄  is varied within certain 

range to achieve the maximum quality for the parametrization of 𝛺. 

Measurement of quality of parametrization 

The condition for a valid parametrization is that the domain has no self-intersection, i.e. there is 

no point where the Jacobian determinant becomes zero. Let us define the condition number of 

one Jacobian 𝐽 as follows: 

𝑓𝑐𝑜𝑛𝑑 = ‖𝐽‖𝐹 ‖𝐽
−1‖𝐹  (4.3) 

Where ‖𝐽‖𝐹  is the Frobenius norm of the Jacobian24. Condition number is equal to 𝑑 for an 

equilateral-orthogonal parametrization25, which is the best case, otherwise is greater. The higher 

condition number the less quality: more distortion and/or stretching. 

To measure the quality of the resultant parametrization the condition number is measured on the 

cells formed by the control net and not on the NURBS entity itself. This simplification enhances 

the efficiency and still measures the quality. Jacobian within the 𝑎th cell is computed considering 

the cells as linear quadrilaterals (Fig. 4.19) or linear hexahedrons (Fig. 4.20), with equations (4.4) 

and (4.5) for surfaces an volumes respectively. The shape functions and the derivatives of these 

elements are detailed in Appendix 2E. The Jacobians are calculated at parent coordinate �̃� = 𝟎. 

                                                           
24

 See Appendix 2F. 
25

 𝑑 is the number of dimensions 2 and 3 for surfaces and volumes respectively. 
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𝐽𝑎 = [
𝑥𝑎 ,�̃� 𝑥𝑎 ,�̃�

𝑦𝑎,�̃� 𝑦𝑎 ,�̃�
] (4.4) 

𝐽𝑎 = [

𝑥𝑎 ,�̃� 𝑥𝑎 ,�̃� 𝑥𝑎 ,�̃�

𝑦𝑎 ,�̃� 𝑦𝑎 ,�̃� 𝑦𝑎,�̃�

𝑧𝑎 ,�̃� 𝑧𝑎 ,�̃� 𝑧𝑎 ,�̃�

] (4.5) 

 

 

Fig. 4.19 Cell formed from 2D-truss and its parent space (linear quadrilateral). 

 

Fig. 4.20 Cell formed from 3D-truss and its parent space (linear hexahedron). 

In practise, a number of initial lattices (𝛬0) are analysed varying the ratio 𝐸𝑟 𝐸𝑑⁄  from 5 to 0.5. For 

each resultant truss configuration the Jacobian and condition numbers are calculated in each cell. 

The quality of the lattice is measured by two parameters:  

- local average of condition number (𝑓𝑐𝑜𝑛𝑑
𝑎𝑣𝑒2), that averages the two worst cells (the two 

greatest condition numbers);  

- global average that computes condition number of all cells of the truss (𝑓𝑐𝑜𝑛𝑑
𝑎𝑣𝑒 ). 
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The candidate configurations must have the Jacobian determinant positive for all the cells. The 

selected configuration possesses the lowest local average (𝑓𝑐𝑜𝑛𝑑
𝑎𝑣𝑒2). Global average (𝑓𝑐𝑜𝑛𝑑

𝑎𝑣𝑒 ) is used 

in case two or more configurations have the same 𝑓𝑐𝑜𝑛𝑑
𝑎𝑣𝑒2. 

Examples 

Plane lattice fitting: 

Fig. 4.21 left illustrates the control points of boundary curves 𝛤, each pair of one colour, and the 

fitted quadrilateral by LSM. On the right-hand side the truss initial configuration 𝛬0 is shown, 

diagonals are not drawn for clarity. The nodal spacing at contours is not regular since it reflects 

the contours control points relative positions. 

  

Fig. 4.21 Quadrilateral fitted to contours (left) and initial lattice (right). 

Fig. 4.22 left shows all the resultant lattices by varying the rods/diagonals ratio of elastic modulus 

as per Table 4.2. Selected truss is shown at the right hand side of that figure, which corresponds 

to the hatched row in Table 4.2. 

  

Fig. 4.22 Superposition of all the solutions (left) and selected configuration (right). 
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Table 4.2 Local and total average of condition number varying ratios of E. 

𝑬𝒓 𝑬𝒅 𝑬𝒓/𝑬𝒅 𝒇𝒄𝒐𝒏𝒅
𝒂𝒗𝒆𝟐 𝒇𝒄𝒐𝒏𝒅

𝒂𝒗𝒆  

100 20 5.00 3.84 2.50 

100 40 2.50 3.84 2.49 

100 60 1.67 3.84 2.48 

100 80 1.25 3.96 2.49 

100 100 1.00 4.03 2.49 

100 120 0.83 4.11 2.50 

100 140 0.71 4.18 2.51 

100 160 0.63 4.25 2.51 

100 180 0.56 4.32 2.52 

100 200 0.50 4.42 2.53 

Volume lattice fitting: 

Fig. 4.23 left illustrates the control net of boundary surfaces 𝛤 and the fitted cuboid by LSM (only 

3 faces are depicted for clarity). At the right-hand side the nodes at the edges are shown 

alongside with the edges control points. These nodes spacing reflect the distribution of the 

control points. 

  

Fig. 4.23 Three planes of the cuboid fitted to 𝛤 surfaces (left) and nodes at edges (right). 

The rods of one face of the initial truss 𝛬0 are illustrated in Fig. 4.24 left, and the whole lattice at 

the right-hand side. The diagonals are not shown for clarity. 
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Fig. 4.24 Three planes of the fitted cuboid (left) and whole initial lattice. 

 

Fig. 4.25 left shows all the resultant trusses by varying the rods/diagonals ratio of elastic modulus 

as per Table 4.3. Only one internal set of bars is shown (located at third node in the parameter 

direction 1). At the centre the worst case and on the right-hand side the selected lattice, that 

corresponds to the hatched row of Table 4.3. The resultant lattice is depicted in Fig. 4.26 

(diagonals are not drawn for clarity). 

 

   

Fig. 4.25 Superposition of all the solutions (left), worst configuration (centre) and selected configuration 

(right), for the lattice at third node in 𝜉 direction. 
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Fig. 4.26 Resultant control points of parametrized 𝛺. 

Table 4.3 Local and total average of condition number varying ratios of E. 

𝑬𝒓 𝑬𝒅 𝑬𝒓/𝑬𝒅 𝒇𝒄𝒐𝒏𝒅
𝒂𝒗𝒆𝟐 𝒇𝒄𝒐𝒏𝒅

𝒂𝒗𝒆  

100 20 5.00 12.58 5.80 

100 40 2.50 12.84 5.78 

100 60 1.67 12.99 5.78 

100 80 1.25 13.07 5.78 

100 100 1.00 13.54 5.79 

100 120 0.83 13.98 5.81 

100 140 0.71 14.40 5.82 

100 160 0.63 14.81 5.83 

100 180 0.56 14.87 5.85 

100 200 0.50 15.35 5.86 

 

4.3. Identification of surfaces 

The information of trimming and boundary surfaces is retrieved from B.igs. On one hand, the 

B.igs contains the trimmed patch, on the other hand the boundary surfaces. For the discretization 

of the trimmed patches (recall stage C of Fig. 4.1) the trimming surfaces need to be identified and 

extracted. For the imposition of constraints (recall stage D of Fig. 4.1) the patches where each 

boundary surface lies on need to be identified, i.e. the boundary surfaces must be allocated to 

one patch. In addition, those boundary surfaces that are shared by two patches need to be 

identified since they will become coupling surfaces. 

Let us call the trimmed patch shells (TPS) to the object that contains the IGES information for the 

trimmed patch. There is one TPS per patch. Differently to GPS, the TPS inherits the surfaces 

features as they come from the IGES file without improving them. This is because TPS is not used 

for parametrization as GPS was. No further details on TPS are given since the process merely 

transfers the information contained in B.igs. 
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For the identification of trimming surfaces, both, the GPS (section 4.2.1) and the TPS are used. For 

the identification of boundary surfaces only the TPS is used. This identification process requires 

one sample point that must lie within the computable surface. The selection of the sample point 

is not trivial since the surface may be trimmed by contour loops, being necessary a trial searching. 

Fig. 4.27 shows one example with trial points valid and non-valid to become the sample point. At 

left-hand side the surface parameter space is represented. At the right-hand side of Fig. 4.26 the 

physical space shows only the valid points. 

 

Fig. 4.27 Trial points on a surface. 

The trial points are set in a net on the surface background (in this work the step of the net in the 

parameter space is initially 0.2). If one of those trial points lies within the computable surface it is 

chosen as sample point and the search stop. If none of the net trial points lie within the 

computable surface, the net is re-calculated halving the step. 

4.3.1. Identification of trimming surfaces 

To find out if one surface of the TPS is trimming, the sample point of the surface is projected to 

the GPS. If the distance from the sample point to the projection is zero, i.e. both locations 

coincide, the surface lies on the GPS and therefore it is not trimming surface. Otherwise it is a 

trimming surface and is identified to form part of the trimmed solid discretization in stage C 

(recall Fig. 4.1). One example is provided in Fig. 4.28, where surface 1 is not trimming since its 

projection on GPS coincides with the sample point. By contrast, the projection from the sample 

point of surface 2 is not coincident with such point and therefore it is trimming surface. 

Here we bring the importance of the construction sequence explained in section 3.3, where it was 

stated that the trimmed patch must hold the same position as the gross patch in CAD. This spatial 

coincidence allows the identification described. 
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Fig. 4.28 Identification of trimming surfaces. 

4.3.2. Identification of boundary surfaces 

In the the B.igs there is no relationship between the boundary surfaces and the patches. However 

the former are used to apply constraints to the patches. Therefore the patch where each 

boundary surface lies needs to be identified. The sample point of each boundary surface is 

projected to each face of the TPS. The face where the projection coincides with the sample point 

is the one attached to the surface, and hence its patch. 

Those boundary surfaces attached to two patches are coupling surfaces. By convention, the first 

patch detected will be the master patch. Fig. 4.29 shows the boundary surface 1, which is 

coupling, and the boundary surface 2 that is attached to patch 2. 

 

Fig. 4.29 Identification of boundary surfaces. 

4.4. Relation with the code 

The generation of solid NURBS from the IGES files is contained in the routine called i3100_IGES, 

which has two routines inside: 

- The gp3110_readGP routine generates the parametrized solid from G.igs. The solid is 

stored in the variable FgPatch. The number of patches is stored in Npa. There are other 

auxiliary variables generated: 
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- gFace: contains the information of the faces of the GPS. 

- gShell: is the GPS object. 

- gbShell: is a copy of the GPS object, but with its structure modified to facilitate 

the comparison against surfaces.  

The most relevant functions within gp3110_readGP are: 

- i3150_IGEStoMat: transfers IGES text information to numerical arrays. 

- gp3171_curvesHomog: homogenizes GPS curves. 

- gp3175_surfHomog: homogenizes GPS surfaces. 

- gp3184_soSandwich: parametrizes solid by the sandwich algorithm. 

- gp3140_soLattFitt: parametrizes solid by the lattice fitting algorithm. 

- The gp3120_readBE routine identifies the trimming and boundary surfaces using the 

B.igs file and the GPS. This information is stored in the variable bEnti. The number of 

boundary surfaces is stored in Nbe. tFace and tCurv contain the information of the 

trimming surfaces. 

To identify the surfaces the gbShell (obtained in gp3110_readGP and corresponding to 

the GPS) and bShell, corresponding to TPS, are used. The most relevant functions within 

gp3120_readBE are: 

- i3150_IGEStoMat: transfers IGES text information to numerical arrays. 

- be3122_bShell: creates the bShell. 

- i3170_sVSshell: compares surfaces against gbShell or bShell. 

4.5. Summary of the chapter 

Solid parametrization is the objective c of this thesis. This chapter addresses this objective since 

the techniques for solid parametrization are presented, including the novel lattice fitting 

approach. The objective b of the thesis, translation of IGES files, is also introduced. 

In addition, trimming and boundary surfaces are identified. Trimming surfaces will be used in 

stage C (Chapters 5 and 6) to determine the limit of the solid discretization. Boundary surfaces are 

used to prescribed constraints in stage D (Chapter 7). 
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 Approximation to trimming surfaces 5.

This chapter describes how the trimming surfaces, which contribute to the shape of the trimmed 

domain, are approximated. Fig. 5.1 shows one portion of the main diagram, extracted from 

section 3.2. This chapter covers part of stage C, where the patches are discretized. The inputs for 

stage C are the trimming surfaces and the solid, both coming from stage A (Chapter 4). In stage B 

the features of the solid and trimming surfaces were allocated (this task is not relevant in the 

theoretical approach) and the skins for representation were created by QIT algorithm (refer to 

Appendix 10B). 

 

Fig. 5.1 Extraction of main scheme. 

When computing the stiffness matrix of a trimmed patch, the integration limits are of two types: 

trimming surfaces and patch bounded faces (see Fig. 5.2). The latter are the patch limits 

themselves, trimmed by contours (recall section 3.1.1). The trimming surfaces, which lie within 

the gross patch, have an image in the patch parameter space that is unknown and need to be 

approximated. The better the approximation the closer to the exact integration limits, and the 

more accurate the integration. Therefore, achieving accuracy in this approximation is crucial for 

getting acceptable results in the analysis. 
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Fig. 5.2 Integration limits of trimmed patch. 

This chapter is structured as follows: section 5.1 defines the general concepts and overviews the 

approximation to trimming surfaces. Section 5.2 justifies why the surface must be approximated 

in the patch parameter space and not in the physical space. Sections 5.3 and 5.4 explain the nodal 

insertion to approximate the surface by triangles. Section 5.6 shows the triangulation of the 

inserted nodes. One example is presented in section 5.5. The main routines involved in the code 

are mentioned in section 5.7. Finally, section 5.8 summarizes the most important ideas of the 

chapter. 

5.1. Overview 

The term patch will refer to the solid domain that may be trimmed by a set of surfaces called 𝑇-

surfaces. These surfaces are contoured by curves that form loops enclosing the computable 𝑇-

surface region. These curves are called 𝐶-curves and may trim the 𝑇-surface or lie on its 

parameter limits26. One surface has at least one loop of 𝐶-curves, but may have more to define 

internal regions to exclude. This configuration of surfaces and contour loops is inherited from the 

B-rep arrangement (section 2.2.3). 

The patch, its 𝑇-surfaces and 𝐶-curves meet at the physical space, but each entity has its own 

parameter space. Fig. 5.3 illustrates one example with two 𝑇-surfaces trimming the patch, being 

surface 1 with two loops of 𝐶-curves. 

  

                                                           
26

 Those curves where referred as edging contours in section 2.2.3. 
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Fig. 5.3 Entities involved in trimmed patches, represented in the physical space. 

The image of one 𝑇-surface in the patch parameter space is called 𝑄-surface and is unknown. The 

𝑄-surface is assumed a NURBS surface with the same parameter space than 𝑇-surface. Both 

parameter spaces, �̂� and �̂�, are assumed coincident27. The images of 𝐶-curves in the patch 

parameter space are called 𝐾-curves and in the surface parameter space 𝐿-curves. Both curve 

images are unknown but are assumed NURBS curves with parameter spaces �̂� and �̂� coincident 

with the curve parameter space �̂�. 

The involved spaces are listed below and Fig. 5.4 illustrates one example with two trimming 

surfaces. The parameter spaces for surface 1 and curve 1 are shown. Note the 𝑇 and 𝑄-surfaces 

parameter spaces coincide. Equally, the 𝐶, 𝐾 and 𝐿 curves share the same parameter space. 

Patch physical space:  𝑃 

Patch parameter space:  �̂� 

 

T-surface physical space: 𝑇 

T-surface parameter space: �̂� 

Q-surface physical space: 𝑄 (image of T-surface in �̂�) 

Q-surface parameter space: �̂� 

 

C-curve physical space:  𝐶 

C-curve parameter space: �̂� 

K-curve physical space:  𝐾 (image of C-curve in �̂�) 

K-curve parameter space: �̂� 

L-curve physical space:  𝐿 (image of C-curve in �̂�) 

L-curve parameter space: �̂� 

                                                           
27

 This coincidence will make sense in sections 5.3 and 5.4. 
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Fig. 5.4 Spaces involved in a trimmed patch. 

5.1.1. Nomenclature used 

To reduce the nomenclature, the surface parameter space will be referred as �̂� and the curve 

parameter space as �̂�. The coordinates in each space are referred differently as shown in Table 

5.1 and Fig. 5.4. The object of this chapter is to find accurate approximations to 𝑄-surfaces and 𝐾-

curves. 

Table 5.1 Coordinates names in the different spaces. 

Space Symbol Coordinates 

Physical 𝑃 𝑥, 𝑦, 𝑧 

Patch parameter �̂� 𝜉, 𝜂, 𝜒 

Surface parameter �̂� 𝑢, 𝑣 

Curve parameter �̂� 𝑤 

 

5.1.2. Quadratic approximation to Q-surfaces and K-curves 

The approximations to 𝑄-surfaces and 𝐾-curves are called �̅�-surfaces and �̅�-curves respectively. 

The left-hand side of Fig. 5.5 shows the mapping from the patch parameter space to the physical 

space (𝑄 to 𝑇 direction), that has analytical equation. The right-hand side represents the opposite 

direction (𝑇 to 𝑄), where we most we can do is estimating isolated points of 𝑄-surface by point 

projection28. The second is the case that this chapter deals with. 

  

                                                           
28

 The point projection technique used in this thesis is in Appendix 10A. 
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Fig. 5.5 Mapping from 𝑄 to 𝑇 and its inverse, that is carried out by point projection. 

The approximation to 𝑄 uses a set of points located on 𝑇-surface, called nodes, and projects them 

back to the patch parameter space. The surface between the nodes is interpolated by quadratic 

triangles becoming the �̅�-surface. The same explanation applies to curves, where �̅� is the 

approximation with quadratic segments to 𝐾-curve. 

Quadratic approximation is selected because it keeps the number of required nodes of triangles 

lower than linear approximation, as shown in Appendix 5C. Cubic and higher order 

approximations lead to more complex mappings from parent space that, in the author´s opinion, 

increase in excess the complexity of the algorithm. 

5.1.3. Types of nodes 

In �̅�-curves, the nodes at extremes of segments are called end-nodes and the central ones mid-

nodes. In �̅�-surfaces the edges of the triangles are called lines. Nodes at vertexes of triangles are 

called end-nodes and at mid location of lines are called mid-nodes. Since surfaces are contoured 

by �̅�-curves, the nodes that lie on these curves are called contour nodes and the rest inner nodes. 

Fig. 5.6 illustrates this nomenclature, where a �̅�-surface is represented and one of its contour 

curves is extracted at the left-hand side. 

 

Fig. 5.6 Types of nodes for the quadratic approximations. 
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5.1.4. Error measurement 

Let 𝑬2 be the error vector from one point from �̅� to its closest location on 𝑄, i.e. the distance 

between both surfaces in the patch parameter space (see Fig. 5.7 left). We define the error as the 

norm 𝐸2 = ‖𝑬2‖. The sub-index 2 refers to quadratic approximation, which is used in this work. 

The error at any location must be equal or less than the admissible error (𝐸𝑎𝑑𝑚) which is 

computed as: 

𝐸𝑎𝑑𝑚 =
𝑡𝑜𝑙𝑆

100
 𝐷 (5.1) 

Where 𝑡𝑜𝑙𝑆 is a percentage and 𝐷 is the length of the cube diagonal of the patch parameter 

space. In this work, typical values of 𝑡𝑜𝑙𝑆 vary between 0.1 and 1.0 %. Fig. 5.7 illustrates the error 

at one location and the diagonal in the patch parameter space. 

 

Fig. 5.7 Error in the patch parameter space (left) and diagonal of this space (right). 

5.2. Surface to approximate 

One may doubt which is the best surface to approximate, 𝑇 or 𝑄? This section justifies why the 

surface to fit is 𝑄 arguing two reasons. 

First, if we approximate in the parameter space to the 𝑄-surface, the shape in the physical space 

is controlled by the connection from �̅� to �̅� via NURBS mapping. By contrast, if we approximate in 

the physical space to the 𝑇-surface, the shape in the parameter space is out of control because 

there is no direct connection from �̅� to �̅� (recall Fig. 5.5). 
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Second, when approximating one surface with triangles, the number of required nodes to keep 

the error below 𝐸𝑎𝑑𝑚 depends on the surface shape29, since 𝑇 and 𝑄 do not have the same shape 

the required number of nodes and location for each of them is different. Approximating to 𝑇, 

instead 𝑄, can bring situations where the number of nodes is insufficient or redundant.  

Next two examples illustrate the convenience of approximating to 𝑄-surface instead 𝑇-surface. Bi-

dimensional domains and linear interpolation are used for simplicity, but the idea is the same for 

three-dimensional domains with quadratic interpolation. 

In the first example 𝑇-surface is flat and 𝑄-surface is curved (see Fig. 5.8). If we approximate to 𝑇-

surface, only two nodes are required. Therefore, during the integration, the volume considered is 

way different from the exact (Fig. 5.8 top), introducing a large error. By contrast, approximating 

to 𝑄-surface inserts as many nodes as needed to control the error and the approximated shape 

will be mapped to the physical space (Fig. 5.8 bottom). 

 

Fig. 5.8 Curved 𝑄-surface: approximation to T (top) and to Q (bottom).  

In the second example 𝑇-surface is curved and 𝑄-surface is flat (see Fig. 5.9). If we approximate to 

𝑇-surface, a greater number of nodes are required than for 𝑄-surface (see Fig. 5.9 top). The 

volume to integrate will be the exact (because 𝑄 is a straight line, linear approximation fits with 

no error), but many of the inserted nodes are redundant. By contrast, approximating to 𝑄-surface 

inserts less nodes and still the volume to integrate is the exact (see Fig. 5.9 bottom). 

                                                           
29

 In particular, for quadratic triangles, number of nodes depends on the third derivatives of the surface (see 
section 5.3). 
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Fig. 5.9 Flat 𝑄-surface: approximation to T (top) and to Q (bottom). 

5.3. Error estimation and admissible nodal distances 

As mentioned earlier, the approximations to trimming surfaces and their contour curves are done 

by piece-wise entities spanning between nodes. This section explains how to insert those nodes. 

5.3.1. Curves 

The 𝐾-curve, which maps from its parameter space �̂� to the patch parameter space �̂�, is 

approximated by quadratic segments. The error vector at location 𝑎, whose coordinate in �̂�-space 

is 𝑤𝑎, is estimated as equation (5.2), that is taken from Appendix 2A. 

𝐸2 𝑗 ≤
𝐾,𝑤𝑤𝑤 (𝑤𝛽)𝑗

3!
 (𝑤𝑎 −𝑤0)(𝑤𝑎 −𝑤1)(𝑤𝑎 −𝑤2) (5.2) 

Where the sub-index 𝑗 indicates one component of the error vector (recall section 5.1.4). 

𝑤0, 𝑤1, 𝑤2 are locations of the nodes in the curve parameter space. The third derivative is 

calculated at 𝑤𝛽 that lies between 𝑤0 and 𝑤2 such that maximises the error. Fig. 5.10 shows one 

example. The distance between nodes in �̂�-space is called nodal step and is represented by 𝑠. 

 

Fig. 5.10 Interpolation of NURBS curve with quadratic polynomial. 
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To handle with (5.2) two simplifications are done: 

- 𝑤𝛽 lies at the mid-point of the segment, then the derivative is referred as 𝐾𝑚,𝑤𝑤𝑤𝑗 

- 𝑤𝑎 lies at 0.211 𝐿, with 𝐿 = 𝑤2 −𝑤0, therefore the product of nodal increments is 

equal to 0.385 𝑠3 (this assumption maximizes the error as demonstrated in Appendix 

2A). 

Then, the error vector is re-expressed as (5.3) and its norm calculated as (5.4). 

𝐸2 𝑗 ≤
1

15.6
  𝑠3 𝐾𝑚,𝑤𝑤𝑤𝑗 (5.3) 

𝐸2 ≤
1

15.6
 𝑠3  ‖𝐾𝑚,𝑤𝑤𝑤𝑗 ‖ (5.4) 

The maximum nodal step to keep the error equal or less than 𝐸𝑎𝑑𝑚 is called 𝑠𝑎𝑑𝑚 and is 

calculated as (5.5), that is obtained from (5.4) equating 𝐸2 to 𝐸𝑎𝑑𝑚. 

 𝑠𝑎𝑑𝑚  = (
15.6 𝐸𝑎𝑑𝑚

‖𝐾𝑚,𝜉𝜉𝜉𝑗
‖
)

1
3

 (5.5) 

With this distance the curve can be divided into segments of length equal or less than 2𝑠𝑎𝑑𝑚 in �̂�-

space. Therefore, considering the mid-nodes, the nodal space remains equal or less than 𝑠𝑎𝑑𝑚 

and the error is equal or less than 𝐸𝑎𝑑𝑚. 

The third derivative 𝐾𝑚,𝜉𝜉𝜉 has no analytical expression since 𝐾 is unknown, hence it is 

approximated by finite divided differences (FDD) as equation (5.6), where 𝑘𝑎𝑗 is the 𝑗th 

component of the coordinate in the �̂�-space for the 𝑎th-sample point and ℎ the step used for FDD 

(see Appendix 2A for more details on FDD). 

𝐾𝑚,𝜉𝜉𝜉𝑗
 ≅
𝑘3𝑗 − 3 𝑘2𝑗 + 3 𝑘1𝑗 − 𝑘0𝑗

ℎ3
 (5.6) 

To use (5.6) we need four sample points on the 𝐾-curve (in the �̂�-space), whose spacing in �̂�-

space is ℎ and are centred about 𝑤𝑚. These points are set in �̂�-space, then mapped to the 

physical space, and their �̂� coordinates are estimated by point projection. Fig. 5.11 shows the 

process. 
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Fig. 5.11 Calculation of coordinates in �̂�-space for sample points used for FDD in curves. 

5.3.2. Surfaces 

For 𝑄-surfaces, the error is measured in both parameter directions. Each direction is treated as a 

curve applying the same procedure shown in section 5.3.1. The third derivative is also estimated 

by FDD, therefore a set of points are to be mapped from �̂� to the physical space, and then point 

projected to �̂�, as illustrated in Fig. 5.12. 

 

Fig. 5.12 Calculation of coordinates in �̂� space for sample points used for FDD in surfaces. 

FDD in 𝑗th direction is computed as equation (5.7), where 𝑐 may be 1 or 2 for surface parameter 

directions  𝑢 or 𝑣 respectively. 

𝑄𝑚,𝑐𝑐𝑐𝑗  ≅
𝑞𝑐3𝑗 − 3 𝑞𝑐2𝑗 + 3 𝑞𝑐1𝑗 − 𝑞𝑐0𝑗

ℎ3
 (5.7) 

where 𝒒𝑐𝑎 are the coordinates of the 𝑎th sample points in the �̂�-space obtained as Fig. 5.12. 

Analogously to curves, the maximum admissible distance in the 𝑐th direction between nodes is 

estimated as follows: 

 𝑠𝑐𝑎𝑑𝑚 = (
15.6 𝐸𝑎𝑑𝑚

‖𝑄𝑚,𝑐𝑐𝑐𝑗 ‖
)

1
3

 (5.8) 
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5.4. Nodes insertion 

Nodes are inserted in 𝐾-curves and 𝑄-surfaces to attain a separation between them equal or less 

than the admissible distance 𝑠𝑎𝑑𝑚. The value of 𝑠𝑎𝑑𝑚 varies from point to point, i.e. it is a 

continuous field on the domain (�̂� or �̂�). In this work the 𝑠𝑎𝑑𝑚 field is estimated by linear 

interpolation between a set of test points, where 𝑠𝑎𝑑𝑚 is calculated with (5.5) and (5.8). 

The strategy to insert nodes into the domain follows a recursive process, where the stretch 

between two nodes, called division, is split if the minimum value of 2𝑠𝑎𝑑𝑚 within such division is 

less that the division itself. Next two sections detail the process for 𝐾-curves and 𝑄-surfaces. 

The considered admissible nodal distance is 2𝑠𝑎𝑑𝑚 since nodes inserted will be end-nodes. Later 

on the mid-nodes will be inserted (Chapter 6) achieving the admissible distance and therefore the 

accuracy required. 

5.4.1. Nodal insertion in curves 

Field of admissible distances: 

The test points30 are equally spaced at ℎ in �̂�-space. Each test point is mapped onto the physical 

space and then its �̂�-space coordinate is estimated by point projection (recall Fig. 5.11). 

The admissible distance 𝑠𝑎𝑑𝑚 at each test point in �̂�-space is computed using equation (5.5). The 

third derivative required for 𝑠𝑎𝑑𝑚 calculation is estimated by FDD, as equation (5.6), where we 

select the adjacent test points as FDD sample points. Although these adjacent points brings speed 

to the process (calculation of extra points is avoided) the derivative is not centred at the test 

point. Indeed, at 𝑖th test point, the FDD is centred at half division backward or forward (for FDD 

sample points starting at 𝑖 − 2 or 𝑖 − 1 respectively). To overcome this pitfall, the derivative is 

calculated as the average of both FDDs. Fig. 5.13 shows the sample points for FDDs centred at 

previous and next mid-segments of one test point. 

 

Fig. 5.13 FDD using adjacent test points for curves. 

After the calculation, 𝑠𝑎𝑑𝑚 is known at each test point and the field may be plotted as shown in 

Fig. 5.14 left. 

                                                           
30

 We use 21 test point for curves in this work. Therefore there are 20 equal divisions of length ℎ. 
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Nodal insertion: 

The nodal insertion starts with nodes at the end of the curve31. Within each division of the domain 

the minimum admissible distance (𝑠𝑎𝑑𝑚,𝑚𝑖𝑛) is obtained from the 𝑠𝑎𝑑𝑚 field. If the division 

length, i.e. distance between its nodes in the curve parameter space (∆𝑤), is greater than 

2𝑠𝑎𝑑𝑚,𝑚𝑖𝑛 a new node is inserted at the mid-location, splitting into two divisions. The process 

carries on until no division has inside 2𝑠𝑎𝑑𝑚,𝑚𝑖𝑛 smaller than the division length. One example is 

given in Fig. 5.14, where four iterations are required. At the right-hand side, the values of 

2𝑠𝑎𝑑𝑚,𝑚𝑖𝑛 for divisions a and b (second iteration) are drawn. 

 

Fig. 5.14 Node insertion in curves. 

5.4.2. Nodal insertion in surfaces 

Field of admissible distance: 

Test points are set in a rectangular net that encompasses the computable surface in its parameter 

space (see Fig. 5.15). Their number in each parameter direction is 11, i.e. ten divisions of equal 

length, ℎ1 and ℎ2 for 𝑢 and 𝑣 directions respectively. In each parameter direction same procedure 

as curves is used: adjacent test points are used as FDD sample points (5.7). Hence two FDDs are 

computed and the average is assumed as the third derivative. One illustration is given in Fig. 5.16. 

The maximum admissible step in each direction is then calculated a per equation (5.8). 

                                                           
31

 At the beginning the whole curve is composed by a single division. 
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Fig. 5.15 Sample points in surfaces. 

 

Fig. 5.16 FDD using adjacent test points for surfaces in both parameter directions. 

After these calculations, 𝑠𝑐𝑎𝑑𝑚 is known at each test point and the field may be plotted as shown 

in Fig. 5.17 left. The super-index 𝑐 is 1 and 2 for 𝑢 and 𝑣 parameter directions respectively. 

Nodal insertion: 

The nodal insertion starts with four nodes at the corners of the background surface, either if it is 

trimmed or not. Within each division32 the minimum admissible distance (𝑠𝑐𝑎𝑑𝑚,𝑚𝑖𝑛) is obtained 

from the 𝑠𝑐𝑎𝑑𝑚 field, in both parameter directions. If the division side length (∆𝑢 or ∆𝑣), is 

greater than 2𝑠𝑐𝑎𝑑𝑚,𝑚𝑖𝑛 the division is split into four quadrilaterals. The process carries on until 

no division has inside 2𝑠𝑐𝑎𝑑𝑚,𝑚𝑖𝑛 smaller than the division side length. The check is done 

                                                           
32

 At the beginning the whole surface has a single division. 
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separately for both parameter direction, and if any of them requires division the rectangle is split 

into four sub-rectangles. One example is provided in Fig. 5.17. 

 

Fig. 5.17 Nodal insertion in surfaces. 

After nodal insertion, only those ones within the computable surface and separated from the 

contour lines more than a pre-established threshold are selected (see Fig. 5.18). The contour is 

given by the piece-wise line that joints the nodes of the curves computed in section 5.4.1. 

 

Fig. 5.18 Nodes removal. 

5.5. Surface triangulation 

5.5.1. Triangulation of end-nodes 

For each trimming surface, its end-nodes are triangulated in the �̂�-space using Delaunay 

technique. The resultant mesh forms a convex triangulation where some of its triangles may be 

outside the contours. Such triangles need to be removed to achieve the final linear triangulation 

as shown in Fig. 5.19. 
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To check if one triangle is inside or outside of the contours two vectors are compared. One from 

the centre of gravity of the triangle to the closest contour segment33, called 𝒗1, and another along 

the segment orientation, called 𝒗2. Given that the contours leave the computable domain at their 

left-hand side, if the third component of 𝒗1 × 𝒗2 is negative the triangle is outside, if it is positive 

is inside. 

 

Fig. 5.19 Triangulation and removal of outside triangles in the surface parameter space. 

5.5.2. Improvement in the patch parameter space 

The solid will be discretized into tetrahedrons in the �̂�-space as will be explained in Chapter 6. 

These tetrahedrons use the �̅�-surfaces triangles as the facets that lie on the trimmed boundaries. 

Therefore the quality of the triangulation in �̂�-space must be as higher as possible, i.e. as closer as 

possible to isotropic triangulation (Appendix 5A), to improve the quality in the tetrahedralization 

of the solid. 

Initially, the triangulation has not the best quality in �̂�-space since it has been carried out in �̂�-

space (section 5.5.1). To improve such quality the triangles are checked in pairs, comparing the 

current configuration to the alternative configuration by flipping the common line of the pair (see 

Fig. 5.20). The common line is flipped if two conditions are met: the quality of the triangles 

increases in the �̂�-space and the resultant triangles are not embedded in the �̂�-space. These two 

conditions are further developed in this section. 

  

                                                           
33

 Contours have been discretized into segments that joint the nodes computed as section 5.4.1. 
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Fig. 5.20 Comparison of current and alternative arrangements. 

Increment of triangles quality: the quality condition 

The two triangles in the current and in the alternative arrangements are measured in terms of 

common line length (𝐶𝐿) and triangles distortion (𝜌). Fig. 5.20 illustrates both arrangements. 

Super-indexes 𝑐 and 𝑎 refer to current and alternative situations respectively. 

The shorter the common line the higher quality. The distortion of one linear triangle is measured 

by comparison with the equilateral triangle by the 𝜌 number. The more distorted the triangle the 

lower value of 𝜌. The maximum 𝜌 happens for the equilateral triangle, where  𝜌 = 1 (refer to 

Appendix 5B for further details). 

The quality of the alternative arrangement is considered to raise if one of the two scenarios given 

in Table 5.2 occurs. Each scenario corresponds to improvement in one of the mentioned 

parameters (𝐶𝐿 or 𝜌) by more than 20 % in the alternative arrangement:  

- The 𝜌 number is increased by more than 20 % while the common line remains equal 

or shorter; or 

- The common line gets shorter by more than 20 % while the 𝜌 number remains equal 

or greater. 

Sub-indexes 𝑎𝑣 and 𝑚𝑎𝑥 in Table 5.2 indicate average and maximum of both triangles. 

Table 5.2 Conditions to assume increment of quality. 

Scenario Common line length 𝜌 number (distortion) 

1.- Distortion is 

reduced 
𝐶𝐿𝑎 ≤  𝐶𝐿𝑐 1.2 𝜌𝑐𝑎𝑣 < 𝜌

𝑎
𝑎𝑣   and   1.2 𝜌𝑐𝑚𝑎𝑥 < 𝜌

𝑎
𝑚𝑎𝑥 

2.- Common line gets 

shorter 
1.2 𝐶𝐿𝑎 < 𝐶𝐿𝑐 𝜌𝑐𝑎𝑣 < 𝜌

𝑎
𝑎𝑣   and  𝜌𝑐𝑚𝑎𝑥 < 𝜌

𝑎
𝑚𝑎𝑥 

 



 

95 
 

Triangles must not be embedded in �̂�-space: the embedded condition 

Some alternative arrangements may lead to one triangle embedded within the other in �̂�-space. 

These triangles in �̂�-space apparently may improve the quality (𝐶𝐿 or 𝜌 parameters) but when 

they are upgraded to quadratic degree (Chapter 6) they result highly distorted or even 

overlapping. 

Fig. 5.21 illustrates one example in �̂�-space. The surface (Fig. 5.21 (a)) is initially triangulated (b) 

and one edge is flipped according exclusively to the quality condition (𝐶𝐿 or 𝜌 parameters) 

resulting in Fig. 5.21 (c). For each configuration a section profile is depicted, where one can see 

one side of the alternative configuration becomes quasi-perpendicular to the surface line (Fig. 

5.21 (c)). When the degree is increased to quadratic, the current configuration (Fig. 5.21 (d)) leads 

to a better triangulation than the alternative (Fig. 5.23 (e)). 

 

Fig. 5.21 Modification of triangulation in �̂�-space attending exclusively to the quality condition. 

This situation is not detected by the quality condition itself, hence it is necessary to introduce the 

embedded condition, which states that no flipping is allowed if the alternative arrangement leads 

to embedded triangles in the �̂�-space. The flipping leads to embedded triangles if the external 

angle of one of the end-nodes of the line to flip is smaller than 180 degrees (see Fig 5.22 left). In 

practise we set this angle to 170 degrees, to avoid not only the embedded triangles but the highly 

distorted quadratic triangles (recall (Fig. 5.21 (e)). 
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The image of the pair of hatched triangles of Fig. 5.21 is represented in Fig. 5.22 in �̂�-space. At 

the left-hand side the current pair of triangles, where the angle of one of the end-nodes of the 

common line is indicated. At the right-hand side the alternative arrangement, where triangle 2 is 

embedded within triangle 1. 

 

Fig. 5.22 Flipping the common line in �̂�-space with resulting embedded triangles. 

5.6. Example 

This section provides one example that goes throughout the process. Full data of the example is 

given in Appendix 5E. The tolerance is set to 0.289 %, therefore the admissible error is 𝐸𝑎𝑑𝑚 =

√3 
0.289

100
= 0.0050. Fig. 5.23 shows the geometry in CAD of the gross and the trimmed patch, 

alongside with the trimming surface. Note the trimming surface itself is trimmed by contour 

curves. 

 

(a) 

 

(b) 

 

(c) 

Fig. 5.23 Gross patch (a), trimmed patch (b) and trimming surface (c). All in the physical space. 

The nodes are inserted in contour curves and surface to keep the estimated error below 𝐸𝑎𝑑𝑚. At 

the left-hand side of Fig. 5.24 the maximum step allowed and the end-nodes inserted are 

illustrated �̂�-space, for one of the curves of the trimming surface. At the right-hand side all the 
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end-nodes inserted are represented in �̂�-space. The minimum nodal distance is computed as 

section 5.3. 

    

Fig. 5.24 Left: profile of 2𝑠𝑎𝑑𝑚 and inserted end-nodes in 𝐾-space (dots at the bottom line). Right: nodes 

inserted in �̂�-space. 

For surfaces the insertion of end-nodes is similar to curves, as explained in section 5.4.2. The 

resultant end-nodes inserted in the surface plus the nodes of the contour curves are depicted in 

Fig. 5.25 in �̂�-space and �̂�-space. 

  

Fig. 5.25 Contour and inner end-nodes, in �̂�-space and �̂�-space. 

The initial triangulation of the end-nodes is shown in Fig. 5.26 (left), where triangles outside the 

contours are observed. After the removal of these triangles (section 5.5.1) the mesh looks like the 

right-hand side of Fig. 5.26. 

 



 

98 
 

  

Fig. 5.26 Initial triangulation of surface in �̂�-space (left) and without outside triangles (right). 

The triangulation in �̂�-space is plotted in Fig. 5.27, at the left-hand side the initial arrangement 

and at the right-hand side the triangulation after the improvement described in section 5.5.2. 

  

Fig. 5.27 Triangulation of surface in �̂�-space, before (left) and after (right) improvement. 

Mid–nodes are inserted after the tetrahedralization is done, as will be explained in Chapter 6. 

However, with illustrative purpose, the mid-nodes are inserted in this example resulting the 

quadratic triangulation shown in Fig. 5.28. 

To compare the approximated surface against the real surface, a number of sample points 

forming a triangular mesh are represented in �̂�-space as per Fig. 5.29. Dashed lines indicate exact 

𝑄-surface, generated by point projection from the physical space. Continuous lines indicate the 

approximation �̅�-surface mapped from the quadratic mesh obtained in the previous steps. It can 

be observed that both surfaces are fairly similar. 
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Fig. 5.28 Quadratic triangulation in �̂�-space. 

 

Fig. 5.29 Comparison between 𝑄 (dashed lines) and �̅� surface (continuous) in �̂�-space. 
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The errors committed in the approximations, i.e. difference between 𝑄 and �̅� are shown in Fig. 

5.30, scaled by 100. Note that at most locations the error is smaller than 𝐸𝑎𝑑𝑚 = 0.0050, locally 

at some areas the error reaches about 0.0080. 

 

Fig. 5.30 Errors of �̅�-surface represented in �̂�-space and scaled by 100. 

5.7. Relation with the code 

The approximation of trimming surfaces is carried out by the routine called st0301_rTskin. This 

routine is within a more general one called i0100_IniPatches, that also contains the solid 

discretization itself (detailed in Chapter 6). 

The main inputs of st0301_rTskin are: 

- tFace: contains the trimming surfaces features. 

- Spatches: contains the patches parametrization. 

- ccTp: contains the information of curves that contour the trimming surfaces. 

Within st0301_rTskin the most important steps are: 

- Identification and arrangement of trimming surfaces for each patch. This task is done 

by st0305_tsR and st0308_tcR routines. 

- Construction of �̅�-surfaces, done in fs0700_fit2surf. Within this function, the 

most relevant routines are: 

- fs_0710_fit2conto: the contour nodes are defined. 

- fs_0730_fit2inner: the surface inner nodes are defined. 

- fs_0750_trianSkin: triangulation is carried out, including 

improvement in �̂�-space. 
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The output of st0301_rTskin is the variable rTskin that contains all the �̅�-surfaces nodes and 

their connectivity matrices. 

5.8. Summary of the chapter 

In this chapter the trimming surfaces are estimated in the patch parameter space to allow 

accurate integration of the trimmed solid. The approximation is carried out by quadratic triangles, 

whose size guarantees the error below a pre-established tolerance. Trimming surfaces in general 

are trimmed by contour curves, therefore these curves need also to be approximated by 

quadratic segments. 

The output of this chapter is a set of triangles in the patch parameter space that approximate the 

trimming surfaces. The nodes of these triangles are inserted considering quadratic degree, 

however the output is a linear triangulation. The upgrade to quadratic triangulation (by insertion 

of mid-nodes on the triangles lines) will be done once the tetrahedral mesh for the solid is 

finished, as explained in Chapter 6. We postpone this mid-nodes insertion because during the 

tetrahedralization process extra nodes may be inserted within the triangulation, i.e. the trimming 

surface obtained here is the minimum required to control the error, but may be refined during 

the tetrahedralization. 

These triangulations will form the limit of the integration of the patches at the trimming surface. 

Chapter 5 and Chapter 6 cover the thesis objective d. 
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 Discretization of solid domains 6.

This chapter covers the discretization of solid domains, both trimmed and non-trimmed. The 

discretization allows the location of the Gauss points that are used to calculate the stiffness 

matrix of the patch and the body forces34. 

The term patch will refer to the solid domain to integrate. The 𝑇-surfaces and 𝑄-surfaces trim the 

patch in physical and parameter spaces respectively. In this chapter we distinguish three types of 

patches (see Fig. 6.1): 

- Non-trimmed patch, with no 𝑇-surfaces. 

- Trimmed patch, obtained from trimming with 𝑇-surfaces the corresponding gross patch. 

- Gross-trimmed patch, which is the gross patch before trimming, i.e. non-trimmed version 

of the trimmed patch. 

 

Fig. 6.1 Non-trimmed patch, trimmed patch and its gross-trimmed patch. 

The physical space of 𝑄-surface, and their contours 𝐾-curves, lie in the parameter space of the 

patch �̂�. Since both are unknown, they are approximated with quadratic polynomials �̅� and �̅� 

(recall Chapter 5). Some of the spaces introduced in Chapter 5 are also used here as listed below. 

Fig. 6.2 illustrates them.  

Physical space:   𝑃 

Patch parameter space:  �̂� 

𝑄-surface physical space: 𝑄 

𝑄-surface approximation: �̅� 

𝑄-surface parameter space: �̂� 

𝐾-curve physical space:  𝐾 

𝐾-curve approximation : �̅� 

𝐾-curve parameter space: �̂� 

 

                                                           
34

 See Appendix 2B. 
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Fig. 6.2 Relevant spaces in the solid discretization. 

The Gauss quadrature approximates the integral of a function 𝜑 as equation (6.1), recall section 

2.1.2, where the functions are evaluated at each Gauss point. 

𝕀𝜑 ≈ ∑𝜑𝑔 𝒥1𝑔 𝒥2𝑔 𝑤𝑔  

𝑁𝑔

𝑔=1

 (6.1) 

Hence the Gauss points locations are needed for the integration. The number and location of 

Gauss points depends on the discretization of the patch and NURBS degree. For non-trimmed 

domains, the Gauss points are arranged by knot spans in FEA fashion with hexahedral elements. 

Fig. 6.3 shows the Gauss points for one hexahedron in 𝑃-space, �̂�-space and hexahedron parent 

space. 

 

Fig. 6.3 Discretization and Gauss points (crosses) scheme for non-trimmed patches. 

For trimmed patches, the scheme shown previously is not valid since it includes the trimmed 

portion (non-computable domain), as illustrated in Fig. 6.4 (top). Therefore, trimmed patches 

need different discretization scheme. This work uses tetrahedrons as shown in Fig. 6.4 (bottom). 

Tetrahedrons occupy easily volumes different from knot spans and hence provide flexibility to 

adapt to trimming surfaces. Once the tetrahedral mesh is set, integration points are located 
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according to Gauss quadrature rules35. The tetrahedrons used in this work may be linear or mixed-

degree36. 

 

Fig. 6.4 Trimmed patches discretization with hexahedrons (top) and tetrahedrons (bottom). 

The tetrahedralization flowchart for trimmed patches is shown in Fig. 6.5. First the trimming 

surfaces must be approximated by �̅�-surfaces (Chapter 5). Then a preliminary tetrahedralization is 

done for the gross-trimmed patch. The nodes of these tetrahedrons that lie within the 

computable domain, together with the nodes from the �̅�-surfaces are used to obtain the 

tetrahedral mesh of the trimmed patch. 

 

Fig. 6.5 Flowchart for generation of tetrahedral mesh for trimmed patches. 

This chapter is structured as follows. Section 6.1 outlines the discretization of non-trimmed 

patches using the hexahedral scheme. The rest of the chapter is dedicated to trimmed patches. 

Section 6.2 describes the tetrahedral discretization of gross-trimmed patches. In section 6.3 the 

treatment to the �̅�-surfaces prior to its use in the trimmed patch is explained. Section 6.4 

                                                           
35

 Appendix 6A. 
36

 Appendix 6E. 
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describes the tetrahedralization of trimmed patches. Section 6.5 explains the deactivation of 

control points. Section 6.6 provides one example of trimmed patch discretization. The most 

relevant routines in the code related are outlined in section 6.7 and section 6.8 summarizes the 

content of this chapter. 

6.1. Hexahedral discretization of non-trimmed patches 

In this work we keep the traditional approach with hexahedral discretization similar to FEA: each 

non-void knot span is treated as one hexahedral element. Within each element we place a 

number of Gauss points in each direction according to the degree of the NURBS basis functions as 

follows. 

The number of Gauss points required to provide exact integration of a polynomial of 𝑠 degree is: 

𝑛 = {

𝑠 + 1

2
  𝑖𝑓 𝑠 𝑖𝑠 𝑜𝑑𝑑

𝑠 + 2

2
  𝑖𝑓 𝑠 𝑖𝑠 𝑒𝑣𝑒𝑛

 (6.2) 

NURBS are rational function instead polynomial, but we accept the approximation with a 

polynomial of equal or greater order than the NURBS function. The integrand for the stiffness 

matrix computation is of the form37: 

𝜑 = 𝑅𝑖,𝛼 𝐷 𝑅𝑗,𝛽 (6.3) 

Where 𝐷 is one constant of the constitutive matrix 𝑫, and 𝛼 and 𝛽 indicate 𝑥, 𝑦 or 𝑧. Let us focus 

on one parameter direction with the degree of the basis functions (𝑅𝑖) equal to 𝑝. Then order of 

the integrand 𝜑 is 𝑠 = (𝑝 − 1) + (𝑝 − 1) = 2𝑝 − 2, which can be the input to (6.2) obtaining the 

number of required Gauss points. However, to avoid spurious modes (see Oñate et al. (2008)) the 

degree is increased by three being 𝑠 always an odd number, which leads to the number of Gauss 

points provided by (6.4). This expression (6.4) is suitable also for body forces integration since the 

its order is lower than 2𝑝 − 2 (see Appendix 2B). 

𝑛 = 𝑝 + 1 (6.4) 

6.2. Tetrahedral discretization of gross-trimmed patches 

The gross-trimmed patch is discretized prior to the trimmed patch as the nodes of the former will 

be used in the discretization of the latter. The number of linear tetrahedrons38 to discretize the 

                                                           
37

 See Appendix 2B. 
38

 There is one Gauss point per linear tetrahedron. 
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gross-trimmed patch must be similar to the number of Gauss points in the standard hexahedral 

discretization (section 6.1) to achieve similar accuracy. 

The discretization of gross-trimmed patches has two main steps. Firstly, we determine the 

number of tetrahedrons in each parameter direction (section 6.2.2). Secondly, the resultant nodes 

are re-located to reflect the parametrization (section 6.2.3). Prior to these explanations, some 

definitions are introduced in section 6.2.1. 

6.2.1. Preliminary definitions 

The patch parameter space is a cube that might be divided into sub-cubes called cells39. The 

corners of the cells will become nodes of the tetrahedral mesh. Each cell can be split by one of its 

diagonal planes into two wedges. These terms are illustrated in Fig. 6.6. 

 
Fig 6.6 Nodes, cells and wedges. 

The number of required Gauss points (𝑁𝑅) in each parameter direction is calculated as equation 

(6.5), where 𝑁𝐾 is the number of non-void spans and 𝑛 the number of Gauss points per knot span 

computed with equation (6.4). 

𝑁𝑅 = 𝑁𝐾  𝑛 (6.5) 

Each cell is assumed to contain six linear tetrahedrons (see Fig. 6.7) i.e. six Gauss points, then the 

number of Gauss points added by one cell in each parameter direction is 61/3 ≅ 1.8. 

  

                                                           
39

 These cells are different from the cells used in the lattice fitting algorithms, section 4.2.3. 
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Fig 6.7 Decomposition of one cell into six tetrahedrons. 

Initially the patch consists of one single cell with eight nodes. The number of required cells to add 

in each direction is given by equation (6.6). This number is in fact the number of nodes to add in 

that direction. One example is illustrated in Fig. 6.8 with 𝑁𝐶 = {2 1 1}. 

𝑁𝐶 =
𝑁𝑅 − 1.8

1.8
 (6.6) 

 

Fig. 6.8 Number cells to add in each parameter direction. 

One wedge contributes with 1.80/2 = 0.90 Gauss points in each parameter direction. The 

number of wedges to add 𝑁𝑊 is computed as equation (6.7). 𝑁𝑊 is more accurate than 𝑁𝐶 since 

the increments of added Gauss points are 0.9 instead 1.8. 

𝑁𝑊 =
𝑁𝑅 − 1.8

0.9
 (6.7) 

Fig. 6.9 shows one patch with 𝑁𝑊 = 3 in the first parameter direction, note the initial cell 

provides already two wedges. 
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Fig. 6.9 Wedges to add (hatched). 

We call alternating direction to the parameter direction with the largest odd 𝑁𝑊. If none of the 

three directions have odd 𝑁𝑊, the alternating direction has the largest 𝑁𝐶. The other two 

directions are called perpendicular directions. 

6.2.2. Nodes addition 

The flowchart of adding nodes to the gross-trimmed patch is illustrated in Fig. 6.10. 

 

Fig. 6.10 Flowchart of nodes insertion. 

First step is to calculate the number of cells (𝑁𝐶) and wedges (𝑁𝑊) in each parameter direction, 

which allows the define the alternating and perpendicular directions. With 𝑁𝐶 of the 

perpendicular directions a net of nodes is set in the plane that both directions form. This plane is 

called 𝜋𝑝 and is located at the start of the alternating direction. Fig. 6.11 shows one net of nodes, 

in the 𝜋𝑝 plane at 𝜒 = 0, with 𝑁𝐶 equal to three and one in directions 𝜉 and 𝜂. 
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Fig. 6.11 Net of nodes in 𝜋𝑝 plane. 

From each node of the 𝜋𝑝 plane, a perpendicular line is created parallel to the alternating 

direction to add nodes on it. The number of nodes to add in each perpendicular line varies 

alternatively from 𝑛1 to 𝑛2, which are computed with (6.8) and (6.9) respectively40. Finally, the 

net of nodes of the 𝜋𝑝 plane is copied at the end of the alternating direction. 

𝑛1 = 𝑓𝑙𝑜𝑜𝑟 (
𝑁𝑊

2
) (6.8) 

𝑛2 = 𝑐𝑒𝑖𝑙 (
𝑁𝑊

2
) (6.9) 

One example is illustrated in Fig. 6.12, where 𝑁𝑊 = 5, therefore the number of nodes to add are 

𝑛1 = 2 and 𝑛2 = 3.  

 

Fig. 6.12 Nodal insertion along alternating direction. 

                                                           
40

 Floor and ceiling functions are presented in Appendix 2A. 
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The setting out of the nodes along the lines is also alternating from one line to the next. Let us 

define the basic nodal distance (ℓ𝑏) as equation (6.10), where 𝐿 is the span of the alternating 

direction41. 

ℓ𝑏 =
𝐿

𝑁𝑊 + 1
 (6.10) 

The distance from the 𝜋𝑝 plane to the first inserted node along the perpendicular lines alternates 

between ℓ𝑏, and 2ℓ𝑏 as illustrated in Fig. 6.13 (only two lines are shown for clarity). This 

alternating arrangement increases the isotropy of the triangulation at the faces (Appendix 5A) and 

increases the tetrahedrons regularity (see Appendix 6B). 

 

Fig. 6.13 Nodal spacing along lines in alternating direction. 

6.2.3. Redistribution of nodes 

Nodes are not to be uniformly spaced but according to the knot spans distribution. To reflect this 

distribution we introduce the mapping ℝ1 → ℝ1 from the 𝛾-space to the 𝜉-space. Both spaces 

correspond to one parameter direction, are piece-wise linear, with a number of divisions equal to 

the number of non-void knot spans, and spanning from zero to one. The divisions are equal to 

knot spans in the 𝜉-space and uniformly spaced in the 𝛾-space. Both spaces are connected by the 

piece-wise line in the Cartesian plane. Fig. 6.14 shows one example of both spaces, with four 

divisions and knot spans [0  0.1 0.2  0.5  1].  

  

                                                           
41

 The span of parameter space goes from 0 to 1 (recall section 3.1.2). 
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Fig 6.14 𝜉 and 𝛾-spaces in the Cartesian plane. 

The number of nodes in one parameter direction (𝑁𝑁) are computed adding to 𝑛1 and 𝑛2, 

equations (6.8) and (6.9), two more nodes corresponding to the initial cell. In the 𝛾-space these 

nodes are equally spaced at 𝐿𝑔 = 1/(𝑁𝑁 − 1) and are projected to the 𝜉-space as follows. Let us 

consider one node with coordinate in the 𝛾-space 𝛾𝑁 = 𝐿𝑔(𝑁 − 1), where N indicates the 

position of the node. The division in the 𝛾-space where 𝛾𝑁 lies is referred as j division. The node 

coordinate is mapped to the 𝜉-space by the linear interpolation (6.11). 

𝜉𝑁  = 𝜉𝑗 +
 (𝜉𝑗+1 − 𝜉𝑗) 

(𝛾𝑗+1 − 𝛾𝑗)
 (𝛾𝑁 − 𝛾𝑗) (6.11) 

One example is illustrated in Fig. 6.15, with six nodes to insert. The third vertex, whose 𝛾-

coordinate is 𝛾3 = 0.4, is mapped into the 𝜉-coordinate resulting 𝜉3 = 0.16. This mapping is 

applied to each parameter direction, using the 𝜉-coordinates in the discretization. 

 

Fig 6.15 Mapping 𝛾 to 𝜉 space. 
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6.3. Treatment of trimming surfaces: the Merged Linear Triangulation (MLT) 

The approximation to the trimming surfaces (the �̅�-surfaces) obtained in Chapter 5 will be used to 

delimit the trimming boundaries of the trimmed patches. Prior their use, they are amended to 

improve their suitability for the tetrahedralization as shown here. 

6.3.1. Adaptation of triangles to the tetrahedrons sizes 

We have on one hand the spacing of the nodes of the �̅�-surfaces that were based on the surface 

shape (section 5.4.2). On the other hand the spacing of the tetrahedrons nodes of the gross-

trimmed patches that are based on the number of knot spans and degree of the patch. Hence 

both sizes are not related so far, which may lead to highly distorted tetrahedrons. Fig. 6.16 shows 

this event in 2D. 

 

Fig 6.16 Left: tetrahedralization when spacing of the nodes of the trimming entities and tetrahedrons are 

widely different. Right: improvement by nodes insertion in the trimming entity. 

In case the spacing of the triangle nodes is smaller than the spacing of the tetrahedron nodes, the 

nodes of the trimming surface cannot be removed since geometrical accuracy would be lost. The 

only valid procedure is to refine the patch to achieve smaller tetrahedrons. This case is not 

common though. 

In case the spacing of the triangle nodes is larger than the tetrahedrons, additional nodes are 

required in the triangulation of the trimming surface to avoid distorted tetrahedrons in the final 

discretization (section 6.4.3). This nodal insertion process, which occurs entirely in the patch 

parameter space, is outlined in this section. 

Each line of the �̅�-surface triangulation is checked separately, using its mid-point to locate the 

tetrahedron where it lies in. Let us call 𝐿𝑎𝑣 to the average length of the lines of such tetrahedron, 

and 𝐿𝑡 to the length of the line of the �̅�-surface triangulation being checked. If 𝐿𝑡 > 𝐿𝑎𝑣 the 

triangle line is divided into a number of segments (𝑛𝑠) as follows: 



 

113 
 

𝑛𝑠 = 𝑚𝑎𝑥 {

2

𝐿𝑡
𝐿𝑎𝑣

 (6.12) 

After revising all the lines, the �̅�-surface is triangulated again, and their lines are checked. The 

process is repeated until no insertion is done. 

6.3.2. The merged linear triangulation 

All the adjacent �̅�-surfaces are merged in a resultant linear mesh is called MLT, acronym for 

merged linear triangulation. One example with three surfaces is shown in Fig. 6.17. The MLT can 

be composed by separated parts. 

 

Fig. 6.17 MLT with two parts generated from three �̅�-surfaces. 

Normal vectors of MLT, that point outwards the computable domain, will be used to select the 

nodes of the gross-trimmed patch that are inside computable domain. The normal vectors to the 

triangles are called 𝒏𝑡. The normal vectors to the MLT nodes (𝒏𝑛) are computed from the 

adjacent triangles normal vectors as follows: 

𝒏𝑛 =
∑ 𝐴𝑖𝒏𝑡

𝑖𝑚
𝑖=1

∑ 𝐴𝑖𝑚
𝑖=1

 (6.13) 

Where 𝐴𝑖  is the area of the 𝑖th triangle attached to the node, 𝒏𝑡
𝑖 its normal (with unit norm), and 

𝑚 is the number of triangles attached to the node. The normal to one line of MLT at 𝑥 location is 

computed as follows: 

𝒏𝑙 =
𝑙1𝒏𝑛

1 + 𝑙2𝒏𝑛
2

𝑙
 (6.14) 
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Where 𝒏𝑛
𝑖  are the normal vectors of the end-nodes of the line, both with unit norm, 𝑙 is the length 

of the line, and 𝑙𝑖 are the distances from 𝑥 to the opposite end-node. The MLT allows to calculate 

the normal vector at nodes that lie at one common edge between two �̅�-surfaces. Fig. 6.18 shows 

this case when MTL is used (left) and when �̅�-surfaces are used instead (right). With separated �̅�-

surfaces the normal vector at the shared node is not uniquely defined, leading to potential errors 

in the nodes removal (section 6.4.1). 

 

Fig. 6.18 Normal at one surface node with and without MLT. 

6.3.3. Optimal vertex location and optimal distance 

For each triangle of the MLT we define the optimal vertex as follows. Let us assume one 

tetrahedron with one of the faces coincident with a pre-established triangle, whose centre of 

gravity is denoted by 𝑮𝑡. The fourth vertex of the tetrahedron lies on the line that passes through 

𝑮𝑡 and is perpendicular to the triangle. The position of the fourth vertex, along such 

perpendicular line, that optimizes the tetrahedron in terms of regularity42 is called the optimal 

vertex location. The distance from one triangle to its optimal vertex is called optimal distance. 

Both, the optimal vertex location and the optimal distance are illustrated in Fig. 6.19. For further 

details of the calculation of the optimal vertex location refer to Appendix 6C. 

 

Fig. 6.19 Optimal vertex location and the distance to the triangle. 

  

                                                           
42

 See Appendix 6B for the definition of the regularity for tetrahedrons. 
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6.4. Tetrahedral discretization of trimmed patches 

To facilitate the comprehension of the tetrahedralization of trimmed patches a summary of the 

whole process is outlined previously. The figures used in this brief are in 2D for the shake of 

clarity. All the operations are done in the �̂�-space. 

The MLT is brought to the parameter space of the patch (Fig. 6.20 (a)) to remove the nodes of the 

gross-trimmed patch that lie outside the computable domain (Fig 6.20 (b)). This removal process 

is presented in section 6.4.1. 

 

Fig 6.20 Preparation of nodes for tetrahedralization. 

With the purpose of enhancing the quality of the tetrahedralization, new nodes are added at 0.4 

times the optimal distance from the MLT triangles as shown in Fig 6.20 (c). This insertion is 

explained in section 6.4.2. 

With all the nodes in the computable domain, including MLT nodes, the tetrahedralization is 

carried out (Fig. 6.21 (d)). Recall that the lines of the �̅�-surfaces will define the trimmed limits of 

the domain (Chapter 5), hence all the lines of the MLT must be present in the resultant 

tetrahedrons. However the tetrahedralization might miss out some of those lines. 

This problem, called constrained tetrahedralization (Lee and Lin, 1986), may require addition of 

nodes and redefinition of the connectivity of some tetrahedrons to comply with the constraints43. 

Fig. 6.21 (e) shows the amendment of the tetrahedrons to include all the MLT lines. The 

tetrahedralization and its adaptation to MLT are presented in section 6.4.3. 

                                                           
43

 The constraints are the lines of the MLT. 
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Fig 6.21 Tetrahedralization and adaption to include all the lines from �̅�-surfaces. 

Some tetrahedrons might be outside the computable domain and other might be quasi-plane. 

They are removed from the mesh as detailed in section 6.4.4. This process is illustrated in Fig. 

6.22. 

 

Fig 6.22 Removal of non-valid tetrahedrons. 

Mid-nodes are finally inserted at the lines of the tetrahedral mesh that lie on the MLT, achieving 

the quadratic degree for the approximation of the trimming surfaces as shown in Fig. 6.23 and 

explained in section 6.4.5. Tetrahedrons in contact with MLT result mixed-degree and the rest are 

linear. Basis functions of mixed-degree tetrahedrons are detailed in Appendix 6E. 

 

Fig 6.23 Insertion of mid-nodes at lines that lie on MLT. 

These steps are detailed in section 6.4.1 to 6.4.5. 

6.4.1. Removal of non-computable nodes that come from gross-trimmed patch 

Each node is evaluated separately. Let us call 𝝃𝑎 to the position in �̂�-space of the node to 

evaluate. The projection of 𝝃𝑎 in MLT is called 𝝃𝑏, which may lie within a triangle, line or node 

(see Fig. 6.24). 
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Fig. 6.24 Three cases of location of 𝝃𝑏. 

The vector that goes from 𝝃𝑎 to 𝝃𝑏 is called 𝒅 and the normal vector of MLT at 𝝃𝑏 is 𝒏. The normal 

vector is calculated as explained in section 6.3.2. 

To assess the position of one node we compute the projection of 𝒅 on 𝒏 (6.15). If that projection 

is positive both vectors have similar sense, then the node is inside, otherwise it is outside. If 𝝃𝑏 

lies in a triangle both vectors, 𝒅 and 𝒏, are parallel. Fig. 6.25 shows examples. 

𝑝𝑟𝑜𝑗 = 𝒅 · 𝒏 (6.15) 

 

 

Fig. 6.25 Evaluation of nodes position in general case (left) and with the projection in a triangle (right) 

Apart from the mentioned rule, if the norm of 𝒅 is less than 1.3 times the optimal distance (recall 

section 6.3.3), the node is removed. This last rule avoids nodes too close to MLT and, in 

conjunction with the additional nodes (section 6.4.2), improves the quality of the tetrahedrons. 

6.4.2. Addition of nodes offset from trimming triangles 

Due to the removal of nodes close to the MLT (end of previous section), a zone without nodes 

appear in the vicinity of the MLT. Additional nodes are added 0.40 times the optimal distance 

projected from the centre of gravity of each MLT triangle. Fig. 6.26 illustrates the process (in 2D 

for clarity): the outside nodes and those closer than 1.3 times the optimal distance are removed 
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(a); additional nodes are added at 0.40 times the optimal distance from the MLT (b); the resultant 

nodes arrangement is prone to produce a tetrahedralization of better quality than without the 

added nodes (c). 

 

Fig. 6.26 Removal and addition of nodes. 

This strategy might be seen as a substitution of the nodes that were too close to the MLT by 

another set of nodes whose location is customized to achieve a better quality mesh. 

6.4.3. Tetrahedralization and mesh amendment 

All the nodes inside the computable domain plus the nodes from the MLT are used for the 

tetrahedralization by Delaunay technique. As mentioned at the beginning of section 6.4, all the 

lines from the MLT must be present in the tetrahedralization. However, the tetrahedralization 

might not include some MLT lines. Therefore the tetrahedralization needs amendments to include 

those missing lines, which can involve the insertion of new nodes in both, the tetrahedral mesh 

and the MLT. 

Let us call 𝑟𝑚 to the line of the MLT that is missing in the tetrahedral mesh. We use four different 

techniques to include 𝑟𝑚 in the tetrahedral mesh which are briefed in this section. They are 

arranged by preference of use in the next list:  

- flipping of tetrahedrons; 

- flipping of intersected tetrahedron line; 

- guided insertion of node in tetrahedron line; 

- insertion of node in tetrahedrons. 

The preference of use is based on the simplicity to include the 𝑟𝑚 line within the tetrahedrons, the 

first technique incorporates the 𝑟𝑚 line in the simplest manner, the fourth is the most intricate. 

These transformations are well settled in the field, see for example work by Si and Shewchuk 

(2014). Flipping involves only changes in the connectivity of the tetrahedral mesh, while the MLT 

remains untouched. Regarding nodal insertion, the new node obligates to updated both, the 

tetrahedral mesh and the MLT. 
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The new node to insert must lie on the trimming 𝑄-surface. The preliminary position of the new 

location, called 𝝃𝑝, is place on 𝑟𝑚. Then the new node position is calculated as Appendix 5D to 

obtain 𝝃𝑖. Once the node is inserted, the affected tetrahedrons must be divided to accommodate 

it, as well as the triangles of the MLT. The particularity of this work, compare with the previous 

works (Si and Shewchuk 2014), is that the new node (𝝃𝑖) is at an unknown distance from the 

preliminary estimation (𝝃𝑝) because the 𝑄-surface is unknown. 

Flipping of tetrahedrons 

Flipping of tetrahedrons is used in two cases: 

- If one line 𝑟𝑚 intersects one single facet of the tetrahedral mesh, 2-3 flipping includes 

such line within the mesh (see Fig. 6.27). 

- In case there are three tetrahedrons whose common line passes across one triangle of the 

MLT and the tetrahedron lines that do not share nodes with that common line coincide 

with such triangle, 3-2 flipping is used (see Fig 6.28). In this case there is not MLT missing 

line, but one tetrahedron line passes across one MLT triangle, which is removed. 

 

 

Fig. 6.27 2-3 flipping. 
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Fig. 6.28 3-2 flipping. 

Flipping of Intersected tetrahedron line 

When one common line of four tetrahedrons is intersected the 𝑟𝑚 line and the next two 

conditions are met: 

- there are four common facets that share the common line; 

- each common facet has two tetrahedrons attached; 

then, the common line can be flipped to become the 𝑟𝑚 line, integrating such line in the 

tetrahedral mesh. Fig. 6.29 illustrates the line flipping technique. The procedure can be applied 

also when there are two tetrahedrons involved (see the right-hand side of Fig. 6.29). 

 

Fig. 6.29 Flipping of tetrahedral line for 4 and 2 tetrahedrons. 

Guided Insertion of new node at tetrahedron line 

The 𝑟𝑚 line is assumed to cross at least two facets of the tetrahedral mesh. Let us call 𝑛 to the 

number of intersected facets, then there are 𝑛 − 1 hinge lines between those facets called 𝑟1, 𝑟2, 

… 𝑟𝑛−1 (see Fig. 6.30 where 𝑛 = 3). The interest lies only in the first and last hinge lines: 𝑟1 and 

𝑟𝑛−1, the latter is called 𝑟𝑒 for simplicity. 
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Fig. 6.30 Facets intersected by the 𝑟𝑚  line and their hinge lines. 

The closest locations from the 𝑟𝑚 line to the hinge lines 𝑟1 and 𝑟𝑒 are computed44. Both locations, 

called 𝝃𝑝
1  and 𝝃𝑝

𝑒 , are used as preliminary coordinates to calculate the potential new insertions, 

that are called 𝝃𝑖
1 and 𝝃𝑖

𝑒 (see Appendix 5D for this calculation). The selected candidate point, 𝝃𝑖
1 

or 𝝃𝑖
𝑒, is the closest to its corresponding hinge line. The candidate is designated by 𝝃𝑖

𝑐, and its 

hinge line by 𝑟𝑐 (see Fig. 6.31). 

 

Fig. 6.31 Selection of candidate node and distance to its hinge line. 

Let us define as 𝑑𝑐 the distance from 𝝃𝑖
𝑐 to 𝑟𝑐, and 𝑑𝑡ℎ𝑟 the threshold distance, computed as one 

third of the length of 𝑟𝑐 (Fig. 6.31 right). If 𝑑𝑐 < 𝑑𝑡ℎ𝑟 the new node is inserted into 𝑟𝑚 and 𝑟𝑐, that 

are deviated from their original trajectory (see Fig. 6.32). The tetrahedrons attached to such hinge 

line are split by the inserted node. 

 

Fig. 6.32 Insertion at tetrahedron and MLT lines. 

                                                           
44

 See Appendix 2A for computation of closest point from one line to another line. 
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In view of Fig. 6.32 one can see why the insertion must occur on first or last hinge lines (𝑟1 or 𝑟𝑒). 

By inserting in one of them we guarantee that at least one of the new MLT lines is included in the 

tetrahedrons after the node is inserted. 

Insertion of new node in tetrahedrons 

In case the guided insertion is not possible, the new node is inserted using the preliminary 

location (𝝃𝑝) at the mid-point of 𝑟𝑚. The coordinates of the new node 𝝃𝑖  (calculated as Appendix 

5D) may lie far away from 𝝃𝑝, even within tetrahedrons different from those intersected by the  

𝑟𝑚 line. The tetrahedron where 𝝃𝑖  lies is identified and three insertions are preliminarily 

simulated: 

- 𝝃𝑖  is inserted within the tetrahedron, dividing it into four; 

- 𝝃𝑖  is inserted within the closest facet of the tetrahedron, dividing each of the attached 

tetrahedrons to that facet into 3; 

- 𝝃𝑖  is inserted within the closest line of the tetrahedron, dividing each of the attached 

tetrahedrons to that line into 2. 

The regularity (see Appendix 6B) of the resultant tetrahedrons in each scenario is measured, 

storing the lowest value for each case45. The three regularities are compared and the scenario 

with higher regularity is chosen, inserting the node in the tetrahedral mesh. The 𝑟𝑚 line of the 

MLT is split by that new node. 

This procedure does not guarantee that any stretch of the new MLT line becomes part of the 

updated tetrahedralization. In addition, it is prone to generate small or distorted tetrahedrons. 

For these two reasons, this procedure is the latest in the list to use. 

6.4.4. Removal of non-valid tetrahedrons 

One tetrahedron is non-valid if it lies outside the computable domain, or it is quasi-plane. Fig 6.33 

illustrates outside tetrahedrons (references 1 and 2) and quasi-plane tetrahedrons (references 3 

and 4) represented by grey thick lines. 2D view is shown for clarity. Outside tetrahedrons appear 

on concave sides of MLT. Plane tetrahedrons appear because their four nodes should belong to 

the same plane but numerical truncation errors moved them slightly, therefore Delaunay 

algorithm interprets them as not in plane. 

                                                           
45

 The regularity is 𝑅 ≤ 1, being equal to 1 for the regular tetrahedron (the best case). The more distorted 
the tetrahedron the lower value of 𝑅. 
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Fig 6.33 Non-valid tetrahedrons. 

Outside tetrahedrons are detected similarly to outside nodes (see section 6.4.1). The 𝝃𝑎 location 

used in this case is the centroid of the tetrahedron. Plane tetrahedrons are detected because they 

regularity is smaller than a threshold (0.01 in this work). 

6.4.5. Insertion of mid-nodes and correction of self-intersections 

Let us use the prefix 𝑄 for nodes and lines that lie on 𝑄-surfaces. The rest of nodes / lines may be 

preceded by the term inner. By the mid-nodes insertion in the 𝑄-lines we recover the accuracy of 

the quadratic �̅�-surfaces (recall Chapter 5). The insertion of new nodes is according to Appendix 

5D. The preliminary position in �̂�-space (𝝃𝑝) is the mid-location of the line to upgrade. 

After mid-nodes insertion, self-intersections may occur between inner lines and 𝑄-lines, Fig. 6.34 

illustrates one scheme in 2D. 

 

Fig 6.34 Self-intersection due to degree elevation of 𝑄-lines. 

To check the self-intersections at each 𝑄-node, the tangent vectors for the inner lines (inner 

tangents) and for the 𝑄-lines (𝑄-tangents) are calculated. The philosophy is that those inner 

tangents that lie in the outer side of the �̅�-surface are corrected, i.e. reoriented, and move back 

to the computable domain. The process to check each 𝑄-node is described here. 
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With the 𝑄-tangents we form a crown of triangles convergent to the 𝑄-node as shown in Fig. 

6.35. Each 𝑄-tangent forms a line between two triangles (Fig. 6.35 (b)). The normal vector (𝒏𝑖) to 

each triangle is computed such that it is oriented to the outside of the �̅�-surface (Fig. 6.35 (c)). 

 

Fig 6.35 Generation of crown of triangles at one 𝑄-node. 

Each inner tangent lies on one triangle of the crown46. Let us assume the 𝑖th-inner tangent 𝒕𝑖, lies 

on the 𝑗th-triangle with normal 𝒏𝑗. The angle 𝛼𝑖 is defined as the difference 𝛼𝑖 = �̂�𝑗 − �̂�𝑖. We 

define lower and upper limit angles 𝛼𝐿1 = 95 degrees47 and 𝛼𝐿2 = 120 degrees. One example is 

illustrated in Fig. 6.36, where three inner lines lie on the triangle 6. The 𝛼 angles of those lines and 

the limit angles are depicted in Fig. 6.36 (b). We define 𝛥 angles of each inner tangent as the 

difference 𝛥𝑖 = �̂�𝑖 − 𝛼𝐿2 and the limits increment angle as 𝛥𝐿 = 𝛼𝐿1 − 𝛼𝐿2 (see Fig. 6.36 (c)). 

 

Fig 6.36 Angles relative to the crown triangle normal vector and 𝛥 angles used for correction. 

The condition to re-orientate a set of inner tangents attached to a 𝑄-node is that 𝛼𝑖 < 𝛼𝐿1 for at 

least one of the inner tangents. In that case only the inner lines whose tangent angle is 𝛼𝑖 < 𝛼𝐿2 

are corrected, these ones are called deviated tangents. The rest of the inner lines remain 

untouched. To carry out the re-orientation, the 𝛥 angles are used. We define the maximum 

increment as (6.16), where 𝛼𝑖𝑚𝑖𝑛 is the closest angle to 𝒏𝑗 of the deviated tangents. 

                                                           
46

 Precisely speaking, the projection of the inner tangent lie on one triangle. 
47

 Note there is an allowance of 5 degrees. 
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𝛥𝑚𝑎𝑥 = 𝛼𝐿2 − 𝛼𝑖𝑚𝑖𝑛 (6.16) 

Fig. 6.37 shows three examples. In Fig. 6.37 (a) there is no correction to do. In Fig. 6.37 (b) 

tangent 𝒕𝑎 is closer to 𝒏𝑗 than the limit 𝛼𝐿1, hence all tangents closer than 𝛼𝐿2 are to be corrected 

(𝒕𝑎  and 𝒕𝑏). In Fig. 6.37 (c) there are two tangents closer than 𝛼𝐿1, choosing the closest to 𝒏𝑗 to 

obtain 𝛥𝑚𝑎𝑥. Tangents to correct are 𝒕𝑎, 𝒕𝑏  and 𝒕𝑐 in the latest case. 

 

Fig 6.37 Different cases of inner lines tangents. 

The corrected angles (𝛥𝑖
𝑐) are linearly scaled from (𝛥𝑖) as (6.17), which moves them inside the 

computable domain. Then the corrected angle w.r.t. the normal 𝒏𝑗 is obtained as (6.18). 

𝛥𝑖
𝑐 = 𝛥𝑖  

𝛥𝐿
𝛥𝑚𝑎𝑥

 (6.17) 

𝛼𝑖
𝑐 = 𝛼𝐿2 − 𝛥𝑖

𝑐  (6.18) 

The deviated tangent vectors are rotated to achieve the corrected orientation (𝛼𝑖
𝑐) but keeping 

the same norm. The mid-node is inserted in each of deviated lines to attain the corrected tangent, 

which is the first derivative of the curve formed by de inner line. For each inner line, since the 

end-nodes are known (they remain in the same position) as well as the derivative at the initial 

position (the corrected tangent), the mid-node coordinates may be obtained from (6.19), that is 

deducted from the quadratic lines derivative detailed in Appendix 6D. 

𝝃2
𝑖 =

1

2
(𝒕𝑖
𝑐 +

3

2
𝝃1
𝑖 +

1

2
𝝃3
𝑖 ) (6.19) 

In Fig. 6.38 one bi-dimensional version of the process is illustrated. In (a) the mesh previous the 

correction is shown, (b) shows the normal vectors to the triangles of the crown and the inner 

tangents prior to correction. Since tangent 𝒕𝑎 is closer to the normal vector of the triangle than 
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𝛼𝐿1, the tangents 𝒕𝑎, 𝒕𝑏 and 𝒕𝑑 need to be reoriented, as shown in (c). Finally, the corrected mesh 

is given in (d), where the self-intersection has disappeared. 

 

Fig 6.38 Correction of self-intersecting inner lines (2D version). 

6.5. Control points considered in the patch integration 

Once the tetrahedralization is finished, the Gauss points are allocated: one Gauss point to the 

linear tetrahedron and four Gauss points to the mixed degree tetrahedrons. Those control points 

of the gross patch whose influential volume does not enclose any Gauss point are non-active, 

being not considered in the stiffness matrix calculation. 

Fig. 6.39 shows one example in two dimensions and two degrees of freedom, with twelve control 

points. The first case is non-trimmed, hence all the control points are included in the stiffness 

matrix, whose size is 24 x 24. Second case is trimmed and some control points are removed for 

the stiffness matrix calculation, which have lesser number of components (16 x 16). 

It is necessary to remove the non-active control points because they introduced zero rows that 

would make the stiffness matrix singular and therefore a non-solvable problem. 

 

Fig. 6.39 Active control points (filled dots) for untrimmed and trimmed patches. 
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6.6. Example 

This section provides one example of the discretization of trimmed patches. Full data of the 

example, which is the same as section 5.6, is given in Appendix 5E. Fig. 6.40 illustrates the gross-

trimmed patch with the knot spans and the final trimmed patch. 

    

Fig. 6.40 Gross-trimmed patch and trimmed patch. 

6.6.1. Gross-trimmed patch tetrahedralization 

The cells and wedges to insert are shown in Table 6.3, where references of equations used are 

indicated. 

Table 6.3 Insertion of cells and wedges. 

Parameter 
direction 

𝑝 𝑛 (6.4) 
Non-void knot 

spans 
𝑁𝑅 (6.5) 𝑁𝐶 (6.6) 𝑁𝑊 (6.7) 

1 2 3 0  0.5  1 6 2 5 

2 2 3 0  0.5  1 6 2 5 

3 2 3 0  0.5  0.8  1 9 4 8 

The alternating direction is the first, meanwhile the second and third are the perpendicular 

directions (the alternating direction could have been the second also). The nodes at the 𝜋𝑝 plane 

and the alternating direction (dashed line) are shown at the left-hand side of the Fig. 6.41. The 

resulting tetrahedrons are depicted at the right-hand side of the figure. 
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Fig. 6.41 Left: nodes in the 𝜋𝑝 plane and the alternating direction (dashed line). Right: tetrahedral mesh. 

6.6.2. Merged linear triangulations and selection of nodes 

The �̅�-surfaces are merged producing the MLT, as described in section 6.3.2 (see Fig. 6.42). The 

nodes from the previous stage that lie outside the computable domain or too close to the MLT are 

removed (hollow dots in Fig. 6.43 left). The resulting arrangement lacks of nodes in the vicinity of 

the MLT (Fig. 6.43 centre), hence new nodes are added at 0.40 the optimal distance from each 

triangle of the MLT (Fig. 6.43 right). 

 

Fig. 6.42 MLT with normal to triangles and nodes. 
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Fig. 6.43 Setting of nodes prior to the tetrahedralization. 

6.6.3. Tetrahedralization 

With all the nodes in, including the nodes from MLT, the tetrahedralization is done. Recall that to 

include all the MLT lines in the tetrahedrons new nodes might be inserted, being necessary the 

amendment of the tetrahedralization and the MLT (section 6.4.3). Fig. 6.44 shows the original 

MLT and the updated version after the new nodes are inserted during the amendment. 

  

Fig. 6.44 MLT before and after the amendment process. 

The left-hand side of Fig 6.45 illustrates the tetrahedral mesh prior to the removal of non-valid 

tetrahedrons (section 6.4.4). At the right-hand side the final linear tetrahedral mesh is shown. 
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Fig. 6.45 Tetrahedral mesh before and after removal of non-valid tetrahedrons. The MLT is in thick lines. 

The lines of the tetrahedral mesh that lie on the MLT are raised to degree two by insertion of a 

new node at the mid-location. Some self-intersections appear as a consequence of this upgrade 

(section 6.4.5). Fig 6.46 shows the tetrahedral mesh indicating one node where self-intersection 

appears. In Fig. 6.47 the lines at that node are detailed, being the 𝑄-lines the thicker and the 

inner lines the thinner. Inner lines a and b form an angle smaller than 95 degrees with the normal 

vector of the corresponding triangle, therefore need to be re-orientated. 

After the insertion of mid-nodes to the required inner lines, the self-intersections disappear. Fig. 

6.48 shows the inner lines a and b re-oriented and curved since they are now quadratic. 

 

Fig. 6.46 Tetrahedral mesh and location of one self-intersection (red circle). 
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Fig. 6.47 Inner lines a and b need to be re-oriented. Left: view from bottom-side. Centre: lateral elevation. 

Right: crown of triangles and their normal vectors. 

  

Fig. 6.48 Inner lines a and b re-oriented. Left: view from bottom-side. Centre: lateral elevation 

The resultant tetrahedral mesh is represented in the patch parameter space and in the physical 

space, in Fig. 6.49 and Fig 6.50 respectively. 
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Fig. 6.49 Resultant tetrahedralization in �̂�-space. 

 

  

Fig. 6.50 Resultant tetrahedralization in physical space (𝑃-space). 

6.7. Relation with the code 

The tetrahedralization of the patches is done within the im0141_IMesh routine, that includes the 

rm0161_Rmesh routine that discretizes the un-trimmed patches (section 6.1). The trimmed 

patches follow a different route as indicated here. 

The im0158_GPT routine calculates the nodes for the gross-trimmed patch (section 6.2). The 

mt0601_MLT routine obtains the MLT (section 6.3). The removal of outside nodes (section 6.4.1) 
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is carried out in im0146_SetAllNods. Tetrahedralization itself (sections 6.4.3 to 6.4.5) is done in 

im0147_TetMesh routine. The Gauss points are set in im0144_patchGPs. 

The main inputs of this tetrahedralization process in the code are: 

- The trimming surfaces (rTskin), obtained as output of st0301_rTskin (Chapter 5). 

- The number of required points in each parameter direction (NGd) that is the output of 

rm0162_NRgp routine. 

The output of im0141_IMesh routine is the tetrahedral mesh used for integration. This mesh is 

stored in IM, which is a member of the patches object (Spatches). 

6.8. Summary of the chapter 

In this chapter the discretization of the solids is explained, for both non-trimmed and trimmed 

patches. The former is done as standard IGA, with knot spans acting as hexahedral elements. 

Trimmed domains are discretized into tetrahedrons instead. Tetrahedrons adapt to any shape 

achieving quadratic degree at their facets that lie on the trimming surfaces. As result some of the 

them become mixed-degree tetrahedrons. With the tetrahedral mesh at hand, the location of 

Gauss points can be set, which allows the calculation of the stiffness matrix and body forces. This 

chapter, together with Chapter 5, covers the thesis objective d. 
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 Constraints and analysis 7.

This chapter is focused on the construction of the aggregated system of equations48, whose 

solution is the vector of the displacements at control points. With that vector the displacements 

and stresses at any location of the domain can be computed49. 

An extraction of the general scheme from section 3.2 is shown in Fig. 7.1. To construct the 

aggregated system, one needs on one hand the discretized solid patches, which comes from the 

stage C (Chapter 5 and Chapter 6). On the other hand, the boundary surfaces are also required. 

These surfaces, which were identified in stage A (Chapter 1), need to be discretized to allow the 

integration of the patch basis functions on them50. 

 

Fig. 7.1 Extraction of main scheme. 

This chapter, which covers stages D and E, is structured as follows. Section 7.1 presents the 

integration of the patch basis functions on the boundary surfaces. Section 7.2 explains in detail 

the calculation of the aggregated system of equations. Sections 7.1 and 7.2 use the approach 

presented by Apostolatos et al. (2014), that is introduced in Appendix 2B. Section 7.3 relates this 

chapter to the main routines and variables of the code. Finally, section 7.4 summarizes the main 

items introduced by this chapter. No example is given since Chapter 8 provides three examples to 

validate the analysis outputs of this algorithm. 

                                                           
48

 See equation (2B.54) of Appendix 2B. 
49

 Refer to Appendix 7A. 
50

 See equations (2B.45) and (2B.53) in Appendix 2B. 
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7.1. Integration on boundary surfaces 

7.1.1. Gauss points on boundary surfaces 

To account for constraints the basis functions of the patches are to be integrated on the boundary 

surfaces. These integrals are estimated by Gauss quadrature, therefore a set of Gauss points must 

be defined on the boundary surfaces. 

The boundary surfaces are in general trimmed by contour curves (recall section 2.2.3). Therefore, 

their discretization according to the knot spans is not valid51. In this work we discretize the 

computable boundary surfaces into triangles using the QIT algorithm (detailed in Appendix 10B). 

The size of the triangles and number of Gauss point per triangle is selected by the user. After QIT 

is applied, the Gauss points are located within each triangle52. Fig. 7.2 illustrates one example. 

 

Fig. 7.2 Allocation of Gauss points to boundary surfaces. 

7.1.2. Spaces involved 

The integration on the boundary surfaces involves three spaces: the physical space, where the 

surface (𝛤) meets the patch (𝛺); the surface parameter space (�̂�) and the triangle parent space 

(�̃�). Fig. 7.3 shows these spaces for one surface. 

                                                           
51

 It is the same situation for trimmed solids (Chapter 6), but for surfaces. 
52

 Appendix 6A details the arrangement of the Gauss points within the different parent spaces. 
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Fig. 7.3 Involved spaces in the integration of the boundary surfaces. 

To transform the integral limits from the physical space to the parent space two Jacobians are 

needed as shown in Fig. 7.3: from physical to parameter (𝒥1) and from parameter to parent (𝒥2). 

7.1.3. Integration on boundary surfaces 

The function 𝐵 to integrate over the boundary surfaces is 𝑅𝑖 or 𝑅𝑖𝑅𝑗, where 𝑅𝑖 is the basis 

function of the 𝑖th control point of the patch53. This integral 𝕀𝑏, whose domain is 𝛤, is shown in 

(7.1), where the sub-index 𝑏 refers to one basis function 𝑖 or two basis functions 𝑖 and 𝑗. 

𝕀𝑏 = ∫ 𝐵𝑏
𝛤

𝑑𝛤 (7.1) 

In order to facilitate the calculation of (7.1), the integration domain is changed to �̃�, which 

introduces the Jacobian 𝒥1 and 𝒥254 as follows: 

𝕀𝑏 = ∫ 𝐵𝑏 𝒥1 𝒥2 
�̃�

𝑑�̃� (7.2) 

The integral (7.2) is approximated by Gauss quadrature as follows: 

𝕀𝑏 ≅ ∑  𝐵𝑏𝑔 𝒥1𝑔 𝒥2𝑔 𝑤𝑔 

𝑁𝐺𝑏
𝛼

𝑔=1

 (7.3) 

Where 𝑁𝐺𝑏
𝛼 is the number of Gauss points of the 𝛼th boundary surface within the influential 

volume of the 𝑏th basis function; 𝑤𝑔 the Gauss point weight; and the basis function and Jacobian 

are evaluated at the Gauss points. One example is illustrated in Fig. 7.4, that shows the Gauss 

points influenced by the 𝑏th basis function. 

                                                           
53

 See equations (2B.45) and (2B.53) of Appendix 2B. 
54

 See Appendix 2F for calculation of Jacobian. 
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Fig. 7.4 Basis function values at influenced Gauss points. 

7.1.4. Influenced Gauss points 

The estimation of the integral of the 𝑏th basis function (7.3) requires the summation of the Gauss 

points that lie within the basis function limits. Since the limits of one basis function forms a cubic 

region in the patch parameter space, we use such space to identify influential Gauss points on one 

basis function. 

The position of the Gauss point in the patch parameter space must be calculated by point 

projection55. One example is provided in Fig. 7.5, where the thicker crosses indicate those Gauss 

points within the influential volume of the 𝑏th control point. This example corresponds to Fig. 7.4, 

where the basis function values at Gauss points are depicted. 

 

Fig. 7.5 Gauss points influenced by basis function 𝑏 in the physical and parameter spaces. 

  

                                                           
55

 See Appendix 10A where the projection technique MPP is detailed. 
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7.2. Construction of the aggregated systems of equations 

The aggregated system of equations (7.4) considers the constraints on the domain, being its 

solution the vector of displacements of the control points. The equation (7.4) is obtained from the 

discretization of the equilibrium equation as detailed in Appendix 2B56. 

[

𝑲 [𝑯𝐷 𝑯𝐶]

[
𝑯𝐷

𝑇

𝑯𝐶
𝑇] 𝟎

]{

�̂�
�̂�𝐷
�̂�𝐶

} = {
�̂�

�̂�𝐷
�̂�𝐶

} (7.4) 

where: 

𝑲 is the patches stiffness matrix; 

𝑯𝐶 is the matrix of coupling constraints; 

𝑯𝐷 is the matrix of Dirichlet constraints; 

�̂� is the displacement vector at control points, that is unknown; 

�̂�𝐷 and �̂�𝐶  are the Lagrange multipliers vectors at control points for Dirichlet and coupling 

conditions respectively, that are unknown; 

�̂� is the force vector at control points; 

�̂�𝐷 is the prescribed displacement vector at control points; 

�̂�𝐶  is the coupling relative displacement vector at control points, which is zero in this 

work. 

The deactivated control points (section 6.5), for trimmed patches, are not considered in (7.4). The 

computation each item of (7.4) is explained in detail in this section. Previously some definitions 

are introduced. 

7.2.1. Definitions 

Given a constrained domain with multiple coupled patches, we set the next definitions: 

𝑁𝑃: number of patches. 

𝑁𝐶: number of couplings. 

𝑁𝐷: number of Dirichlet boundary conditions. 

𝑁𝑁: number of Neumann boundary conditions. 

𝑛𝐼: number of active control points of the 𝐼th patch. 

𝑛𝑐𝐼𝐽: number of control points of the 𝐼th patch that are influential on the 𝐽th coupling. 

𝑛𝑑𝐼𝐽: number of control points of the 𝐼th patch that are influential on the 𝐽th Dirichlet 

constraint. 

                                                           
56

 Equation (7.4) is equivalent to equation (2B.54) from Appendix 2B. 
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𝑛𝑛𝐼𝐽: number of control points of the 𝐼th patch that are influential on the 𝐽th Neumann 

constraint. 

𝑁𝐺𝐼: the number of Gauss points of the 𝐼th patch. 

Fig. 7.6 illustrates these definitions with a domain composed of three patches (2D version is 

shown for clarity). At the left-hand side the whole domain is represented. At the right-hand side 

the 3rd patch is detailed showing the control points and Gauss points. The influential control 

points on each boundary entity are filled. 

 

Fig. 7.6 Example of multi-patched coupled domain (2D version). 

The matrices (𝑲, 𝑯𝐷 and 𝑯𝐶) and vectors (�̂�, �̂�𝐷, �̂�𝐶, �̂�, �̂�𝐷 and �̂�𝐶) shown in equation (7.4) are 

composed of blocks, components and scalars as listed here: 

- One block corresponds to one patch and/or constraint. Each block is made of 

components. 

- One component corresponds to one or two control points. Each component has 𝑑 𝑥 𝑑 

scalars for matrices and 𝑑 𝑥 1 scalars for vectors57. 

Fig. 7.7 shows an example that includes one matrix 𝑴 with 3𝑥2 blocks, and one vector 𝑽 with 3𝑥1 

blocks. Some blocks may be zeros (for example blocks 1,1 and 2,2 of 𝑴) but their dimensions 

must be conformal with the surrounding blocks (see number of components of block 2,2). 

                                                           
57

 𝑑 is the number of degrees of freedom of each control point, 𝑑 = 3 in this thesis. 
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Fig. 7.7 Decomposition of matrices and vectors in blocks, components and scalars. 

The components of the constraints matrices (𝑯𝐷 and 𝑯𝐶) are designated as 𝑹𝑖𝑗
𝐴𝐵. Each of these 

components has the form (7.5), where 𝐴 and 𝐵 are patches references and 𝑖 and 𝑗 refer to basis 

functions of those patches. 

𝑹𝑖𝑗
𝐴𝐵 = [

𝑅𝑖
𝐴 𝑅𝑗

𝐵

𝑅𝑖
𝐴 𝑅𝑗

𝐵

𝑅𝑖
𝐴 𝑅𝑗

𝐵

]   (7.5) 

7.2.2. Stiffness matrix 𝑲 

The stiffness matrix 𝑲 of the domain is composed of 𝑁𝑃 𝑥 𝑁𝑃 blocks, which are all zeros except 

the diagonal blocks as shown in equation (7.6). The 𝐼th diagonal block, called 𝑲𝐼, corresponds to 

the 𝐼th patch. The number of components of 𝑲𝐼 is 𝑛𝐼 𝑥 𝑛
𝐼. 

𝑲 = [
𝑲1

⋱
𝑲𝑁𝑃

]

𝑁𝑃 𝑥 𝑁𝑃

 (7.6) 

For the 𝐼th patch, the 𝑖 − 𝑗th component is calculated as follows: 

𝑲𝑖𝑗
𝐼 = ∫ 𝑩𝑖

𝐼𝑇𝑫 𝑩𝑗
𝐼 dΩ

Ω

 (7.7) 

This integration is approximated by Gauss rule as equation (7.8), where 𝑁𝐺𝑖𝑗
𝐼 is the number of 

Gauss points of the patch that lie within the influence of basis functions 𝑖 and 𝑗. The strain-

displacement matrix, constitutive matrix, Jacobian and weight are located at the 𝑔th Gauss point. 
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𝑲𝑖𝑗
𝐼 ≅ ∑ (𝑩𝑖

𝐼𝑇𝑫 𝑩𝑗
𝐼)
𝑔
𝒥1𝑔 𝒥2𝑔 𝑤𝑔 

𝑁𝐺𝑖𝑗
𝐼

𝑔=1

 (7.8) 

7.2.3. Coupling constraints matrix 𝑯𝐶  

The matrix of coupling constraints 𝑯𝐶 is composed of 𝑁𝑃 𝑥 𝑁𝐶 blocks.. Equation (7.9) shows the 

form of 𝑯𝐶. The 𝐼th row of 𝑯𝐶 belongs to the 𝐼th patch. If this patch has attached 𝑚 couplings 

then all the blocks of the 𝐼th row are zeros except the those one located at the 𝑚 couplings 

locations. The calculation of these non-zeros blocks is explained here. 

𝑯𝐶 =

[
 
 
 
 
 
𝑯𝐶11

𝑯𝐶1 𝑁𝐶

⋱

𝑯𝐶𝐼𝐽

⋱
𝑯𝐶𝑁𝑃 1

𝑯𝐶𝑁𝑃 𝑁𝐶]
 
 
 
 
 

𝑁𝑃 𝑥 𝑁𝐶

   (7.9) 

Let us focus on one patch 𝐴 that is coupled to other patch 𝐵, being master and slave patches 

respectively. That coupling, referred as 𝛼, is applied on the boundary 𝛤𝐶𝛼. The domain is assumed 

to have more patches, up to 𝑁𝑃, and more couplings, up to 𝑁𝐶. The number of control points 

from both patches that are influential on 𝛤𝐶𝛼 are 𝑛𝑐𝐴𝛼 and 𝑛𝑐𝐵𝛼. 

Let us define the block 𝑯𝐶𝑘𝛼 (7.10) with 𝑛𝑘 𝑥 𝑛𝑐𝐴𝛼 components, where 𝑘 can refer to patch 𝐴 or 

patch 𝐵. 

𝑯𝐶𝑘𝛼 =

[
 
 
 
 
 
 

⋮
𝟎1 𝑥 𝑛𝑐𝐴𝛼 

⋮

𝑹𝑖1
𝐴𝑘 … 𝑹𝑖𝑐𝐴𝛼

𝐴𝑘

⋮
𝟎1 𝑥 𝑛𝑐𝐴𝛼 

⋮ ]
 
 
 
 
 
 

 𝑛𝑘 𝑥 𝑛𝑐𝐴𝛼

   (7.10) 

Each row of (7.10) has 𝑛𝑐𝐴𝛼 components. The columns of (7.10) are referred locally, e.g. if the 

influential control points of one patch are 2, 3, 5 and 6 the columns references vary from 1 to 4 in 

(7.10). If one row of (7.10) corresponds to a non-influential control point on the coupling surface 

𝛤𝐶𝛼, then all its components are zeros. When one row corresponds to one influential control 

point, its 𝑛𝑐𝐴𝛼 components are calculated as follows: 
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∫ 𝑹𝑖𝑗
𝐴𝑘

𝛤𝐶𝛼

𝑑𝛤𝐶𝛼 =

[
 
 
 
 
 
 
 ∫ 𝑅𝑖

𝐴 𝑅𝑗
𝑘

𝛤𝐶𝛼

𝑑𝛤𝐶𝛼

∫ 𝑅𝑖
𝐴 𝑅𝑗

𝑘

𝛤𝐶𝛼

𝑑𝛤𝐶𝛼

∫ 𝑅𝑖
𝐴 𝑅𝑗

𝑘

𝛤𝐶𝛼

𝑑𝛤𝐶𝛼
]
 
 
 
 
 
 
 

 (7.11) 

The integral of each diagonal in (7.11) is approximated by the Gauss rule (7.3). In this case 

𝐵𝑏 = 𝑅𝑖
𝐴 𝑅𝑗

𝑘, therefore, the quadrature adopts the form (7.12), where 𝑁𝐺𝑖𝑗
𝛼 is the number of 

Gauss points on the coupling entity that lie within the influential volumes of both basis functions 𝑖 

and 𝑗. 

𝑅𝑖𝑗
𝐴𝑘 ≅ ∑ (𝑅𝑖

𝐴 𝑅𝑗
𝑘)
𝑔
𝒥1𝑔 𝒥2𝑔 𝑤𝑔 

𝑁𝐺𝑖𝑗
𝛼

𝑔=1

 (7.12) 

The number of columns for both patches, 𝐴 and 𝐵, is equal to the number of influential control 

points of the master patch 𝐴 since the �̂�𝐶𝛼 vector is applied to the control points of this patch. 

Both blocks, 𝑯𝐶𝐴𝛼 and 𝑯𝐶𝐵𝛼 match the number of rows of their corresponding patches, 

therefore they can be inserted at 𝑘th block-row and 𝛼th block-column of the 𝑯𝐶 matrix. 

The example depicted in Fig. 7.8 is used to clarify the 𝑯𝐶 matrix construction. The master and 

slave patches are indicated for each coupling. The matrix 𝑯𝐶 has 3𝑥2 blocks (three patches and 

two couplings). 

 

Fig. 7.8 Example of coupled patches  (2D version). 

The control points and sizes of the involved blocks are detailed in Table 7.1. 
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Table 7.1 Sizes of blocks of the example. 

Coupling Coupled patches 
𝑛𝐼 𝑛𝑐𝐼𝐽 

Influential control 
points 

𝑯𝐶𝑘𝛼  

(Number of components) 𝐽 boundary  𝐼 

1 𝛤𝐶1 
Master 3 8 4 1,2,5,6 𝑯𝐶31 (8x4) 

Slave 2 8 4 3,4,7,8 𝑯𝐶21(8x4) 

2 𝛤𝐶2 
Master 1 12 5 1,2,5,6,9 𝑯𝐶12(12x5) 

Slave 3 8 3 3,4,8 𝑯𝐶32(8x5) 

Let us focus on block 𝑯𝐶32 that is computed as: 

𝑯𝐶32 =

[
 
 
 
 
 
 
 
 

𝟎1𝑥5
𝟎1𝑥5

𝑹3 1
13 𝑹3 2

13 𝑹3 5
13 𝑹3 6

13 𝑹3 9
13

𝑹4 1
13

𝑹4 2
13 𝑹4 5

13 𝑹4 6
13 𝑹4 9

13

𝟎1𝑥5
𝟎1𝑥5
𝟎1𝑥5

𝑹8 1
13 𝑹8 2

13 𝑹8 5
13 𝑹8 6

13 𝑹8 9
13]
 
 
 
 
 
 
 
 

   

The coupling matrix 𝑯𝐶 is assembled from the blocks 𝑯𝐶𝐼𝐽 as indicated below, where the noted 

size refers the number of components. 

𝑯𝐶 = [

0 𝑯𝐶12
𝑯𝐶21 0

𝑯𝐶31 𝑯𝐶32

]

 28 𝑥 9

 

7.2.4. Dirichlet constraints matrix 𝑯𝐷 

The matrix of Dirichlet constraints 𝑯𝐷 is composed of 𝑁𝑃 𝑥 𝑁𝐷 blocks. Equation (7.13) shows the 

form of 𝑯𝐷. The 𝐼th row of 𝑯𝐷 corresponds to the 𝐼th patch. For one patch, all the blocks of its 

corresponding row are zeros except those ones located at its constraints positions. The 

calculation of these non-zeros blocks is explained below. 

𝑯𝐷 =

[
 
 
 
 
 
𝑯𝐷11

𝑯𝐷1 𝑁𝐷

⋱

𝑯𝐷𝐼𝐽

⋱
𝑯𝐷𝑁𝑃 1

𝑯𝐷𝑁𝑃 𝑁𝐷]
 
 
 
 
 

𝑁𝑃 𝑥 𝑁𝐷

   (7.13) 

Let us focus on one patch 𝐴 subjected to the 𝛼th Dirichlet constraint, applied on the boundary 

𝛤𝐷𝛼. We designate with 𝑛𝑑𝐴𝛼 to number of control points of patch 𝐴 that are influential on 𝛤𝐷𝛼. 
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The domain is assumed to have more patches, up to 𝑁𝑃, and more Dirichlet constraints, up to 

𝑁𝐷. The block 𝑯𝐷𝐴𝛼 has 𝑛𝐴 𝑥 𝑛𝑑𝐴𝛼 components as shown in (7.14). 

𝑯𝐷𝐴𝛼 =

[
 
 
 
 
 
 

⋮
𝟎1 𝑥 𝑛𝑐𝐴𝛼 

⋮
𝑹𝑖1

𝐴𝐴 … 𝑹𝑖𝑐𝐴𝛼
𝐴𝐴

⋮
𝟎1 𝑥 𝑛𝑐𝐴𝛼 

⋮ ]
 
 
 
 
 
 

 𝑛𝐴 𝑥 𝑛𝑑𝐴𝛼

   (7.14) 

Each row of (7.14) has 𝑛𝑑𝐴𝛼 components. If the row corresponds to a non-influential control 

point on the boundary 𝛤𝐷𝛼, then all components are zeros. When the row refers to one influential 

control point, it is calculated by integration of 𝑹𝑖𝑗
𝐴𝐴 as follows: 

∫ 𝑹𝑖𝑗
𝐴𝐴

𝛤𝐷𝛼

𝑑𝛤𝐷𝛼 =

[
 
 
 
 
 
 
 ∫ 𝑅𝑖

𝐴 𝑅𝑗
𝐴

𝛤𝐷𝛼

𝑑𝛤𝐷𝛼

∫ 𝑅𝑖
𝐴 𝑅𝑗

𝐴

𝛤𝐷𝛼

𝑑𝛤𝐷𝛼

∫ 𝑅𝑖
𝐴 𝑅𝑗

𝐴

𝛤𝐷𝛼

𝑑𝛤𝐷𝛼
]
 
 
 
 
 
 
 

 (7.15) 

The integrals of (7.15) are approximated by Gauss rule (7.3). In this case 𝐵𝑏 = 𝑅𝑖
𝐴 𝑅𝑗

𝐴, therefore, 

the quadrature adopts the form (7.16), where 𝑁𝐺𝑖𝑗
𝛼 is the number of Gauss points on the 

boundary surface 𝛤𝐷𝛼 that lie within the influence of basis functions 𝑖 and 𝑗. 

𝑅𝑖𝑗
𝐴𝐴 ≅ ∑ (𝑅𝑖

𝐴 𝑅𝑗
𝐴)
𝑔
𝒥1𝑔 𝒥2𝑔 𝑤𝑔 

𝑁𝐺𝑖𝑗
𝛼

𝑔=1

 (7.16) 

In equation (7.15) the columns are referred locally to the influential control points, e.g. if 

influential control points of one patch are 2, 3, 5 and 6 the columns references vary from 1 to 4. 

The block 𝑯𝐷𝐴𝛼 matches the number of rows of its corresponding patch, therefore it can be 

inserted at 𝑘th block-row and 𝛼th block-column the 𝑯𝐷 matrix. 

One example is depicted in Fig. 7.9, with three patches and Dirichlet constraints at 𝛤𝐷1, 𝛤𝐷2 and 

𝛤𝐷3. The matrix 𝑯𝐷 has 3𝑥3 blocks (three patches and three constraints). 
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Fig. 7.9 Example of Dirichlet constraints (2D version). 

The control points and sizes of the involved blocks are detailed in Table 7.2. 

Table 7.2 Sizes of blocks of the example. 

Constraint Patch 
𝑛𝐼 𝑛𝑑𝐼𝐽 

Influential control 
points 

Matrix 𝑯𝐷𝑘𝛼  

(Number of components) 𝐽 Boundary 𝐼 

1 𝛤𝐷1 2 8 2 1,2 𝑯𝐷21 (8x2) 

2 𝛤𝐷2 1 12 4 7,8,11,12 𝑯𝐷12 (8x4) 

3 𝛤𝐷3 2 8 2 1,5 𝑯𝐷13 (8x2) 

Let us focus on block 𝑯𝐷13 which is computed as: 

𝑯𝐷13 =

[
 
 
 
 
 
 
 
 
𝑹1 1

22 𝑹1 5
22

𝟎1𝑥2
𝟎1𝑥2
𝟎1𝑥2

𝑹5 1
22 𝑹5 5

22

𝟎1𝑥2
𝟎1𝑥2
𝟎1𝑥2 ]

 
 
 
 
 
 
 
 

   

The coupling matrix 𝑯𝐷 is assembled from the blocks 𝑯𝐷𝑘𝛼 as indicated below. The noted size of 

the matrix refers the number of components. 

𝑯𝐷 = [

𝟎 𝑯𝐷12 𝑯𝐷13
𝑯𝐷21 𝟎 𝟎

𝟎 𝟎 𝟎

]

 28 𝑥 8
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7.2.5. Force vector at control points �̂� 

The vector of forces at control points (�̂�) is obtained by summation of body forces and traction 

forces (Neumann constraints). The vector is composed of 𝑁𝑃 blocks, one per patch. Each block 

has a number of components equal to the number of active control points of the patch (𝑛𝐼). The 

form of the �̂� vector is as follows: 

�̂� = {
�̂�1
⋮
�̂�𝑁𝑃

} (7.17) 

For the 𝐼th patch, the 𝑖th component (corresponding the 𝑖th control point) is computed as 

follows: 

�̂�𝑖
𝐼
= ∫ 𝑹𝑇 𝒃

𝛺

 𝑑𝛺 + ∫ 𝑹𝑇 �̅�
𝛤𝑁

𝑑𝛤𝑁 (7.18) 

Let us focus on patch 𝐴, with 𝒃𝐴 body force and with attached Neumann boundary 𝛤𝑁𝛼 whose 

traction is �̅�𝛼. The corresponding body forces vector is: 

∫ 𝑹𝐴
𝑇
 𝒃𝐴

𝛺

 𝑑𝛺 = ∫ [
𝑹1

𝐴

⋮
𝑹𝑛𝐴

𝐴
] 𝒃𝐴

𝛺

 𝑑𝛺 (7.19) 

The resultant from (7.19) is a 𝑛𝐴𝑥1 vector that stores the forces applied at control points due to 

the body force. Each component of this vector can be calculated as: 

𝒃𝑖
𝐴 = ∫ 𝑹𝑖

𝐴 𝒃𝐴
𝛺

 𝑑𝛺 (7.20) 

That integral is approximated by Gauss quadrature, using the Gauss points of the patch that lie 

within the influential volume of the 𝑖th control point: 

�̂�𝑖
𝐴
≅ ∑(𝑹𝑖

𝐴)
𝑔
 𝒃𝐴 𝒥1𝑔 𝒥2𝑔 𝑤𝑔 

𝑁𝐺𝑖
𝛼

𝑔=1

 (7.21) 

The forces at the 𝑖th control point affected by the Neumann constraint are computed as: 

�̂̅�𝑖
𝐴
= ∫ 𝑹𝑖

𝐴 �̅�𝛼
𝛺

 𝑑𝛺 (7.22) 
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Which is approximated by Gauss quadrature (7.3). In this case 𝐵𝑏 = 𝑅𝑖. Therefore, the quadrature 

adopts the form (7.23), where 𝑁𝐺𝑖
𝛼  is the number of Gauss points on the boundary surface 𝛤𝑁𝛼 

that lie within the influence of basis function 𝑖. 

�̂̅�𝑖
𝐴
≅ ∑(𝑹𝑖

𝐴)
𝑔
 �̅�𝛼 𝒥1𝑔 𝒥2𝑔 𝑤𝑔 

𝑁𝐺𝑖
𝛼

𝑔=1

 (7.23) 

The total force applied at the 𝑖th control point is the summation of both, the body and the 

traction force, as expressed in (7.24). 

�̂�𝑖
𝐴
= �̂̅�𝑖

𝐴
+ �̂�𝑖

𝐴
 (7.24) 

The force vector of the 𝐴th patch is then allocated to the 𝐴th block of the force vector. 

7.2.6. Prescribed displacements vector at control points �̂�𝐷 

The vector of prescribed displacements at control points is obtained by direct allocation of these 

displacements to the affected control points. The vector �̂�𝐷 is composed of 𝑁𝐷 blocks, one per 

Dirichlet constraint. The number of components of each block is equal to the number of patch 

control points affected by the Dirichlet constraint. The form of the �̂�𝐷 vector is shown in (7.25). 

�̂�𝐷 = {
�̂̅�1
⋮

�̂̅�𝑁𝐷

} (7.25) 

Let us focus on 𝛼th Dirichlet constraint, with prescribed displacement �̂�𝛼 applied on 𝛤𝐷𝛼, that lies 

on the 𝐼th patch. The number of influential control points of this patch on 𝛤𝐷𝛼 is 𝑛𝑑𝐼𝛼. Therefore 

the 𝛼th block of is composed of 𝑛𝑑𝐼𝛼 components each one equal to �̂�𝛼. 

7.2.7. Relative displacement at coupling vector �̂�𝐶 

The vector �̂�𝐶  is composed of 𝑁𝐶 blocks, one per coupling constraint. The number of components 

of each block is equal to the number of control points of the master patch affected by the 

constraint. The form of the �̂�𝐶  vector is shown in (7.26). Since in this work the relative 

displacement at coupling is to be zeros, all blocks are zeros. 

�̂�𝐶 = {

𝟎1
⋮
𝟎𝑁𝐶

} 
(7.26) 
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7.3. Relation with the code 

The discretization of the boundary surfaces (section 7.1) and the allocation of the boundary 

conditions (prescribed displacements and surface tractions), are done within the b0801_defBE 

routine. The main functions of b0801_defBE are: 

- bs0811_BSini, where the surfaces discretization is done by QIT algorithm (Appendix 

10B), as well as their Gauss points definition. 

- bs0812_BCvals, where the prescribed displacement or surface tractions are allocated to 

the boundary surfaces. 

The outputs of b0801_defBE routine are the discretized boundary surfaces with the attached 

boundary conditions, all stored in the variable Bentities. 

In b0802_BCcps routine the influential control points from the patches on each Gauss point of 

the boundary surfaces are identified. 

The calculation and assembly of the aggregated system of equations, the calculation of control 

point displacements and the stresses, are all carried out in the c0900_Analysis routine. The 

main inputs of such routine are: 

- Spatches: that contains the discretization of the patches. 

- Bentities: that contains the discretization of the boundary entities and the constraints 

allocated to them (prescribed displacements, tractions and couplings). 

The c0900_Analysis routine is structure in a loop of number of steps equal to Nts. This loop 

arrangement will allow to implement in the future geometrical non-linearity, where the time is to 

be discretized in Nts steps. However in this thesis the number of steps is one (Nts=1). 

Within each loop of c0900_Analysis there are two well distinguished stages: 

- Preparation, where the constraints matrices (sections 7.2.3 and 7.2.4) are assembled in 

b0821_BCkf function; and the forces vector (section 7.2.5) are assembled in 

b0904_FextTsep function. 

- Calculation of control point displacements and stresses, that happens in c0911_DS 

routine. Within this routine there are two main steps: 

- Computation of control point displacements, where the stiffness matrix (section 

7.2.2) is calculated in c0912_CT_Operator and s1011_KfromGP routines. The 

stiffness matrix is assembled with the constraints matrices and the aggregated 

system is obtained. Therefore the displacements at control point can be 

calculated (we use the Matlab® solver). This step is coded as a loop to allow for 
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plastic behaviour, however in this work the number of loops is one since the 

analysis is linear elastic. 

- Update of stresses and internal variables, where displacements and stresses at 

skins nodes are calculated to allow representation of results. Also internal 

variables within Gauss points are updated to be prepared for next time step, but 

as mentioned that will be used for geometrical non-linear problems, which is not 

the case of this work. 

The displacements at control points, and the displacements and stresses at skin nodes are all 

stored in Spatches variable, which is used for representation of results. 

7.4. Summary of the chapter 

In this chapter the calculation of the aggregated system of equation is presented in detail. The 

solution to this system is the vector of the displacements at the control points �̂�. The 

displacement within the domain and stresses can be calculated from �̂�. 

The chapter fulfils the thesis objective e, since it explains how to take into account constraints 

applied to the domain whatever their shape and parametrization is. 

The validation of the procedures explained in this chapter is carried out in Chapter 8, where a set 

of examples is simulated with the algorithm developed in this thesis. The results of the 

simulations (displacements and stresses derived from �̂�) are compared to reference models for 

validation purposes. 
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 Validation examples 8.

This chapter displays three examples to demonstrate the algorithm validity: a cantilever beam, a 

top loaded plateau and a twisted bracket. In all of them we present the information as follows: 

- Geometry, boundary conditions and material of the problem. 

- Parametrization of the gross patches. 

- Discretization of the patches. 

- Discretization of the boundary surfaces. 

- Analysis of results and validation. 

- Computation cost for each stage (stages A to E according to Fig. 3.7). 

The computational cost shows the time spent in each stage (in seconds) and in percentage. The 

absolute values of the times depend indeed on the computer features where the code is run. In 

addition, we compare in a columns graph the time spent in the geometric calculation (stage A), in 

the discretization (stage C) and the analysis (stage E). It will we shown that the cost of geometric 

calculation is much lesser than the discretization or the analysis. The stages B and D involve the 

QIT algorithm, that is not devised for IGA itself but for representation purposes, that is the reason 

why they are not compared in the columns graph. 

In each example, apart from demonstrating the algorithm delivers correct results, particular 

aspects are detailed. In the cantilever beam the lattice algorithm is used to generate one of the 

faces for one of the patches. The loaded plateau example proves that this algorithm can deal with 

arbitrary shapes of the trimming surface. The twisted bracket illustrates a three-patches domain 

and reveals the importance of the discretization of the boundary surfaces. 

The validation is carried out by comparison with an alternative FEA model58. The purpose of this 

chapter is to demonstrate that the algorithm for IGA solids delivers results comparable to the 

alternative model in terms of displacements and stresses. 

The results depend on the mesh size (in both FEA and IGA). Although guidance on the meshing is 

provided in Chapter 6 (tetrahedralization), this thesis is not focused on the meshing itself. The 

meshing process could be another research topic and it would exceed the extension of this work. 

Therefore sensitive analysis of mesh is not done in the examples, and the results are assumed 

valid as long as the compared displacements and stresses between this algorithm and the 

alternative FEA model present the similar tendencies. 

                                                           
58

 The used package is ABAQUS® 
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Appendix 8A firstly provides guidance for the usage of this algorithm. Then the preparation of 

each of the three examples is detailed: on one hand the CAD construction of the domain, on the 

other hand the preparation prior to the analysis itself via the user-interface generated in this 

thesis. The computation of displacements and stresses that are displayed on the domains skins is 

briefed in Appendix 7A. 

8.1. Cantilever beam 

8.1.1. Geometry 

The problem consists of a cantilever beam with T-section that varies from a robust section at the 

clamped edge to a slender one at the end tip, as shown in Fig. 8.1. The profile of the curve that 

defines the underside of the flange is given by a set of 13 points as illustrated in Fig. 8.2. These 

points are to be approximated by a cubic spline. All units are given in mm. 

 

Fig. 8.1 Geometry of the cantilever beam (mm). 

 

 

Fig. 8.2 Sample points to construct the profile for the underside of flange (mm). 
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The domain consists of two coupled patches: patch 1 for the flange and patch 2 for the web (see 

Appendix 8A for further details). 

8.1.2. Boundary conditions and material 

Boundary conditions are given in Fig. 8.3. End A is fully fixed. End B has traction of 𝑡 = 3.3 𝑀𝑃𝑎 

downwards. The area at B is 45500 mm2, hence the force applied at this end is 150150 N. Material 

is to be isotropic steel with next elastic properties: 

𝐸 = 210 000 𝑀𝑃𝑎  

𝜈 = 0.3  

Self-weight is ignored. 

 

Fig. 8.3 Boundary conditions. 

8.1.3. Parametrization of the gross patches 

The parameter directions of the patches are indicated in Fig. 8.4. The gross patches 

parametrization features are provided in Table 8.1. To achieve such parametrization, refinement 

is required as detailed in Appendix 8A. 

  

Fig. 8.4 Parameter directions for patch 1 and 2 (left and right respectively). 
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Table 8.1 NURBS features of the gross patches. 

  Patch 1 Patch 2 

Number of 
control 
points 

n 3 3 

m 4 4 

l 7 6 

Degree 

p 2 2 

q 3 2 

r 3 2 

Knot vectors 

𝛯 000 111 000 111 

𝛨 0000 1111 000 0.50 111 

𝛸 0000 0.2573 0.5081 0.7547 1111 000 0.25 0.50 0.75 111 

 

The parametrization of the patch 1 is generated by the sandwich algorithm (see section 4.2.2) 

being one of its faces created by the plane lattice fitting algorithm (recall section 4.2.3). Fig. 8.5 

shows the main steps for the lattice fitting: adjustment of lines to contour control points, initial 

lattice and final lattice, which is used as control net of the face. In the contour lines fitting small 

deviations are introduced in case they intersect. That deviation is shown at the left-hand side of 

the Fig. 8.5, where the vertical lines are deviated to avoid intersection between them. The 

resulting control net for the patch 1 after applying the sandwich algorithm is illustrated in Fig. 8.6. 

 

Fig. 8.5 Plane lattice fitting for one of the faces of the patch 1. 
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Fig. 8.6 Resulting control net after applying the sandwich algorithm to patch 1. 

8.1.4. Discretization of patches 

Since patch 1 is untrimmed, the discretization coincides with the non-void knot spans as shown in 

Fig. 8.7. By contrast patch 2 is trimmed, hence its discretization is achieved by tetrahedralization, 

as depicted in Fig. 8.8. 

  

Fig. 8.7 Discretization of patch 1 in parameter and physical spaces. 
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Fig. 8.8 Discretization of patch 2 in parameter and physical spaces. 

8.1.5. Discretization of boundary surfaces 

Boundary surfaces are discretized into triangles, whose size is given by the user (75 mm in this 

case). Within each triangle, one Gauss point is located as illustrated in Fig. 8.9. 

  

Fig. 8.9 Right: discretized boundary surfaces and Gauss points. Left: detail of one boundary surface. 

8.1.6. Analysis and validation 

The deformed shape scaled by 100 is shown in Fig. 8.10: above the outputs from our algorithm 

and below the output from FEA. Von Mises stresses are plotted on the domain. 
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Fig. 8.10 Deformed shape (x100) with Von Mises stress. Above from IGA and below from FEA. 

To compare the results quantitatively, stresses in the longitudinal direction (𝜎𝑦) and vertical 

displacements (𝑢𝑧) are obtained along the path A, indicated in Fig. 8.11. There are seven equally 

spaced sample points along the path. 

 

Fig. 8.11 Path of sample points. 
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Vertical displacements and longitudinal stresses are plotted in Fig. 8.12 and Fig. 8.13 respectively. 

The results from IGA are in solid line meanwhile the results from FEA in dashed line. The 

difference, in percentage with respect to the average value of IGA, is represented by a dotted line. 

 

Fig. 8.12 Vertical displacements along the path A. 

 

Fig. 8.13 Longitudinal stresses along the path A. 

Vertical displacements in both models, FEA and IGA are practically the same (the difference line is 

even not seen in the graph). By contrast, the longitudinal stresses present differences, but they 

are assumed acceptable. These differences indicate that the post-processor of the algorithm is to 

be improved to achieve closer results. 
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8.1.7. Computational cost of each stage 

The Table 8.2 shows the time spent in each stage, in seconds and in percentage. In Fig. 8.14 the 

costs of stages A, C and E are compared. 

Table 8.2 Computational cost. 

stage t (s) % 

A Generation of solid and surfaces identification 2.17 2.5 

B Initiation of patches and representation 46.14 52.6 

C Discretization of patches 13.22 15.1 

D Allocation of boundary conditions 9.61 11.0 

E Analysis 16.50 18.8 

 TOTAL 87.64 100 

 

 

Fig. 8.14 Comparison of cost, in percentage, between geometrical definition (A), discretization (C) and 

analysis (E). 
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8.2. Loaded plateau 

8.2.1. Geometry 

The geometry corresponds to a plateau surrounded by an escarpment. It is assumed that the 

escarpment surface shown in Fig. 8.15 fits the terrain profile, i.e. this surface is customized to 

reproduce the terrain shape. All units are given in m. 

 

Fig. 8.15 Geometry of the plateau (m). 

8.2.2. Boundary conditions and material 

Boundary conditions are given in Fig. 8.16. Bottom surface is fully fixed and left end is only 

restrained in vertical direction. The loading corresponds to a building that exerts on plan 

𝑡 = 400 𝑘𝑃𝑎 vertically. 

Material is to be isotropic with next elastic properties that correspond to a soft sandy clay: 

𝐸 = 20 000 𝑘𝑃𝑎  

𝜈 = 0.25  

𝛾 = 22 𝑘𝑁/𝑚3  

Self-weight is considered. 

  



 

160 
 

 

Fig. 8.16 Boundary conditions (units in m). 

8.2.3. Parametrization of the gross patches 

The parametrization of the patch is indicated in Fig. 8.17 and detailed in Table 8.3. To achieve 

such parametrization, refinement is required as detailed in Appendix 8A. 

 

Fig. 8.17 Parameter directions of the patch 

Table 8.3 NURBS features of the gross patch. 

Number of 
control points 

n 4 

m 4 

l 7 

Degree 

p 2 

q 2 

r 3 

Knot vectors 

𝛯 000 0.5 111 

𝛨 000 0.5 111 

𝛸 0000 0.25 0.50 0.75 1111 
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8.2.4. Discretization of patches 

The trimmed patch is discretized in tetrahedrons, as depicted in Fig. 8.18. 

 

 

Fig. 8.18 Discretization of patch in parameter and physical spaces. 

The discretization is different from the knot spans as shown in Fig. 8.19. The number of 

tetrahedrons is linked to the knots spans though (recall section 6.3.1). 

  

Fig. 8.19 Tetrahedralization and knot spans. 

8.2.5. Discretization of boundary surfaces 

Boundary surfaces are discretized into triangles, whose size is given by the user (4 m in this case). 

Within each triangle one Gauss point is located as illustrated in Fig. 8.20. 
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Fig. 8.20 Discretized boundary surfaces and Gauss points. 

8.2.6. Analysis and validation 

The deformed shape scaled by 25 is shown in Fig. 8.21, above the output from our algorithm and 

below the output from FEA. 

The results are compared quantitatively along two paths, A and B (see Fig. 8.22), with 10 sample 

points each. The vertical displacements are recorded along path A and Von Mises stresses along 

path B. The ten sample points are equally spaced at 14 and 16 m for paths A and B. 
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Fig. 8.21 Deformed shape (x25) with Von Mises stress. Above from IGA and below from FEA. 

 

 

Fig. 8.22 Paths of sample points. 
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Vertical displacements (in m) and Von Mises stresses (in kPa) for paths A and B are plotted in Fig. 

8.23 and Fig. 8.24 respectively. The tendency of the results from both models is similar. Mesh 

refinement could reduce the difference in the displacements plot. 

 

Fig. 8.23 Longitudinal stresses along the path A. 

 

Fig. 8.24 Von Mises stresses along the path B. 

 

8.2.7. Computational cost of each stage 

The Table 8.4 shows the time spent in each stage, in seconds and in percentage. In Fig. 8.25 the 

cost of stages A, C and E are compared. 
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Table 8.4 Computational cost. 

stage t (s) % 

A Generation of solid and surfaces identification 0.81 0.9 

B Initiation of patches and representation 40.16 42.3 

C Discretization of patches 19.22 20.2 

D Allocation of boundary conditions 11.86 12.5 

E Analysis 22.96 24.2 

 TOTAL 95.01 100 

 

 

Fig. 8.25 Comparison of cost, in percentage, between geometrical definition (A), discretization (C) and 

analysis (E). 
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8.3. Twisted bracket 

8.3.1. Geometry 

The problem consists of the bracket illustrated in Fig. 8.26. The bracket has three parts: base, 

stem and head. The stem is generated by sweep of a squared base along the cubic spline shown in 

Fig. 8.27. 

 

Fig. 8.26 Geometry of the bracket (mm). 

 

Fig. 8.27 Stem construction by sweep along cubic spline (mm). 
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8.3.2. Boundary conditions and material 

The boundary conditions are given in Fig. 8.28. The bottom of base is fully fixed and a traction of 

𝑡 = 1000 𝑀𝑃𝑎 is applied perpendicular to the region indicated. The area of this region is 300 

mm2, hence the force applied is 300000 N. 

Material is to be isotropic steel with next elastic properties: 

𝐸 = 210 000 𝑀𝑃𝑎  

𝜈 = 0.3  

Self-weight is ignored. 

 

Fig. 8.28 Boundary conditions. 

8.3.3. Parametrization of the gross patches 

The parameter directions of the patches are indicated in Fig. 8.29. The gross patches 

parametrization features are provided in Table 8.5. To achieve such parametrization, refinement 

is required as shown in Appendix 8A. 

 

 

 

Fig. 8.29 Parameter directions of the patches 
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Table 8.5 NURBS features of the gross patches. 

  Patch 1 Patch 2 Patch 3 

Number of 
control 
points 

n 4 4 4 

m 4 6 6 

l 4 13 6 

Degree 

p 2 2 2 

q 2 2 2 

r 2 3 2 

Knot 
vectors 

𝛯 000 0.5 111 000 0.5 111 000 0.5 111 

𝛨 000 0.5 111 000 0.25 0.5 0.75 111 000 0.25 0.5 0.75 111 

𝛸 000 0.5 111 
0000 0.1 0.25 0.35 0.5 0.6 0.7 

0.8 0.9 0.95  1111 
000 0.25 0.5 0.75 111 

 

8.3.4. Discretization of patches 

Patches 1 and 2 are trimmed, therefore their discretization is achieved by tetrahedralization, as 

depicted in Fig. 8.30 and Fig. 8.31. By contrast, in patch 3 the discretization coincides with the 

non-void knot spans as shown in Fig. 8.32, since it is untrimmed. 

 
 

Fig. 8.30 Discretization of patch 1 in parameter and physical spaces. 
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Fig. 8.31 Discretization of patch 2 in parameter and physical spaces. 

  

Fig. 8.32 Discretization of patch 3 in parameter and physical spaces. 

8.3.5. Discretization of boundary surfaces 

Boundary surfaces are discretized into triangles, whose size is given by the user (4 mm in this 

case). Within each triangle one Gauss point is located as illustrated in Fig. 8.33. 
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Fig. 8.33 Right: discretized boundary surfaces and Gauss points. Left: detail of boundary surface 3. 

8.3.6. Analysis and validation 

The deformed shape scaled by 5 is shown in Fig. 8.34, above the outputs from our algorithm and 

below the output from FEA. Von Mises stresses are plotted on the domain. 

To compare the results quantitatively we use two paths on the domain that are shown in Fig. 

8.35. Displacements are measured along path A. Von Mises stresses (𝜎𝑉𝑀) are measured along 

the path B, that surrounds the stem at the level of the centre of the hole. 

Displacements (in mm) in x, y and z directions along path A are plotted in Fig. 8.36 to Fig. 8.38. 

Von Mises stresses (in MPa) along path B are plotted in Fig. 8.39. The difference between our 

algorithm and FEA is given by the dotted line at the bottom in percentage with respect to the 

average value of IGA. 
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Fig. 8.34 Deformed shape (x5) with Von Mises stress, front and rear views, from IGA (above) and FEA 

(below). 

 

Fig. 8.35 Path of sample points. 
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Fig. 8.36 Displacement in x direction along path A. 

 

Fig. 8.37 Displacement in y direction along path A. 

 

Fig. 8.38 Displacement in z direction along path A. 
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Fig. 8.39 Von Misses stresses along the path B. 

8.3.7. Computational cost of each stage 

The Table 8.6 shows the time spent in each stage, in seconds and in percentage. In Fig. 8.40 the 

cost of stages A, C and E are compared. 

Table 8.6 Computational cost. 

stage t (s) % 

A Generation of solid and surfaces identification 2.06 0.8 

B Initiation of patches and representation 47.31 19.5 

C Discretization of patches 86.98 35.8 

D Allocation of boundary conditions 12.14 5.0 

E Analysis 94.16 38.8 

 TOTAL 242.65 100.0 
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Fig. 8.40 Comparison of cost, in percentage, between geometrical definition (A), discretization (C) and 

analysis (E). 

 

8.3.8. Coupling quality VS triangulation of coupling surface 

The discretization of the coupling surface has an impact on the quality of the coupling. Indeed, if 

we set a path between patches 1 and 2, with nine sample points as shown in Fig. 8.41 (path C), 

the distance between both patches along that path in the deformed configurations is not zero as 

theoretically it should be. The existence of this distance is due to the discretization of the coupling 

surface, because the integral of the patches basis functions on the coupling surface is done as 

summation of the Gauss points (recall section 7.2.3). 

 

 

Fig. 8.41 Path C. 
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As a consequence, the more Gauss points on the coupling surface, the less the distance between 

both patches. To illustrate this effect, four triangulations have been done for the coupling surface 

2 (that is contoured by the path C). The sizes of the triangles are shown in Fig. 8.42. 

  

  

Fig. 8.42 Discretization of coupling surface 2 with triangle side equals to 16, 8, 4 and 2. 

The deformed shape for those four cases is depicted in Fig. 8.43 (scaled x 5). One can observe that 

the finer the mesh on the boundary surface, the less distance between both patches, i.e. the 

closer to the theoretical case. 
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Fig. 8.43 Detail of coupling between patches 1 and 2, for coupling surface with triangle side equals to 16, 8, 

4 and 2. 

To highlight this effect, Fig. 8.44 plots the difference between both patches in the deformed 

shape along the nine sample points of the path C. That difference is drastically reduced when the 

size of the triangles passes from 𝑅 = 16 to 𝑅 = 2. 

 

Fig. 8.44 Difference in the deformed shape between patches 1 and 2 at points of path C.  
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 Conclusions 9.

To conclude this work, this chapter revisits the objectives in section 9.1, where outlines how those 

objectives have been attained. The contributions and their location in the thesis are enumerated 

in section 9.2. Section 9.3 details the limitations of this work and the potential improvements and 

extensions. Finally, section 9.4 closes the thesis with a reflection about IGA from trimmed solids. 

9.1. Revisiting the objectives 

The implementation of a new algorithm for analysing solids imported from CAD in with IGA has 

been achieved in this thesis. The objectives have been covered along this work. First, the 

objectives proposed in Chapter 1 are repeated below for convenience. Then, explanation of how 

each one is attained is given afterwards. 

Objectives: 

a) Codification of an algorithm that encompasses all the processes: from IGES files 

interpretation to results visualization. 

b) Creation of a translator from IGES files to numerical data readable by the code. 

c) Parametrization of the volumes contained in the IGES files. 

d) Discretization of the solids with adaptability to capture any trimmed shape. 

e) Application of constraints to interfaces non-conformal with the solid domain. 

f) Improvement of point projection technique to increase its robustness. 

g) Representation of the surfaces efficiently and independently of their parametrization. 

The objective a is accomplished as the code has been created in this thesis. The code (provided in 

the attached file) and has been developed by the author from scratch in Matlab®. Functions and 

classes are grouped by folders, numbered to facilitate their location. Chapter 3 briefs the whole 

algorithm, highlighting the main stages. Appendix 3A gives schemes of the code itself and the 

main variables. 

The first part of the algorithm has a routine that transforms the information of IGES files into 

numerical arrays, which are readable by the code. In addition, that information is interpreted to 

prepare the solid parametrization and the discretization of boundary surfaces, which are done 

afterwards. The transformation of IGES to numbers and their interpretation is the objective b. The 

solid parametrization is the objective c. Both objectives are explained in Chapter 4. 
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The objective d is covered in Chapters 5 and 6. The trimmed solid is discretized in tetrahedrons 

that provide adaptability to any shape. Mixed-degree tetrahedrons are located at the trimming 

surfaces to enhance the accuracy. This tetrahedralization process is explained in Chapter 6. 

Previously, in Chapter 5, the trimming surfaces triangulation into quadratic triangles with error 

under control is explained. 

Chapter 7 covers the objective e. The constraints and couplings are weakly imposed using 

Lagrange multipliers. This method is well settled and extended in IGA and FEA, hence the novelty 

is not the method itself, but the adjacent procedures derived from coupling on trimming surfaces: 

approximation of the surface and tetrahedral discretization. 

Since point projection is ubiquitous in the whole thesis, developing a robust technique was 

relevant (objective f). Appendix 10A explains the novel point procedure approach developed here 

that is called marching point projection (MPP). 

The objective g, representation of the surfaces of the solid, is covered in Appendix 10B. These 

surfaces are triangulated with a new procedure called quasi-isotropic initial triangulation (QIT). 

The QIT algorithm delivers triangulation with equilateral triangles and uniformity in their sizes. 

These two features are desirable in the visualization of the analysis results. Equilateral triangles 

involve Jacobians close to regular, which provides accuracy when interpolating the stresses at the 

solid surface. Uniformity (nodes are evenly spread throughout the whole surface) allows detecting 

stress peaks at any location regardless of the parametrization of the surface. 

9.2. Contributions and location in the thesis 

Apart from the whole algorithm itself, which allows reading CAD information to be used directly 

for IGA, there are five key contributions in this thesis: 

- A new approach for solid parametrization based on lattice analogy is proposed in section 

4.2.3. This approach delivers quality parametrization with low computational cost. In 

brief, the control net of the solid is transformed into a three-dimensional truss. Prescribed 

displacements are applied to the nodes of such truss to achieve the desired arrangement 

by the direct stiffness method. 

- A new procedure to approximate trimming surfaces by quadratic triangulations in the 

patch parameter space is proposed in sections 5.3, 5.4 and 5.5. To control the error, the 

derivatives of the surface in the patch parameter space are estimated by finite divided 

differences. 

- Solid spatial discretization with mixed-degree tetrahedrons for trimmed solids is proposed 

in section 6.4. These tetrahedrons introduce flexibility to the capture the domain shape 

and the computational effort is reduced compared to purely linear or purely quadratic 
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meshes. The number and distribution of tetrahedrons is related to the untrimmed version 

of the solid. 

- Point projection technique is improved in terms of robustness by the marching point 

projection (MPP), presented in Appendix 10A. MPP is based on estimation of lengths and 

directions to achieve the target point from one trial location. It uses the marching 

method, but it is expanded for curves and solids. The robustness of MPP, i.e. extension of 

domain where the trial point converges to the target, is greater than the traditional 

Newton-Raphson iterations. 

- For surfaces triangulation a new algorithm called QIT is introduced in Appendix 10B. QIT 

delivers high quality triangulations because the majority of the triangles are equilateral 

regardless of the surface parametrization or shape. The process does not require 

remeshing, i.e. the triangles are generated at once. 

9.3. Research limitations and future work 

The algorithm developed in this thesis has limitations, which may be seen as potential 

improvements for the future. The most relevant in the author’s opinion are explained in this 

section. 

9.3.1. Restrictions in CAD geometries readable by the algorithm 

CAD geometries that are readable in this algorithm can have any shape in case of trimmed solids, 

except a closed shape, i.e. one face of the solid coincides with another face of the same solid. To 

account for solids with closed shapes the translator from IGES files (Chapter 4) must be amended. 

In case of untrimmed solids, that form the so-called gross patches, are limited to six faces. 

Extension to more faces may be possible by extending the options in the code (Chapter 4). 

9.3.2. The parametrization with lattice analogy is rigid and not fully optimized 

Parametrization of the solids by the lattice analogy uses initially six planes to approximate to the 

solid control net, one plane per face. Such technique reduces the admissible solid geometries to 

small curvatures. Certainly, if the solid has large curvatures the initial approximation by planes will 

introduce large errors that will be reproduced in the final lattice shape or even lead to 

intersection of opposite planes, which is not acceptable. To provide more flexibility, the initial 

truss shape may be approximated using different forms than plane, e.g. cylindrical surfaces.  
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In addition, the ratio of stiffness rods/diagonals is studied within the variation of one order of 

magnitude. However, extending such range may yield higher quality parametrization. These 

implementations should be done in the lattice fitting algorithm (section 4.2.3). 

9.3.3. Inaccuracies in the error estimation when approximating to trimming surfaces 

The approximation to trimming surfaces in the patch parameter space is achieved by fitting 

quadratic triangulations to such surfaces. The spacing between the nodes of the triangulations is 

controlled by the error estimation. The error depends on the third derivative (Isaacson and Keller, 

2012) of the surface in the patch parameter space that is unknown. Hence the third derivative is 

estimated by finite divided differences (FDD), using a set of sample points. 

The computation of those sample points involves point projection. The error committed in the 

point projection will reflect in the third derivatives estimation, i.e. the error in the FDD is linked to 

the error in the point projection of the sample points. This relationship, which has not been 

addressed in this work, requires further study to guarantee accuracy in the trimming surface 

approximation. 

Apart from those two coupled errors, the distribution of sample points within the trimming 

surface is uniform. However, an improved approach would need denser sample points where the 

variation of the curvature is greater. These improvements should apply to section 5.3 of the 

thesis. 

9.3.4. Tetrahedralization is not optimal and lacks robustness 

Discretization of the trimmed solid is achieved by tetrahedral mesh subjected to trimming surface 

constraints. Although the results are acceptable, two issues appear in the current meshing 

algorithm. 

The first item regards the tetrahedrons quality. The final mesh quality is not controlled and 

consequently distorted tetrahedrons may appear. The meshing algorithm is susceptible of 

improvement by nodal relocation or change mesh connections (Ruppert, 1995; Si, 2008). Secondly 

the constrained tetrahedralization process demands insertion of new nodes at the trimming 

surface (Shewchuk, 2009). This insertion for complex geometries (with large curvatures) may yield 

self-intersecting tetrahedrons that invalidate the mesh. This drawback happens because the 

process of new nodes insertion needs to be more robust, i.e. generate correct mesh whatever the 

geometry is. These two improvements apply to section 6.4. 
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9.3.5. Optimal number of Gauss points on the boundary surfaces 

Constraints (coupling and Dirichlet boundary conditions) are achieved by integrating the domains 

basis functions across boundary surfaces (Apostolatos et al., 2014). If the number of used Gauss 

points is too low, the constraints are not fulfilled (see example of section 8.3.7). On the other 

hand, if the number of Gauss points is too high, many of them may be redundant increasing the 

computational cost unnecessarily. The problem of finding the optimal number of Gauss points in 

the boundary surfaces is not solved in this thesis. The answer to this question would be located in 

section 7.1. 

9.3.6. Ill conditioned stiffness matrix 

The imposition of constraints by Lagrange multipliers bring stiffness matrix ill-conditioned, i.e. the 

components at some of the matrix rows are several orders of magnitude lower than the rest. The 

system is solvable for the examples shown in this thesis, but for larger stiffness matrices the error 

might be unacceptable or the system can even become singular. One alternative is the Penalty 

method (Babuška, 1973), but it introduces an error in the displacements (the penalty factor). 

Other alternative more suitable is the augmented Lagrange multipliers approach (Hestenes, 1969; 

Bertsekas, 2014). The implementation of this improvement would affect to Chapter 7. 

9.3.7. Non-linear plastic analysis 

This algorithm is devised for linear elastic analysis with small displacements. To account for 

geometrical non-linearities, the same algorithm might be used but the time needs to be 

discretized, i.e. the forces are applied in steps. The updated Lagrange approach is the most used 

for these non-linearities where, in each step, the reference is updated to the deformed shape 

(Kojić and Bathe, 1987). In each step the domain and the trimming surfaces must be updated to 

account for the displacements. 

To account for material non-linearities, i.e. plastic behaviour and damage, the return mapping is 

the most common method (Simo and Taylor, 1986; Krajcinovic and Lemaitre, 1987; Lee and 

Fenves, 2001; Neto et al., 2008). It requires also time discretization and in each step the 

equilibrium is recovered accounting for the material yielding. The equilibrium conditions 

alongside with the material internal variables that depend on the history loading are the inputs of 

a non-linear system of equations that is solved by Newton-Raphson iterations. 

The structure of the code is prepared to include both improvements: non-linear geometry and 

plasticity, but they still need to be implemented. 
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9.3.8. Local refinement 

As mentioned in section 2.1.3, local refinement is not allowed in NURBS. To allow local refinement 

the basis functions must be T-splines (Bazilevs et al., 2010) or the other options mentioned in 

section 2.1.3. The implementation of T-splines in this work would impact on all stages of the 

algorithm, since all the routines that use or return NURBS need amendment for T-splines. 

9.4. Final reflection about IGA for trimmed solids 

In the traditional design process, the geometry is created in the CAD modelling step, with its own 

mesh (given by NURBS parametrization), and the analysis requires to create another mesh to 

integrate the domain and solve the PDE. The primitive driving force for IGA was to avoid this 

duplication of the mesh. The idea was to use the NURBS parametrization generated during the 

CAD modelling to integrate the PDE. In addition other advantages came up in IGA such us high 

inter-elemental continuity and fully accurate geometry. We have seen in Chapters 1 and 2 that 

these ideas fully operate for un-trimmed curves and surfaces. 

In general, for un-trimmed solids, the main idea of using NURBS parametrization as integration 

mesh can be applied, and the other two advantages (high continuity and geometrical accuracy) 

remain. However, in the case of solids, CAD does not produce the solid itself but the enveloping 

surfaces. Therefore the solid needs to be parametrized, penalizing the efficiency of IGA in solids.  

For trimmed solids we need to consider two additional items: the NURBS parametrization cannot 

be used to integrate the domain since it does not coincide with the solid to analyse; and the 

geometrical accuracy is not fulfilled on the trimming surfaces. 

The lack of geometrical accuracy can be controlled by adjusting triangulated surface to the 

trimming surface, however the computational cost is increased. The integration mesh, that is 

different from the NURBS parametrization, can be carried out and the results are acceptable. 

However the mesh is duplicated: one mesh was done in the CAD modelling stage, and the second 

mesh is performed in the analysis to adapt to the trimmed domains. 

In view of the previous comments, it seems that IGA for trimmed solids still needs to be improved, 

especially compared against untrimmed-surfaces and curves, where IGA fully complies with all the 

advantages. 
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Appendix 2A: Miscellanea of mathematics 

2A.1 General operations 

Table 2A.1 General operations 

Item Symbol Examples / comments 

Scalar (0 order tensor) Lower case letters 𝑎, 𝑏 

Vector (1 order tensor) Lower case bold letters 𝒖, 𝒗 

Matrices (2 order tensor) Upper case letters 𝑨,𝑩, 𝑪 

Higher order tensors Upper case script letters 𝕊, 𝕋 

del operator ∇ ∇= (
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧
) 

Laplace operator ∆ ∆= ∇ ∙ ∇ 

Gradient of scalar ∇𝑎 = 𝑎,𝑖  ∇𝑎 =  {

𝑎,𝑥
𝑎,𝑦
𝑎,𝑧
} 

Gradient of vector ∇𝒖 = 𝑢𝑖 ,𝑗  ∇𝒖 = [

𝑢1,𝑥 𝑢1,𝑦 𝑢1,𝑧
𝑢2,𝑥 𝑢2,𝑦 𝑢2,𝑧
𝑢3,𝑥 𝑢3,𝑦 𝑢3,𝑧

] 

Divergence of vector ∇ ∙ 𝒖 = ∇𝑖 ∙ 𝑢𝑖 = 𝑢𝑖∇𝑖  ∇ ∙ 𝒖 = 𝑢1,𝑥+ 𝑢2,𝑦+ 𝑢3,𝑧 

Divergence of matrix ∇ ∙ 𝑨 = ∇𝑗 ∙ 𝐴𝑖𝑗  ∇ ∙ 𝑨 = {

𝐴𝑖1∇1
𝐴𝑖2∇2
𝐴𝑖2∇2

} 

Laplacian of scalar ∆𝑎 = ∇ ∙ ∇𝑎 = 𝑎,𝑖 ∇𝑖= 𝑎,𝑖𝑖  ∆𝑎 = 𝑎,𝑥𝑥+ 𝑎,𝑦𝑦+ 𝑎,𝑧𝑧 

Laplacian of vector ∆𝒖 = ∇ ∙ ∇𝒖 = 𝑢𝑖 ,𝑗 ∇𝑗= 𝑢𝑖 ,𝑗𝑗  ∆𝒖 = {

𝑢1,11+ 𝑢1,22+ 𝑢1,33
𝑢2,11+ 𝑢2,22+ 𝑢2,33
𝑢3,11+ 𝑢3,22+ 𝑢3,33

} 

Dot product between 2 vectors 𝒖 ∙ 𝒗 = 𝑢𝑖𝑣𝑖  𝒖 ∙ 𝒗 = 𝑎 

Dot product between matrix and 
vector 

𝑨 ∙ 𝒖 = 𝐴𝑖𝑗𝑢𝑗  
𝑨 ∙ 𝒖 = 𝑣𝑖  

 

Dot product between two matrices 𝑨 ∙ 𝑩 = 𝐴𝑖𝑘𝐵𝑘𝑗  𝑨 ∙ 𝑩 = 𝐶𝑖𝑗  

Double dot product between two 
matrices 

𝑨 ∶ 𝑩 = 𝐴𝑖𝑗𝐵𝑖𝑗  𝑨 ∶ 𝑩 = 𝑎 

Double dot product between tensor 
4

th
 order and matrix 

𝕊 ∶ 𝑨 = 𝕊𝑖𝑗𝑘𝑙𝐴𝑘𝑙 𝕊 ∶ 𝑨 = 𝑩 

Inner product of two functions 
within domain Λ (or bilinear form) 

〈𝑓, 𝑔〉 〈𝑓, 𝑔〉 = ∫ 𝑓𝑔
Λ

 𝑑Λ 

Infinitesimal strain tensor 𝜺 = 휀𝑖𝑗 휀𝑖𝑗 =
1

2
(𝑢𝑖 ,𝑗+ 𝑢𝑗,𝑖 ) 

Hooke’s law 𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙  휀𝑘𝑙         𝝈 = ℂ ∶ 𝜺 
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2A.2 Green´s theorem for d-dimensional case 

The Green’s theorem, also known as divergence theorem, can be seen as an integration by parts. 

Given two functions 𝑓 and 𝑔 such that 𝑓, 𝑔:ℝ𝑑 → ℝ1 the Green’s theorem is expressed as: 

∫ 𝑓 𝑔,𝑗
𝛺

 𝑑𝛺 =  −∫ 𝑓,𝑗  𝑔
𝛺

 𝑑𝛺 + ∮ 𝑓 𝑔 𝑛𝑗
𝛤

𝑑𝛤 (2A.1) 

Where the domain 𝛺 and its boundary 𝛤 is represented in Fig. 2A.1 for the case 𝑑 = 3 (three-

dimensional domain). 

 

Fig. 2A.1 Domain 𝛺 enclosed by the boundary 𝛤 with normal vector 𝒏. 

Application of Green´s theorem to left-hand side of equilibrium equation 

Let ℒ be the left-hand side of the equilibrium equation: 

ℒ = ∫ 𝒘𝑇 (𝛻 ∙ 𝝈)
𝛺

𝑑𝛺 = ∫ 𝑤𝑖 𝜎𝑖𝑗 ,𝑗
𝛺

𝑑𝛺 

Identification of components: 

𝑓 = 𝑤𝑖 

𝑔,𝑗= 𝜎𝑖𝑗,𝑗 

Then, applying Green´s theorem to ℒ: 

ℒ = −∫ 𝑤𝑖,𝑗  𝜎𝑖𝑗
𝛺

𝑑𝛺 + ∫ 𝑤𝑖  𝜎𝑖𝑗 𝑛𝑗
𝛤

𝑑𝛤 

Expressed in tensor form: 

ℒ = −∫ 𝜕𝒘 ∶ 𝝈
𝛺

𝑑𝛺 + ∫ 𝒘 ·  𝝈 · �̂�
𝛤

𝑑𝛤 
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Using Voigt notation the matrix form is: 

ℒ = −∫ 𝜕𝒘𝑇 𝝈
𝛺

𝑑𝛺 + ∫ 𝒘𝑇  𝝈 �̂�
𝛤

𝑑𝛤 

Recall that 𝝈 𝒏 = �̅� and 𝝈 is a function of displacement, the expression yields to: 

ℒ = −∫ 𝜕𝒘𝑇(𝑫 𝜕𝒖)
𝛺

𝑑𝛺 + ∫ 𝒘𝑇 �̅�
𝛤

𝑑𝛤 
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2A.3 Sobolev spaces 

Let 𝐻1(Ω) be the Sobolev space composed of all functions 𝑓 defined as: 

𝐻1(Ω) = {𝑓|𝐷𝛼𝑓 ∈ 𝐿2(Ω), 𝛼 ≤ 1} (2A.2) 

Where 𝐷𝛼𝑓 is the derivative of order 𝛼 of the function 𝑓, and 𝐿2(Ω) is the space defined by the 

set of all functions 𝑔 such that: 

∫ 𝑔2𝑑𝛺
𝛺

< +∞ (2A.3) 

Equation (2A.3) indicates that the square of g is integrable in the domain 𝛺. 

2A.4 Lebesgue spaces 

Lebesgue integral of 𝑓, for 1 ≤ 𝑝 ≤ ∞, in domain Ω: 

‖𝑓‖𝐿𝑝,Ω ∶=  (∫ |𝑓(𝑥)|𝑝 𝑑𝑥
𝛺

)

1/𝑝

 (2A.4) 

Lebesgue spaces: 

𝐿𝑝 , Ω ∶=  {𝑓 ∶  ‖𝑓‖𝐿𝑝,Ω < ∞} (2A.5) 
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2A.5 Closest location of one line to another line 

Given two lines 𝑟 and 𝑠, the closest location from 𝑟 to 𝑠 (and vice versa) may be obtained in an 

iterative process as follows. 

We define the initial points on 𝑟 and 𝑠, called 𝒙𝑟 and 𝒙𝑠 respectively. The closest location from 𝒙𝑟 

to 𝑠, called 𝒙𝑐𝑟𝑠, is computed with equation (2A.6), where 𝒖 is a vector with the direction of the 

line 𝑠. 

𝒙𝑐𝑟𝑠 = 𝒙𝑠 +
𝒖 · (𝒙𝑟 − 𝒙𝑠)

‖𝒖‖2
 𝒖 (2A.6) 

Then the closest location from 𝒙𝑐𝑟𝑠 (that lies on line 𝑠) to line 𝑟 is computed with the same 

procedure, obtaining 𝒙𝑐𝑠𝑟. The process is repeated, computing the location alternatively on line 𝑟 

and line 𝑠, until two consecutive values in one line differ less than a pre-established tolerance. 

 

  



 

189 
 

2A.6 Floor and ceiling functions 

Floor 

𝑓𝑙𝑜𝑜𝑟(𝑥) = 𝑚𝑎𝑥{𝑚 ∈ ℤ |𝑚 ≤ 𝑥} (2A.7) 

 

 

Fig. 2A.2 Floor function. 

 

Ceiling 

𝑐𝑒𝑖𝑙(𝑥) = 𝑚𝑖𝑛{𝑛 ∈ ℤ |𝑛 ≥ 𝑥} (2A.8) 

 

 

Fig. 2A.3 Ceiling function. 
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2A.7 Errors in Lagrange polynomial interpolations for curves 

Mapping ℝ𝟏 → ℝ𝟏 

Given a function 𝑥 = 𝑓(𝑢), such that 𝑓:ℝ1 → ℝ1 defined in the domain 𝛺 and a set of 𝑛 + 1 

locations 𝑢0, … , 𝑢𝑛 equally spaced within 𝛺, called nodes. This function may be approximated by 

𝑔(𝑢), defined as (2A.9), in the domain 𝛺. The order of the approximation is 𝑛. 

𝑔(𝑢) =∑𝐿𝑖(𝑢) 𝑓(𝑢𝑖)

𝑛

𝑖=0

 (2A.9) 

where 𝐿𝑖(𝑢)  are the Lagrangian polynomials, whose value is equal to 𝑓(𝑢𝑖) at 𝑢𝑖 and zero at the 

rest of nodes locations. The Lagrangian polynomials are defined as follows: 

𝐿𝑖(𝑢)  =∏
𝑢 − 𝑢𝑗

𝑢𝑖 − 𝑢𝑗

𝑛

𝑗=0
𝑗≠𝑖

 
(2A.10) 

The difference between 𝑓 and 𝑔 a one location 𝑢𝑎, i.e. the error, when 𝑔 is of order 𝑛 is 

calculated as equation (2A.11). 

𝐸𝑛 ≤
𝑓(𝑛+1)(𝑢𝛽)

(𝑛 + 1)!
 ∏(𝑢𝑎 − 𝑢𝑗)

𝑛

𝑗=0

 (2A.11) 

Where 𝑥𝛽 is an unknown location within 𝛺 that maximizes 𝐸𝑛. The error for 𝑛 = 2 (quadratic 

approximation) is given in (2A.12). Fig. 2A.4 illustrates one example. 

𝐸2 ≤
𝑓′′′(𝑢𝛽)

3!
 (𝑢𝑎 − 𝑢0)(𝑢𝑎 − 𝑢1)(𝑢𝑎 − 𝑢2) (2A.12) 

 

Fig. 2A.4 Quadratic approximation to 𝑓 and error at a-location. 
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Mapping ℝ𝟏 → ℝ𝒅 

Given a function 𝒙 = 𝑓(𝑢), such that 𝑓:ℝ1 → ℝ𝑑 defined in the domain 𝛺 and a set of 𝑛 + 1 

locations 𝑢0, … , 𝑢𝑛 equally spaced within 𝛺, called nodes. This function may be approximated by 

𝑔(𝑢), defined as (2A.13), in the domain 𝛺. The order of the approximation is 𝑛. 

𝑔(𝑢) =∑𝐿𝑖(𝑢) 𝑓(𝑢𝑖)

𝑛

𝑖=0

 (2A.13) 

The Lagrange polynomials and the error of the approximation are computed in the same manner 

as equation (2A.11). In this case, the error is a vector with 𝑑 components. Equation (2A.14) shows 

the error of the 𝑗th component for quadratic approximation. It might be convenient for some 

application to use the norm of the error vector as shown in equation (2A.15). Fig. 2A.5 illustrates 

one example where 𝑓 maps into ℝ3. 

𝐸2 𝑗 ≤
𝑓′′′(𝑢𝛼)𝑗

3!
 (𝑢𝑎 − 𝑢0)(𝑢𝑎 − 𝑢1)(𝑢𝑎 − 𝑢2) (2A.14) 

𝐸2 = ‖𝐸2 𝑗‖ (2A.15) 

 

Fig. 2A.5 Quadratic approximation to 𝑓 and error at a-location in 3D-mapping. 
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Maximization of intervals product in linear and quadratic interpolation error 

Let us refer as 𝑝𝑛 to the product of 𝑛 + 1 intervals for the error estimation. For linear and 

quadratic interpolations, this product is: 

𝑝1(𝑢) = (𝑢𝑎 − 𝑢0)(𝑢𝑎 − 𝑢1) , for 𝑛 = 1 

𝑝2(𝑢) = (𝑢𝑎 − 𝑢0)(𝑢𝑎 − 𝑢1)(𝑢𝑎 − 𝑢2) , for 𝑛 = 2 (see equation 2A.13). 

We assume that 𝛺 spans from -1 to +1. Therefore the coordinates of the nodes for linear and 

quadratic approximations are: 

𝒖 = (−1, 1) , for 𝑛 = 1 

𝒖 = (−1, 0, 1) , for 𝑛 = 2 

The location where 𝑝 is maximum (or minimum) is given by equating the derivative 𝑝’ to zero. 

That occurs at locations presented in Table 2A.2. 

Table 2A.2 Locations of maximums and minimums of increment products. 

𝑛 𝑢  for  𝛺 ∈ [−1,+1] 𝑢  for  𝛺 ∈ [−𝐿/2, +𝐿/2] 𝑝  for  𝛺 ∈ [−1,+1] 

1 0 𝐿 -1.000 

2 
-0.578 0.211 𝐿 +0.385 

0.578 0.788 𝐿 -0.385 

 

Fig. 2A.6 plots both products, linear and quadratic, where the maximums indicated in Table 2A.2 

can be seen. 

 

Fig. 2A.6 Plot of interval product function for linear and quadratic approximation and 𝛺 span (-1,+1). 
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2A.8 Numerical differentiation: Finite divided differences 

Mapping ℝ𝟏 → ℝ𝒅 

Given a function 𝒙 = 𝑓(𝑢), such that 𝑓:ℝ1 → ℝ𝑑, its derivatives up to 3rd order at one location 

𝑢𝑎 may be approximated as shown in Table 2A.3. The sample locations 𝑢𝑖, with 𝑖 = 0,… ,3, are 

equally spaced at step ℎ. Note the derivatives in Table 2A.3 are computed for each d-component. 

The location of 𝑓 at 𝑢𝑖 is indicated as 𝑓𝑖. 

Table 2A.3 Approximation of derivatives centred at 𝑢𝑎 location. 

Order Equation Scheme 

1 𝑓′(𝑢𝑎) ≅
𝑓1 − 𝑓0
ℎ

 

 

2 𝑓′′(𝑢𝑎) ≅
𝑓2 − 2 𝑓1 + 𝑓0

ℎ2
 

 

3 𝑓′′′(𝑢𝑎) ≅
𝑓3 − 3 𝑓2 + 3 𝑓1 − 𝑓0

ℎ3
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Mapping ℝ𝟐 → ℝ𝒅 

Given a function 𝒙 = 𝑓(𝒖), such that 𝑓:ℝ2 → ℝ𝑑, its derivatives up to 3rd order may be 

approximated as shown in Table 2A.4. The components of the 𝒖 vector are (𝑢, 𝑣)𝑇.The sample 

locations 𝒖𝑖  are equally spaced at step 𝒉. Note the derivatives in Table 2A.4 are computed for 

each d-component. The location of 𝑓 at 𝑢𝑖 and 𝑣𝑖 are indicated as 𝑓𝑢𝑖  and 𝑓𝑣𝑖  respectively. 

Table 2A.4 Approximation of derivatives centred at 𝒖𝑎 location. 

Order Equation Scheme 

1 

𝑓,𝑢 (𝒖
𝑎) ≅

𝑓𝑢1 − 𝑓𝑢0
ℎ1

 

 

𝑓,𝑣 (𝒖
𝑎) ≅

𝑓𝑣1 − 𝑓𝑣0
ℎ2

 

 

2 

𝑓,𝑢𝑢 (𝒖
𝑎) ≅

𝑓𝑢2 − 𝑓𝑢1 − 𝑓𝑢0

ℎ1
2  

 

𝑓,𝑣𝑣 (𝒖
𝑎) ≅

𝑓𝑣2 − 𝑓𝑣1 − 𝑓𝑣0

ℎ2
2  

 

3 

𝑓,𝑢𝑢𝑢 (𝒖
𝑎) ≅

𝑓𝑢3 − 𝑓𝑢2 − 𝑓𝑢1 − 𝑓𝑢0

ℎ1
3  

 

𝑓,𝑣𝑣𝑣 (𝒖
𝑎) ≅

𝑓𝑣3 − 𝑓𝑣2 − 𝑓𝑣1 − 𝑓𝑣0

ℎ2
3  
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2A.9 Derivatives in NURBS 

The formulation given in this appendix is based on (Piegl and Tiller, 1996). 

Different expressions for NURBS entities 

Next expressions are given for three dimensional parameter space, the reduction to 2D and 1D 

domains is trivial. The domain is defined as: 

𝜴(𝜉, 𝜂, 𝜒) = ∑∑∑𝑅𝑖,𝑗,𝑘(𝜉, 𝜂, 𝜒)𝑷𝑖,𝑗,𝑘

𝑙

𝑘=1

𝑚

𝑗=1

𝑛

𝑖=1

 (2A.16) 

Where 𝑷𝑖,𝑗,𝑘  are the coordinates of the (𝑖, 𝑗, 𝑘)𝑡ℎ control point. The basis functions 𝑅𝑖,𝑗,𝑘 are 

calculated as: 

𝑅𝑖,𝑗,𝑘
𝑝,𝑞,𝑟(𝜉, 𝜂, 𝜒) =

𝑁𝑖,𝑝(𝜉) 𝑀𝑗,𝑞(𝜂) 𝐿𝑘,𝑟(𝜒) 𝑤𝑖,𝑗,𝑘

∑ ∑ ∑ 𝑁�̂�,𝑝(𝜉) 𝑀�̂�,𝑞(𝜂) 𝐿�̂�,𝑟(𝜒) 𝑤�̂�,�̂�,�̂�
𝑙
�̂�=1

𝑚
�̂�=1

𝑛
�̂�=1

=
𝑁𝑖,𝑝(𝜉) 𝑀𝑗,𝑞(𝜂) 𝐿𝑘,𝑟(𝜒) 𝑤𝑖,𝑗,𝑘

𝑊(𝜉, 𝜂, 𝜒)
  (2A.17) 

The domain might be expressed as: 

𝜴(𝜉, 𝜂, 𝜒) =
∑ ∑ ∑ 𝑁𝑖,𝑝(𝜉) 𝑀𝑗,𝑞(𝜂) 𝐿𝑘,𝑟(𝜒) 𝑤𝑖,𝑗,𝑘 𝑷𝑖,𝑗,𝑘

𝑙
𝑘=1

𝑚
𝑗=1

𝑛
𝑖=1

𝑊(𝜉, 𝜂, 𝜒)
 (2A.18) 

Indexes 𝑖, 𝑗, 𝑘 may be aggregated in 𝐼, and number of control points in ℵ. If dependencies are 

dropped off, then (2A.16) may be written as: 

𝜴 =∑𝑅𝐼 𝑷𝐼

ℵ

𝐼=1

 (2A.19) 

With basis functions expressed as: 

𝑅𝐼 =
𝑁𝑀𝐿 𝑤𝐼

∑ 𝑁𝑀𝐿 𝑤𝐼 
ℵ
𝐼=1

=
𝑁𝑀𝐿 𝑤𝐼
𝑊

  (2A.20) 

An alternative expression for the domain is: 

𝜴 =
𝐴

𝑊
 (2A.21) 

With 𝑨 and 𝑊 being: 

𝑨 =  ∑𝑁𝑀𝐿 𝑤𝐼  𝑷𝐼

ℵ

𝐼=1

 (2A.22) 



 

196 
 

𝑊 = ∑𝑁𝑀𝐿 𝑤𝐼 

ℵ

𝐼=1

 (2A.23) 

 

Derivatives of NURBS entities 

Next expressions are given for three dimensional parameter space, the reduction to 2D and 1D 

domains is trivial. We can compute the derivative of 𝜴 via derivative of 𝑨 as shown below. Super-

indexes 𝑘, 𝑙, 𝑚 indicates derivatives in each parameter direction. 

𝑨(𝑘,𝑙,𝑚) = [[[𝑊 𝜴]𝑘]𝑙]𝑚 (2A.24) 

That may be developed as shown below arriving to (2A.25). 

𝑨(𝑘,𝑙,𝑚) = [[[𝑊 𝜴]𝑘]𝑙]𝑚 = [[ ∑(
𝑘
𝑖
) 𝑊(𝑖,0,0) 𝜴(𝑘−𝑖,0,0) 

𝑘

𝑖=0

 ]

𝑙

]

𝑚

 

𝑨(𝑘,𝑙,𝑚) = [∑(
𝑘
𝑖
)  ∑(

𝑙
𝑗
) 𝑊(𝑖,𝑗,0) 𝜴(𝑘−𝑖,𝑙−𝑗,0) 

𝑙

𝑗=0

𝑘

𝑖=0

]

𝑚

 

 

𝑨(𝑘,𝑙,𝑚) =∑(
𝑘
𝑖
)∑(

𝑙
𝑗
)∑(

𝑚
𝑟
) 𝑊(𝑖,𝑗,𝑟) 𝜴(𝑘−𝑖,𝑙−𝑗,𝑚−𝑟) 

𝑚

𝑟=0

𝑙

𝑗=0

𝑘

𝑖=0

 (2A.25) 

If equation (2A.25) is developed to write derivatives of 𝜴 we obtain: 

𝑨(𝑘,𝑙,𝑚) = 𝑊(0,0,0) 𝜴(𝑘,𝑙 ,𝑚) + ∑(
𝑘
𝑖
) 𝑊(𝑖,0,0) 𝜴(𝑘−𝑖,𝑙,𝑚) 

𝑘

𝑖=1

+∑(
𝑙
𝑗
) 𝑊(0,𝑗,0) 𝜴(𝑘,𝑙−𝑗,𝑚) 

𝑙

𝑗=1

+   ∑(
𝑚
𝑟
) 𝑊(0,0,𝑟) 𝜴(𝑘,𝑙,𝑚−𝑟) 

𝑚

𝑟=1

+ ∑(
𝑘
𝑖
)∑(

𝑙
𝑗
)∑(

𝑚
𝑟
) 𝑊(𝑖,𝑗,𝑟) 𝜴(𝑘−𝑖,𝑙−𝑗,𝑚−𝑟) 

𝑚

𝑟=1

𝑙

𝑗=1

𝑘

𝑖=1

 

(2A.26) 

In equation (2A.26) we can isolate the target derivative 𝜴(k,l ,m) as a function of previous 

derivatives of 𝜴 and derivatives of 𝑨 and 𝑊, as expressed in equation (2A.26). Note that 𝑊(0,0,0) 

is the weight itself: 
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  𝜴(𝑘,𝑙 ,𝑚)
=

1

𝑊(0,0,0)
  [  𝑨(𝑘,𝑙,𝑚) − ∑(

𝑘
𝑖
) 𝑊(𝑖,0,0) 𝜴(𝑘−𝑖,𝑙,𝑚)

 

𝑘

𝑖=1

−∑(
𝑙
𝑗
) 𝑊(0,𝑗,0) 𝜴(𝑘,𝑙−𝑗,𝑚)

 

𝑙

𝑗=1

−   ∑(
𝑚
𝑟
) 𝑊(0,0,𝑟) 𝜴(𝑘,𝑙,𝑚−𝑟)

 

𝑚

𝑟=1

− ∑(
𝑘
𝑖
)∑(

𝑙
𝑗
)∑(

𝑚
𝑟
) 𝑊(𝑖,𝑗,𝑟) 𝜴(𝑘−𝑖,𝑙−𝑗,𝑚−𝑟)

 

𝑚

𝑟=1

𝑙

𝑗=1

𝑘

𝑖=1

] 

(2A.27) 

𝑨 and 𝑊 are equivalent to B-splines, recall equation (2A.17) and (2A.22), therefore their 

derivatives are computed as B-splines derivatives, that are a function of derivatives of their basis 

functions as shown below: 

𝑨(𝑘,𝑙,𝑚) = [∑𝑁𝑀𝐿 𝑤𝐼 𝑷𝐼

ℵ

𝐼=1

]

(𝑘,𝑙,𝑚)

=  ∑𝑁(𝑘)𝑀(𝑙)𝐿(𝑚) 𝑤𝐼  𝑷𝐼

ℵ

𝐼=1

 

=  ∑∑∑𝑁𝑖
(𝑘)

𝑙

𝑘=1

𝑀𝑗
(𝑙)

𝑚

𝑗=1

𝐿𝑘
(𝑚)

𝑛

𝑖=1

𝑤𝑖𝑗𝑘𝑷𝑖𝑗𝑘  

(2A.28) 

 

𝑊(𝑘,𝑙,𝑚) = [∑𝑁𝑀𝐿 𝑤𝐼  

ℵ

𝐼=1

]

(𝑘,𝑙,𝑚)

=  ∑𝑁𝑘𝑀𝑙𝐿𝑚  𝑤𝐼  

ℵ

𝐼=1

= ∑∑∑𝑁𝑖
(𝑘)

𝑙

𝑘=1

𝑀𝑗
(𝑙)

𝑚

𝑗=1

𝐿𝑘
(𝑚)

𝑛

𝑖=1

𝑤𝑖𝑗𝑘  (2A.29) 

 

Derivative of unidimensional B-spline basis function 

The 𝑘th derivative is computed recursively as shown in (2A.23): 

( 𝑁
𝑝

𝑖)
(𝑘)

=
𝑝!

(𝑝 − 𝑘)!
∑𝛼𝑘,𝑗

𝑘

𝑗=0

 𝑁𝑖+𝑗
𝑝−𝑘

 (2A.30) 

With: 

𝛼0,0 = 1 (2A.31a) 

𝛼𝑘,0 =
𝛼𝑘−1,0

𝜉𝑖+𝑝−𝑘+1 − 𝜉𝑖
 (2A.31b) 

𝛼𝑘,𝑗 =
𝛼𝑘−1,𝑗 − 𝛼𝑘−1,𝑗−1

𝜉𝑖+𝑝+𝑗−𝑘+1 − 𝜉𝑖+𝑗
  𝑤𝑖𝑡ℎ  𝑗 = 1,… , 𝑘 − 1 (2A.31c) 
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𝛼𝑘,𝑘 =
−𝛼𝑘−1,𝑘−1
𝜉𝑖+𝑝+1 − 𝜉𝑖+𝑘

 (2A.31d) 

First derivative of unidimensional NURBS basis function 

The first derivative of a NURBS basis function may be computed with the general expression 

(2A.30) or as follows: 

𝑅𝑖,𝜉 =
𝑁𝑖 ,𝜉  𝑤𝑖𝑊 −𝑁𝑖  𝑤𝑖 𝑊,𝜉

𝑊2
  (2A.32) 

With: 

𝑊 =∑𝑁�̂�,𝑝 𝑤�̂�

𝑛

�̂�=1

  (2A.33) 

𝑊,𝜉 =∑𝑁𝑖 ,𝜉  𝑤𝑖

𝑛

𝑖=1

  (2A.34) 

( 𝑁
𝑝

𝑖),𝜉 =
𝑝

𝜉𝑖+𝑝 − 𝜉𝑖
( 𝑁
𝑝−1

𝑖) −
𝑝

𝜉𝑖+𝑝+1 − 𝜉𝑖+1
( 𝑁
𝑝−1

𝑖+1)  (2A.35) 

Derivatives of physical coordinates w.r.t. parameter coordinates 

These derivatives are calculated as follows: 

𝒙,𝜉 = ∑𝑅𝐼 ,𝜉  𝑷𝐼

ℵ

𝐼=1

 (2A.36) 

Where 𝑷𝐼 are the coordinates of control points and 𝑅𝐼 ,𝜉 the derivatives of basis functions. 
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Appendix 2B: Discretization of the equilibrium equation in 

Continuum Mechanics 

This appendix briefs the fundamentals of the theory of elasticity and the numerical approximation 

used for the solution of the partial differential equation (PDE) that characterizes the linear elastic 

problem. In the discretization, the constraints are included using the approach from Apostolatos 

et al. (2014). 

2B.1 Constitutive relations 

The elastic constitutive tensor 𝑫 contains the elastic properties of the material and relates the 

Cauchy stress tensor to the strain tensor as follows. 

𝝈 = 𝑫𝜺 (2B.1) 

𝑫 is a fourth order tensor, but in case of isotropic material and using Voigt notation, it can be 

expressed in matrix form: 

𝑫 =

[
 
 
 
 
 
𝜆 + 2𝜇 𝜆 𝜆
𝜆 𝜆 + 2𝜇 𝜆
𝜆 𝜆 𝜆 + 2𝜇

𝜇

𝜇

𝜇 ]
 
 
 
 
 

 (2B.2) 

where: 

λ =
𝐸𝜈

(1+𝜈)(1−2𝜈)
  is the Lamé first parameter, 

𝜇 =
𝐸

2(1+𝜈)
 is the shear modulus 

are the Lamé parameters, 𝛆 is the linear strain tensor obtained as in (2B.3), with 𝒖 representing 

the displacement field. In this work, we refer to the operation (2B.3) as the strain operator 𝜕. 

Therefore, the expression (2B.3) is equivalent to (2B.4). 

 

𝜺 = 휀𝑖𝑗 = 
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
) (2B.3) 

𝜺 = 𝜕𝒖 (2B.4) 

The strain operator in three-dimensional case is given by: 
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𝜕 =

[
 
 
 
 
 
 
 
 
 
 
 
 
𝜕

𝜕𝑥
𝜕

𝜕𝑦
𝜕

𝜕𝑧
𝜕

𝜕𝑦

𝜕

𝜕𝑥
𝜕

𝜕𝑧

𝜕

𝜕𝑦
𝜕

𝜕𝑧

𝜕

𝜕𝑥]
 
 
 
 
 
 
 
 
 
 
 
 

 (2B.5) 

The strain tensor (2B.6) can be expressed as vector (2B.7) using Voigt notation. 

𝜺 = [

휀𝒙 𝛾𝒙𝒚 𝛾𝒙𝒛
𝛾𝒚𝒙 휀𝒚 𝛾𝒚𝒛
𝛾𝒛𝒙 𝛾𝒛𝒚 휀𝒛

] (2B.6) 

𝜺 = {휀𝑥 휀𝑦 휀𝑧 𝛾𝑥𝑦 𝛾𝑦𝑥 𝛾𝑥𝑧}𝑇 (2B.7) 

𝛔 is the Cauchy stress tensor59 which is expressed as (2B.8) and its vector form is (2B.9) according 

to Voigt notation. 

𝝈 = [

𝜎𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑦𝑥 𝜎𝑦 𝜏𝑦𝑧
𝜏𝑧𝑥 𝜏𝑧𝑦 𝜎𝑧

] (2B.8) 

𝝈 = {𝜎𝑥 𝜎𝑦 𝜎𝑧 𝜏𝑥𝑦 𝜏𝑦𝑥 𝜏𝑥𝑧}𝑇 (2B.9) 

2B.2 The strong formulation of the equilibrium 

Let 𝛺 be a domain whose boundary is denoted by 𝛤 and its normal unit vector at each location by 

𝒏 (see Fig. 2B.1). The domain may be subjected to body forces 𝒃. The boundary conditions are 

applied on portions of the boundary 𝛤𝐷 and 𝛤𝑁. The former is where prescribed displacements �̅� 

are imposed - Dirichlet boundary conditions, while the latter is where the surface traction �̅� is 

applied - Neumann boundary conditions. Both portions must hold the next two conditions: 

𝛤\𝛤𝐷∪𝛤𝑁 ∪ 𝛤𝐷  ∪  𝛤𝑁 = 𝛤  (2B.10) 

𝛤𝐷  ∩  𝛤𝑁 =  ∅ (2B.11) 

                                                           
59

 There are four stress measures: Cauchy, first Piola, second Piola and Kirchhoff stresses according to the 
reference taken, deformed or undeformed domain. As this work assumes small displacements, both 
references are indistinguishable, and we use namely the Cauchy stress, that is referred to the deformed 
configuration. 
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Fig. 2B.1 Domain and boundaries with applied conditions. 

The Initial Boundary Value Problem (IBVP) is defined by the equilibrium equations (2B.12a) and its 

associated boundary conditions (2B.12b) and (2B.12c). 

𝛻 ∙ 𝝈 + 𝒃 = 𝟎  𝑖𝑛 𝛺 (2B.12a) 

𝒖 = �̅�      𝑜𝑛 𝛤𝐷 (2B.12b) 

𝝈 𝒏 = �̅�      𝑜𝑛 𝛤𝑁 (2B.12c) 

The problem to solve is defined as follows: find 𝒖: 𝛺 → ℝ𝑑 that satisfies the equations (2B.12), 

where 𝑑 is the number of spatial dimensions. In this work 𝑑 is equal to 3 unless noted otherwise. 

This formulation is called the differential or strong form of the equilibrium equations. 

2B.3 The weak formulation of the equilibrium 

Let us define the space of solutions 𝓢 as all the functions that match the Dirichlet boundary 

conditions (2B.13) and the space of weighting functions 𝓥 as all the functions that are zero at the 

Dirichlet boundary conditions (2B.14). 

𝓢 = {𝒖| 𝒖|𝛤𝐷 = �̅� } (2B.13) 

𝓥 = {𝒘| 𝒘|𝛤𝐷 = 𝟎 } (2B.14) 

To obtain the weak formulation, equation (2B.12a) is multiplied by a weighting function and 

integrated over the whole domain as shown in (2B.15). 

∫ 𝒘𝑇  (𝛻 ∙ 𝝈 + 𝒃)
𝛺

𝑑𝛺 = 0 (2B.15) 
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Where 𝒘 is any weighting function that belongs to the space 𝓥. If the stress tensor is expressed in 

terms of displacements, recall (2B.1), and the integral summands are separated we arrive to 

(2B.16). 

∫ 𝒘𝑇 (𝛻 ∙ (𝑫 𝜕𝒖))
𝛺

𝑑𝛺 = −∫ 𝒘𝑇 𝒃
𝛺

 𝑑𝛺 (2B.16) 

Applying the Green´s theorem60 to the left-hand side of (2B.16), we arrive to: 

∫ 𝜕𝒘𝑇(𝑫 𝜕𝒖)
𝛺

𝑑𝛺 = ∫ 𝒘𝑇 𝒃
𝛺

 𝑑𝛺 +∫ 𝒘𝑇 �̅�
𝛤𝑁

𝑑𝛤𝑁 (2B.17) 

Equation (2B.17) may be expressed in general form with differential operators as in (2B.18), being 

𝑎 and 𝐿 the left and right-hand side differential operators respectively. 

𝑎(𝒘,𝒖) = 𝐿(𝒘) (2B.18) 

Equation (2B.18) is the weak formulation of the equilibrium problem, which can be defined as: 

find 𝒖: 𝛺 → ℝ𝑑 such that 𝒖 ∈ 𝓢 satisfies equation (2B.18) given any weighting function 𝒘 ∈ 𝓥. 

The weak formulation is also called integral or variational formulation. The term weak refers to 

the requirements of the solution that in the strong form requires 𝐶1 continuity meanwhile in the 

weak form requires only 𝐶0 continuity. Weak and strong forms are equivalent, i.e. the solution for 

the weak form is valid for the strong form and vice-versa. 

If we see 𝒘 as any virtual displacement that satisfies the Dirichlet boundary conditions (recall that 

the space 𝓥 is zero at 𝛤𝐷 (2B.14)), then equation (2B.18) is equivalent to the Principle of Virtual 

Work (PVW). The PVW states that if one domain 𝛺 is in equilibrium the internal work equates the 

external work for any virtual displacements compatible with Dirichlet constraints. The external 

work is produced by virtual displacements exerted by external forces: body forces 𝒃 and/or 

tractions �̅� on boundaries, i.e. the right-hand side of (2B.18). The internal work is given by the left-

hand side of (2B.18). Let us remark that PVW must hold for any arbitrary virtual displacement, as 

long as it is compatible with Dirichlet conditions. Fig. 2B.2 shows two possible configurations with 

virtual displacements (dashed lines), where the Dirichlet boundary conditions are kept. 
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 See Appendix 2A. 
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Fig. 2B.2 Allowed virtual displacements. 

So far, no approximations have been applied to the problem, i.e. the solution 𝒖 for the weak form 

(2B.18) would be exact. However, finding that solution is not possible in general being necessary 

to find an approximation. The way to achieve such approximations is presented in the next two 

sections. 

2B.4 Weighted Residuals and the Galerkin´s method 

The solution 𝒖 and the weighting functions 𝒘 for the weak form have infinite dimensions, i.e. 𝓢 

and 𝓥 are infinite-dimensional function spaces. That leads to the impossibility of finding analytical 

solution and therefore an approximation is required. To achieve such approximation, we restrict 𝓢 

and 𝓥 to a finite dimension. 

Fig. 2B.3 depicts a scheme for the numerical approximations available for the elastic linear PDE. 

Two main approaches exist: approximating the equation in its original strong form or 

approximating the weak form. In this work Galerkin’s method, which approximates the weak 

form, is used. 

 

Fig. 2B.3 General view of methods for solving PDE. 

Let us define the space of trial solutions 𝓢ℎ ⊂ 𝓢 and 𝓥ℎ ⊂ 𝓥 as in (2B.19) and (2B.20) 

respectively. 
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𝓢ℎ = {𝒖ℎ ∈ 𝐻1(Ω),   𝒖ℎ|
𝛤𝐷
= �̅�} (2B.19) 

𝓥ℎ = {𝒘ℎ ∈ 𝐻1(𝛺),   𝒘ℎ|
𝛤𝐷
= 𝟎} (2B.20) 

The Sobolev space 𝐻1(𝛺) forces the functions to have their derivatives square-integrable61. If the 

approximations are introduced in the weak form (2B.18), both sides of the equation are not equal 

but differ by a residual value called 𝑟, as shown in (2B.21). 

∫ 𝜕𝒘ℎ
𝑇
(𝑫 𝜕𝒖ℎ)

𝛺

𝑑𝛺 −∫ 𝒘ℎ
𝑇
 𝒃

𝛺

 𝑑𝛺 − ∫ 𝒘ℎ𝑇 �̅�
𝛤𝑁

𝑑𝛤𝑁 = 𝑟 (2B.21) 

According the manner the residual 𝑟 is minimized there are different methods. In the Galerkin´s 

method, the approximation (via discretization) for the weighting functions and the solution is the 

same. 

2B.5 Spatial discretization and approximated solution 

The strategy to find the finite-dimensional solution 𝒖ℎ consists of dividing the continua 𝛺 into 

subdomains or elements 𝛺𝑒. This division is called spatial discretization. Fig. 2B.4 provides one 

example with eight elements. Control points are represented by small circles. At the right-hand 

side of Fig. 2B.4 element 1 is extracted with its influential control points. 

 

Fig. 2B.4 Spatial discretization of the domain. 

The displacement field inside the 𝑒th element (𝒖𝑒) is approximated by equation (2B.22a) as well 

as the weighting functions (2B.22b). For further detail on spatial discretization refer to Appendix 

2B. 

                                                           
61
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𝒖ℎ𝑒 = 𝑹𝑒 �̂�𝑒  (2B.22a) 

𝒘𝒉𝒆 = 𝑹𝒆 �̂�𝒆  (2B.22b) 

where: 

𝑹𝑒 is the matrix of basis functions with 𝑑 rows and 𝑛𝑒𝑑 columns. 

�̂�𝑒  is the vector of displacements of the 𝑛𝑒 control points with 𝑛𝑒𝑑 rows. 

The strain needs also to be approximated since it appears in the weak form (2B.18). The 

procedure consists of differentiating the basis functions as shown in (2B.23). The resultant 𝑩𝑒 

matrix is usually called the strain-displacement matrix for the element. 

𝜺𝑒 ≅ 𝜺ℎ𝑒 = 𝜕 𝑹𝑒�̂�𝒆 = 𝑩𝑒�̂�𝒆 (2B.23) 

The strain-displacement matrix 𝑩𝑒 is assembled as (2B.24). 

𝑩𝑒 = [𝑩1
𝑒 … 𝑩𝑛𝑒

𝑒 ] (2B.24) 

Where 𝑩𝑖
𝑒 is the submatrix for the ith control point which has influence on the 𝑒th element. For 

the three-dimensional case, 𝑩𝑖
𝑒 has the following form (2B.25): 

𝑩𝑖
𝒆  =

[
 
 
 
 
 
 
𝑅𝑖,𝑥

𝑅𝑖,𝑦
𝑅𝑖,𝑧

𝑅𝑖 ,𝑦 𝑅𝑖,𝑥
𝑅𝑖,𝑧 𝑅𝑖,𝑦

𝑅𝑖,𝑧 𝑅𝑖,𝑥]
 
 
 
 
 
 

 (2B.25) 

If the finite approximations 𝒖ℎ𝑒 and 𝒘ℎ𝑒 for each element are inserted on the weak form we get: 

∫ �̂�𝒆𝑇𝑩𝒆𝑇𝑫 𝑩 �̂�𝒆

𝛺

𝑑𝛺 −∫ �̂�𝒆𝑇𝑹𝒆𝑇 𝒃
𝛺

 𝑑𝛺 − ∫ �̂�𝒆𝑇𝑹𝒆𝑇 �̅�
𝛤𝑁

𝑑𝛤𝑁 = 0 (2B.26) 

Since the weak form holds for any weighting function, the term �̂�𝒆𝑇vanishes and the following 

result is obtained: 
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∫ 𝑩𝑒
𝑇
𝑫𝑩𝑒 �̂�𝒆 𝑑𝛺

𝛺

= ∫ 𝑹𝑒
𝑇
 𝒃 𝑑𝛺

𝛺

− ∫ 𝑹𝑒
𝑇
 �̅� 𝑑𝛤𝑁

𝛤𝑁

 (2B.27) 

Or: 

𝑲𝑒 �̂�𝒆 = �̂�𝑒 (2B.28) 

where: 

𝑲𝑒 = ∫ 𝑩𝑒𝑇𝑫𝑩𝑒 dΩ
Ω

 (2B.29) 

�̂�𝑒 = ∫ 𝑹𝑒𝑇 𝒃 𝑑𝛺
𝛺

+∫ 𝑹𝑒𝑇 �̅� 𝑑𝛤𝑁
𝛤𝑁

 (2B.30) 

Are the stiffness matrix and the force vector respectively. For each element, the stiffness matrix 

𝑲𝑒 depends on the material and geometry, and the force vector �̂�𝑒 depends on boundary 

traction, body forces and geometry. Since all this information is known, 𝑲𝑒 and �̂�𝑒 may be 

computed for each element and then assembled into a global system of equations: 

𝑲 �̂�  =  �̂� (2B.31) 

Expression (2B.31) is a system of linear equations whose solution is the vector of control points 

displacements �̂�. With these displacements at hand, the displacement field within each element 

is obtained as in (2B.22a). 

2B.6 Discretization of other fields 

In this thesis the Lagrange multipliers 𝝀, and the dots products 〈𝝀,𝒘〉 and 〈𝒘,𝒖〉 are also to be 

discretized (see sections 2B.1.8 and 2B.1.9). The discretization for 𝝀 is going to be the same as for 

the 𝒖 field: 

𝝀ℎ𝑒 = 𝑹𝑒 �̂�𝑒  (2B.32) 
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The discretization for the dot products is shown in equations (2B.33) and (2B.34). See Appendix 

2B for further explanations. 

〈𝝀,𝒘〉 ≈ ∫ �̂�𝑇 𝑹𝑇 𝑹 �̂� 
𝛤

𝑑𝛤 (2B.33) 

〈𝒘,𝒖〉 ≈ ∫ �̂�𝑇𝑹𝑇𝑹 �̂� 
𝛤𝐶

𝑑𝛤𝐶  (2B.34) 

2B.7 Coupling constraints 

To allow coupling of different domains we use the domain decomposition technique with 

Lagrange multipliers as proposed by Apostolatos et al. (2014), which enforces coupling in a weak 

sense. In section 2B.1.9, the same approach is presented for Dirichlet boundary conditions for any 

surface, regardless of the domains parametrization. 

We need to re-define the strong form of the equilibrium equation to account for two subdomains. 

Although the explanation is for two subdomains, it is valid for n subdomains. 

Let 𝛺 be the domain composed of two subdomains 𝛺𝐴 and 𝛺𝐵 such that (2B.35) and (2B.36) 

apply. 

�̅� =⋃�̅�𝑘
2

𝑘=1

  (2B.35) 

⋂𝛺𝑘
2

𝑘=1

= 0  (2B.36) 

The closed domain �̅� is the union of 𝛺 and its boundary 𝛤. The coupling boundary is defined as: 

𝛤𝐶 =⋂�̅�𝑘
2

𝑘=1

  (2B.37) 

The reformulation of the equilibrium equation is as follows (see Fig. 2B.5). 

𝛻 ∙ 𝝈 + 𝒃 = 𝟎  𝑖𝑛 𝛺 (2B.38a) 

𝒖 = �̅�      𝑜𝑛 𝛤𝐷  (2B.38b) 
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𝝈 𝒏 = �̅�      𝑜𝑛 𝛤𝑁  (2B.38c) 

𝒖𝐴 − 𝒖𝐵 = 𝟎      𝑜𝑛 𝛤𝐶  (2B.38d) 

𝒒𝐴 + 𝒒𝐵 = 𝟎      𝑜𝑛 𝛤𝐶  (2B.38e) 

 

Fig. 2B.5 Decomposition of domain into subdomains 𝛺𝐴 and 𝛺𝐵. 

The subdomain 𝐴 is called master while subdomain 𝐵 slave. The normal to the surface 𝛤𝐶  points 

outwards the master subdomain. The Dirichlet constraint (2B.38b) is addressed in section 2B.1.9. 

The weak formulation (recall equation (2B.18)) for both domains is derived in equation (2B.39), 

which describes the equilibrium of both subdomains. However, the coupling constraint is still not 

considered. 

𝑎(𝒘𝐴 , 𝒖𝐴) + 𝑎(𝒘𝐵 , 𝒖𝐵) = 𝐿(𝒘𝐴) + 𝐿(𝒘𝐵) (2B.39) 

To include the coupling, conditions (2B.38d) and (2B.38e) are considered. The latter is introduced 

in (2B.39) as the internal work performed by tractions 𝒒𝑘 at the boundary 𝛤𝐶. We call those 

tractions 𝝀𝐶  and the work they produce within each subdomain is ∫ 𝝀𝐶
𝑇 𝒘𝑘

𝛤𝐶
𝑑𝛤𝐶. Therefore, the 

expression (2B.39) is extended to: 

𝑎(𝒘𝐴, 𝒖𝐴) + 𝑎(𝒘𝐵 , 𝒖𝐵) + ∫ 𝝀𝐶
𝑇 (𝒘𝐴 +𝒘𝐵)

𝛤𝐶

𝑑𝛤𝐶 = 𝐿(𝒘
𝐴) + 𝐿(𝒘𝐵) (2B.40) 

The notation 𝝀𝐶  is used because these tractions have the role of the Lagrange multipliers in the 

minimization problem of the potential energy of the system.  

In addition, we include the condition (2B.38d) in its weak form: 
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∫ 𝒘𝑇(𝒖𝐴 − 𝒖𝐵)
𝛤𝐶

𝑑𝛤𝐶 = 0 (2B.41) 

Separating both subdomains in (2B.40) and considering (2B.41) we arrive to the system of 

equations (2B.42), that is the weak form of (2B.38). 

𝑎𝐴(𝒘, 𝒖) + ∫ 𝝀𝐶
𝑇 𝒘𝐴

𝛤𝐶

𝑑𝛤𝐶 = 𝐿𝐴(𝒘) (2B.42a) 

𝑎𝐵(𝒘, 𝒖) + ∫ 𝝀𝐶
𝑇 𝒘𝐵

𝛤𝐶

𝑑𝛤𝐶 = 𝐿𝐵(𝒘) (2B.42b) 

∫ 𝒘𝑇𝒖𝐴

𝛤𝐶

𝑑𝛤𝐶 −∫ 𝒘𝑇𝒖𝐵

𝛤𝐶

𝑑𝛤𝐶 = 0 (2B.42c) 

 

Applying discretization to 𝑎(𝒘𝑘 , 𝒖𝑘), 𝐿(𝒘𝑘), and to the dot products 〈𝝀,𝒘〉 and 〈𝒘,𝒖〉 (recall 

sections 2B.1.5 and 2B.1.6) we arrive to the discretized form of the weak formulation: 

𝑲𝐴 �̂�𝐴 +𝑯𝐶
𝐴 �̂�𝐶 = �̂�

𝐴 (2B.43a) 

𝑲𝐵  �̂�𝐵 +𝑯𝐶
𝐵  �̂�𝐶 = �̂�

𝐵  (2B.43b) 

𝑯𝐶
𝐴𝑇 �̂�𝐴 +𝑯𝐶

𝐵𝑇 �̂�𝐵 = 𝟎 (2B.43c) 

That may be expressed in matrix form as: 

[

𝑲𝐴 𝟎 𝑯𝐶
𝐴

𝟎 𝑲𝐵 𝑯𝐶
𝐵

𝑯𝐶
𝐴𝑇 𝑯𝐶

𝐵𝑇 𝟎

] {
�̂�𝐴

�̂�𝐵

�̂�𝐶

} = {
�̂�𝐴

�̂�𝐵

𝟎

} (2B.44) 

Where the 𝑯𝐶 matrices are computed as (2B.45), being 𝑘 equal to 𝐴 or 𝐵. 

𝑯𝐶
𝑘 = ∫ 𝑹𝑘

𝑇
𝑹𝐴

𝛤𝐶

𝑑𝛤𝐶  (2B.45) 

2B.8 Dirichlet constraints 

The Lagrange multipliers approach will also be followed to impose Dirichlet boundary conditions. 

We consider the strong formulation (2B.46) for a domain (Fig. 2B.6) and its weak counterpart 

(2B.47) will be repeated here for convenience. 

𝛻 ∙ 𝝈 + 𝒃 = 𝟎  𝑖𝑛 𝛺 (2B.46a) 

𝒖 = �̅�      𝑜𝑛 𝛤𝐷 (2B.46b) 
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𝝈 𝒏 = �̅�      𝑜𝑛 𝛤𝑁 (2B.46c) 

 

Fig. 2B.6 Dirichlet constraint on boundary 𝛤𝐶 . 

𝑎(𝒘, 𝒖) = 𝐿(𝒘) (2B.47) 

Equation (2B.47) describes the equilibrium of the domain without Dirichlet constraint. The 

internal virtual work produced by the traction forces at the boundary 𝛤𝐷 is ∫ 𝝀𝐷
𝑇 𝒘𝑘

𝛤𝐷
𝑑𝛤𝐷 and 

may be introduce at the left-hand side of (2B.47) as follows: 

𝑎(𝒘, 𝒖) + ∫ 𝝀𝐷
𝑇 𝒘𝑘

𝛤𝐷

𝑑𝛤𝐷 = 𝐿(𝒘) (2B.48) 

In addition, the condition (2B.46b) is also included in its weak form: 

∫ 𝒘𝑇(𝒖 − �̅�)
𝛤𝐷

𝑑𝛤𝐷 = 0 (2B.49) 

Aggregating both equations, (2B.48) and (2B.49), we arrive to the system of equations (2B.50), 

which  is the weak form of (2B.46). 

𝑎(𝒘, 𝒖) + ∫ 𝝀𝐷
𝑇 𝒘

𝛤𝐷

𝑑𝛤𝐷 = 𝐿(𝒘) (2B.50a) 

∫ 𝒘𝑇𝒖
𝛤𝐷

𝑑𝛤𝐷 −∫ 𝒘𝑇�̅�
𝛤𝐷

𝑑𝛤𝐷 = 0 (2B.50b) 

Applying discretization to 𝑎(𝒘𝑘 , 𝒖𝑘), 𝐿(𝒘𝑘), and to the dot products 〈𝝀,𝒘〉 and 〈𝒘,𝒖〉 (recall 

sections 2B.1.5 and 2B.1.6) we arrive to the following discretized form of the weak formulation: 

𝑲 �̂� + 𝑯𝐷 �̂�𝐷 = �̂� (2B.51a) 
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𝑯𝐷
𝑇 �̂� = �̂̅� (2B.51b) 

Which can be expressed in matrix form as: 

[
𝑲 𝑯𝐷
𝑯𝐷

𝑇 𝟎
] {
�̂�
 �̂�𝐷
} = {

�̂�

�̂̅�
} (2B.52) 

The 𝑯𝐷 matrix is computed as: 

𝑯𝐷 = ∫ 𝑹𝑇𝑹
𝛤𝐷

𝑑𝛤𝐷 (2B.53) 

and vector �̂̅� is composed of n �̅� vectors, being n the number of involved control points. 

2B.9 Discretized weak formulation considering coupling and Dirichlet constraints 

The coupling and Dirichlet constraints can be imposed simultaneously within the system by 

applying the techniques shown in sections 2B.1.8 and 2B.1.9. The resultant equation (2B.54) is 

called in this work the aggregated system of linear equations. Fig. 2B.7 shows one example with 

Dirichlet constraints in two coupled subdomains. 

[
 
 
 
 
 
 𝑲

𝐴 𝟎
𝟎 𝑲𝐵

𝑯𝐷
𝐴 𝟎 𝑯𝐶

𝐴

𝟎 𝑯𝐷
𝐵 𝑯𝐶

𝐵

𝑯𝐷
𝐴𝑇 𝟎

𝟎 𝑯𝐷
𝐵𝑇

𝑯𝐶
𝐴𝑇 𝑯𝐶

𝐵𝑇

𝟎 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝟎

]
 
 
 
 
 
 

{
 
 

 
 
�̂�𝐴

�̂�𝐵

�̂�𝐷
𝐴

�̂�𝐷
𝐵

�̂�𝐶}
 
 

 
 

=

{
 
 

 
 
�̂�𝐴

�̂�𝐵

�̂̅�𝐴

�̂̅�𝐵

𝟎 }
 
 

 
 

 (2B.54) 

 

Fig. 2B.7 Decomposition of domain into subdomains A and B with Dirichlet constraints in both subdomains. 
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2B.10 A simplistic view of the discretization of the equilibrium equation 

The equation (2B.12) applies to the domain, which is continuum in the reality. Since, in general, 

that equation is not solvable the domain is discretized into portions to find and approximation to 

the solution. The shape of each portion is governed by a set of point, that in Isogeometric Analysis 

are called control points. To find the approximated solution, the linear system of equations 

(2B.54) is constructed. This equation can be simplified as follows: 

𝑲 �̂� = �̂� (2B.55) 

where 𝑲 represents the resistance of the control points to the displacement (stiffness); and �̂� are 

the displacements of the control points due the forces �̂� applied on the control points. 

The transformation from the real continuum domain (a) to the discretized one (b) is shown in Fig. 

2B.8. The real forces (body forces and surface tractions) are converted into forces at the control 

points. Similarly, the Dirichlet boundary conditions imposed in the reality are converted to 

restraints to the control points. The results of the analysis are the displacements at control points 

(c). 

 

Fig. 2B.8 Discretization of the domain and results of the analysis. 
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Appendix 2C: Spatial discretization 

Let us assume one domain 𝛺 with two continuous vector fields 𝒂 and 𝒘 with 𝑑 number of 

components, i.e. degrees of freedom. The domain may be divided into portions called elements. 

Let us assume a set of points having influence on each element, called control points. The fields 

are known at these points, and are called �̂�𝑖 and �̂�𝑖 for the 𝑖th control point. Each control point 

has one basis function62 (𝑅𝑖) whose value depends on the location considered within the element. 

2C.1 Discretization of one field 

The field 𝒂 (or 𝒘) may be estimated within each element as linear combination of vectors �̂�𝑖 that 

have influence on the element. The estimated field at one location 𝝃 within the element is called 

𝒂𝑒ℎ, whose calculation is as follows: 

𝒂𝑒  ≅ 𝒂ℎ𝑒 = ∑𝑅𝑖  �̂�𝑖

𝑛𝑒

𝑖=1

 (2C.1) 

Where: 

𝒂ℎ𝑒 is the approximation to the field within the 𝑒th element. 

𝑅𝑖 is the basis function value of the ith control point at 𝝃 location. 

�̂�𝑖 is the field vector for the ith control point. 

𝑛𝑒 is the number of control points that have influence on the 𝑒th element. 

Equation (2C.1) can be expressed in matrix form as: 

𝒂ℎ𝑒 = 𝑹𝑒 �̂�𝑒  (2C.2) 

where: 

𝑹𝑒 is the matrix of basis functions with 𝑑 rows and 𝑛𝑒𝑥 𝑑 columns, as shown in (2C.3). 

�̂�𝑒  is the vector of field values at the 𝑛𝑒 control points with 𝑛𝑒𝑥 𝑑 rows. 

𝑹𝑒 = [𝑹1
𝑒 … 𝑹𝑛𝑒

𝑒 ] (2C.3) 

In equation (2C.3) 𝑹𝑖
𝑒 is the 𝑑 𝑥 𝑑 diagonal submatrix of the 𝑖th control point, that is expressed in 

(2C.4) for 𝑑 = 3. 

𝑹𝑖
𝑒 = [

𝑅𝑖
𝑅𝑖

𝑅𝑖

] (2C.4) 

 

                                                           
62

 Also called shape functions. 
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2C.2 Discretization of fields dot product 

The dot product of fields 𝒂 and 𝒘 is: 

〈𝒂,𝒘〉 = ∫ 𝒂𝑇 𝒘 
𝛤

𝑑𝛤 (2C.5) 

The discretization of the dot product is obtained as the discretization of each field: 

〈𝒂,𝒘〉 ≈ ∫ �̂�𝑇 𝑹𝑇 𝑹 �̂� 
𝛤

𝑑𝛤 (2C.6) 

In case the field 𝒘 is needed to be placed first, it can be moved as follows: 

〈𝒘,𝒂〉 ≈ ∫ �̂�𝑇 𝑹𝑇 𝑹 �̂� 
𝛤

𝑑𝛤 (2C.7) 
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Appendix 2D: Volumetric locking and B-bar method 

One solid discretized into elements suffers of the so-called volumetric locking if the material is 

incompressible. This phenomenon increases the stiffness of the domain leading to non-valid 

analysis results. The cause of volumetric locking lies the rigidity of the interpolation of the 

displacement field within the elements. If the control points are not enough, the interpolated 

field is rigid, i.e. no able to capture displacements variations, and the displacement is under-

estimated. There are four well-settled methods to eliminate the volume locking: strain projection 

(or B-bar method), mixed formulation, reduced integration and mesh refinement. The calculation 

of B-bar matrix is detailed in this appendix. 

The B-bar method removes the volumetric locking by under-integrating the volumetric strain 

within the elements. As a result, the deformation matrix is modified and re-called B-bar matrix 

(�̅�), that must be used in stiffness calculation. Then, the element stiffness matrix is computed as: 

𝑲𝑒 = ∫ �̅�𝑒
𝑇
𝑫�̅�𝑒 dΩ

Ω

 (2D.1) 

The B-bar method removes the volumetric locking by prescribing volumetric strain within the 

elements. The strain can be split into deviatoric and volumetric components (2D.2). 

𝜺 = 𝜺𝑑 + 𝜺𝑣 ≅ 𝑩𝑑�̂� + 𝑩𝑣�̂�  (2D.2) 

Then, the deformation matrix is split into volumetric and deviatoric parts (2D.3). 

𝑩 = 𝑩𝑣 +𝑩𝑑 (2D.3) 

The volumetric deformation matrix is obtained as (2D.4) for solid domains63 in the standard form 

(i.e. without B-bar method). The deviatoric part is obtained as difference (2D.5). 

                                                           
63

 Volumetric component of strains is obtained as the average of trace of strain tensor (휀𝑣 =
1

3
휀𝑖𝑖), and the 

dilatational strain vector has the same three components equal to this value (휀𝑖
𝑣 = 휀𝑣). 
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𝑩𝒗 =
1

3
 

[
 
 
 
 
 
 
 
 
 
𝜕𝑅𝑖
𝜕𝑥

𝜕𝑅𝑖
𝜕𝑦

𝜕𝑅𝑖
𝜕𝑧

𝜕𝑅𝑖
𝜕𝑥

𝜕𝑅𝑖
𝜕𝑦

𝜕𝑅𝑖
𝜕𝑧

𝜕𝑅𝑖
𝜕𝑥

𝜕𝑅𝑖
𝜕𝑦

𝜕𝑅𝑖
𝜕𝑧

0   0    0
0   0    0
0   0    0

 

]
 
 
 
 
 
 
 
 
 

 (2D.4) 

𝑩𝒅 = 𝑩 − 𝑩𝒗 (2D.5) 

The B-bar method computes the volumetric matrix differently: �̅�𝒗 is obtained by averaging the 

volumetric strain over the whole element. Therefore, each of its basis functions derivatives are 

obtained as (2D.6), which may be approximated by Gauss quadrature. Then the �̅�𝑣 matrix is 

assembled as (2D.7). 

𝜕𝑅𝑖̅̅ ̅̅ ̅

𝜕𝑥
=
1

Ω𝑒
∫

𝜕𝑅𝑖
𝜕𝑥

 𝑑Ω𝑒

Ω𝑒
 (2D.6) 

�̅�𝑣 =
1

3
 

[
 
 
 
 
 
 
 
 
 
𝜕𝑅𝑖̅̅ ̅̅ ̅

𝜕𝑥

𝜕𝑅𝑖̅̅ ̅̅ ̅

𝜕𝑦

𝜕𝑅𝑖̅̅ ̅̅ ̅

𝜕𝑧

𝜕𝑅𝑖̅̅ ̅̅ ̅

𝜕𝑥

𝜕𝑅𝑖̅̅ ̅̅ ̅

𝜕𝑦

𝜕𝑅𝑖̅̅ ̅̅ ̅

𝜕𝑧

𝜕𝑅𝑖̅̅ ̅̅ ̅

𝜕𝑥

𝜕𝑅𝑖̅̅ ̅̅ ̅

𝜕𝑦

𝜕𝑅𝑖̅̅ ̅̅ ̅

𝜕𝑧
0   0    0
0   0    0
0   0    0

 

]
 
 
 
 
 
 
 
 
 

 (2D.7) 

With �̅�𝑣 and 𝑩𝑑 at hand, the latter computed as (2D.5), the modified deformation matrix �̅� 

matrix is obtained by the summation as shown in (2D.8). 

�̅� = 𝑩𝒅 − �̅�𝒗 (2D.8) 
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Appendix 2E: Parent elements 

The parent space coordinates are represented differently for rectangular and triangular elements. 

For rectangular elements (line, square and hexahedron) the parent coordinates are given by the �̃� 

vector, which is 𝜉, {𝜉, �̃�}
𝑇

and {𝜉, �̃�, �̃�}
𝑇

for one, two and three-dimensional parent spaces 

respectively. For triangular elements (triangle and tetrahedron) the parent coordinates are given 

by the 𝒓 vector, which is {𝑟, 𝑠}𝑇and {𝑟, 𝑠, 𝑡}𝑇for two and three dimensions respectively. 

One parent space has attached a set of nodes and each node has attached a basis function 𝜙. The 

projected space from the parent space is called ℂ and lies in ℝ𝑚, with 𝑚 typically from one to 

three. ℂ-coordinates are represented by the vector 𝒄. 

Nodes have coordinates in the parent and the projected space. The parent and projected 

coordinates at the 𝑖-location are called �̃�𝑖  and 𝒄𝑖. The latter is mapped from �̃�𝑖 using equation 

(2E.1), where the dependency on the parent coordinates is omitted for clarity, e.g. we write 𝜙 

instead 𝜙(�̃�). 

𝒄𝑖 =∑𝜙𝑗  𝒄𝑗

𝑛

𝑗=1

 (2E.1) 

where: 

𝑛 is the number of nodes of the parent element.  

𝜙𝑗 is the value of the jth basis function at �̃�𝑖. 

𝒄𝑗  is the ℂ –coordinate of the jth node.  

Jacobians are computed as equations shown in Table 2E.1. 

Table 2E.1 Calculation of Jacobians. 

Dimensions of the parent space Dimension of projected space Jacobian 

1 1, 2 or 3 𝒥 = ‖𝒄,�̃� ‖ 

2 2 or 3 𝒥 = ‖𝒄,�̃�× 𝒄,�̃� ‖ 

3 3 𝒥 = 𝑑𝑒𝑡[𝒄,�̃� 𝒄,�̃� 𝒄,�̃� ] 

The derivatives 𝒄,�̃�  are computed using the linear combination (2E.1), i.e. deriving the basis 

functions and summing as follows: 

𝜕𝒄𝑖

𝜕𝜉
=∑ 

𝜕𝜙𝑗

𝜕𝜉
 𝒄𝑗

𝑛

𝑗=1

 (2E.2) 
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In this appendix basis function of the next parent elements are presented.  

- Linear line. 

- Linear square. 

- Linear hexahedron. 

- Linear and quadratic triangle. 

- Linear and quadratic tetrahedron. 

In the figures below, the filled dots represent nodes and the hollow dot a generic 𝑖-location. 

2E.1 Linear line 

 
Fig. 2E.1 Parent space and mapping onto the ℂ-space of 𝑖-location. 

Basis functions at 𝑖 location are: 

𝜙1 =
1

2
(1 − 𝜉𝑖) (2E.3) 

𝜙2 =
1

2
(1 + 𝜉𝑖) (2E.4) 

2E.2 Linear square 

 
Fig. 2E.2 Parent space and mapping onto the ℂ-space of 𝑖-location. 

Basis functions at 𝑖-location are: 

𝜙1 =
1

4
(1 − 𝜉𝑖)(1 − �̃�𝑖) (2E.5) 

𝜙2 =
1

4
(1 − 𝜉𝑖)(1 + �̃�𝑖) (2E.6) 

𝜙3 =
1

4
(1 + 𝜉𝑖)(1 − �̃�𝑖) (2E.7) 
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𝜙4 =
1

4
(1 + 𝜉𝑖)(1 + �̃�𝑖) (2E.8) 

2E.3 Linear hexahedron 

 
Fig. 2E.3 Parent space and mapping onto the ℂ-space of 𝑖-location. 

Basis functions at 𝑖-location are: 

𝜙1 =
1

8
(1 − 𝜉𝑖)(1 − �̃�𝑖)(1 − �̃�𝑖) (2E.9) 

𝜙2 =
1

8
(1 − 𝜉𝑖)(1 − �̃�𝑖)(1 + �̃�𝑖) (2E.10) 

𝜙3 =
1

8
(1 − 𝜉𝑖)(1 + �̃�𝑖)(1 − �̃�𝑖) (2E.11) 

𝜙4 =
1

8
(1 − 𝜉𝑖)(1 + �̃�𝑖)(1 + �̃�𝑖) (2E.12) 

𝜙5 =
1

8
(1 + 𝜉𝑖)(1 − �̃�𝑖)(1 − �̃�𝑖) (2E.13) 

𝜙6 =
1

8
(1 + 𝜉𝑖)(1 − �̃�𝑖)(1 + �̃�𝑖) (2E.14) 

𝜙7 =
1

8
(1 + 𝜉𝑖)(1 + �̃�𝑖)(1 − �̃�𝑖) (2E.15) 

𝜙8 =
1

8
(1 + 𝜉𝑖)(1 + �̃�𝑖)(1 + �̃�𝑖) (2E.16) 
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2E.4 Linear triangle 

 

Fig. 2E.4 Parent space and mapping onto the ℂ-space of 𝑖-location. 

Basis functions at 𝑖-location are: 

𝜙1 = 𝑟𝑖 (2E.17) 

𝜙2 = 𝑠𝑖 (2E.18) 

𝜙3 = 𝑡𝑖  (2E.19) 

Where 𝑡 = 1 − 𝑟 − 𝑠. 

2E.5 Quadratic line 

 

Fig. 2E.5 Parent space and mapping onto the ℂ-space of 𝑖-location. 

Basis functions at 𝑖 location are: 

𝜙1 =
1

2
(𝜉𝑖

2
− 𝜉𝑖) (2E.3) 

𝜙2 = (1 − 𝜉𝑖
2
) (2E.4) 

𝜙3 =
1

2
(𝜉𝑖

2
+ 𝜉𝑖) (2E.3) 
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2E.6 Quadratic triangle 

 

Fig. 2E.6 Parent space and mapping onto the ℂ-space of 𝑖-location. 

Basis functions at 𝑖-location are: 

𝜙1 = 𝑟𝑖 (2𝑟𝑖 − 1) (2E.20) 

𝜙2 = 𝑠𝑖 (2𝑠𝑖 − 1) (2E.21) 

𝜙3 = 𝑡𝑖 (2𝑡𝑖 − 1) (2E.22) 

𝜙4 = 4𝑟𝑖𝑠𝑖 (2E.23) 

𝜙5 = 4𝑠𝑖𝑡𝑖 (2E.24) 

𝜙6 = 4𝑡𝑖𝑟𝑖 (2E.25) 

Where 𝑡 = 1 − 𝑟 − 𝑠. 

2E.7 Linear tetrahedron 

 

Fig. 2E.7 Parent space and mapping onto the ℂ-space of 𝑖-location. 

Basis functions at 𝑖-location are: 
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𝜙1 = 𝑟𝑖 (2E.26) 

𝜙2 = 𝑠𝑖 (2E.27) 

𝜙3 = 𝑡𝑖  (2E.28) 

𝜙4 = 𝑢𝑖 (2E.29) 

Where 𝑢 = 1 − 𝑟 − 𝑠 − 𝑡. 

2E.8 Quadratic tetrahedron 

 

Fig. 2E.8 Parent space and mapping onto the ℂ-space of 𝑖-location. 

Basis functions at 𝑖-location are: 

𝜙1 = 𝑟𝑖 − 2 𝑟𝑖 (𝑠𝑖 + 𝑡𝑖 + 𝑢𝑖) (2E.30) 

𝜙2 = 𝑠𝑖 − 2 𝑠𝑖 (𝑟𝑖 + 𝑡𝑖 + 𝑢𝑖) (2E.31) 

𝜙3 = 𝑡𝑖 − 2 𝑡𝑖 (𝑟𝑖 + 𝑠𝑖 + 𝑢𝑖) (2E.32) 

𝜙4 = 𝑢𝑖 − 2 𝑢𝑖 (𝑟𝑖 + 𝑠𝑖 + 𝑡𝑖) (2E.33) 

𝜙5 = 4 𝑟𝑖𝑠𝑖 (2E.34) 

𝜙6 = 4 𝑠𝑖𝑡𝑖 (2E.35) 

𝜙7 = 4 𝑡𝑖𝑟𝑖 (2E.36) 
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𝜙8 = 4 𝑢𝑖𝑟𝑖 (2E.37) 

𝜙9 = 4 𝑢𝑖𝑠𝑖 (2E.38) 

𝜙10 = 4 𝑢𝑖𝑡𝑖 (2E.39) 

Where 𝑢 = 1 − 𝑟 − 𝑠 − 𝑡. 
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Appendix 2F: Jacobians 

Given the 𝑐 −dimensional �̃� space whose coordinates are denoted by �̃�1, … , �̃�𝑐, and the 

𝑑 −dimensional 𝐴 space whose coordinates are denoted by 𝑎1, … , 𝑎𝑑. Let us assume a set of 𝑑 

functions 𝑓1, … , 𝑓𝑑 such that 𝑓: �̃� → 𝐴. The differentials of 𝒇 may be written as: 

{
𝑑𝑓1
⋮
𝑑𝑓𝑑

} = [

𝑓1,�̃�1 𝑓1,�̃�𝑐
⋱

𝑓𝑑,�̃�1 𝑓𝑑,�̃�𝑐

] {
𝑑�̃�1
⋮

𝑑�̃�𝑑

} (2F.1) 

Where the matrix is known as the Jacobian matrix which is composed of 𝑐 columns. The 𝑖th 

column is the vector 𝒇,�̃�𝑖. The Jacobian matrix may be expressed in indicial notation as (2F.2). The 

norm of such matrix is used for transformation of boundaries in integration. Table 2F.1 

summarizes the most common cases for different values of 𝑐 and 𝑑. 

𝓙 =
𝜕𝑓

𝑖

𝜕�̃�𝑗
 (2F.2) 

Table 2F.1 Computation of Jacobian norm. 

𝑐 𝑑 ‖𝓙‖ 

1 

1 
𝑑𝑓

𝑑�̃�
 

2 or 3 ‖
𝜕𝑓𝑖
𝜕�̃�
‖ = ‖𝒇,�̃�1 ‖ 

2 2 or 3 ‖𝒇,�̃�1× 𝒇,�̃�2 ‖ 

3 3 𝑑𝑒𝑡 𝓙 

One example is provided here. In the mapping from parameter (�̂�) to physical space (𝛺) in solids 

both spaces are three-dimensional, i.e. 𝑐 = 3 and 𝑑 = 3. Therefore the Jacobian is: 

𝒥1 = 𝑑𝑒𝑡 𝓙1 =  𝑑𝑒𝑡 [

𝑥,𝜉 𝑥,𝜂 𝑥,𝜒
𝑦,𝜉 𝑦,𝜂 𝑦,𝜒
𝑧,𝜉 𝑧,𝜂 𝑧,𝜒

] (2F.3) 

Note that the functions are the physical coordinates themselves. 

2F.1 Frobenius norm of the Jacobian 
Given the Jacobian matrix with 𝑛 rows and 𝑚 columns, its Frobenius norm is calculated as: 

‖𝑱‖𝐹 = √∑∑|𝐽𝑖𝑗|
2

𝑚

𝑗=1

𝑛

𝑖=1

  (2F.4) 
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Appendix 2G: IGES files text structure 

This appendix briefs the text structure of the IGES files, highlighting the most relevant features to 

this work. Fig. 2G.1 shows one example. The file has six sections called flag, start, global, directory 

entry, parameter and terminate. In all sections the row number, or address, is indicated by the 

last number. For example, in Fig. 2G.1 directory entry section is shown from row 1 to row 15, and 

parameter data from 1 to 20. These two sections are used in this research and are further 

detailed below. For clear identification of the IGES graphic objects, they are written in bold-italic, 

and its type number indicated in brackets. 

 

Fig. 2G.1 Aspect of IGES file and different sections within it. Fourth and fifth sections have been cut to fit 

the image in one page. 

Directory entry section contains two lines per graphical object. In the first line, the first number is 

the type of object (e.g. 514 for shell, 510 for face, etc.) and the second number is the row address 

in the parameter data section. The second line first number is again the type and the second 

number (negative) is another address that we designate as the colour address. For some types 

colour address code is 0 or not defined, e.g. shell(514) does not have it. 
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For example, in Fig. 2G.1 first four lines of directory entry section indicate that there are two 

manifold solid B-reps (186) and next four lines indicate two shells (514). The four objects are 

located at rows 1, 2, 3 and 4 in parameter data section. The colour addresses of manifold solid B-

rep are 145 and 147. Fig. 2G.2 provides one more example: three curves (126) whose addresses in 

parameter data section are 96, 105 and 107. 

 

Fig. 2G.2 Address storage in directory entry and its location in parameter data section. 

Parameter data section stores the information of objects. First number is the type (e.g. 514 for 

shell, 510 for face, etc.) and the meaning of next numbers vary with each type. They store 

geometrical information, including NURBS features, and addresses of dependant objects in 

directory entry section. The numbers are separated by comas. Number of lines per object varies. 

Below there are two examples for clarification. 

Parameter data section. Example 1: 

126,1,1,0,0,1,0,0.,0.,100.,100.,1.,1.,0.,99.9999999999999,0.,0.,      57P     29 

-5.6843418860808D-14,0.,0.,100.,0.,0.,0.; 

It is a curve object (type 126). First two numbers indicate number of control points minus one and 

degree. Therefore it has two control points and degree is one. Next three numbers are flags (value 

1 or 0) indicating if it is closed or open curve, polynomial or rational and periodic or not. In this 

case it is an open rational non-periodic curve. Next numbers indicate knot vector, control points 

weights and coordinates. Hence this curve knot vector is {0,0,100,100}, control points weights are 

{1,1}, control point coordinates are {0,99.99,0} and {0,0,0}. The latest 4 numbers of curves are not 

used in this work. 
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Parameter data section. Example 2: 

510,177,1,1,69;                                                       45P     23 

It is a face object (type 510). First number indicates parameter data section address of underlying 

surface, second number indicates the number of loops and the third is an outer loop flag (0 or 1 

for inner and outer). In this case there is one outer loop. Last number is the parameter data 

section address to the unique loop. In case there were more loops their addresses would be 

written behind. 

At the rear of parameter data section they are stored the colour definition entities (type number 

314). They are referred in the directory entry section by the colour address (mentioned above). 

This address number is followed by a “P” and it is located before the last number. Fig. 2G.3 

illustrates one example. The first number of the line is the type, the next three numbers 

correspond to the RBG colour code given in percentage (100 % corresponds to 255). For example, 

first colour code in Fig 2G.3 has next three colour numbers: {201, 100, 0} that are the percentages 

of 255 shown in the IGES file. Next number is the colour address (145P and 147P) and the last 

number is the address in parameter data section. 

 

Fig. 2G.3 Colour entities in parameter data section. 
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Appendix 3A: Code notes 

This appendix describes the most important variables used in the algorithm, and summarizes the 

algorithm itself in blocks diagrams. The two principal variables are the patch class and the 

boundary surface class. The former hosts the patches parametrization and discretization. The 

later contains the boundary surfaces parametrization, discretization and the boundary conditions 

values (prescribed displacements and surface tractions). They are referred in the code as 

Spatches and Bentities. Previous to the description of those two classes, the auxiliary 

structures of data used in the algorithm are presented in four sections as follows: 

- Auxiliary structures 1: transference from IGES files. They store the information from the 

IGES files keeping the same arrangement as per those files. 

- Auxiliary structures 2: IGES information arranged. They store the information from the 

IGES files but arranged to facilitate their use in this algorithm. 

- Auxiliary structures 3: prepared for skins, patches and boundary surfaces generation. 

These structures are devised to compute the skins, patches and surface generation easily. 

- Auxiliary structures 4: tetrahedralization. The structures used in the tetrahedralization of 

the solids are described here. 

3A.1 Auxiliary structures 1: transference from IGES files 

The IGES objects name, reference number in the IGES files and the array of the code where it is 

stored are shown in Table 3A.1. 

Table 3A.1 IGES objects storage. 

Type number in IGES system Graphic object Structure 

186 manifold solid B-rep MSBO 

514 shell shells 

510 face faces 

128 rational B-spline surface (surface) surf 

508 loop loops 

504 edges edges 

126 curve curves 

502 vertex vertexes 

143 bounded surface bsurf 

141 boundary bound 
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Next tables show the components of each structure that contain IGES file information. Each 

structure is an array of sub-structures. For example, Sshells is an array of n sub-structures, 

where each Sshells has the components R, Nof, faR and faO, being n is the number of shells. 

In the code schemes (section 3A.7), the gross and bounded patches are stored in the so-called sG 

arrays and sB arrays respectively. 

Smsbo 

Component Description 

shR Pointer to correspondent Sshell 

 

Sshells 

Component Description 

R Reference in the IGES file 

Nof Number of faces attached 

faR Pointer to attached Sfaces (Nof faces per shell) 

faO Orientation of face: 1 / 0 if points outside / inside the shell 

 

Sfaces 

Component Description 

R Reference in the IGES file 

suR Pointer to attached Ssurf (one surface per face) 

Nol Number of loops attached 

IOL Inner/outer loop flag, value is 1/0 

loR Pointer to attached Sloops (Nol loops per face); first loop is the outer 

 

Sloops 

Component Description 

R Reference in the IGES file 

Noe Number of edges attached 

edR Pointer to attached collection of Sedges 

eLI Pointer to attached Sedges within the collection (Noe edges per loop) 

edO Orientation of edge: 1 / 0 leaves computable surface at left / right hand side 
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Sedges 

Component Description 

R Reference in the IGES file 

Noc Number of curves attached 

cuR Pointer to attached Scurves (Noc curves per edge) 

v1R and v2R Pointer to attached collection of Svrtx, for initial and final vertexes 

v1LR and v2LR Pointer to attached Svrtx within the collection (two vertexes per edge) 

 

Svrtx 

Component Description 

R Reference in the IGES file 

Nop Number of points in the collection 

P Coordinates of the vertexes of the collection (Nop sets of coordinates) 

 

Sbsurf 

Component Description 

R Reference in the IGES file 

Nob Number of boundaries attached 

boR Pointer to attached Sbound (Nob boundaries per bounded surface) 

suR Pointer to attached Ssurf (one surface per bounded surface) 

 

Sbound 

Component Description 

R Reference in the IGES file 

Noc Number of curves attached 

cuR Pointer to attached Scurves (Noc curves per boundary) 

cuO Orientation of curve: 1 / 0 leaves computable surface at left / right hand side 

 

Ssurf 

Component Description 

R Reference in the IGES file 

NURBS Ncp, Degree, Usize, KnotV, w, P 

OC Open / closed surface flag, whose value is 1 / 0; for two parameter directions 

PL Plane surface flag, whose value is 1 / 0  for plane / curved surface 
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Scurves 

Component Description 

R Reference in the IGES file 

NURBS Ncp, Degree, Usize, KnotV, w, P 

OC Open / closed curve flag, whose value is 1 / 0 

PL Plane curve flag, whose value is 1 / 0 for plane / curved line 

 

The relationship between the arrays is depicted in Fig. 3A.1. The scheme is valid for both sG arrays 

and sB arrays. 

 
Fig. 3A.1 Relation bewteen arrays that contain IGES file information. 
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3A.2 Auxiliary structures 2: IGES information arranged 

The tables of this section provide the components of the structures that store information of the 

patches and boundary surfaces prepared specifically for solid parametrization and identification 

of surfaces. 

gShell 

Component Description 

vP(8,xdim) Vertex coordinates (arranged hierarchically) 

face(6,1) Faces features (see below) 

eCurves(12,1) Edge curves features 

 

face 

Component Description 

eCurveR(2,2) Edge curves refences 

fSurface Features of surface at the background 

 

Fig. 3A.2 illustrates the relationship between the structures contained within gShell. Fig. 3A.3 

shows one example of bShell, where face 2 is detailed. eCurves are arranged as follows: 

- Curves references (1,1) and (1,2) parallel to 𝜉 direction, bottom and top. 

- Curves references (2,1) and (2,2) parallel to 𝜂 direction, left and right. 

 
Fig. 3A.2 Structures referred by gShell. 
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Fig. 3A.3 Example of gShell structure. 

gbShell and bShell 

Component Description 

Nfa Number of faces. In case of gbShell, Nfa = 6 always 

face(Nfa,1) Faces features (see below) 

 

face 

Component Description 

fSurface Features of surface at the background 

Nol Number of loops of the face 

fLoop(Nol,1) Features of curves of loop (see below) 

 

fSurface 

Component Description 

NURBS features  

n Normal versor (for plane surfaces only) 

PL Plane surface flag, 1/0 for plane / curved surfaces 

CS(udim,1) Closed surface flag, 1/0 for closed / open surfaces 

 

fLoop 

Component Description 

Noc Number of curves of the loop 

LCurves(Noc,1) NURBS features 
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The structures contained within gbShell or bShell are represented in Fig. 3A.4. One example 

of bShell is given in Fig. 3A.5, where face 2 is detailed. LCurves are arranged such that the 

computable surface lies at left-hand side of the advancing parameter direction of the curve. 

 

Fig. 3A.4 Structures referred by gbShell or bShell. 

 

 

 

Fig. 3A.5 Example of bShell structure. 
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3A.3 Auxiliary structures 3: for generation of skins, patches and boundary surfaces 

The tables of this section provide the structures that store information to generate: 

- The NURBS features and skins of the patches (Spatches), both gross and trimmed. This 

information is stored in gFace, tFace, tCurv and FgPatch. 

- The skins of the boundary surfaces (Bentities). This information is stored in bEnti 

and bCurv. 

- Additionally coupling, trimming and reverse flags for surfaces are stored in bCou, bTr 

and revs respectively. 

gFace and tFace 

Component Description 

Nfa Number of faces, for gross faces it is always six 

mSur(Nfa,1) Surfaces features 

There is one tFace per patch. 

mSur 

Component Description 

NURBS features  

PL Plane surface flag, 1/0 for plane / curved surfaces 

CS(udim,1) Closed surface flag, 1/0 for closed / open surfaces 

Nol Number of loops of the face 

Noc(Nol,1) Number of curves per loop of the face 

Rcu(Nol,Noc) Pointer to curves attached to each loop 

Tr Trimming flag, Tr=1 if trims the gross patch, otherwise Tr=0 

 

Fig. 3A.6 shows the information contained in gFace, which is applicable also to tFace. There is 

an important difference between gFace and tFace. The former faces are coincident with the 

gross patches, i.e. form a regular shell enveloping the gross patch with each face contoured by 

four curves that are the intersection with the adjacent faces. By contrast, the tFace stores the 

background surfaces, whose do not form a regular shell. These surfaces may be trimmed by one 

or more loops, therefore may extend further than the contours, i.e. the computable surface does 

not coincide with the background surface. 

The number of patches, is stored in Npa. There is one gFace and one tFace per patch. gFace 

wraps the gross patch with a regular shell of faces, and tFace wraps the trimmed patch with non-

regular shell of faces, which are trimmed by contour curves. Fig 3A.7 illustrates one example of 
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gFace and Fig. 3A.8 one example with tFace. In Fig. 3A.8 the bEnti structures are also 

represented. 

Each surface of tFace and bEnti is defined by a background NURBS surface and one or more 

bound loops of curves. These curves may trim or not the NURBS surfaces. The number of curves 

contouring tFace and bEnti are stored in Ntc and Nbc respectively. 

 
Fig. 3A.6 Structures contained by gFace and tFace. 

 
Fig. 3A.7 Example of gFace. 

 
Fig. 3A.8 Example of tFace and bEnti. 
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FgPatch 

Component Description 

NURBS features  

nbe Number of attached boundary entities  

Rbe Point to attached boundary entities 

 

The FgPatch structure contains all the information of the parametrized solid. One example is 

given in Fig. 3A.9. 

 

Fig. 3A.9 Example of FgPatch structure. 

bEnti 

Component Description 

NURBS features  

PL Plane surface flag, 1/0 for plane / curved surfaces 

CS(udim,1) Closed surface flag, 1/0 for closed / open surfaces 

Nol Number of loops of the face 

Noc(Nol,1) Number of curves per loop of the face 

Rcu(Nol,Noc) Pointer to curves attached to each loop 

Tr(2,1) Trimming flag, 0 / 0.5 / 1 for external / internal / trimming 

Cou Coupling reference in case it is a coupling surface, otherwise it is zero 

Pa(2,1) Patches reference, the first is the master in case the entity is coupling 

 

The boundary surfaces are all stored in bEnti regardless the patch where they belong. See one 

example in Fig. 3A.10. The patch where the each boundary surface applies is stored in Pa array. In 

case of coupling surfaces, Pa stores both patches references, otherwise the first component 

stores the involved patch and the second is zero. 
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Fig. 3A.10 bEnti structures. 

tCurv and bCurv 

Component Description 

NURBS features  

CD Closed line flag, 1/0 for closed / open 

conF Contour flag, 1/0 for curves at edge of surface / internal 

The curves that contour tFace and bEnti are stored in tCurv and bCurv respectively. Next 

explanation, given for bEnti, is also valid for tFace. 

bEnti and bCurv are transferred from sB arrays, i.e. sBbsurf and sBcurves. In bEnti each 

surface has its own contour curves, not shared by others, and leaving the computable surface at 

the left-hand side. The references of the surfaces in the IGES file and the user references can be 

different. The relationship between both references is stored in beoR. Fig.3A.11 provides one 

example of three surfaces, where each surface in bEnti has its own contour curves, meanwhile in 

bBsurf the curves are shared. 

 

Fig. 3A.11 Relation between sBsurf/sBcurves and bEnti/bCurv. 
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Coupling, trimming and reversal flags of boundary surfaces 

Boundary surfaces need to be defined in terms of coupling, trimming and reversal. This definition 

is stored in arrays of flags, that are called bCou, bTr and revs respectively. One example is 

illustrated in Fig. 3A.12. In addition, the coupled patches references are stored in pCou array. For 

example, in Fig. 3A.12 there is a single coupling between patches 1 and 2. 

 

Fig. 3A.12 Examples of bCou, bTr, revs and pCou. 

Contour curves of trimmed patches (ccTp) 

The array ccTp stores the information of contour of curves of trimmed patches that are 

aggregated, i.e. non-repeated. There is one ccTp per patch. Its components are: 

Component Description 

Nf, Nc Number of faces and contour curves of the patch 

nlo(Nf,1) Number of loops per face 

ncu(Nf,nlo) Number of curves per loop of each face 

agCurv(Nc,1)) Curves features (each one is a tCurv structure) 

SCcon(Nf,nlo,ncu) 
Surface VS curve connectivity matrix, passing through the loop 

reference 

CScon(Nc,*) 
Curve VS surface connectivity matrix. In case only one surface is 

attached to a curve, the rest of the row components are zero. 

NFC(Nc,1) 

n Number of vertexes of the curve 

Nsr Number of surfaces where the curve lies in 

sr(Nsr,1) Surfaces references 

Un(Nsr,n,2) Coordinates in surfaces parameter spaces 

Bn(n,1) Coordinates in curve parameter space 

An(n,3) Coordinates in patch parameter space 

Xn(n,3) Coordinates in physical space 
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3A.4 Auxiliary structures 4: tetrahedralization 

GPT  

Acronym of gross patch trimmed. Contains the features of the tetrahedralization of the gross-

trimmed patch. 

Component Description 

NE Number of nodes (only end-nodes, nod mid-edge nodes) 

Nn Number of elements (tetrahedrons) 

Xv(Nn,xdim) Nodes coordinates in physical space 

Av(Nn,pudim) Nodes coordinates in parameter space 

EVcon(NE,4) Connectivity matrix : Tetrahedron VS vertex  

DT Delaunay object (from Matlab®) 

Lax(NE,2) Average of edges lengths of tetrahedrons in parameter and physical spaces 

Lv(Nn,2) Average of lengths of all edges attached to each node in parameter and physical spaces 

 

THC  

Contains the coordinates of the nodes of the tetrahedral mesh. The number of nodes is 

designated by Nn. 

Component Description 

Xv(Nn,xdim) Nodes coordinates in the physical space 

Av(Nn,pudim) Nodes coordinates in the parameter space of the patch 

Uv(Nn,sudim) Nodes coordinates in the parameter space of the surface (if applies) 

Bv(Nn,cudim) Nodes coordinates in the parameter space of the curve (if applies) 

NCS(Nn,2) Curve and surface references where to node lies on (if applies) 

rm(Nn,1) Reference of the node in the MLT (if applies) 

ANv(Nn,pudim) 
Norma vectors to nodes that belong to the MLT (if applies) in the patch parameter 

space. 
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MLT  

Acronym of merged linear triangulations. 

Component Description 

tNE Number of elements (triangles) 

tNV Number of nodes (only end-nodes, nod mid-nodes from rTskin) 

tNL Number of lines 

tTVcon(tNE,3) Connectivity matrix: Element vs Vertexes 

tLVcon(tNL,3) Connectivity matrix: Lines vs Vertexes 

tVLcon(tNV,*) Connectivity matrix: Vertex vs Edge Lines 

tTLcon(tNE,3) Connectivity matrix: Element vs Lines 

tVTcon(tNV,*) Connectivity matrix: Vertex vs Element 

tLTcon(tNE,2) Connectivity matrix: Edge line vs Element 

tUv(tNV,2) Parameter coordinates of surface where the node lies in 

tBv(tNV,1) Parameter coordinates of curve where the node lies in 

tAv(tNV,3) Coordinates in patch parameter space of vertexes 

tXv(tNV,3) Coordinates in physical space of vertexes 

tNCS(tNV,2) Curve and surface attached to each node (0 if it does not apply) 

tANv(tNV,3) 

tXNv(tNV,3) 

Normal versor in patch parameter space and physical space to each node 

(averaged adjacent triangles normal) 

tANe(tNE,3) 

tXNe(tNE,3) 
Normal versor in patch parameter space and physical space to each triangle 

tAtetIN(tNE,3) 

tAtetOU(tNE,3) 

Coordinates of node to from optimal tetrahedron for each triangle. The node 

projection lies at the triangle centroid. In patch parameter space. 

tXtetIN(tNE,3) 
Coordinates of node to from optimal tetrahedron for each triangle in physical 

space and only for node the lie within the patch domain 

tDtet(tNE,1) Distance to triangle from optimal tetrahedron node 

 

 
Fig. 3A.13 MLT structure. 
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rTskin (cTskin) 

These triangles are used as tetrahedron facets in contact with the trimming surfaces. 

Properties Description 

NURBS features  

mCS(udim,1) Closed surface flag, equals to 1 in case the surface is closed 

mPN Plane surface flag 

mNE Number of triangles 

mNV Number of vertexes, with no mid-edge vertexes 

mNVm Number of vertexes including mid-edges, for quadratic surfaces 

mBv(mNVm,1) Parameter coordinates in curve parameter space 

mAv(mNVm,3) Patch parameter space coordinates of vertexes (master patch) 

mUv(mNVm,2) Surface parameter space coordinates of vertexes 

mXv(mNVm,xdim) Physical space coordinates of vertexes 

mTVcon(mNE,*) Connectivity matrix: Element vs Vertexes 

mVTcon(mNV,*) Connectivity matrix: Vertex vs Elements 

mLVcon(*,*) 
Connectivity matrix: Line vs Vertexes. In case of mid-vertex it appears at the 

second position 

mVLcon(mNV,*) Connectivity matrix: Vertex vs Lines 

mTLcon(mNE,3) Connectivity matrix: Element vs Lines 

mArea(mNE,1) Area or each triangle (assumed linear) in physical space 

mANv(mNV,3) Normal to each vertex in patch parameter space 

mANe(mNE,3) Normal to each triangle (assumed linear) in patch parameter space 

mXNv(mNV,3) Normal to each vertex in physical space 

mXNe(mNE,3) Normal to each triangle (assumed linear) in physical space 

mNlo Number of contour loops of the NURBS surface 

mNlv(mNlo,1) 
Number of vertexes per contour loop. The final vertex, that coincides with the 

first vertex is not considered 

mNC(mNVm,1) Curve reference where the node lies in (equals 0 if not applies) 

 

 

rTskin(1) 

.mCS = (0 , 0) 

.mPN = 0 

rTskin(2) 

.mCS = (0 , 1) 

.mPN = 0 

rTskin(3) 

.mCS = (0 , 0) 

.mPN = 1 

Fig. 3A.14 Closed and plane flags of rTskin. 
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rTskin(1) 

.mNE = 11 

.mNV = 10 

.mNVm = 24 

.mTVcon(1,…)=(1,2,9,16,11,0) 

.mVTcon(9,…)=(1,2,3,4,5) 

.mLVcon(6,…) =(1,16,9) 

.mLVcon(23,…)=(2,9,0) 

.mVLcon(9,…)=(6,12,13,11,23) 

.mTLcon(1,…)=(2,6,23) 

.iem(5,…,…)= 0 1 2 

   1 0 0 

   2 0 0 

Fig. 3A.15 Connectivity matrices of rTskin. 

 

 

rTskin(1) 

.mNlo = 2 

.mNCL = (4,1) 

.mNlv = (7,4) 

.mNlcv(1,2) = 5 

Fig. 3A.16 Contour curves loops of rTskin. 

 

 

rTskin(1) 

.mXNv(6,…) =  

(1,0,0) 

.mXNe(4,…) =  

(1,0,0) 

.mANv(6,…) =  

(0,0.33,0.94) 

.mANe(4,…) =  

(0.3,0.3,0.91) 

.mANvS(6,…) =  

(1,0,0) 

.mANeS(4,…) =  

(1,0,0) 

Fig. 3A.17 Normal vectors of rTskin.  
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3A.5 Patch Class 

In this section Spatches, that is class cPatch, is presented. Fig. 3A.18 shows all the components 

of the class cPatch. When refer to one object, its name in the code is shown first, and afterwards 

in brackets the class name. For example Spatches (cPatch). 

 
Fig. 3A.18 Components of Spatches object. 
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cPatch(Npa) 

Properties Description 

nbe Number of boundary entities attached to the patch 

Rbe(nbe,1) References of the attached boundary entities 

trpF Trimmed patch flag, equal to 1 if trimmed, 0 otherwise 

Ngsk Number of gross skins (restrained to six) 

mGskin(Ngsk,1) cGskin class 

INS(Nts,1) cPINS class 

 

 

Fig. 3A.19 Spatches object. 

mGskin (cGskin) 

Properties Description 

mNE Number of triangles 

mNV Number of vertexes 

mTVcon(mNE,*) Connectivity matrix: Element vs Vertexes 

mLVcon(*,2) Connectivity matrix: Line vs Vertexes. 

mUv(mNV,2),mAv(mNV,3), 

mXv(mNV,xdim) 

Vertexes coordinates in surface parameter space, patch parameter 

space and physical space 

mNlo Number of loops that contour the skin 

mNlv(mNlo,1) Number of vertexes per loop (the first vertex is not repeated) 

 

INS (cPINS) 

Properties Description 

NURBS features  

mCP(mNacp,1) cCpoint class 

mNon Number of control points that are active 

mCPref(mNon,1) 
References of active control points, if control point is deactivated then its 

reference is 0 

mNicpE(nbe,1) Number of control points that are influential on each boundary entity 

mRicpE(nbe,mNicpE) References of influential control points in boundary entities 

mIM cIMesh class 

mNsk Number of skins 

skin(mNsk,1) cPskin class 
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Some components of instances (INS) are shown in Fig. 3A.20, the active control points are filled 

at the bottom. One example of influential control points is given in Fig. 3A.21, where influential 

control points on boundary surfaces 1 and 2 are shown at left and right-hand side respectively. 

 

Fig. 3A.20 INS object. 

 

 

Fig. 3A.21 Influential control point on boundary surfaces. 

  



 

247 
 

mIM (cIMesh) 

Properties Description 

mNV Number of vertexes, without the mid-edge vertexes 

mNVm Number of vertexes in total, counting also the mid-edge vertexes 

mNE Number of tetrahedrons 

mEVcon(mNE,*) Connectivity matrix: Element vs Vertexes 

mLVcon(mNL,*) Connectivity matrix: Line vs Vertexes. Mid-vertex appears at 2
nd

 position. 

mELcon(mNE,6) Connectivity matrix: Element vs Lines. Lines-vertexes: 1-2, 2-3, 3-1, 4-1, 4-2, 4-3 

mNve(mNE,1) Number of vertexes per element 

mAcoor(mNVm,3), 

mXcoor(mNVm,3) 
coordinates of vertexes in patch parameter and physical spaces 

iem(mNE,4,4) Inserted edges matrix 

mNgp Number of Gauss points 

mGP(mNgp,1) cGPpa class 

 

Fig. 3A.22 shows one tetrahedral mesh in physical and parameter spaces. The first nodes 

numbered are the end-nodes, followed by the mid-nodes. Fig. 3A.23 shows the detail of one 

linear and one mixed-degree tetrahedrons. In case of quadratic edges (as line 25 of tetrahedron 

3), the mid-node appears at the second position in the connectivity matrix mLVcon. 

 
Fig. 3A.22 Integration mesh in physical and parameter spaces. 
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Fig. 3A.23 Linear and mixed-degree tetrahedrons. 

 

mCP (cCpoint) 

Properties Description 

mAcoor(pudim,1), 

mXcoor(xdim,1) 
Coordinates in patch parameter and physical spaces 

mw Weight 

mAcoLi(pudim,2) Limits of influential volume in patch parameter space 

ON Flag for indicating the control point is active (ON = 1) or not (ON = 0) 

mIX(udim,1) 
Indexes of the position of the control point within the control points net in each 

parameter direction 

 
The influential volume of control points in parameter space, given by mAcoLi is given for one 

example in Fig. 3A.24. At left-hand side the trimmed parameter space is shown. The circles 

indicate control points, being the active control points filled. The patch Gauss points are 

represented by crosses. At centre and right, the influential volume is shown for control points 12 

and 14. In the latter case there are two Gauss points within the volume. 
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Fig. 3A.24 Influential volume of control points. 

Skin (cPskin) 

Properties Description 

mNE Number of triangles 

mNV Number of vertexes 

mTVcon(mNE,*) Connectivity matrix: Element vs Vertexes 

mVTcon(mNV,*) Connectivity matrix: Vertex vs Elements 

mLVcon(*,*) 
Connectivity matrix: Line vs Vertexes. In case of mid-vertex it appears at 

the second position 

mVLcon(mNV,*) Connectivity matrix: Vertex vs Lines 

mTLcon(mNE,3) Connectivity matrix: Element vs Lines 

mVP(mNV,1) cVP class 

mNlo Number of loops that contour the skin 

mNlv(mNlo,1) Number of vertexes per loop (the first vertex is not repeated) 

 

Fig. 3A.25 provides one example of cPskin, where the numbers of some of the nodes are given. 

The first numbered nodes corresponds to the contour loops. Fig. 3A.26 shows one example with 

the connectivity matrices of one cPskin. 
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Fig. 3A.25 Numbering of nodes in skins. 

 

 

Fig. 3A.26 Connectivity matrices in skins. 
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mGP (cGPpa) and mVP (cVP) 

Properties Description 

mAcoor(3,1), 

mXcoor(3,1) 
Coordinates in patch parameter and physical spaces 

mNicp, 

mRicp(mNicp,1) 

Number of influential control points from the patch on the point, and their 

references 

Rrel(mNicp,1) Basis functions values of the influential control points at Gauss point location 

dRpa(mNicp,udim), 

dRfi(mNicp,xdim) 

Derivatives of Rrel with respect to parameter directions and physical 

directions 

dJ1 Determinant of first Jacobian at the Gauss point location 

dJ2a 
Aggregated value from all elements where the Gauss point is of determinant 

of second Jacobian times Gauss point weight 

mD(6,6) Constitutive matrix 

mSv(6,1),mVM Stresses vector and Von Mises stress 

mPst(3,1),mPdi(3,3) Principal stresses and principal directions (one per column)  
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3A.6 Boundary surface class 

Fig. 3A.27 shows all the components of the class cBentities. One object is referred with its 

followed by the class name in brackets. For example Bentities (cBentities). 

 

Fig. 3A.27 Components of Bentities object. 

cBentities(Nbe) 

Properties Description 

mDIR 
Flags, equal to 1 if Dirichlet or Neumann condition is attached to the boundary entity. 

mNEU 

mCOU Coupling flag. It contains the coupling reference. Otherwise, if it is not coupling equals 0 

mPa(2,1) 
Patch where the surface belongs to. In case of coupling surface there are two patches 

stored 

INS(Nts,1) cBINS class 

 

INS (cBINS) 

Properties Description 

md(xdim,1) 
Prescribed displacements (Dirichlet). In case of not prescribed displacement, the 

value is nan 

mt(xdim,1) Prescribed tractions (Dirichlet) 

skin cBskin class 

 

One example of cBentities and its first instance is given in Fig. 3A.28. There are two boundary 

surfaces, one with Dirichlet and Neumann boundary conditions. In case there is not prescribed 

displacement in the Dirichlet condition, the component of the vector is to be nan (not a number).  
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cBentities(1) 

 .mDIR = 1 

 .INS.md=(0 nan -1) 

 .INS.skin 

cBentities(2) 

 .mNEU = 1 

 .INS.mt=(2 0 0) 

 .INS.skin 

Fig. 3A.28 Boundary conditions applied to boundary surfaces. 

Skin (cBskin) 

Properties Description 

NURBS features  

mNE Number of triangles 

mNV Number of vertexes, with no mid-edge vertexes 

mAv(mNVm,3) Patch parameter space coordinates of vertexes (master patch) 

mAvS(mNVm,3) Patch parameter space coordinates of vertexes (slave patch) 

mUv(mNVm,2) Surface parameter space coordinates of vertexes 

mXv Physical space coordinates of vertexes 

mTVcon(mNE,*) Connectivity matrix: Element vs Vertexes 

mVTcon(mNV,*) Connectivity matrix: Vertex vs Elements 

mLVcon(*,*) 
Connectivity matrix: Line vs Vertexes. In case of mid-vertex it appears at the 

second position 

mVLcon(mNV,*) Connectivity matrix: Vertex vs Lines 

mTLcon(mNE,3) Connectivity matrix: Element vs Lines 

mNlo Number of contour loops of the NURBS surface 

mNCL(mNlo,1) Number of curves per contour loop of the NURBS surface 

mNlv(mNlo,1) 
Number of vertexes per contour loop. The final vertex, that coincides with the 

first vertex is not considered 

mNlcv(mNlo, mNCL) Number of vertexes per contour curve 

mNgp Number of Gauss points of the triangulated surface 

mGP(mNgp,1) cGPbe class 

mPa(2,1) 
Patch where the surface is attached to. Second one is slave patch in case of 

coupling 

mCou It is zero in case it is not a coupling surface. 
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mGP (cGPbe) 

Properties Description 

mAcoor(3,1) Patch parameter coordinates 

mUcoor(2,1) Surface parameter coordinates 

mXcoor(3,1) Physical parameter coordinates 

mNicp Number of influential control points from the patch on the Gauss point 

mRicp(mNicp,1) References of the influential control points 

Rrel(mNicp,1) Basis functions values of the influential control points at Gauss point location 

dJ1 Determinant of first Jacobian at the Gauss point location 

dJ2a 
Aggregated value from all elements where the Gauss point is of determinant 

of second Jacobian times Gauss point weight 

mAcoorS(3,1) Same as mAcoor for slave patch 

mNicpS Same as mNicp for slave patch 

mRicpS(mNicpS,1) Same as mRicp for slave patch 

RrelS(mNicpS,1) Same as Rrel for slave patch 
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3A.7 Diagrams of blocks 

This section presents the blocks diagrams for the main routines used in the algorithm. Not all the 

routines are presented but the most relevant, i.e. this is not an exhaustive list. 

The routines are represented with a grey colour background meanwhile the variables are 

presented in a box with no fill (see examples in Fig. 3A.29). 

 

Fig. 3A.29 Example of routine and variable in the code schemes used in this section. 

 

The first five diagrams show the main stages (A to E) of the algorithm. Some of the routines are 

marked with an asterisk, which indicates the routine is further detailed in blocks diagrams 6 to 12.  

 

 

Fig. 3A.30 Asterisk indicates the routine is further detailed in another blocks diagram. 

GIVEN THE POOR RESOLUTION OF THE BLOCKS DIAGRAMS, ADDITIONAL ANNEX IS SUBMITTED 

WITH THIS THESIS WHERE THIS DIAGRAMS ARE PRESENTED IN A MORE LEGILIBLE MANNER. 
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BLOCKS DIAGRAM 01 
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BLOCKS DIAGRAM 02 
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BLOCKS DIAGRAM 03 
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BLOCKS DIAGRAM 04 

 

 

  



 

260 
 

BLOCKS DIAGRAM 05 

 



 

261 
 

BLOCKS DIAGRAM 06 
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BLOCKS DIAGRAM 07 
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BLOCKS DIAGRAM 08 
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BLOCKS DIAGRAM 09 
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BLOCKS DIAGRAM 10 
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BLOCKS DIAGRAM 11 
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BLOCKS DIAGRAM 12 
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BLOCKS DIAGRAM 13 
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Appendix 3B: References to patches and boundary entities 

3B.1 Allocation of references by the user 

Patches and boundary surfaces must be numbered by the user in order to refer to them when 

applying boundary conditions. Both, patches and boundary entities, are numbered independently 

to each other with correlative natural numbers starting by 1. The user allocates this number via 

RBG colour code, during the CAD design of the geometry and before exporting the IGES files. That 

code is given in CAD by three numbers that span from 0 to 255, e.g. 201,155, 80. Only the first 

number is used to allocate the patch or boundary reference. The rule applied in this work is 200 + 

reference. 

The only restraint to consider is that the patches references must coincide between gross and 

bounded patches. These reference numbers allocated by the user might differ from the order 

established by CAD when drawing the domain (IGES file order). However, the algorithm re-

arranges patches and boundary entities to follow the user´s allocation. 

One example with two patches and seven boundary surfaces is provided in Fig. 3B.1. The figure 

shows the trimmed patches with numbers 1 and 2. Let us remark that these numbering must 

match the gross patches. The first number of the RGB colour code is to be 201 and 202, as shown. 

The other two numbers of each code are not relevant for the algorithm. In Fig. 3B.1 the boundary 

surfaces are separated from the trimmed patches for clarity, but let us recall that the bounded 

patches have the boundary surfaces ON THEM, to be suitable to export the IGES files and create 

the B.igs. 

Same procedure is followed to number boundary surfaces. Hence their first number of the RGB 

code goes from 201 to 207 as illustrated in Fig. 3B.1. 

3B.2 Retrieving references in the algorithm 

Patches references (paoR) and their number (Npa) are returned by gp3111_patchesRef 

function. In a similar manner, boundary surfaces references (beoR) and their number (Nbe) are 

returned by be3121_boundRef function. Both functions work in the same manner, that are 

explained below for boundary surfaces case. For patches the explanation is also applicable. 

In general, the order of boundary surfaces in IGES files is not the same as the order given by the 

user. The array beoR links both references, that in reality is a pointer: to know the IGES position 

of one boundary surface whose user reference is i, one enters in beoR at the ith row reads the 

reference in the IGES files. Fig. 3B.2 illustrates one example graphically and Fig. 3B.3 in IGES file. 
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Fig. 3B.1 Allocation of references for boundary surfaces (left) and for trimmed patches (right). 

In Fig. 3B.3 one can observe seven boundary surfaces, therefore Nbe=7. Their colour addresses 

(recall section 3.1) in parameter data section are circled in red. In that section, the colour code 

first number indicates the user’s reference. As stated in section 3.1, the colour code is the 

percentage of 255. Then, for example the first BE in IGES file corresponds to the third user’s 

reference, as next computation: 

79.60784

100
255 ≈  203 → 𝑢𝑠𝑒𝑟′𝑠 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 203 − 200 = 3 

 

 

beoR =  

{
 
 
 

 
 
 
5
4
1
2
3
7
6
}
 
 
 

 
 
 

 

Fig. 3B.2 Example of user reference BS allocation and beoR array. 
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Fig. 3B.3 Identification of number of boundary surface, their colour addresses and the first colour number. 
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Appendix 4A: Direct stiffness method with prescribed 

displacements 

Let 𝛬 be a truss made of bars that only work under axial loads, tension or compression in ℝ𝑑. For 

plane structures 𝑑 = 2 and for three dimensional 𝑑 = 3. The connection between rods are 

designated as nodes. Let 𝑲 be the stiffness matrix, 𝒇 the nodal force vector and 𝒖 de nodal 

displacement vector of 𝛬, that are related as per equation (4A.1). 

𝒇 = 𝑲 𝒖 (4A.1) 

The 𝑖th node has 𝑑 degrees of freedom, then its displacement may be represented as 𝒖𝑖 =

(𝑢1
𝑖 , … 𝑢𝑑

𝑖 )
𝑇

. Each rod has a stiffness matrix in local axis 𝒌′ as (4A.2) and (4A.3) for plane and 

three-dimensional trusses respectively. 

𝒌′ =

[
 
 
 
 
+𝐸𝐴

𝐿⁄ 0

0 0

−𝐸𝐴
𝐿⁄ 0

0 0
−𝐸𝐴

𝐿⁄ 0

0 0

+𝐸𝐴
𝐿⁄ 0

0 0]
 
 
 
 

 (4A.2) 

 

𝒌′ =

[
 
 
 
 
 
𝐸𝐴/𝐿 0 0
0 0 0
0 0 0

−𝐸𝐴/𝐿 0 0
0 0 0
0 0 0

−𝐸𝐴/𝐿 0 0
0 0 0
0 0 0

𝐸𝐴/𝐿 0 0
0 0 0
0 0 0 ]

 
 
 
 
 

 (4A.3) 

𝐸, 𝐴 and 𝐿 are the elastic modulus, the cross-sectional area and the length of each rod. The 

rotation matrix of each rod is computed as (4A.4) and (4A.5) for plane and three-dimensional 

trusses respectively. 

𝑹𝑇 =

[
 
 
 
 
𝑐𝑜𝑠(𝛼𝑥′𝑥) 𝑐𝑜𝑠(𝛼𝑦′𝑥)

𝑐𝑜𝑠(𝛼𝑥′𝑦) 𝑐𝑜𝑠(𝛼𝑦′𝑦)

𝑐𝑜𝑠(𝛼𝑥′𝑥) 𝑐𝑜𝑠(𝛼𝑦′𝑥)

𝑐𝑜𝑠(𝛼𝑥′𝑦) 𝑐𝑜𝑠(𝛼𝑦′𝑦)]
 
 
 
 

 (4A.4) 
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𝑹𝑇 =

[
 
 
 
 
 
 
𝑐𝑜𝑠(𝛼𝑥′𝑥) 𝑐𝑜𝑠(𝛼𝑦′𝑥) 𝑐𝑜𝑠(𝛼𝑧′𝑥)

𝑐𝑜𝑠(𝛼𝑥′𝑦) 𝑐𝑜𝑠(𝛼𝑦′𝑦) 𝑐𝑜𝑠(𝛼𝑧′𝑦)

𝑐𝑜𝑠(𝛼𝑥′𝑧) 𝑐𝑜𝑠(𝛼𝑦′𝑧) 𝑐𝑜𝑠(𝛼𝑧′𝑧)

𝑐𝑜𝑠(𝛼𝑥′𝑥) 𝑐𝑜𝑠(𝛼𝑦′𝑥) 𝑐𝑜𝑠(𝛼𝑧′𝑥)

𝑐𝑜𝑠(𝛼𝑥′𝑦) 𝑐𝑜𝑠(𝛼𝑦′𝑦) 𝑐𝑜𝑠(𝛼𝑧′𝑦)

𝑐𝑜𝑠(𝛼𝑥′𝑧) 𝑐𝑜𝑠(𝛼𝑦′𝑧) 𝑐𝑜𝑠(𝛼𝑧′𝑧)]
 
 
 
 
 
 

 (4A.5) 

Where 𝑐𝑜𝑠(𝛼𝑖′𝑗) refers to the cosine from local axis 𝑖′ to global axis 𝑗. 𝒌′ is transformed to global 

axis 𝒌 as per equation (4A.6). Matrix 𝑲 is obtained by assembling matrices of rods in global axis. 

The location of 𝒌 within 𝑲 is given by the rod nodes references. 

𝒌 = 𝑹𝑇𝒌′ 𝑹 (4A.6) 

To prescribe displacements to some of the nodes one needs to operate with submatrices. The 

stiffness matrix and vectors can be subdivided as shown in equation (4A.7). Sub-indexes 𝑎 and 𝑏 

refer to un-known and known displacements respectively. Since 𝒖𝑏 are the displacements to be 

enforced and are known, the subsystem expressed in equation (4A.8) allows to compute the 

unknowns 𝒖𝑎. In the absence of forces, the unknown displacement vector is computed as (4A.9). 

{
𝒇𝑎
𝒇𝑏
} = [

𝑲𝑎𝑎 𝑲𝑎𝑏
𝑲𝑏𝑎 𝑲𝑏𝑏

] {
𝒖𝑎
𝒖𝑏
} (4A.7) 

𝒇𝑎 = 𝑲𝑎𝑎𝒖𝑎 +𝑲𝑎𝑏𝒖𝑏 (4A.8) 

𝒖𝑎 = 𝑲𝑎𝑎
−1 − 𝑲𝑎𝑏𝒖𝑏  (4A.9) 

The displacements of all nodes of 𝛬 are then given by the vectors 𝒖𝑏  (prescribed) and 𝒖𝑎 

(computed). 
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Appendix 4B: Least squares method 

4B.1 Fitting a bi-dimensional line 

Let us define set of 𝑚 points and the line 𝒍 that passes through the point 𝑨 = (𝑎, 𝑏), all in ℝ2. The 

line is expressed parametrically as (4B.1), where 𝒗 is the unit length vector that provides the 

direction and 𝑡 the free parameter. 

𝒍(𝑡) =  𝑨 + 𝒗 𝑡   (4B.1) 

The error at each point is defined as the distance from the line to that point, measured 

orthogonally to the line. The direction 𝒗 that minimizes the errors is given by the first eigenvector 

of the matrix 𝑳: 

𝑳 =  𝛿 𝑰 − 

[
 
 
 ∑ (𝑥𝑖 − 𝑎)

2
𝑚

𝑖=1
∑ (𝑥𝑖 − 𝑎)(𝑦𝑖 − 𝑏)

𝑚

𝑖=1

∑ (𝑥𝑖 − 𝑎)(𝑦𝑖 − 𝑏)
𝑚

𝑖=1
∑ (𝑦𝑖 − 𝑏)

2
𝑚

𝑖=1 ]
 
 
 
  (4B.2) 

Where 𝛿 is: 

𝛿 =  ∑ (𝑥𝑖 − 𝑎)
2

𝑚

𝑖=1
 +∑ (𝑦𝑖 − 𝑏)

2
𝑚

𝑖=1
 (4B.3) 

And (𝑥𝑖, 𝑦𝑖) are the coordinates of the 𝑖th point. 

 

4B.2 Fitting a three-dimensional plane 

Let us define set of 𝑚 points and the plane 𝝅 that passes through the point 𝑨 = (𝑎, 𝑏, 𝑐), all in 

ℝ3. The plane is expressed as (4B.4), where 𝒏 is the unit length vector that provides the 

orientation of the plane and 𝒂 is any point on the plane. 

𝒏 ∙ (𝑨 − 𝒂) = 0   (4B.4) 

The error at each point is defined as the distance from the plane to that point, measured 

orthogonally to the plane. The normal direction 𝒏 that minimizes the errors is given by the first 

eigenvector of the matrix 𝑷: 
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𝑷 =∑[

(𝑥𝑖 − 𝑎)
2 (𝑥𝑖 − 𝑎)(𝑦𝑖 − 𝑏) (𝑥𝑖 − 𝑎)(𝑧𝑖 − 𝑐)

(𝑥𝑖 − 𝑎)(𝑦𝑖 − 𝑏) (𝑦𝑖 − 𝑏)
2 (𝑦𝑖 − 𝑏)(𝑧𝑖 − 𝑐)

(𝑥𝑖 − 𝑎)(𝑧𝑖 − 𝑐) (𝑦𝑖 − 𝑏)(𝑧𝑖 − 𝑐) (𝑧𝑖 − 𝑐)
2

]

𝑚

𝑖=1

  (4B.5) 

Where (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖) are the coordinates of the 𝑖th point. 
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Appendix 5A: Isotropic triangulation and measure of isotropy 

One triangulation is isotropic if all its angles are 60 degrees and all nodes are attached to six 

triangles. Fig. 5A.1 illustrates the isotropic triangulation. 

 

Fig. 5A.1 Isotropic triangulation. 

The angles of the triangles and the number of triangles attached to each node, called valence, are 

used to measure the isotropy of the triangulation. The closer the angles to 60 degrees and the 

valences to 6, the more isotropic is the triangulation. Only infinite triangulation (with no borders) 

can be purely isotropic. When the isotropic triangulation is contoured angles different from 60 

degrees and valences different from six appear as illustrated in Fig. 5A.2. 

 

Fig. 5A.2 Quasi-isotropic triangulation. 

When one contoured triangulation has all the angles equal to 60 degrees and the valences to 6 

except at those triangles in the vicinity of the contours it is called quasi-isotropic triangulation 

(see Fig. 5A.2). 
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Appendix 5B: Measurement of triangles distortion 

5B.1 Linear triangles 

The distortion of one linear triangle may be measured by comparison with the equilateral triangle 

with same area. The number to compare is the ratio (5B.1). 

𝑟𝐴 =
𝐴𝐶
𝐴

 (5B.1) 

Where 𝐴𝐶  is the area of the inscribed circle and 𝐴 the area of the triangle itself. For one 

equilateral triangle, this ratio is called 𝑟𝐴
𝑒 and always approximately equal to 0.606. For other 

triangles 𝑟𝐴 is lower: the more distorted the triangle the lower value of 𝑟𝐴. The relation given in 

(5B.2), between one triangle 𝑟𝐴 and the equilateral, is used to characterize the triangle.  

𝜌 =
𝑟𝐴

0.606
 (5B.2) 

If 𝜌 = 1 the triangle is equilateral, i.e. it has the highest quality possible. Otherwise the value of 𝜌 

decreases as the distortion raises. 

To compute the ratio 𝑟𝐴, one needs the area of the triangle and its inscribed circle. The former is 

half the norm of the cross product of two vectors corresponding to two edges. For the area of the 

inscribed circle one first calculates the bisectors of two angles and their intersection, i.e. the 

incentre. Then the distance from the incentre to any of the triangle edges is the radius of the 

inscribed circle, which allows obtaining its area. Fig. 5B.1 shows three examples. 

 

Fig. 5B.1 Example of 𝜌 number for three different cases. Below each case it is represented the equilateral 

version (with same area than the triangle above). 
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5B.2 Quadratic triangles 

Quadratic triangles have nodes at the vertexes (numbered as 1,2,3) and nodes at the edges mid 

locations (numbered as 4,5,6), see Fig. 5B.2. Each edge of the triangle is a quadratic curve of 

length 𝐿𝑞𝑖
, where 𝑖 varies between 1 and 3. This arrangement leads to a non-plane nodes 

distribution that impedes the comparison via inscribed circumference (as per linear triangles). 

One sphere should be used instead. However finding the sphere is a non-linear problem that 

results computationally expensive, therefore another approach is presented here. 

The reference to compare with is the edge length of the equivalent equilateral triangle (𝐿𝑒𝑞). The 

equilateral triangle has the same area as the current triangle (𝐴𝑡𝑣) considering only nodes at 

vertexes (1,2,3), as shown in Fig. 5B.2. 

 

Fig. 5B.2 Numbering of nodes of quadratic triangle and construction of equivalent equilateral triangle. 

The length 𝐿𝑒𝑞 is obtained as (5B.3), which comes from equating the area 𝐴𝑡𝑣 of the equilateral 

triangle to the area of the current triangle defined between nodes at vertexes. 

𝐿𝑒𝑞 = 1.52 𝐴𝑡𝑣
1/2

 (5B.3) 

The variable that is measured is the coefficient of variation, in percentage, of the three quadratic 

edges lengths (𝐿𝑞𝑖
) with respect to the equivalent length (𝐿𝑒𝑞), as expressed in (5B.4). 

𝐶𝑉 =
100

𝐿𝑒𝑞
(
∑ (𝐿𝑞𝑖 − 𝐿𝑒𝑞)

2
3
𝑖=1

3
)

1/2

 (5B.4) 

For triangles with low distortion, i.e. closer to equilateral, 𝐶𝑉 is near to zero. The larger the 

distortion the larger 𝐶𝑉. Two examples are provided further on, comparing the variation of 𝐶𝑉 

varying one aspect parameter. In Fig. 5B.3 the height is changed, from equilateral triangle to 
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smaller heights, getting more distorted triangles. In consequence 𝐶𝑉 increases with such 

variation. In Fig. 5B.4 one edge is curved, increasing its mid-node eccentricity from zero 

(equilateral triangle) to certain value. With such eccentricity increment the 𝐶𝑉 becomes larger. 

b h 𝐴𝑡𝑣 𝐶𝑉 

10 8.66 43.30 0 

10 4.00 20.00 28 

10 2.00 10.00 63 

10 1.00 5.00 119 

10 0.50 2.50 203 

10 0.25 1.25 324 
 

 

 

 

Fig. 5B.3 Variation of CV with triangle distortion (height variation). 

 

b e 𝐿𝑞1 (arc) 𝐶𝑉 

10 0 10 0.0 

10 0.25 10.02 0.2 

10 0.5 10.07 0.7 

10 1 10.27 2.7 

10 2 11.03 10.3 

10 4 13.83 38.3 
 

 

 

 

 

Fig. 5B.4 Variation of CV with edge curvature. 

In view of Fig. 5B.3 and Fig. 5B.4 one can infer that the closer the triangle to the equilateral, i.e. 

the less distorted, the lower is the value of 𝐶𝑉. 
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Appendix 5C: Comparison between linear and quadratic 

triangulation 

This appendix shows the better performance of quadratic triangles versus the linear ones for 

approximating one NURBS surface 𝑆. Performance in this context refers to number of nodes 

required to define the approximated surface, called 𝑆̅, such that the error is equal or less than 

admissible value 𝐸𝑎𝑑𝑚. 

To compare both triangulations, linear and quadratic, next assumptions are made (see Fig. 5C.1):  

- the surface parameter domain is [0,1]⨂[0,1]; 

- the triangulation of 𝑆̅ is isotropic, except at edges; 

- the number of triangles in each direction is 𝑛 and 𝑚, being the triangles arranged in 𝑛 

columns as illustrated in Fig. 5C.1; 

- the side of each triangle is equal to 1.16 the width of the columns, i.e. ∆𝑣 ≈ 1.16∆𝑢; 

- the third derivative is one order of magnitude larger than the second, i.e. 
𝑆′′′

𝑆′′
= 10; 

- the error is measured only in one dimension of 𝑆 (𝑑=1). 

Fig. 5C.1 illustrates one triangulation under these assumptions with 5 x 8 triangles. In vertical 

direction, the first and last triangles of each column are considered as one. 

 

Fig. 5C.1 Triangulation with 5 x 8 triangles. 

The number of nodes (𝑁), given the number of triangles in each direction n and m, for linear and 

quadratic triangles are calculated as equations (5C.1) and (5C.2) respectively (one can deduct 

these expressions by looking at Fig. 5C.1). 

𝑁1 = (m − 1)(n + 1) (5C.1) 
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𝑁2 = (𝑚 − 1)(𝑛 + 1) + (𝑚 − 2)(𝑛 + 1) + (𝑚 + 2)(𝑛 + 1) (5C.2) 

The error in one parameter direction of 𝑆 with respect to 𝑆̅ is as per equations (5C.3) and (5C.4), 

for linear and quadratic approximations respectively. These equations are obtained from 

Appendix 2A, considering 𝑆’’ = 1  (therefore 𝑆’’’ = 10). 

𝐸1 ≤ 0.125 ℎ1
2 (5C.3) 

𝐸2 ≤ 0.642 ℎ2
3 (5C.4) 

Where ℎ is the nodal spacing. Note that the line length is 𝐿1 = ℎ1 and 𝐿2 = 2 ℎ2 for linear and 

quadratic lines respectively (see Fig. 5C.2). 

 

Fig. 5C.2 Line length and nodal spacing for linear and quadratic approximation. 

The key of the quadratic efficiency lies in the exponent of ℎ, that makes the nodal spacing to 

increase faster in quadratic interpolation when the error decreases. Let us fix the error to a value 

𝐸𝑎𝑑𝑚. The nodal distances to suit that error with linear and quadratic triangles may be calculated 

from equations (5C.3) and (5C.4), which yield expressions (5C.5) and (5C.6). 

ℎ1 ≈ 2.83 𝐸𝑎𝑑𝑚
1/2 (5C.5) 

ℎ2 ≈ 1.16 𝐸𝑎𝑑𝑚
1/3 (5C.6) 

The number of triangles in each direction is equal to the span, whose length is one, divided by the 

increment (linear) or twice the increment (quadratic), as shown in equations (5C.7) to (5C.10). 

𝑛1 ≈
1

2.83
1.16

 𝐸𝑎𝑑𝑚
1/2

≈
0.41

 𝐸𝑎𝑑𝑚
1/2

 (5C.7) 

𝑚1 ≈
1

  2.83 𝐸𝑎𝑑𝑚
1/2

≈
0.35

 𝐸𝑎𝑑𝑚
1/2

 (5C.8) 
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𝑛2 ≈
1

2
1.16
1.16

 𝐸𝑎𝑑𝑚
1/3

≈
0.50

 𝐸𝑎𝑑𝑚
1/3

 (5C.9) 

𝑚2 ≈
1

 2  1.16 𝐸𝑎𝑑𝑚
1/3

≈
0.43

 𝐸𝑎𝑑𝑚
1/3

 (5C.10) 

With the number of triangles in each direction at hand, the number of nodes for linear and 

quadratic cases may be computed as equations (5C.1) and (5C.2). Fig. 6.C3 shows the number of 

required nodes for both cases varying the fixed error from 𝐸𝑎𝑑𝑚 = 0.0001 to 0.005 (that 

corresponds to percentages of 𝑒 = 0.01 to 0.50 % of span). The number of nodes is less in the 

quadratic case, and the difference increases with the lesser value of 𝐸𝑎𝑑𝑚. 

 

Fig. 5C.3 Number of nodes required for linear and quadratic triangles versus admissible error in 

percentage(e). 

Linear and quadratic triangulations assuming error 𝐸𝑎𝑑𝑚<0.0005 (𝑒 = 0.05 %) are depicted in Fig. 

5C.4. By visual inspection one notice why the quadratic approximation is more efficient. Although 

this explanation made simplifications, it shows that quadratic triangulation tends to have less 

number of nodes than linear, for a fixed error. 

 

Fig. 5C.4 Triangulation for keeping the error 𝐸𝑎𝑑𝑚 < 0.0005, linear triangles (left) and quadratic (right). 
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Appendix 5D: Insertion of additional nodes 

In the generation of trimming surfaces and the tetrahedral mesh, additional nodes to the initial 

set may be required, either to achieve quadratic degree (mid-nodes) or to refine/modify the 

tetrahedral mesh. The insertion of these nodes is not direct as explained in this appendix. Let us 

use the prefix 𝑄 and 𝐾 for nodes and lines that lie on 𝑄-surfaces and 𝐾-curves respectively, the 

rest of nodes / lines are may be preceded by the term inner (see Fig. 5D.1). Note that the 𝐾-nodes 

set is included in the 𝑄-nodes set, i.e. 𝐾-nodes is a particular case of 𝑄-nodes. 

 

Fig 5D.1 Types of nodes and lines. 

This appendix describes the computation of the coordinates of one additional inserted node in all 

the involved spaces: 𝒙𝑖, 𝝃𝑖, 𝒖𝑖  and 𝑤𝑖. The node is preliminarily placed at the �̂�-space that is 

corrected to find its final coordinates. The process is different for inner, 𝑄 and 𝐾-nodes. 

a. Inner nodes: 

1. The position in the �̂�-space (𝝃𝑖) is given and coincides with the final position (there is 

no correction in this case). 

2. The coordinates in the 𝑃-space are obtained by patch NURBS mapping (𝒙𝑖). 

The coordinates in the �̂�-space and the �̂�-space (𝒖𝑖  and 𝑤𝑖) do not exist for inner nodes. 

b. 𝑄-nodes: 

1. The position given in the �̂�-space is preliminary (𝝃𝑝). 

2. Coordinates in the 𝑃-space are calculated by NURBS mapping (𝒙𝑝) from the �̂�-space. 

3. 𝒙𝑝 is point projected on the surface where the 𝑄-node belongs, obtaining its 

parameter coordinate (𝒖𝑖). 

4. The physical position is calculated by NURBS mapping of 𝒖𝑖  from the �̂�-space to the 

𝑃-space (𝒙𝑖). 

5. The position in the �̂�-space is obtained by point projection of 𝒙𝑖 on the patch (𝝃𝑖). 
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Note that in general 𝒙𝑖 ≠ 𝒙𝑝 and 𝝃𝑖 ≠ 𝝃𝑝. The coordinates in the �̂�-space (𝑤𝑖) do not exist for 

𝑄-nodes. The process scheme is given in Fig. 5D.2. 

 

Fig 5D.2 Addition of 𝑄-nodes. 

c. 𝐾-nodes: 

1. The position given in the �̂�-space is preliminary (𝝃𝑝). 

2. Coordinates in the 𝑃-space are calculated by NURBS mapping (𝒙𝑝) from �̂�-space. 

3. 𝒙𝑝 is point projected on the curve where the 𝐾-node belongs, obtaining its parameter 

coordinate (𝑤𝑖). 

4. The physical position is calculated by NURBS mapping of 𝑤𝑖 from the �̂�-space to the 

𝑃-space (𝒙𝑖). 

5. The positions in the �̂� and �̂�-spaces are obtained by point projection of 𝒙𝑖 on the 

patch and trimming surface (𝝃𝑖  and 𝒖𝑖). 

Note that in general 𝒙𝑖 ≠ 𝒙𝑝 and 𝝃𝑖 ≠ 𝝃𝑝. The process scheme is given in Fig. 5D.3. 

 

Fig 5D.3 Addition of 𝐾-nodes. 
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Appendix 5E: Example data 

Table 5E.1 Gross patch NURBS features 

Number of control points 

4 

4 

5 

Degree 

2 

2 

2 

Knot vector 

000   0.5   111 

000   0.5   111 

000   0.5  0.8   111 

Control points coordinates (x,y,z,w) 

 
    0.0000   50.0000    0.0000    1.0000 
    0.0000   50.0000   12.5070    0.9830 
    0.0000   55.1793   31.8363    0.9830 
    0.0000   60.2519   43.2120    0.9932 
    0.0000   62.7276   47.5000    1.0000 
   12.5000   50.0000    0.0000    1.0000 
   12.5000   50.0000   12.5070    0.9830 
   12.5000   55.1793   31.8363    0.9830 
   12.5000   60.2519   43.2120    0.9932 
   12.5000   62.7276   47.5000    1.0000 
   37.5000   50.0000    0.0000    1.0000 
   37.5000   50.0000   12.5070    0.9830 
   37.5000   55.1793   31.8363    0.9830 
   37.5000   60.2519   43.2120    0.9932 
   37.5000   62.7276   47.5000    1.0000 
   50.0000   50.0000    0.0000    1.0000 
   50.0000   50.0000   12.5070    0.9830 
   50.0000   55.1793   31.8363    0.9830 
   50.0000   60.2519   43.2120    0.9932 
   50.0000   62.7276   47.5000    1.0000 
   -5.0000   38.0000    0.0000    0.9615 
   -5.0000   38.0000   14.0868    0.9452 
   -5.0000   43.8335   35.8577    0.9452 
   -5.0000   49.5469   48.6704    0.9550 
   -5.0000   52.3353   53.5000    0.9615 
    8.4365   37.2561    0.0000    0.9808 
    8.1948   37.3922   14.2129    0.9683 
    8.1948   43.2404   36.0387    0.9683 
    8.3405   48.9170   48.9591    0.9758 
    8.4365   51.6910   53.8719    0.9808 
   30.5803   37.7519    0.0000    0.9426 
   30.2276   37.8912   14.1490    0.9308 
   30.2276   43.7115   35.8706    0.9308 
   30.4403   49.3599   48.7320    0.9379 
   30.5803   52.1204   53.6240    0.9426 
   41.0000   39.1200    0.0000    0.8853 
   41.0000   39.1200   13.9394    0.8702 
   41.0000   44.8924   35.4824    0.8702 
   41.0000   50.5460   48.1609    0.8792 
   41.0000   53.3052   52.9400    0.8853 
   -5.0000   12.0000    0.0000    0.9615 
   -5.0000   12.0000   17.5098    0.9452 
   -5.0000   19.2510   44.5708    0.9452 
   -5.0000   26.3527   60.4968    0.9550 
   -5.0000   29.8186   66.4999    0.9615 
    8.1052    9.5012    0.0000    0.9615 
    7.8602    9.7645   17.8511    0.9494 
    7.8602   17.1186   45.2968    0.9494 
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Table 5E.1 (cont.) 

Control points coordinates (x,y,z,w) 

 
    8.0079   24.2020   61.5603    0.9567 
    8.1052   27.6546   67.7493    0.9615 
   30.6965    8.8611    0.0000    0.9234 
   30.3360    9.1383   17.9354    0.9119 
   30.3360   16.5257   45.5057    0.9119 
   30.5534   23.6353   61.8479    0.9188 
   30.6965   27.1002   68.0693    0.9234 
   41.0000   10.8800    0.0000    0.8853 
   41.0000   10.8800   17.6572    0.8702 
   41.0000   18.1920   44.9461    0.8702 
   41.0000   25.3535   61.0062    0.8792 
   41.0000   28.8486   67.0599    0.8853 
    0.0000   -0.0000    0.0000    1.0000 
    0.0000   -0.0000   19.0896    0.9830 
    0.0000    7.9052   48.5922    0.9830 
    0.0000   15.6476   65.9551    0.9932 
    0.0000   19.4263   72.4999    1.0000 
   12.0000   -5.0000    0.0000    0.9615 
   12.0000   -5.0000   19.7479    0.9452 
   12.0000    3.1778   50.2678    0.9452 
   12.0000   11.1872   68.2294    0.9550 
   12.0000   15.0961   74.9999    0.9615 
   38.0000   -5.0000    0.0000    0.9615 
   38.0000   -5.0000   19.7479    0.9452 
   38.0000    3.1778   50.2678    0.9452 
   38.0000   11.1872   68.2294    0.9550 
   38.0000   15.0961   74.9999    0.9615 
   50.0000   -0.0000    0.0000    1.0000 
   50.0000   -0.0000   19.0896    0.9830 
   50.0000    7.9052   48.5922    0.9830 
   50.0000   15.6476   65.9551    0.9932 
   50.0000   19.4263   72.4999    1.0000 
 

Table 5E.2 Trimming surface NURBS features 

Number of control points 
2 

8 

Degree 
1 

3 

Knot vector 
00 11 

0000  0.2  0.4  0.6  0.8   1111 

Control points coordinates (x,y,z,w) 

 
   74.9484   -3.0000   55.0000    1.0000 
   74.9484    5.0000   45.0000    1.0000 
   74.9484   10.0000   33.0000    1.0000 
   74.9484   15.0000   35.0000    1.0000 
   74.9484   20.0000   30.0000    1.0000 
   74.9484   20.0000   20.0000    1.0000 
   74.9484   20.0000   10.0000    1.0000 
   74.9484   20.0000   -0.0000    1.0000 
  -25.0516   -3.0000   55.0000    1.0000 
  -25.0516    5.0000   45.0000    1.0000 
  -25.0516   10.0000   33.0000    1.0000 
  -25.0516   15.0000   35.0000    1.0000 
  -25.0516   20.0000   30.0000    1.0000 
  -25.0516   20.0000   20.0000    1.0000 
  -25.0516   20.0000   10.0000    1.0000 
  -25.0516   20.0000   -0.0000    1.0000 
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Appendix 6A: Arrangements of Gauss points 

6A.1 Line 

The parent space spans from -1 to 1. Table 6A.1 provides the position in parent space and the 

weight of the control points, according to their number (𝑁𝐺). 

Table 6A.1 Location and weights of Gauss points for lines. 

𝑁𝐺 𝜉 w 

1 0 2 

2 ±0.57735 1 

3 
±0.77459 
0 

0.55555 
0.88888 

4 
±0.86113 
±0.33998 

0.34785 
0.65214 

5 
±0.90617 
±0.53846 
0 

0.23692 
0.47862 
0.56888 

 

6A.2 Square and hexahedron 

For square and hexahedrons the Gauss points location and weights are obtained by tensor 

product of the involved directions. Each direction adopts the arrangement shown for lines. 

6A.3 Triangle 

The parent space is a rectangular triangle whose legs span from 0 to 1 in 𝑟 and 𝑠 axis. Table 6A.2 

provides the position in parent space and the weight of the control points, according to their 

number (𝑁𝐺). 

Table 6A.2 Location and weights of Gauss points for triangles. 

𝑁𝐺 𝒓 w 

1 1/3, 1/3 0.5 

3 
0.5, 0.5 
0, 0.5 
0.5, 0 

1/6 
1/6 
1/6 

4 

1/3, 1/3 
0.6, 0.2 
0.2, 0.6 
0.2, 0.2 

-27/96 
25/96 
25/96 
25/96 
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6A.4 Tetrahedron 

The parent space is a rectangular tetrahedron whose legs span from 0 to 1 in 𝑟, 𝑠 and 𝑡 axis. Table 

6A.3 provides the position in parent space and the weight of the control points, according to their 

number (𝑁𝐺). 

Table 6A.3 Location and weights of Gauss points for tetrahedrons. 

𝑁𝐺 𝒓 w 

1 1/4, 1/4, 1/4 1/6 

4 

𝛼, 𝛽, 𝛽 
𝛽, 𝛼, 𝛽 
𝛽, 𝛽, 𝛼 
𝛽, 𝛽, 𝛽 

1/24 
1/24 
1/24 
1/24 

5 

1/4, 1/4, 1/4 
1/3, 1/6, 1/6 
1/6, 1/3, 1/6 
1/6, 1/6, 1/3 
1/6, 1/6, 1/6 

-2/15 
3/40 
3/40 
3/40 
3/40 

𝛼 = 0.58541020    𝛽 = 0.13819660 
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Appendix 6B: Tetrahedrons quality. Volume and regular 

tetrahedron 

One tetrahedron volume is computed as equation (6B.1), where 𝒗𝑖
𝑗
 is the vector from node 𝑖 to 

node 𝑗. 

𝑉 =
1

6
 𝑑𝑒𝑡[𝒗4

1 𝒗4
2 𝒗4

3] (6B.1) 

One regular tetrahedron has all its edges with a length equal to 𝑏. In that particular case the 

volume may be calculated as follows: 

𝑉𝑟 =
√2

12
 𝑏3 (6B.2) 

Given one tetrahedron with edges length 𝑏𝑖, 𝑖 varies from one to six. Let us define 𝑏𝑎𝑣𝑒 as the 

average of 𝑏𝑖. The regular version of that tetrahedron is another with all edges lengths equal to 

𝑏𝑎𝑣𝑒 (see Fig. 6B.1). 

 

Fig. 6B.1 One tetrahedron and its regular version. 

The regularity of the tetrahedron 𝑅 is measured as the ratio (6B.3), which indicates proximity of 

one tetrahedron to its regular version. The upper limit is 1 that corresponds to a regular 

tetrahedron. The lower 𝑅 the further is the current tetrahedron from its regular version and, 

hence, the less quality. 

𝑅 =
𝑉

𝑉𝑟
  (6B.3) 
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Appendix 6C: Calculation of the optimal vertex location for one 

triangle 

The volume of the tetrahedron may be calculated as follows: 

𝑉 =
1

6
(𝒖 × 𝒗) ⋅ 𝒍  (6C.1) 

Where 𝒖 and 𝒗 vectors form one of the triangular bases and 𝒍 is another vector that shares the 

initial point with 𝒖 and 𝒗 but does not belong to the triangular base. Let us call to such common 

node 𝒂1. 

 

Fig. 6C.1 Three non-coplanar vectors can be used to compute the tetrahedron volume. 

Given a triangle whose centre of gravity is 𝑮, its vertexes are denoted by 𝒂𝑖 and the sum of its 

edges is 𝐿𝑡. One tetrahedron can be formed by adding a fourth node (𝒂4) on the line that passes 

through 𝑮 perpendicularly to the triangle (see Fig. 6C.2). Let us call 𝒏 to the normal versor to the 

triangle and 𝑡 a free parameter, then the location of the fourth node is expressed as follows: 

 

Fig. 6C.2 Tetrahedron generated from one triangular base. 

𝒂4 = 𝑮 + 𝑡 𝒏 (6C.2) 

The regularity (see Appendix 6B) of such tetrahedron can be calculated by equation (6C.3), where 

𝐴 and 𝐵 are defined as (6C.4) and (6C.5) respectively. 
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𝑅 = 305.5 
𝐴

𝐵
 (6C.3) 

𝐴 = (𝒖 × 𝒗) ⋅ 𝒍 (6C.4) 

𝐵 = (𝐿𝑡 +∑𝐿ℎ𝑖

3

𝑖=1

)

3

 (6C.5) 

where 𝐿𝑡 is the summation of the edges of the triangular base and 𝐿ℎ𝑖 is the length of the edges 

from each node of the triangular base (𝒂𝑖) to the fourth node (𝒂4). Note that this second 

summand may be expressed as follows: 

∑𝐿ℎ𝑖

3

𝑖=1

=∑‖𝑮+ 𝑡 𝒏 − 𝒂𝑖‖

3

𝑖=1

 (6C.6) 

There is a location for the fourth node, defined by the parameter 𝑡, where the tetrahedron 

regularity (𝑅) is the maximum, i.e. the derivative is zero (𝑅,𝑡= 0). That 𝑡 value can be found by 

Newton-Raphson iterations as described here. 

In 𝐴, the cross product (𝒖 × 𝒗) ⋅depends on the selected triangular base and is constant. By 

contrast, the vector 𝒍 can be expressed as function of 𝑡 as follows: 

𝒍 = 𝑮 + 𝑡 𝒏 − 𝒂1 (6C.7) 

In 𝐵, the length of the edges of the triangular base (𝐿𝑡) are constant, but the others are functions 

of the parameter 𝑡 as follows: 

𝐿ℎ𝑖 = ‖𝑮+ 𝑡 𝒏 − 𝒂𝑖‖ (6C.8) 

The first and second derivatives of 𝐴 are: 

𝐴,𝑡= (𝒖 × 𝒗) ·  𝒏 (6C.9) 

𝐴,𝑡𝑡= 0 (6C.10) 

The first and second derivatives of 𝐿ℎ𝑖 are: 

𝐿ℎ𝑖,𝑡 =
(𝑮 + 𝑡 𝒏 − 𝒂𝑖) ·  𝒏

𝐿ℎ𝑖
 (6C.11) 



 

292 
 

𝐿ℎ𝑖,𝑡𝑡=
𝒏 ·  𝒏 − 𝐿ℎ𝑖,𝑡

2

𝐿ℎ𝑖
 (6C.12) 

Therefore, the first and second derivatives of 𝐵 are: 

𝐵,𝑡= 3(𝐿𝑡 +∑𝐿ℎ𝑖

3

𝑖=1

)

2

 ∑𝐿ℎ𝑖,𝑡

3

𝑖=1

 (6C.13) 

𝐵,𝑡𝑡= 6(𝐿𝑡 +∑𝐿ℎ𝑖

3

𝑖=1

) (∑𝐿ℎ𝑖,𝑡

3

𝑖=1

)

2

+ 3(𝐿𝑡 +∑𝐿ℎ𝑖

3

𝑖=1

)

2

∑𝐿ℎ𝑖,𝑡𝑡

3

𝑖=1

 (6C.14) 

With all the derivatives at hand, the Newton-Raphson iterations may be applied as follows: 

𝑡𝑘+1 = 𝑡𝑘 −
𝑅,𝑡
𝑅,𝑡𝑡

 (6C.15) 

When the difference between 𝑡𝑘+1 and 𝑡𝑘 is less than a pre-established tolerance the iterations 

stop and the fourth of the tetrahedron can be found by inputting 𝑡𝑘+1 in (6.C2). 
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Appendix 6D: Derivatives of Lagrangian quadratic curves 

Let 𝑪 be the parametric curve in ℝ𝑑 given as combination of Lagrange polynomials of order 2, i.e. 

the curve has three nodes. 𝑪 is obtained by mapping ℝ1 → ℝ𝑑 from parent space to the curve 

space as: 

𝑪 =∑𝜙𝑖  𝒙𝑖

3

𝑖=1

 (6D.1) 

Where 𝜙𝑖 are the basis functions. The mapping is represented in Fig. 6D.1, where the coordinates 

in parent space are denoted by 𝑢 and in 𝑪 curve space by 𝒙. The parent space is assumed to span 

from -1 to +1. 

 

Fig. 6D.1 Mapping of Lagrangian quadratic parametric curve. 

The basis functions at 𝑢 location are: 

𝜙1 =
1

2
(𝑢2 − 𝑢) (6D.2) 

𝜙2 = (1 − 𝑢
2) (6D.3) 

𝜙3 =
1

2
(𝑢2 + 𝑢) (6D.4) 

The derivative 𝑪,𝑢 is calculated as: 

𝑪,𝑢=∑
𝜕𝜙𝑖
𝜕𝑢

 𝒙𝑖

3

𝑖=1

 (6D.5) 

Which may be extended as: 

𝑪,𝑢=
1

2
(2𝑢 − 1)𝒙1 + (2𝑢)𝒙2 +

1

2
(2𝑢 + 1)𝒙3 (6D.6) 

At starting location (𝑢 = −1) the derivative is: 

𝑪,𝑢=
−3

2
 𝒙1 +  2 𝒙2 − 

1

2
𝒙3   (6D.7) 

  



 

294 
 

Appendix 6E: Tetrahedrons of mixed degree 

Tetrahedral meshes are well settled (Hughes 2000, Zienkiewicz, Taylor 2000) and extensively used 

due to its adaptability to any shape. Linear tetrahedrons have 4 nodes, meanwhile quadratic 

tetrahedrons have 10 nodes, with 4 at the tetrahedron vertex (called end-nodes) and one at the 

mid location of each edge64 (called mid-nodes). We call mixed degree tetrahedrons in this work to 

those that have some of their lines with the mid-node. This appendix explains how to obtain the 

basis functions of mixed-degree tetrahedrons. 

The number of nodes in mixed-degree tetrahedrons may vary from 4 to 10. Linear tetrahedrons 

have only end-nodes and are arranged as Fig. 6E.1. 

 

Fig. 6E.1 Nodes for linear tetrahedron in parent space. 

Considering the linear tetrahedron as starting point, new nodes may be inserted at mid-location 

of its lines (mid-nodes). The insertion mid-nodes to all the lines leads to the quadratic 

tetrahedron. 

One mid-node can be inserted at any edge. The matrix called iem65 stores where the mid-nodes 

are inserted. The iem matrix has four rows and four columns, one per end-node. Let us focus on 

the 𝑖th row. Each of its four components (except the 𝑖th column) can contain a number which is 

the reference of the inserted mid-node, i.e. if 𝑗th column has 𝑘 number, it means that the 𝑘 mid-

node is inserted between 𝑖 and 𝑗 end-nodes. If the component is zero there is no mid-node 

inserted. The iem matrix is symmetric and components at diagonal are all zero. Table 6E.1 shows 

five examples of iem matrix. 

  

                                                           
64

 The edges are also called lines in this work. 
65

 iem is the acronym of inserted edge matrix. 
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Table 6E.1 Examples of storage of information of inserted mid-nodes.  

iem matrix Tetrahedral parent space Comments  

[

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

] 

 

Linear tetrahedral 

[

0 0
0 0

0 0
0 0

0 0
0 0

0 5
5 0

] 

 

One mid-node insertion between nodes 
3-4 

[

0 0
0 0

5 0
0 0

5 0
0 0

0 0
0 0

] 

 

One mid-node insertion between nodes 
1-3 

[

0 0
0 0

0 6
5 0

0 5
6 0

0 0
0 0

] 

 

Two mid-nodes insertion between nodes 
1-4 and 2-3 

[

0 10
10 0

8 6
5 9

8 5
6 9

0 7
7 0

] 

 

Quadratic tetrahedral 

Given a location in parent space with coordinates 𝒓 = (𝑟 𝑠 𝑡)𝑇, the basis functions at 𝒓 might be 

obtained for each case as described in (Hughes 2000). Here we give a procedure that is valid for 

any mixed tetrahedral configuration. 

First, the fourth coordinate is computed as equation (6E.1), then the four coordinates are stored 

in the vector �̂� = (𝑟 𝑠 𝑡 𝑢)𝑇. 

𝑢 = 1 − 𝑟 − 𝑠 − 𝑡 (6E.1) 

Second, the basis function of each kth mid-node inserted is calculated as equation (6E.2). 

𝑁𝑘 = 4 �̂�(𝑖) �̂�(𝑗) (6E.2) 
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Where 𝑖 and 𝑗 are the row and column positions in iem matrix. Third, the basis functions of the 

affected end-nodes are calculated as (6E.3). 

𝑁𝑘 = �̂�(𝑘) −∑
1

2
𝑁𝑖

𝐴

𝑖=1

 (6E.3) 

Where 𝑁𝑖  are the basis function values of the ith mid-nodes, inserted at each edge attached to 

the kth corner-node. 𝐴 is the number of attached edges with mid-insertion, which may vary from 

zero to three. We provide one example below for clarity. Mixed tetrahedral basis functions 

calculation is not new. The procedure explained here provides flexibility for any configuration and 

facilitates the implementation in the author’s humble opinion. 

Example of construction of basis function: 

(Corresponding to the fourth case of Table 6E.1, with two mid-nodes insertions). 

The location where we compute the basis functions is �̂� = (𝑟 𝑠 𝑡 𝑢)𝑇. 

In view of the position of the 5th and 6th mid-nodes references in the iem matrix, their functions 

are calculated as follows: 

𝑁5 = 4 �̂�(2) �̂�(3) = 4𝑠𝑡 

𝑁6 = 4 �̂�(1) �̂�(4) = 4𝑟𝑢 

The corner nodes basis functions are: 

𝑁1 = �̂�(1) −
1

2
𝑁6 = 𝑟 − 2𝑟𝑢 

𝑁2 = �̂�(2) −
1

2
𝑁5 = 𝑠 − 2𝑠𝑡 

𝑁3 = �̂�(3) −
1

2
𝑁5 = 𝑡 − 2𝑠𝑡 

𝑁4 = �̂�(4) −
1

2
𝑁6 = 𝑢 − 2𝑟𝑢 

Gauss points are inserted in the tetrahedrons according to Appendix 6A. Mixed-degree 

tetrahedrons are treated as quadratic, i.e. they need four Gauss points. 
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Appendix 7A: Calculation of displacements and stresses 

The displacements and stresses at any location of the domain may be computed as long as the 

material and the displacements at the control points are known. In this appendix this 

computation is explained for any location within the domain, but it is focused on the domain 

boundaries (skins) because they are used for representation of results. 

7A.1 Assumptions 

- The displacements at control points are known. 

- The domain has its boundaries discretized into linear triangles (called skins) for 

representation purposes. 

- The material behaves linearly, i.e. the material properties do not change after the 

deformation. 

7A.2 Calculation of displacements at any location within the domain 

The displacement at the 𝑎th location within the domain is calculated as: 

𝒖𝑎 =∑𝑹(𝝃𝑎)𝛪𝒖𝛪

ℵ

𝛪=1

 (7A.1) 

where: 

ℵ is the number of control points of the domain. 

𝑅(𝝃𝑎)𝛪 is the matrix with the 𝐼th basis function at 𝝃𝑎. 

𝝃𝑎 are the coordinates of 𝑎 in patch parameter space. 

𝒖𝛪 is the displacement of the 𝐼th control point. 

7A.3 Calculation of stresses at any location within the domain 

The stress vector at the 𝑎th location within the domain is calculated as: 

𝝈𝑎 = 𝑫∑𝑩(𝝃𝑎)𝛪𝒖𝛪

ℵ

𝛪=1

 (7A.2) 

Where: 

𝑫 is the constitutive matrix, that characterizes the material. 

𝑩(𝝃𝑎)𝛪 is the strain-displacement matrix for the 𝐼th basis function at 𝝃𝑎. 
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7A.4 Displacements and stresses on the skins 

The skins have nodes and triangles connecting them. The nodes are located at the domain 

boundaries, i.e. belong to the domain. The displacements and stresses may be computed at the 

nodes by equations (7A.1) and (7A.2). Then displacements and stresses at any location within one 

triangle may be interpolated from its nodes as follows: 

𝒔𝑎 =∑𝜙(𝒓𝑎)𝑗 𝒔𝑗

3

𝑗=1

 (7A.3) 

Where: 

𝒔𝑎 is the displacement or stress at 𝑎th location, that lies on the triangle. 

𝜙(𝒓𝑎)𝑗 is the basis function value of the linear triangle at 𝒓𝑎 location. 

𝒓𝑎 are the coordinates in parent space of 𝑎. 

The triangle parent space coordinates are 𝒓 = (𝑟, 𝑠). The parent space is a right triangle whose 

legs span from (0,0) to (1,0) and from (0,0) to (0,1). The basis functions are calculated as follows: 

𝜙1 = 𝑟𝑎 (7A.4) 

𝜙2 = 𝑠𝑎 (7A.5) 

𝜙3 = 1 − 𝑟𝑎 − 𝑠𝑎 (7A.6) 
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Appendix 8A: User guidance and generation of examples 

This appendix provides the detailed steps to generate the domains of the examples in CAD and 

how to proceed with the user interphase (UI). Since the UI is not the main target of this research, 

the user windows are work in progress, and some of the options that appear in them are 

deactivated. 

Section 1 of this appendix briefs the steps to follow to use the algorithm. Then sections 2 to 4 

explain in detail the generation of the domains and the way to proceed with the UI for the 

examples provided in this thesis. 

8A.1 Steps to use the algorithm 

After extracting from CAD the IGES files (G.igs and B.igs for gross and bounded patches 

respectively) they are copied to the folder 201_TXTs under to Matlab® directory. This directory 

may contain IGES files for other geometries (see Fig. 8A.1). 

 

Fig. 8A.1 Folder containing the IGES files. 

Then, in the routine FirstRoutine make sure the names called by the function i3100_IGES 

are the corresponding to G.igs and B.igs. (see Fig. 8A.2) 
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Fig.8A.2 Names called in i3100_IGES must coincide with names of IGES files. 

To start the algorithm, in the Matlab® command window type FirstRoutine and enter. This 

routine reads the IGES files and generates the parametrization for the solids, trimming surfaces 

and the boundary surfaces. The inputs window, called pd400_Form, appears automatically, as 

shown in Fig. 8A.3. 

 

Fig. 8A.3 Inputs window. 
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There are some fields that are not used or are not advised to vary in the pd400_Form, as 

indicated in red contours in Fig. 8A.3. In the Material properties area, the initial yielding limits are 

not used. They are prepared for plastic analysis that is out of the scope of this research. The 

yielding model, set by default as Hoffman is not used neither. Tolerances area include the 

parameters used for discretization, which are advised to remain as the values given by default. 

Fields that the user may vary, indicated on Fig. 8A.3 with green contours, are listed below. 

Elastic properties: the elastic constants are introduced here. The fields are prepared for 

orthotropic materials, however when this thesis was submitted the algorithm only 

worked with isotropic materials and only values at first column are considered. 

Specific weight: may be disregarded if the check box below is not activated. 

h-refinement: for each patch a general and single refinement may be applied. The first 

halves each non-void span and the second insert one knot at the specified location. For 

example, a general h-refinement of the knot vector 000 0.2 111 would yield 000 0.1 0.2 

0.6 111. Then, one could insert an extra knot at 0.65 in the single h-refinement field. 

p-refinement: for each patch the increment of degree may be set. 

BC: this is de boundary conditions area. The number of Gauss points per triangle of the 

boundary surfaces can be set to 1, 3 or 4. Neumann and Dirichlet boundary conditions 

must be defined for the involved surfaces. They are introduced by Cartesian components. 

The button area, at right-bottom of the window, allows the user to carry on with the algorithm 

steps as follows: 

Button Generate_Skins: the skins of the patches, both gross and bounded, are generated 

by triangulation. 

Button Domaini: the patches are discretized. After this process, the output window, called 

r3000_represent, is shown. 

Button BCs: the boundary surfaces are triangulated and the boundary conditions applied 

to them. 

Button Analysis: the displacements and stresses are computed. 

These buttons must be used in the presented sequence. The output window (r3000_represent) 

allows the user to visualize the domain and the results (see Fig. 8A.4). After selecting the space 

and objects to visualize the button Draw must be pushed to refresh the view. At left-hand side of 
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that button the step may be changed to 2, which indicates results after analysis. This option is 

only available after analysis has finished (button Analysis pushed). 

 

Fig. 8A.4 Output window. 
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8A.2 Example 8.1 

Generation of domains in CAD 

The gross patches are generated by extrusion of the contours as shown in Fig. 8A.5 and Fig. 8A.6. 

We set patch 1 to the flange of the beam and patch 2 the web. The curve line of patch 1 has been 

created by spline fitting to a set of points. 

 

Fig. 8A.5 Generation of gross patch 1. 

 

Fig. 8A.6 Generation of gross patch 2. 

Both patches are assembled as illustrate din Fig. 8A.7. To allocate the patches references we use 

the first value of the RGB colour code (see Appendix 3B). In this case for patch 1 and patch 2 the 
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colour figures are 201-159-229 and 202-100-0 respectively. The IGES file if this configuration is 

exported as the gross patches version with the name G_Ex_10_1.igs. 

 

Fig. 8A.7 Assembling of gross patches. 

To achieve the final shape, and avoid patches intersections, the gross patch 2 needs to be 

trimmed as shown in Fig. 8A.8. The trimmed domain must occupy the same position as the gross 

domain in the CAD space. 

 

Fig. 8A.8 Trimming of patch 2 and assembling of the domain. 

The boundary surfaces are obtained by extraction of faces of the trimmed patches (see Fig. 8A.9). 

Surfaces 2 and 4 will be used to impose zero displacement, surface 1 will couple both patches, 

and surfaces 3 and 5 will be used to impose tractions. Boundary surfaces references are given by 

their RGB colour code (see Appendix 3B). For surfaces 1 to 5 the RGB figures are listed below: 

Surface 1: 201-202-201 

Surface 2: 202-85-120 

Surface 3: 203-85-120 
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Surface 4: 204-85-120 

Surface 5: 205-85-120 

 

Fig. 8A.9 Boundary surfaces. 

The boundary surfaces are moved onto the trimmed domain to achieve the bounded domain (see 

Fig. 8A.10). Recall that the bounded domain must hold the same position as the gross domain. 

The bounded domain is exported to the IGES file with the name B_Ex_10_1.igs. 

  

Fig. 8A.10 Bounded domain. 

Preparation of patches for analysis 

The FirstRoutine produces the parameterization of the gross patches as shown in Fig. 8A.11 

and their control points as Fig. 8A.12. In order to gain accuracy in the analysis both patches are 

refined as indicated in Table 8A.1 and Table 8A.2. For path 1 degree elevation from 1 to 2 is done 

in 𝜉 direction. For patch 2 the number of control points inserted in 𝜉, 𝜂 and 𝜒 parameter 

directions are 1, 2 and 4 respectively. Degree elevation from 1 to 2 is done in the three parameter 

directions. 
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Fig. 8A.11 Parameter directions of the patches 

  

Fig. 8A.12 Initial control points arrangement. 

 

Table 8A.1 Refinement in patch 1. 

  Initial Refined 

Number of 
control 
points 

n 2 3 

m 4 4 

l 7 7 

Degree 

p 1 2 

q 3 3 

r 3 3 

Knot vectors 

𝛯 00 11 000 111 

𝛨 0000 1111 0000 1111 

𝛸 0000 0.2573 0.5081 0.7547 1111 0000 0.2573 0.5081 0.7547 1111 
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Table 8A.2 Refinement in patch 2. 

  Initial Refined 

Number of 
control 
points 

n 2 3 

m 2 4 

l 2 6 

Degree 

p 1 2 

q 1 2 

r 1 2 

Knot vectors 

𝛯 00 11 000 111 

𝛨 00 11 000 0.50 111 

𝛸 00 11 000 0.25 0.50 0.75 111 

The h-refinement and p-refinement areas in the input form need to be as shown in Fig. 8A.13. As 

result the refinement the control points arrangements are as per Fig. 8A.14. 

 

Fig. 8A.13 Refinement inputs required. 

  

Fig. 8A.14 Refined control points arrangement. 
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8A.3 Example 8.2 

Generation of domains in CAD 

The gross patch is a cuboid generated by extrusion of 22 the contour shown in Fig. 8A.15. 

 

Fig. 8A.15 Generation of gross patch. 

To allocate the patch reference we use the first value of the RGB colour code (see Appendix 4B), 

in this case the colour figures are 201-63-0. The IGES file if this configuration is exported as the 

gross patches version with the name G_Ex_10_2.igs. 

The ground profile is generated by loft of the three curves shown in Fig. 8A.16. They are splines 

whose control points coordinates in the x-y plane are listed in Table 8A.3, the weights of all 

control points are one. 

 

Fig. 8A.16 Curves used to generate the surface. 
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Table 8A.3 Coordinates of control points. 

Control 
points 

curve 1 curve 2 curve 3 

x y x y x y 

1 2.5 0 7.5 0 12.5 0 

2 7.5 15 17.5 15 22.5 10 

3 22.5 35 27.5 35 27.5 35 

4 7.5 65 12.5 65 17.5 65 

5 2.5 90 12.5 90 17.5 85 

6 22.5 110 27.5 110 27.5 105 

7 17.5 140 22.5 130 22.5 125 

8 42.5 150 42.5 135 42.5 130 

9 62.5 130 52.5 130 47.5 125 

10 67.5 110 57.5 110 54 115 

11 52.5 95 42.5 95 42.5 100 

12 62.5 90 62.5 90 57.5 90 

13 67.5 65 52.5 65 52.5 65 

14 62.5 35 57.5 35 52.5 35 

15 67.5 0 57.5 0 52.5 0 

 

The trimming surface is generated by loft across the three curves, that are set at heights 0, 10 and 

24 as illustrated in Fig. 8A.17. 

 

Fig. 8A.17 Trimming surface generated by loft. 

To achieve the final shape the gross patch is trimmed by the trimming surface as indicated in Fig. 

8A.18. The trimming surface flashes the bottom of the gross patch and protrude 2 over the top 

face. The setting out dimension is 7.5 from the corner as shown at right hand side of Fig. 8A.18. 

The resultant trimmed patch is depicted in Fig. 8A.19. 
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Fig. 8A.18 Relationship between the gross patch and the trimming surface. 

  

Fig. 8A.19 Trimmed patch. 

The boundary surfaces are obtained by extraction of faces of the trimmed patch (see Fig. 8A.20). 

Surfaces 1 and 2 will be used to impose Dirichlet boundary conditions are attached to surfaces 1 

and 2. Surface 1 has the displacements in all direction (x, y, and z) equal to zero, meanwhile 

surface 2 has only direction y equal to zero. Surface 3 will be used to impose tractions (400 in the 

negative direction of z). Boundary surfaces references are given by their RGB colour code (see 

Appendix 4B). For surfaces 1 to 3 the RGB figures are listed below: 

Surface 1: 201-164-187 

Surface 2: 202-164-187 

Surface 3: 203-164-20 

 

Fig. 8A.20 Boundary surfaces. 
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The boundary surfaces are placed onto the trimmed domain to achieve the bounded domain (see 

Fig. 8A.21). Recall that the bounded domain must hold the same position as the gross domain. 

The bounded domain is exported to the IGES file with the name B_Ex_10_2.igs. 

 
 

Fig. 8A.21 Bounded domain. 

Preparation of patches for analysis 

The FirstRoutine produces the parameterization of the gross patch as shown in Fig. 8A.22 

where the control points are also shown. To increase the degrees of freedom and gain accuracy in 

the analysis the refinement indicated in Table 8A.4 is carried out. Degree elevation from 1 to 2 is 

done in 𝜉 and 𝜂 directions, meanwhile degree increment from 1 to 3 happens in 𝜒 direction. The 

number of control points inserted in 𝜉, 𝜂 and 𝜒 parameter directions are 1, 1 and 3 respectively. 

  

Fig. 8A.22 Parameter directions of the gross patch and initial control net. 
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Table 8A.4 Refinement. 

  Initial Refined 

Number of 
control 
points 

n 2 4 

m 2 4 

l 2 7 

Degree 

p 1 2 

q 1 2 

r 1 3 

Knot vectors 

𝛯 00 11 000 0.5 111 

𝛨 00 11 000 0.5 111 

𝛸 00 11 0000 0.25 0.50 0.75 1111 

The h-refinement and p-refinement areas in the input form need to be as shown in Fig. 8A.23. As 

result the refinement the control points arrangements are as per Fig. 8A.24. 

 

Fig. 8A.23 Refinement inputs required. 

 

Fig. 8A.24 Refined control points arrangement. 
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8A.4 Example 8.3 

Generation of domains in CAD 

Gross patches are shown in Fig. 8A.25, with their allocated reference. For referencing, the RGB 

colour codes (see Appendix 4B) allocated to gross patches are 201-100-0 , 202-100-0 and 203-

100-0. 

  

Fig. 8A.25 Gross patches. 

Gross patch 1 is extruded from its contours as illustrated in Fig. 8A.26 (left). Gross patch 3 is 

obtained by revolution of 110 degrees as shown in Fig. 8A.26 (right). 

 

Fig. 8A.26 Generation of gross patches 1 and 3. 
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Gross patch 2 is constructed by sweep of the rectangular section along the axis line shown in Fig. 

8A.27. The axis line is a plane cubic spline whose control points positions are given at left-hand 

side of Fig. 8A.27. 

  

Fig. 8A.27 Construction of gross patches 2 by sweep. 

Both patches are assembled as illustrated in Fig. 8A.25. The IGES file if this configuration is 

exported as the gross patches version with the name G_Ex_10_3.igs. 

To achieve the final shape, and avoid patches intersections, the gross patches 1 and 2 need to be 

trimmed as shown in Fig. 8A.28. The trimmed domain, assembled as Fig. 8A.29, must occupy the 

same position as the gross domain in the CAD space. 

 
 

Fig. 8A.28 Trimming of patch 2 and assembling of the domain. 
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Fig. 8A.29 Trimmed domain. 

The boundary surfaces are obtained by extraction of faces of the trimmed patches (see Fig. 

8A.30). Surface 1 will be used to impose zero displacement, surfaces 2 and 3 will couple the 

patches, and surfaces 4 will be used to impose tractions. Boundary surfaces references are given 

by their RGB colour code (see Appendix 4B) as listed below: 

Surface 1: 201-85-120 

Surface 2: 202-85-120 

Surface 3: 203-85-120 

Surface 4: 204-85-120 

 

Fig. 8A.30 Boundary surfaces. 

The boundary surfaces are moved onto the trimmed domain to achieve the bounded domain (see 

Fig. 8A.31). Recall that the bounded domain must hold the same position as the gross domain. 

The bounded domain is exported to the IGES file with the name B_Ex_10_3.igs. 
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Fig. 8A.31 Bounded domain. 

Preparation of patches for analysis 

The FirstRoutine produces the parameterization of the gross patches as shown in Fig. 8A.32 

and their control points as Fig. 8A.33. In order to gain accuracy in the analysis the patches are 

refined as indicated in Table 8A.5, Table 8A.6 and Table 8A.7. Let us remark two modifications 

that differ from the last two examples. For patch 2 the excessive number of control points in the 

third direction is reduced by knot removal. Since parameterization of patch 3 is not uniform in the 

second direction, one knot is  inserted at 0.75 to achieve equally spaced knot spans. 

 

 

 

Fig. 8A.32 Parameter directions of the patches. 
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Fig. 8A.34 Initial control points arrangement. 

Table 8A.5 Refinement in patch 1. 

  Initial Refined 

Number of 
control 
points 

n 2 4 

m 2 4 

l 2 4 

Degree 

p 1 2 

q 1 2 

r 1 2 

Knot vectors 

𝛯 00 11 000 0.5 111 

𝛨 00 11 000 0.5 111 

𝛸 00 11 000 0.5 111 

 

Table 8A.6 Refinement in patch 2. 

  Initial Refined 

Number of 
control 
points 

n 2 4 

m 2 6 

l 20 13 

Degree 

p 1 2 

q 1 2 

r 3 3 

Knot vectors 

𝛯 00 11 000 0.5 111 

𝛨 00 11 000 0.25 0.5 0.75 111 

𝛸 
0000 0.1 0.2 0.25 0.3 0.35 0.4 0.5 
0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 

0.95  1111 

0000 0.1 0.25 0.35 0.5 0.6 0.7 0.8 
0.9 0.95  1111 
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Table 8A.7 Refinement in patch 3. 

  Initial Refined 

Number of 
control 
points 

n 2 4 

m 5 6 

l 2 6 

Degree 

p 1 2 

q 2 2 

r 1 2 

Knot vectors 

𝛯 00 11 000 0.5 111 

𝛨 000 0.25 0.50 111 000 0.25 0.5 0.75 111 

𝛸 00 11 000 0.25 0.5 0.75 111 

The h-refinement and p-refinement areas in the input form need to be as shown in Fig. 8A.35. As 

result the refinement the control points arrangements are as per Fig. 8A.36. 

 

Fig. 8A.35 Refinement inputs required. 

 

 

 

Fig. 8A.36 Final control points arrangement. 
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Appendix 10A: Marching Point Projection 

The point projection (PP) technique finds the parameter coordinates corresponding to a position 

in the physical space (physical coordinates). PP applies to any NURBS domain: curve, surface or 

volume. We will refer to the NURBS domain as 𝑯. Main directions refer to the orthogonal 

direction in the parameter space, e.g. for a surface the main directions are 𝜉 and 𝜂, and for solids 

𝜉, 𝜂 and 𝜒. The number of dimensions in parameter and physical spaces is denoted by 𝑐 and 𝑑. 

The physical coordinates are denoted by 𝒙𝑡, which are known. The target parameter coordinates 

are denoted by 𝝃𝑡, which are unknown. 

The PP, that is the reversal of the NURBS mapping, needs approximation since there is not an 

analytical solution for such process. This approximation is carried out by iterative procedures. The 

output of the PP is the estimated parameter location 𝝃𝑡
𝒆  whose physical coordinates are 𝒙𝑡

𝒆 . 

The initial trial location is 𝝃0, that correspond to the 𝒙0 physical coordinates (see Fig. 10A.1). 

Then, the trial point is moved in each iteration closer to 𝝃𝑡 by moving its location in the physical 

space an increment 𝛥𝑥. The process stops when one of the next two conditions is met: 

- If 𝒙𝑡 does not lie within the domain 𝑯, the vector from 𝒙𝑡
𝒆  to 𝒙𝑡, called 𝜟𝒙, is quasi-

orthogonal to 𝑯 derivatives w.r.t. parameter directions. That implies the corresponding 

dot products 𝜟𝒙 ∙ 𝑯𝜉𝑖 are close to zero, in practise they are equal or less than a pre-

established tolerance called tol1 (see Fig. 10A.1 top). This is called orthogonality 

condition. 

- If 𝒙𝑡 lies within the domain 𝑯, the norm of the 𝜟𝒙 vector is equal or less than a pre-

established tolerance called tol2. In addition, the dot product referred above is close to 

zero (see Fig. 10A.1 bottom). This is called coincidence condition. 
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Fig. 10A.1 Point projection technique and conditions to stop the iterative location of 𝝃𝑡
𝒆 . Above: 

orthogonality condition. Below: coincidence condition. 

This appendix explains the Marching Point Projection (MPP) to find the NURBS parameter 

coordinates of one point with known physical coordinates. The MPP is based on the work done by 

Hoschek et al. (1993) that used it to find intersection of two surfaces. Here it is extended to solids 

and curves and it is compared to the traditional Newton-Raphson Iterations (NRI). The MPP 

overcomes the NRI in terms of robustness as demonstrated in the examples provided at the rear 

of this appendix. 

10A.1 Preliminary concepts 

Point projection on boundaries of the entity 

When the target 𝒙𝑡 lies outside domain and the number of parameter and physical dimensions is 

the same (𝑐 = 𝑑), i.e. plane surfaces and solids, the PP is applied on the boundary of the domain: 

boundary curves for plane surfaces, and boundary surfaces for solids, see Fig. 10A.2.  



 

321 
 

 

Fig. 10A.2 For points outside the domain, in case of plane surfaces or solids, the PP is done on the boundary 

of the domain instead the domain itself. 

Directional derivatives in surfaces and solids 

Let 𝝎 be an orientation vector in the parameter space defined as equations (10A.1) and (10A.2) 

for surfaces and solids respectively, with the angles 𝛼, 𝛽 and 𝛾 illustrated in Fig. 10A.3. 

𝝎 = {𝑐𝑜𝑠𝛼  𝑐𝑜𝑠𝛽}𝑇 (10A.1) 

𝝎 = {𝑐𝑜𝑠𝛼  𝑐𝑜𝑠𝛽  𝑐𝑜𝑠𝛾}𝑇 (10A.2) 

 

Fig. 10A.3  𝝎 vector in surface and solid parameter spaces, indicating orientation angles. 

Let 𝜆 be the parameter direction with orientation 𝝎. The directional derivative of 𝑯(𝝃) w.r.t. 𝜆, 

called 𝒉, is given by equation (10A.3), where the dependency on 𝝃 is removed for clarity. The 

partial derivatives 𝑯,𝜉𝑖 are along main directions, e.g. for a surface: 𝑺,𝜉2= 𝑺,𝜂. 

𝒉 =
𝑑𝑯

𝑑𝜆
=∑𝑯,𝜉𝑖  𝜔𝑖

𝑐

𝑖=1

 (10A.3) 
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The corresponding matrix form is given by equation (10A.4), where the 𝑯,𝝃 matrix has 𝑑 number 

of rows and 𝑐 number of columns, i.e. it is composed of the main derivatives vectors as shown in 

equation (10A.5). 

𝒉 = 𝑯,𝝃  𝝎 (10A.4) 

𝑯,𝝃= [𝑯,𝜉1 … 𝑯,𝜉𝑑] (10A.5) 

Equations (10A.3) and (10A.4) show that the 𝒉 vector is a linear combination of the main 

derivatives. Fig. 10A.4 shows three examples. 

 

Fig. 10A.4 h vector for 2D surface, solid and 3D surface. In the last case h lies within the tangent plane. The 

parameter space is shown only for the first case for clarity. 

Projected vector of increment in physical space 

Let 𝜟𝒙 be the vector defined in the physical space that goes from location 𝒙1 to 𝒙2. The projected 

vector 𝜟𝒙𝑝 coincides with 𝜟𝒙 if 𝑐 = 𝑑, as illustrated in Fig. 10A.5. Otherwise, if 𝑐 < 𝑑, 𝜟𝒙𝑝 goes 

from 𝒙1 to 𝒙2
𝑝, being the latter the projected location of 𝒙2 onto the tangent defined by the 

derivatives at 𝒙1. The tangent line in the curve is defined by the derivative at 𝒙1. The tangent 

plane in the surface is defined by the normal vector computed as cross product of main 

derivatives at 𝒙1 (see Fig. 10A.6). 

 

Fig. 10A.5 Projected vector 𝜟𝒙𝑝 in a bi-dimensional surface (𝑐 = 𝑑 = 2), in this case 𝜟𝒙𝑝 coincides with 𝜟𝒙. 
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Fig. 10A.6 Projected vector Δ𝒙𝑝 in a tri-dimensional curve (𝑐 = 1, 𝑑 = 3) and in a tri-dimensional surface 

(𝑐 = 2, 𝑑 = 3). 

Orientation in the parameter space of a projected vector in physical space 

The orientation vector 𝝎 for 𝜟𝒙𝑝 in the parameter space is computed as per equation (10A.6), 

whose unknowns are the components of 𝝎. That expression comes from equation (10A.4), by 

substituting 𝒉 with 𝜟𝒙𝑝. 

𝝎 = 𝑯,𝝃
−𝟏𝜟𝒙𝑝  (10A.6) 

Expression (10A.6) is a system of three equations for solids and two equations for plane surfaces. 

In case of three-dimensional surfaces (𝑐 = 2 and 𝑑 = 3), expression (10A.6) has three equations 

with one of them dependent on the other two and, therefore, one of the three equations must be 

disregarded. In this work we remove arbitrarily the third one. Equation (10A.7) shows the 

particular case of tree-dimensional surfaces. 

𝝎 = [

𝑆𝑥,𝜉 𝑆𝑥,𝜂
𝑆𝑦,𝜉 𝑆𝑦,𝜂
𝑆𝑧,𝜉 𝑆𝑧,𝜂

]

−1

{
𝛥𝑥𝑝𝑥

𝛥𝑥𝑝𝑦

𝛥𝑥𝑝𝑧
} 

(10A.7) 

As the third line is removed, both orientations are obtained as follows: 

𝝎 = [
𝑆𝑥,𝜉 𝑆𝑥,𝜂
𝑆𝑦,𝜉 𝑆𝑦,𝜂

]

−1

{𝛥𝑥
𝑝𝑥

𝛥𝑥𝑝𝑦
} 

(10A.8) 

10A.2 The Marching Point Projection 

In this section the marching point projection (MPP) formulation for curves, surfaces and solids is 

presented. The Newton-Raphson iterations (NRI) needs to be outlined, for completeness, because 

both methods are compared at the end if this appendix. 
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Point projection using Newton-Raphson method 

Given a NURBS geometry 𝑯(𝝃), the condition for one trial point 𝝃 to be coincident with 𝝃𝑡 is given 

by the set of equations (10A.9). This equation is the same expression given by (Piegl, Tiller 1996) 

but extended for any number of dimensions. 

𝒇(𝝃) =  

{
 
 

 
 𝑓1(𝝃) = 𝜟𝒙 · 𝑯,𝜉1 = 0

𝑓2(𝝃) = 𝜟𝒙 · 𝑯,𝜉2 = 0

⋮
𝑓𝑛(𝝃) = 𝜟𝒙 · 𝑯,𝜉𝑛 = 0

 (10A.9) 

Where, 𝜟𝒙 = 𝒙𝑡 − 𝒙0 is the vector from 𝒙0 to 𝒙𝑡 and 𝑯,𝜉𝑖 is the derivative of 𝑯 w.r.t. ith 

parameter direction, e.g. for solids 𝑯,𝜉1= 𝑽,𝜉 (see Fig. 10A.7). 

 

Fig. 10A.7 Vectors involved in equation (10A.9) for a target point within one volume 𝑽 for the kth iteration. 

The set of equations (10A.9) is a system of non-linear equations that may be solved by NRI, whose 

flowchart is shown in Fig. 10A.8. In each iteration the position is updated by adding the increment 

𝛥𝝃, as per equation (10A.10). Such increment is obtained as per equation (10A.11) and the 

Jacobian as per equation (10A.12). Dependencies on 𝝃𝑘 are displayed in the last two equations to 

remark they are computed at the kth iteration. The iterative process stops when one of the two 

end conditions is met (recall section 10A.1). 
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Fig. 10A.8 Flowchart for the Newton-Raphson iteration. 

 

𝝃𝑘+1 = 𝝃𝑘 + Δ𝝃 (10A.10) 

𝛥𝝃 = −𝓘−1(𝝃𝑘) · 𝒇(𝝃𝑘) (10A.11) 

𝓘(𝝃𝑘) =

[
 
 
 
 
 
 
 
∂f1(𝝃𝑘)

∂ξ1

∂f1(𝝃𝑘)

∂ξ2
∂f2(𝝃𝑘)

∂ξ1

∂f2(𝝃𝑘)

∂ξ2

…
∂f1(𝝃𝑘)

∂ξn

…
∂f2(𝝃𝑘)

∂ξn
⋮ ⋮

∂f𝑛(𝝃𝑘)

∂ξ1

∂f𝑛(𝝃𝑘)

∂ξ2

⋮

…
∂f𝑛(𝝃𝑘)

∂ξn ]
 
 
 
 
 
 
 

 (10A.12) 

Each component for the matrix of equation (10A.12) is obtained as follows: 

ℐ𝑖𝑗 = 𝑯,𝜉𝑖 · 𝑯,𝜉𝑗 + 𝜟𝒙 · 𝑯,𝜉𝑖𝜉𝑗 (10A.13) 

The Marching Point Projection 

The directional derivative of 𝑯(𝝃) w.r.t. 𝜆 is given by equation (10A.3). Note that for curves, 

equation (10A.3) is reduced to equation (10A.14). 
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𝑪,𝝃=
𝑑𝑪

𝑑𝜉
 (10A.14) 

The length of one infinitesimal increment in the parameter space (𝑑𝜆) corresponding to one 

infinitesimal increment on the NURBS physical space 𝑑𝑯 is calculated as follows: 

𝑑𝜆 =
‖𝑑𝑯‖

‖𝒉‖
 (10A.15) 

To estimate one increment in the parameter space (𝛥𝜆) corresponding to one path length within 

the domain L𝑯, the approximation from equation (10A.16) might be used, see Fig. 10A.9. If the 

parametrization was constant the increment obtained would be exact, but it is not the case in 

general and hence the obtained value in (10A.16) is an approximation. 

𝛥𝜆 ≅
L𝑯

‖𝒉‖
 (10A.16) 

 

Fig. 10A.9 Estimation of the incremental parameter Δ𝜆 corresponding to the length L𝑯 in the physical 

space, for curves, surfaces and solids. 

Now, let us define one location in the physical space (within the domain or outside) as 𝒙𝑡. To 

estimate its parameter coordinate 𝝃𝑡 we use one initial trial point within the domain 𝒙0 with 

known parameter coordinates 𝝃0. Then the increment to travel from 𝝃0 to 𝝃𝑡, whose exact value 

is 𝛥𝜆 = ‖𝝃𝑡 − 𝝃0‖, can be estimated as follows: 

𝛥𝜆 ≅
‖𝜟𝒙𝑝‖

‖𝒉‖
 (10A.17) 

Where 𝜟𝒙𝑝 is the increment vector from 𝒙0 to 𝒙𝑡 as explained in section 10A.1. The increment in 

each main direction may be obtained from 𝛥𝜆 as shown in equation (10A.18). The orientation 𝝎 

of the 𝜟𝒙𝑝 vector is calculated by equations (10A.6). 

𝛥𝜉𝑖 = 𝛥𝜆 𝜔𝑖 (10A.18) 
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Equation (10A.17) introduces one additional error with respect to equation (10A.16) because the 

projected distance ‖𝜟𝒙𝑝‖ does not coincide with L𝑯. However, the accuracy is enough to use this 

estimation in an iterative manner, by summing in each iteration the computed increment to the 

previous value, as shown in equation (10A.19) for the kth iteration. The increments in each 

parameter direction are obtained from (10A.18). The flow chart for the MPP is depicted in Fig. 

10A.10. The iterative process stops when one of the two end conditions is met (section 10A.1). 

𝝃𝑘+1 = 𝝃𝑘 + 𝜟𝝃 (10A.19) 

 

Fig. 10A.10 Flowchart for the marching point projection. 
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10A.3 Numerical examples 

Both methods, MPP and NRI are compared in this section in terms of efficiency and robustness. 

These two terms are defined below and illustrated in Fig. 10A.11 with a surface example. 

- Efficiency: number of iterations to achieve the estimated value 𝝃𝑡. The lower number 

of iterations the more efficiency. 

- Robustness: portion of domain where the initial estimation converges to 𝝃𝑡, 

expressed in percentage w.r.t. domain. This portion is called the convergence portion. 

The larger convergence portion the more robustness. 

 

Fig. 10A.11 PP from two initial trial points (𝒙0). If 𝒙0 lies within the convergence portion (the left-shaded 

portion) the approximation converges, otherwise not (𝒙0 in the not shaded portion). 

To carry out the comparison, one target location 𝒙𝑡 is selected and a net of points 𝝃𝑛𝑒𝑡 equally 

spaced over the whole parameter domain is defined (see Fig. 10A.12). The PP is done from each 

of these net points as initial trial location 𝝃0, with both methods: NRI and MPP, storing the 

number of iterations to achieve the target. It is considered that the iteration converges if the next 

two conditions are met: 

- One of the convergence conditions is achieved (section 10A.1). 

- The number of iterations is equal or less than a limit value (in this work it is 12 iterations). 

 

Fig. 10.12 Net of trial points for one surface. 



 

329 
 

To compare the results, the iteration-convergence diagram is used (Fig. 10A.13 shows one surface 

example). This diagram plots in the parameter space vertical bars, whose bases lie on those 𝝃𝑛𝑒𝑡 

points. Only the vertical bars from those trial points that converge are drawn, i.e. the trial points 

that lie within the convergence portion. The height of the bars is proportional to the number of 

iterations at each location. Then, the diagram provides: 

- Which initial trial locations converge. Their percentage w.r.t. total number of 𝝃𝑛𝑒𝑡 points 

is the convergence portion. That is a measurement of the robustness. 

-  For each convergent point, the number of iterations required, that is a measurement of 

the efficiency.  

For solids, the diagram shows the locations of the 𝝃𝑛𝑒𝑡 that converge but not the number of 

iterations. However, these numbers are reflected in tables in the examples. There is one diagram 

for each iteration method: NRI and MPP. 

 

Fig. 10.13 Iteration-convergence diagram for one surface and target point 𝒙𝑡. 

Curves 

The curve NURBS features are presented in Table 10A.1. 

The target is 𝒙𝑡 = (19.2124, 5.2983, 12.2554) and the net of sample points has 0.05 increment 

in the parameter space, i.e. there are 21 sample points. 

The tolerance in the physical space is tol2=0.01. Tolerance of orthogonality (tol1) does not apply 

because the target point lies within the curve. The limit number of iterations is 12. 

Table 10A.1 Curve NURBS features 

Number of control points 10 

Degree 3 

Knot vector 0 0 0 0  0.1  0.3  0.55  0.7  0.8  0.9  1 1 1 1 

Control points weights 1 1 0.5 1 0.5 1 0.5 1 0.5 1 
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Control points coordinates 
0 0 0 ; 10 0 5; 20 0 10 ; 20 10 15 ; 20 20 20 ; 10 20 25 ; 0 20 30 ;  0 10 35 ; 0 0 

40 ; 10 0 45 

Fig. 10A.14 shows the curve in the physical space with the control net and the target location. Fig. 

10A.15 illustrates the iteration-convergence diagrams for NRI and MPP. Robustness and average 

number of iterations for each method are presented in Table 10A.2, which shows a better 

performance of MPP. 

 

 
 

Fig. 10A.14 Views of the curve (plan, elevation and 3D) and the location of the target point 𝒙𝑡  (blue cross). 

 

  

Fig. 10A.15 Iteration-convergence diagrams for NRI (left) and MPP (right). Number of iterations is scaled by 

0.10. 

Table 10A.2 Performance comparison for curve 

 NRI MPP 

Robustness (%) 67 100 

Number of iterations (average) 6.2 4.3 
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Surfaces 

The NURBS features for the surface are presented in Table 10A.3.  

The target is 𝒙𝑡 = (11.6892, 12.5000, 13.0744) and the net of sample points has 0.125 

increment in each parameter direction, i.e. there are 9x9=81 sample points. 

The tolerance in the physical space is tol2=0.01. Tolerance of orthogonality (tol1) does not apply 

because the target point lies within the surface. The limit of number of iterations is 12. 

Table 10A.3 Surface NURBS features 

Number of control points 
5 

2 

Degree 
2 

1 

Knot vector 
0 0 0 0.5 0.5 1 1 1 

0 0 1 1 

Control points weights 1 1 0.707 0.707 1 1 0.707 0.707 1 1  

Control points coordinates 
10 0 0 ; 0 50 0 ;10 0 20 ; 0 50 30 ;30 0 20 ; 30 50 30 ;50 0 20 ; 60 50 30 ; 

50 0 0 ; 60 50 0 

Fig. 10A.16 shows the surface in the physical space with the control net and the target location 

included. Fig. 10A.17 illustrates the iteration-convergence diagrams for NRI and MPP. Robustness 

and average number of iterations for each method is presented in Table 10A.4, which shows 

greater robustness for MPP. 

 
 

 

Fig. 10A.16 Views of the surface (plan, elevation and 3D) and the location of the target point 𝒙𝑡 (blue cross). 
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Fig. 10A.17 Iteration-convergence diagrams for NRI (left) and MPP (right). Number of iterations is scaled by 

0.10. 
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Table 10A.4 Performance comparison for surface 

 NRI MPP 

Robustness (%) 67 100 

Number of iterations (average) 3.0 3.0 

Solids 

The NURBS features for the solid are presented in Table 10A.5. The target is 𝒙𝑡 = (34.7893,

5.0000, 7.1331) and the net of sample points has 0.125 increment in each direction of the 

parameter space, i.e. there are 9x9x9=729 sample points. 

The tolerance in the physical space is tol2=0.01. Tolerance of orthogonality (tol1) does not apply 

because the target point lies within the solid. The limit of number of iterations is 12. 

Table 10A.5 Volume NURBS features 

Number of 

control points 

3 

3 

7 

Degree 

2 

2 

2 

Knot vector 

0 0 0  1 1 1 0 0 0 0 

0 0 0  1 1 1 0 0 0 0 

0 0 0 0.333 0.333 0.667 0.667 1 1 1 

Control points 

weights 

1    1    0.707     1    0.707    1     1     

1    1    0.707    1    0.707    1     1     

1    1    0.707     1    0.707    1     1     

1    1    0.707     1    0.707    1     1    

1    1    0.707     1    0.707    1     1    

1    1    0.707     1    0.707    1     1     

1    1    0.707     1    0.707    1     1     

1    1    0.707     1    0.707    1     1     

1    1    0.707     1    0.707    1    1 

Control points 

coordinates 

0     0    20;     0     0    40;    20     0    40;    40     0    40;    40     0    20;    40     0     0;    20     0     0; 

0    10    20;     0    10    40;    20    10    40;    40    10    40;    40    10    20;    40    10     0;    20    10     0; 

0    20    20;     0    20    40;    20    20    40;    40    20    40;    40    20    20;    40    20     0;    20    20     0; 

5     0    20;     5     0    35;    20     0    35;    35     0    35;    35     0    20;    35     0     5;    20     0     5; 

5    10    20;     5    10    35;    20    10    35;    35    10    35;    35    10    20;    35    10     5;    20    10     5; 

5    20    20;     5    20    35;    20    20    35;    35    20    35;    35    20    20;    35    20     5;    20    20     5; 

10     0    20;    10     0    30;    20     0    30;    30     0    30;    30     0    20;    30     0    10;    20     0    10; 

10    10   20;   10    10    30;   20   10    30;    30    10    30;    30    10    20;    30    10    10;   20    10   10; 

10    20    20;    10   20    30;    20    20    30;   30    20   30;    30    20    20;    30    20    10;    20    20   10 

Fig. 10A.18 shows the volume in the physical space with the control net and the target location 

included. Fig. 10A.19 illustrates the convergence diagrams for NRI and MPP. Robustness and 
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average number of iterations for each method is presented in Table 10A.6, which shows a greater 

robustness for the MPP method. 

  

Fig. 10A.18 Views of the volume (elevation and 3D) and the location of the target point 𝒙𝑡 (blue cross). 

 

  

Fig. 10A.19 Diagrams showing sample points that converge, for NRI (left) and MPP (right).  

Table 10A.6 Performance comparison for surface 

 NRI MPP 

Robustness (%) 40 78 

Number of iterations (average) 4.2 4.2 
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Appendix 10B: Quasi-isotropic Initial Triangulation 

The triangulation of NURBS surfaces is required for their representation, either geometry or stress 

fields. Indeed to visualize a surface we need to define a set of points (called vertexes or nodes) 

lying on the surface and joint them by lines forming polygons, typically quadrilaterals or triangles. 

The use of triangles is easier to implement given the well-known Delaunay triangulation 

technique. To increase the quality of the representation, equilateral triangles are preferable 

which form what is called isotropic triangulation. In the isotropic triangulation all angles equal to 

60 degrees and all vertexes valences equal to 6 (see Appendix 5A). 

The Quasi-isotropic Initial Triangulation (QIT) discretizes the NURBS surfaces into equilateral- 

same size triangles, where they are not affected by the contours. The triangles distorted by the 

contours are adapted to mitigate such distortion. The resultant mesh is quasi-isotropic (refer to 

Appendix 5B) and it is obtained at once, without preliminary mesh.  

In the QIT algorithm the vertexes are located in a wave propagation manner, starting form one 

initial node (chosen arbitrarily within the surface) and moving divergently to next outer contour. 

Fig. 10B.1 illustrates one example. The length of the side of the triangles is called 𝑅, that is 

defined in the physical space. 

 

Fig. 10B.1 Positioning of vertexes in the QIT algorithm. 

This appendix outlines the main ideas of the QIT algorithm that was presented by Adan and 

Cardoso (2020). For further details refer to such paper. 

One may think that smaller triangles are only needed where curvature is pronounced, with 

triangles in plane zones larger. That is true if the triangulation is devised to represent only 

geometry. However, in this work the triangulation is used to plot the stress field as well. 

Therefore, the resolution of the triangulation must be able to capture the stress field profile 

regardless of the shape of the surface. This necessity is illustrated in Fig. 10B.2, where the zone of 

high stresses lies on a plane area of the surface. At the left-hand side the triangulation is uniform 

(as QIT triangulation) and the peak is captured in the representation. By contrast, at the right-
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hand side the triangulation follows exclusively curvature criterion, having the plane zone only a 

few large triangles. These triangles are not able to represent the stress peak. 

 

Fig. 10B.2 Stress peak represented by a uniform triangulation (a) and triangulation based on curvature of 

the surface (b). 

The divergent propagation of vertexes is illustrated in Fig. 10B.3. Each vertex is computed by 

intersection of two arcs which are centred on vertexes that belong to the previous contour and 

the with arc length equal to 𝑅. 

 

Fig. 10B.3 Calculation of vertexes of the triangulation by arcs intersections. 

Since the contours are plotted in the physical space, regardless the shape of the surface, the 

theoretical arcs are not plane but lie onto such surface, being unknown. Therefore, it is necessary 

to discretize the arcs into segments. 

The intersection between the theoretical arcs is then found by iterations. In each iteration the 

intersection between the segments is computed, the arc angle is reduced, the arc is discretized 

again and new segments intersection is computed. Fig. 10B.4 illustrates this process. Note the 
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intersection can be found only in the parameter space of the surface since it is bi-dimensional. In 

the physical space (tri-dimensional) that would be impossible. 

 

Fig. 10B.4 Estimation of arcs intersection by iterations using discretized arcs in the parameter space. 

To compute the location of each point of the discretized arcs we integrate the length on the 

physical space using the trapezoidal rule to achieve 𝑅 distance. The error of the trapezoidal rule 

depends on the length to integrate. To control such error the surface parameter space is divided 

into portions such that the trapezoidal rule within each one does not yield an error greater than a 

pre-established value. We also need the orientation to localize such points, which is inferred using 

a new space: the pattern space. 

The pattern space is a bi-dimensional arrangement of concentric hexagons separated a distance 

equal to 𝑅 𝑠𝑖𝑛60 (see Fig. 10B.5). The vertexes lie on these hexagons spaced at 𝑅. The pattern 

space leads naturally to an isotropic triangulation. The pattern space is the guidance followed by 

the QIT to compute the vertexes location. 

 

Fig. 10B.5 The pattern space. 
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The shape of the arcs in the parameter space depends on the parametrization of the surface and 

are unknown. The estimation of the correct orientation of the arcs is crucial to reduce the number 

of iterations, hence the importance of the pattern space. 

The hexagonal contours are concentric and equally space in the pattern space. In the parameter 

space they are distorted according to the surface parametrization. In the physical space the 

resultant contours are the image of the pattern space. In other words, if we extract the hexagons 

from the surface on physical space and unroll to a plane, we recover the pattern space. 

The QIT can be seen as a transfer of the pattern space to the physical space using the parameter 

space to localise the vertexes, as depicted in Fig. 10B.6. 

 

Fig. 10B.6 Transfer of the contours from the pattern space to the physical space using the parameter space. 

With the vertexes computed the triangulation is carried out in the pattern space, which leads to 

an isotropic triangulation as mentioned. This isotropy will be reflected in the physical space. Only 

at the edge zones some distortion appears, i.e. it is a quasi-isotropic triangulation. 
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