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Fig. 1. The DOOR AJAR scene showing the reference on the left, Metropolis Light Transport in the centre, and Ensemble Metropolis Light Transport on
the right, rendered at an equal sample count. The use of the ensemble to propose anisotropic transition kernels allows sampling to be adapted to the scene
geometry and lighting information, leading to variance reduction as can be seen by lower MSE values shown at the top of each image.

This paper proposes a Markov Chain Monte Carlo (MCMC) rendering al-
gorithm based on a family of guided transition kernels. The kernels exploit
properties of ensembles of light transport paths, which are distributed ac-
cording to the lighting in the scene, and utilize this information to make
informed decisions for guiding local path sampling. Critically, our approach
does not require caching distributions in world space, saving time and mem-
ory, yet it is able to make guided sampling decisions based on whole paths.
We show how this can be implemented efficiently by organizing the paths in
each ensemble and designing transition kernels for MCMC rendering based
on a carefully chosen subset of paths from the ensemble. This algorithm is
easy to parallelize and leads to improvements in variance when rendering a
variety of scenes.
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1 INTRODUCTION
Accurately rendering photorealistic imagery requires computing ex-
tremely large numbers of light paths in a virtual environment. While
most research has been applied to traditional Monte Carlo estima-
tors for rendering, Markov Chain Monte Carlo (MCMC) methods,
such as Metropolis Light Transport (MLT) [Veach and Guibas 1997],
have shown impressive capabilities for computing light transport
efficiently, even in complicated scenes.
MCMC algorithms such as MLT generate a chain of paths that

follow the distribution of the lighting in the scene. Each new path
is generated by applying a transition kernel to the previous path,
and probabilistically replacing the previous path with the new path.
In the original application of MCMC to graphics [Veach and Guibas
1997], transition kernels were designed to either locally explore
regions around an existing path, or to globally explore path space.
While these transition kernels have been improved to consider
local geometric or lighting information [Li et al. 2015; Otsu et al.
2018], the use of non-local information capturing a wider range of
lighting can also be used to guide transition kernels. Such non-local
information can be captured by path guiding methods, for example
[Müller et al. 2017]; however this comes at a precomputation and
memory cost, and the cached distributions of lighting may not
clearly map to transition kernels. Another approach is to exploit
the fact that multiple light paths generated by MCMC algorithms
will be distributed proportional to the lighting in the scene, and as
such can be used to generate guided transition kernels.

This paper proposes such a method that uses ensembles of light
paths to guide mutations of existing paths. We name this approach
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Ensemble Metropolis Light Transport (EMLT). Crucially, these
guided transition kernels do not need to be based on caching distri-
butions in world space, only require moderately sized ensembles in
the low tens of thousands of paths, and can be combined to build
families of mutation strategies. To summarize, the main contribu-
tions of this work are:

• The introduction of Ensemble Metropolis Light Transport,
a method that guides sampling based on a complementary
ensemble of transport paths.
• A family of adaptive and anisotropic proposal distributions
for path mutations based on ensemble sampling.
• The use of a carefully chosen subset of paths from the ensem-
ble to create guided transition kernels.
• Results showing improvement of EMLT over traditional ap-
proaches in a range of real-world scenes.

2 BACKGROUND AND RELATED WORK
This section introduces the relevant background theory of light
transport, path guiding methods which exploit information about
the radiance or importance distribution in the scene to reduce vari-
ance, and MCMC methods which can efficiently compute images in
challenging scenes.

2.1 Light Transport
The path integral form of the rendering equation [Kajiya 1986] is
given by [Hachisuka et al. 2014; Veach and Guibas 1997]:

𝐼 𝑗 =

∫
P
ℎ 𝑗 (𝑥) 𝑓 (𝑥)𝑑𝜇 (𝑥), (1)

and states that the intensity 𝐼 𝑗 at a pixel 𝑗 consists of the contribution
𝑓 (𝑥) of light paths 𝑥 weighted by a pixel filter ℎ 𝑗 (𝑥). The domain of
integration is the union of all possible path lengths P =

⋃∞
𝑘=2 P(𝑘)

where P(𝑘) are all paths of length 𝑘 . In this work, path vertices
𝑥0 ..𝑥𝑘 lie on the scene manifoldM, i.e. integration is with respect
to the product area measure 𝜇, and are indexed starting from the
light source 𝑥0. The contribution of a path of length 𝑘 is defined as
𝑓 (𝑥) = 𝐿𝑒 (𝑥0)𝐺 (𝑥0 ↔ 𝑥1)

∏𝑘−1
𝑗=1 𝑓 𝑟 (𝑥 𝑗−1 → 𝑥 𝑗 → 𝑥 𝑗+1)𝐺 (𝑥 𝑗 ↔

𝑥 𝑗+1), where 𝐿𝑒 is the emitted radiance,𝐺 is the geometry term and
𝑓 𝑟 is the BRDF.
There are multiple ways of solving Equation 1, almost all relying

on Monte Carlo estimation:

𝐼 𝑗 ≈
1
𝑁

𝑁∑
𝑖=1

ℎ 𝑗 (𝑥 (𝑖)) 𝑓 (𝑥 (𝑖))
𝑝 (𝑥 (𝑖)) , (2)

where 𝑝 (𝑥 (𝑖)) denotes the probability density function (pdf) of
sampling the 𝑖’th path and is a product of probability densities for
sampling each vertex to build up the path. This typically consists of
sampling the sensor, lens, BRDFs and light sources. Ideally 𝑝 (𝑥 (𝑖)) ∝
ℎ 𝑗 (𝑥 (𝑖)) 𝑓 (𝑥 (𝑖)), however this is typically not possible in practice.
Therefore, distributions which approximate some components of
ℎ 𝑗 (𝑥 (𝑖)) 𝑓 (𝑥 (𝑖)) are used, see [Christensen and Jarosz 2016] for a
survey of these methods.

2.2 Path Guiding
Most rendering techniques generate light paths incrementally by
sampling the next vertex in a path given the previous vertex. Path
guiding approaches build on traditional BRDF and cosine sampling
to include information about incoming illumination or importance
when generating samples. Most techniques cache a distribution
that represents the incoming radiance or importance at a sparse
set of locations in a scene, and query locations at runtime using a
spatial data structure. Examples include 5D spatio-directional Trees
[Lafortune and Willems 1995; Müller et al. 2017], 7D distributions
[Pantaleoni 2020], use of various basis functions to store radiance at
discrete points in the scene [Bashford-Rogers et al. 2012; Diolatzis
et al. 2020; Herholz et al. 2016; Hey and Purgathofer 2002; Jensen
1995; Ruppert et al. 2020; Vorba et al. 2014] or usingmachine learning
methods [Bako et al. 2019; Dahm and Keller 2017].
Path guiding has also been applied to sample partial or com-

plete light paths. Approaches such as neural importance sampling
[Guo et al. 2018; Müller et al. 2018; Zheng and Zwicker 2019] have
learned a warping in Primary Sample Space (PSS) [Kelemen et al.
2002] which encodes the illumination distribution in PSS based on
a small set of paths traced before rendering. However, as these ap-
proaches are designed to generate full paths, they face the curse
of dimensionality and are more effective in lower dimensional sce-
narios such as importance sampling one bounce indirect lighting.
A related approach to whole path importance sampling was pro-
posed by [Reibold et al. 2018] that selectively stores and samples
distributions for high contribution paths which were unlikely to be
sampled through BRDF sampling.

EMLT exploits information about the lighting distribution in the
scene, and can use any of the distributions commonly used for path
guiding to generate samples. However, our method does not require
a spatial cache, and builds distributions on the fly from a small set
of paths from a complementary ensemble (see Section 3).

2.3 Markov Chain Monte Carlo
Markov Chain Monte Carlo (MCMC) [Hastings 1970; Metropolis
et al. 1953] techniques provide another approach to sample a space
and were initially applied to rendering as Metropolis Light Trans-
port (MLT) [Veach and Guibas 1997]. In MLT, sampling starts from
an initial path 𝑥 , and then proposes a new path 𝑥 ′ from a tran-
sition kernel 𝑇 (𝑥 → 𝑥 ′). The transition kernels have to satisfy
certain properties in order for the chain to explore the state space:
ergodicity meaning all states will be visited by the chain in a fi-
nite time, and aperiodicity meaning states will not get stuck in
a loop. At the limit, these states are distributed according to a
target distribution, 𝑓

𝑏
, where 𝑏 =

∫
P ℎ 𝑗 (𝑥) 𝑓 (𝑥)𝑑𝜇 (𝑥) is a normal-

ization constant. A scalar contribution function, 𝑓 ∗ : R𝑆 ↦→ R,
is defined where 𝑆 are the spectra or color channels associated
with evaluating 𝑓 (𝑥). Then based on the detailed balance condition:
𝑓 ∗ (𝑥)𝑇 (𝑥 → 𝑥 ′)𝑎(𝑥 → 𝑥 ′) = 𝑓 ∗ (𝑥 ′)𝑇 (𝑥 ′ → 𝑥)𝑎(𝑥 ′ → 𝑥), the
new state 𝑥 ′ is probabilistically chosen to replace the previous state
based on calculating an acceptance probability:
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𝑎(𝑥 → 𝑥 ′) =𝑚𝑖𝑛
(
1,
𝑓 ∗ (𝑥 ′)𝑇 (𝑥 ′ → 𝑥)
𝑓 ∗ (𝑥)𝑇 (𝑥 → 𝑥 ′)

)
. (3)

This leads to a chain of light paths, each dependent only on the
previously sampled light path, which explore the path space. In
rendering, the scalar contribution function is typically chosen to be
the luminance of the contribution of the path, but other functions
can be chosen (see [Gruson et al. 2016; Hoberock and Hart 2010]). 𝑏
is typically estimated by a separate Monte Carlo estimator, and the
initial state of the chain is generated through re-sampling a path
from a small set of paths computed at startup. Then the resulting
Monte Carlo estimator is given by:

𝐼 𝑗 ≈
𝑏

𝑁

𝑁∑
𝑖=1

ℎ 𝑗 (𝑥 (𝑖)) 𝑓 (𝑥 (𝑖))
𝑓 (𝑥 (𝑖)) =

𝑏

𝑁

𝑁∑
𝑖=1

ℎ 𝑗 (𝑥 (𝑖)), (4)

meaning that samples will be distributed according to the integrand.
Equation 4 is typically evaluated over the image plane which allows
for information about light transport to be shared between pixels,
resulting in a significantly more efficient estimator. Many strate-
gies can be designed such that many terms in the numerator and
denominator in Equation 3 cancel, something which is especially
important to remove the weak singularity in the geometry term.
The variance reduction properties of this method also depends on
the ability of the transition kernel to explore the state space.
[Veach and Guibas 1997] proposed a series of transition kernels

which were chosen to reduce variance for different types of light
transport. Bidirectional mutations were designed to ensure ergodic-
ity through deleting a randomly chosen series of vertices from 𝑥 , and
replacing them with vertices generated through sampling the same
pdfs used in a standard Monte Carlo estimator, i.e. BRDF and light
source sampling. The remaining strategies, known as perturbations,
were designed to explore sub spaces of path space given the state of
the path. Lens perturbations explored image space by perturbing
the position of the path vertex on the image plane, tracing a path
through any specular interactions until a non-specular vertex is
reached, then deterministically connecting to the unchanged light
subpath. This connection leaves a geometry term associated with the
deterministic connection when evaluating Equation 3. The caustic
perturbation was designed to explore caustics through perturbing
the outgoing direction for the first vertex on the caustic subpath, fol-
lowing the chain of specular interactions, and then deterministically
connecting to the camera. The multi-chain perturbation explores
specular-diffuse-specular paths through combining a perturbation
on the lens with directional perturbations at each non-specular
surface before deterministically connecting to the remaining light
subpath.
There have been several extensions to the original MLT algo-

rithm which have added or improved mutation strategies such as
perturbations in participating media [Pauly et al. 2000], improved
sampling of specular chains [Jakob and Marschner 2012] and per-
turbations in half vector space [Kaplanyan et al. 2014]. [Kelemen
et al. 2002] introduced mutations to light paths in PSS (PSSMLT).
These mutations were improved by [Hachisuka et al. 2014] who
combined PSSMLT with Multiple Importance Sampling [Veach and
Guibas 1995], [Bitterli and Jarosz 2019] who detected and perturbed

high variance paths in PSS, the use of delayed rejection by [Rioux-
Lavoie et al. 2020], the use of Hamiltonian Monte Carlo applied to
rendering by [Li et al. 2015] who used anisotropic Gaussian kernels
generated from a path gradient, and [Luan et al. 2020] who used the
Metropolis-adjusted Langevin algorithm also based on the gradients
of the path. Integration in both path space and PSS have been pro-
posed [Bitterli et al. 2018; Otsu et al. 2017; Pantaleoni 2017] which
allows path space mutations to be combined with PSS mutations.
For further information, [Šik and Křivánek 2018] provide a detailed
survey of MCMC methods in rendering.
Closer to our work, adaptive perturbation sizes based on scene

geometry were proposed by [Otsu et al. 2018], which used cone
tracing to estimate how large a perturbation could be based on the
surrounding geometry of a path. This was applied starting at the
camera, followed specular bounces if any, then traced one extra
path vertex to form a perturbed path.

Other methods mutate a set of paths but do not directly use these
to adapt transition kernels. Energy Redistribution Path Tracing
[Cline et al. 2005] combined Path Tracing andMLT by creatingmany
short chains whenever a path would be better explored by MCMC
methods than standard Monte Carlo. [Segovia et al. 2007] used
Multiple-Try MCMC to generate paths for Instant Radiosity [Keller
1997], and [Nimier-David et al. 2019] also proposed a Multiple-Try
MCMC method suitable for vectorized instructions.

2.4 Ensemble MCMC Methods
The use of multiple paths have been used in rendering to reduce
variance and better explore path space. These methods have largely
focused on variants of parallel tempering, also known as Replica
Exchange Monte Carlo [Swendsen and Wang 1986]. This uses mul-
tiple Markov Chains to explore different spaces, and uses a detailed
balance preserving transition to swap chains between spaces. This
was introduced to graphics by [Kitaoka et al. 2009], and improved
by [Otsu et al. 2013; Šik and Křivánek 2016]. These approaches have
also been applied to progressive photon mapping [Hachisuka and
Jensen 2011], the combination VCM/UPS with MCMC [Šik et al.
2016], and with stratified MCMC on the image plane [Gruson et al.
2020]. [Hachisuka et al. 2014] also used an pool of chains of different
lengths to sample path lengths proportional to their contribution.

Another related approach is to use Population Monte Carlo (PMC)
[Cappé et al. 2004; Fan et al. 2007; Lai et al. 2007]. This iteratively
and adaptively samples and re-samples a population of paths propor-
tional to their contribution and guides future samples, typically by
adapting the parameters of distributions or kernels used to generate
samples. While this is related to our approach, it is not trivial to com-
bine PMC with MCMC methods without biasing the result, and it is
also not clear how this approach can be applied when computing
high dimensional integrals.

One approach outside of the graphics literature which is closely
related to ourwork is Affine Invariant Sampling (AIS) [Goodman and
Weare 2010]. This work considered a pool or ensemble of walkers
∈ R𝑁 , and used the states of all other walkers to guide perturbations
for each walker. The authors proposed three perturbations: stretch
moves which shift a walker’s position towards or away from a ran-
domly sampled walker in the ensemble, a walk move which samples
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a subset of walkers and builds a Gaussian transition kernel, and a
replacement move which aims to reconstruct the whole space and
sample from the reconstruction. These techniques were shown to
efficiently guide the sampling, especially in the case of complicated
distributions. This was further extended by [Foreman-Mackey et al.
2013] which proposed a parallel approach to using the ensemble of
walkers. We also use a similar approach of partitioning the walk-
ers into two pools, and using one pool to guide sampling in the
complementary pool.

3 ENSEMBLE METROPOLIS LIGHT TRANSPORT
Our approach is based on an ensemble of paths which capture
global information of the distribution of lighting in a scene to guide
sampling for each path in the ensemble. We first define an ensemble
of chains containing 𝑂 paths:

X = {𝑥1, 𝑥2, .., 𝑥𝑂 }. (5)
This ensemble can be considered to be in P𝑂 . Similar to the ar-
gument in [Goodman and Weare 2010], if we consider a product
density using the ensemble, 𝐹 (X) = 𝑓 (𝑥1) 𝑓 (𝑥2) ..𝑓 (𝑥𝑂 ) then any
MCMC algorithm which preserves this density is valid. Such a strat-
egy is to update each path in the ensemble conditioned on the
other paths in the ensemble, i.e. following partial resampling [Liu
2008], if when updating path 𝑥𝑖 the remaining paths in the ensem-
ble {𝑥1, .., 𝑥𝑖−1, 𝑥𝑖+1, .., 𝑥𝑂 } remain fixed, then the update of the 𝑖 ′𝑡ℎ
path of the ensemble preserves the joint distribution 𝐹 . This also
allows the other paths in the ensemble to guide the sampling of
each path of the ensemble.

This implies updating each path in series, as each update relies on
fixing the states of all other paths in the ensemble. However, paths
can be updated in parallel for all𝑥𝑖 ∈ X by defining a complementary
ensemble, Y = {𝑦1, 𝑦2, .., 𝑦𝑂 }, to guide sampling for each path in
X [Foreman-Mackey et al. 2013]. Therefore, each path in X can
be processed in parallel using Y as guidance for sampling, i.e. the
transition kernel takes the form 𝑇 (𝑥𝑖 → 𝑥 ′

𝑖 |Y). This transition
kernel can be written as the product of multiple sampling events, in
the case of light transport this corresponds to progressively sampling
a subpath:

𝑇 (𝑥𝑖 → 𝑥 ′
𝑖 |Y) =

𝑘∏
𝑗=1

𝐾 (𝑥𝑖𝑗 → 𝑥 ′
𝑖
𝑗 |Y), (6)

where 𝐾 (𝑥𝑖𝑗 → 𝑥 ′
𝑖
𝑗 |Y) is a transition kernel for the 𝑗 ′𝑡ℎ sampling

event of 𝑘 events. Specifically, this is the transition kernel associated
with perturbing the direction of a path vertex conditioned on the set
of paths from the complementary ensemble. This transition kernel
can be applied to one ormore path vertices, producing a perturbation
to a light path. The acceptance probability for updating each path
in the ensemble is therefore computed as:

𝑎(𝑥𝑖 → 𝑥 ′
𝑖 ) =𝑚𝑖𝑛

(
1,
𝑓 ∗ (𝑥 ′𝑖 )𝑇 (𝑥 ′𝑖 → 𝑥𝑖 |Y)
𝑓 ∗ (𝑥𝑖 )𝑇 (𝑥𝑖 → 𝑥 ′

𝑖 |Y)

)
. (7)

Once all the paths of the ensemble X have been updated, this
is referred to as an iteration, the ensembles are swapped X ↔ Y

ALGORITHM 1: The EMLT algorithm. Two ensembles of paths X
and Y are input, and during rendering, paths from the ensemble X
are processed in parallel 𝑖𝑡 times, and the guided transitions kernels
based on Y are used to propose new paths. After all paths in X are
processed, X and Y are swapped.

Input: X and Y
1 while rendering do
2 ParFor 𝑥𝑖 ∈ X
3 for 𝑖𝑡 iterations do ⊲ See Section 3.4

4 𝑥′
𝑖 ∼ 𝑇 (𝑥𝑖 → 𝑥′

𝑖 |Y) ⊲ See Section 3.3

5 𝑎 ← 𝑎 (𝑥𝑖 → 𝑥′
𝑖 |Y) ⊲ Equation 7

6 Accumulate to Image
7 if 𝜉 < 𝑎 then
8 𝑥𝑖 ← 𝑥′

𝑖

9 end
10 end
11 end
12 Swap X and Y
13 end

and paths of Y are updated based on using X as path guidance:
𝑇 (𝑦𝑖 → 𝑦′

𝑖 |X). However, without loss of generality we refer to Y as
the complementary ensemble in the remainder of the text. Algorithm
1 summarizes the EMLT algorithm. Firstly, the two ensemblesX and
Y are initialized, then during rendering each path is processed in
parallel 𝑖𝑡 times (lines 2 and 3) using the proposed guided transition
kernels (lines 4 to 9). When all paths in an ensemble are processed,
then ensembles are swapped (line 12), and the process repeats.
The use of ensembles for guiding sampling of paths could be

applied to either path space or PSS. One possibility is to apply the
use of ensembles to PSS through a strategy which directly perturbs
a point in PSS based on other points in the ensemble, similar to AIS.
However, due to the difference in the number of random numbers
required to sample paths, it is not clear how walkers of different
dimensionalities could be used to create any of the transition kernels
proposed by [Goodman and Weare 2010]. Secondly, interpolating
between points in high dimensions, which is the result of applying
AIS to PSS, is unlikely to lead to usable paths, especially if there are
small regions in PSS containing valid light transport paths. However,
the alternative of applying this to path space is also not trivial as
samples are no longer in R𝑁 , and the strategies outlined in [Good-
man and Weare 2010] are not immediately applicable. Our proposed
transition kernels are designed to be suitable for path space, but are
also constructed to inherit the advantages of using an ensemble to
guide sampling.

This then allows scope for a wide range of new guided transition
kernels which are conditioned on the complementary ensemble.
While the entire complementary ensemble could be used to create
transition kernels, this would be prohibitively expensive when the
complementary ensemble is large. An alternative, and significantly
faster, approach that we propose in this paper is to use a carefully
chosen subset of the paths in the complementary ensemble. These
paths should be similar, both in interaction types and spatial proxim-
ity, such that they can still produce valid guided transition kernels.
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Section 3.1 describes how to efficiently find and weight the subset of
paths from the complementary ensemble, then Section 3.2 describes
how guided transition kernels can be constructed from this subset
of paths. Finally, Section 3.3 describes how these guided transition
kernels can be combined into path perturbations.

3.1 Complementary Ensemble
Before describing the transition kernels, we first describe two as-
pects of using the complementary ensemble for sampling. The first,
explained in Section 3.1.1, is how to select paths from complemen-
tary ensemble for sampling. This is important as many of the guided
perturbations require paths to be sampled that maintain the same
number of path vertices with the same interaction types as the
original path.

The second aspect deals with the similarity of paths sampled from
the complementary ensemble to the original path. This is required as
although paths with the same length and interaction types may be
sampled from the ensemble, paths which are similar to the original
path are likely to lead to better proposal distributions than those
further away. Effective use of this similarity between paths is what
allows our approach to avoid a spatial cache. Section 3.1.2 describes
an approach for measuring similarity between paths.

3.1.1 Finding Paths. As discussed previously, the proposed guided
perturbations rely on a subset of 𝑀 paths from Y: Υ = {𝜐1 ..𝜐𝑀 }.
These 𝑀 paths are located in Y based on similar properties to a
base path 𝑥𝑖 , such as identical length or the same Heckbert nota-
tion interaction types [Heckbert 1990]. This is motivated by two
observations: i) perturbations guided by similar paths, rather than
all paths, are likely to explore similar regions of path space leading
to higher acceptance probabilities, ii) perturbations are more likely
to succeed since they rely on preserving interaction types.

Therefore, the set of paths in Υ is deterministically selected from
the paths in Y with similar properties to 𝑥𝑖 . This is facilitated by a
tree data structure over path lengths and interaction types which
can be queried in𝑂 (1) time to find a subset of Y which matches the
desired properties. This is built at the start of the rendering process,
or at the end of each iteration, and please see the supplementary
material for more details about the construction and traversal of this
data structure. If the selection of paths forming Υ was probabilistic
and dependent on 𝑥𝑖 , then the probability of sampling the set Υ
given 𝑥𝑖 would have to be computed taking into account all paths
with similar properties in Y which would be prohibitively slow.
By performing a deterministic selection, in our case based on a
counter which is stored with the ensemble and updated each step,
this has the effect of having a minimal impact on performance
with the additional benefit that the computation of the acceptance
probabilities is significantly simplified as the probability of sampling
Υ is not required.

3.1.2 Measuring Similarity. The set of paths returned from query-
ing the ensemble, Υ, may have similar properties to the current light
path 𝑥𝑖 . However, while some of the vertices in the paths returned
may have similar positions in world space to 𝑥𝑖 , others may not.
When developing guided transition kernels, it is useful to have a
measure of how similar light paths, or vertices within light paths,

Fig. 2. Measuring similarity between a base path (red circles) and a path
from 𝜐𝑛 ∈ Υ (empty circles). This is a product of the similarity between
pairs of path vertices with the same index 𝑗 : 𝑆 (𝑥𝑖

𝑗
, 𝜐𝑛

𝑗
) .

are to each other. For instance, some transition kernels can benefit
from calculating weights for each vertex from Υ as this is likely to
provide a good estimate of nearby lighting.

The use of entire light paths in MCMC methods widens the range
of methods to measure similarity. While [Chaitanya et al. 2018]
proposed an effective heuristic of total path length, i.e. the sum
of distances between path vertices, we typically do not need to
consider the whole path. We develop a heuristic based on the world
space position of a set of vertices from Υ, and vertices in the current
light path 𝑥𝑖 . Other attributes, such as normals, albedo or surface
roughness could be considered, but we found that using the world
space position was effective for computing similarity.
Specifically, given the 𝑗 ′𝑡ℎ vertex from 𝑥𝑖 , 𝑥𝑖

𝑗
, and the previous

vertex, 𝑥𝑖
𝑗−1, the similarity value can be computed for all paths

in Υ by computing the distance to 𝜐𝑛
𝑗
and 𝜐𝑛

𝑗−1, 𝑛 ∈ [1..𝑀]. We
define the difference between the world position of two vertices as
𝑑 (𝑥𝑖

𝑗
, 𝜐𝑛
𝑗
) =𝑚𝑎𝑥 ( |𝑥𝑖

𝑗
−𝜐𝑛

𝑗
|2, 𝜖)−1 where 𝜖 is a small positive constant

(we use 𝜖 = 0.0001). From this, we define a normalized similarity
value as:

𝑆 (𝑥𝑖𝑗 , 𝜐
𝑛
𝑗 ) =

2

1 + 𝑒−𝑑 (𝑥
𝑖
𝑗
,𝜐𝑛

𝑗
)
− 1. (8)

This scaled sigmoid leads to a larger value when vertices are similar,
and smaller the further apart they become. See Figure 2 for an
illustration of similarity computation. The similarity of multiple
vertices starting at the 𝑗 ′𝑡ℎ position in the path to the 𝑘 ′𝑡ℎ position
can be computed as:

𝑆 (𝑥𝑖 , 𝜐𝑛, 𝑗, 𝑘) =
𝑘∏
𝑙=𝑗

𝑆 (𝑥𝑖
𝑙
, 𝜐𝑛
𝑙
) . (9)

3.2 Guided Transition Kernels
We first describe guided transition kernels for a single vertex, and
then describe how full perturbation strategies can be built from
these individual strategies in the following section. All of these
methods require information gathered from the set returned from
querying the tree structure Υ.
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Linear Transition Kernel

Fig. 3. Given some 2D domain, vertices in Υ can be projected onto that
domain (empty circles). One of these is selected (the orange circle) and used
by Linear Transition Kernels to form a ray from that point to a projection of
a vertex from the current path (the green circle). A distance along this ray
is sampled 𝜆 which generates a new point in this domain (the red circle).

The simplest form of guided transition kernels are the linear
transition kernels, which is suitable for guided sampling on the
lens. These operate inR2 in our implementation. Given coordinates
𝐶𝑥𝑦 (𝑥𝑖 ) ∈ R2 of the current path vertex and the coordinates of a
path vertex from Υ: 𝐶𝑥𝑦 (𝜐𝑛𝑖 ) ∈ R

2, this generates a proposal along
a ray in R2: 𝐶𝑥𝑦 (𝑥 ′𝑖 ) = 𝐶𝑥𝑦 (𝜐𝑛𝑖 ) + 𝜆 · (𝐶𝑥𝑦 (𝑥𝑖 ) − 𝐶𝑥𝑦 (𝜐

𝑛
𝑖
)). The

distance along the ray, 𝜆 is sampled from a distribution centered on
𝐶𝑥𝑦 (𝑥𝑖 ). This is illustrated in Figure 3.

[Goodman and Weare 2010] proposed the stretch move which
samples 𝜆 from a distribution 𝜆 ∼ 𝑔(𝑐) = 1√

𝑐
, where 𝑐 ∈ [ 1

1+𝛼 , 1+𝛼],
where 𝛼 ∈ R+ is a scaling term. This density is symmetric
𝑔(𝑐) = 𝑐𝑔( 1𝑐 ) see [Goodman and Weare 2010], and this leads to the

ratio of
𝐾 (𝑥 ′𝑖𝑗→𝑥𝑖𝑗 |Y)
𝐾 (𝑥𝑖𝑗→𝑥 ′

𝑖

𝑗 |Y)
= 𝜆, simplifying the acceptance probability.

However, other 1D distributions can be sampled to generate 𝜆.
For example, a uniform 𝜆 ∼ [1 − 𝛽, 1 + 𝛽], 𝛽 ∈ R+, or truncated
Gaussian can be used, and so long as these are symmetric they
simplify in the computation of the acceptance probability.

Linear Hemispherical Transition Kernels
While linear transition kernels are defined inR2, many transition

kernels are required to be defined over the (hemi)sphere S2. There-
fore, we extend the linear transition kernels to the (hemi)sphere.
This starts by sampling 𝜆 from one of the linear distributions, then
mapping this to a perturbation of the original direction on the
sphere. Given two directions in the sphere 𝜔1 and 𝜔2, these di-
rections may correspond to a direction on the original path, and
the other on a path from Υ, a new direction 𝜔𝑛𝑒𝑤 can be sam-
pled along the great arc connecting these two directions: 𝜔𝑛𝑒𝑤 =
𝜔1 sin( (𝜔1 ·𝜔2)𝜆)
sin( (𝜔1 ·𝜔2)) +

𝜔2 sin( (𝜔1 ·𝜔2) (1−𝜆))
sin( (𝜔1 ·𝜔2)) , i.e. a slerp between 𝜔1 and

𝜔2 with parameter 1 − 𝜆, see Figure 4. This leads to:

𝐾 (𝑥 ′𝑖𝑗 → 𝑥𝑖𝑗 |Y)

𝐾 (𝑥𝑖𝑗 → 𝑥 ′
𝑖
𝑗 |Y)

=
sin cos−1 (𝜔1 · 𝜔2)

sin cos−1 (𝜔𝑛𝑒𝑤 · 𝜔2)
=

√
1 − (𝜔1 · 𝜔2)2√

1 − (𝜔𝑛𝑒𝑤 · 𝜔2)2
.

(10)
Guided Anisotropic Transition Kernels
The linear and hemispherical transition kernels rely on a single

path from the complementary ensemble, and domains inR2 or S2.
However, more information can be gained from utilizing all𝑀 paths

Fig. 4. The Linear Hemispherical Transition Kernel uses the outgoing direc-
tion of a path from Υ (the orange circle), and the current path (the green
circle) to propose a new direction (the red circle) along the great arc denoted
by the dashed line. Other directions from Υ which are not considered are
shown as empty circles.

in Υ. For example, a distribution in world space can be fit to the
vertices at a certain point along the path, recentered at the current
path vertex, and this distribution can be used for sampling. This
allows lighting information from multiple paths to inform sampling
of the current path, similar to [Reibold et al. 2018].

There are multiple methods to achieve this; we describe one such
approach. We start with the 𝑗 ′𝑡ℎ vertex in a path 𝑥 𝑗 and another
vertex in the scene 𝑥 ′

𝑗−1, and then retrieve the set of path vertices
from Υ which match the index: 𝜐𝑛

𝑗
, 𝜐𝑛
𝑗−1 ∈ Υ. For each subpath, we

assign a weight:

𝑤 (𝑛) = 𝑆 (𝑥𝑖 , 𝜐𝑛, 𝑗, 𝑗 + 1)∑𝑀
𝑘=1 𝑆 (𝑥 𝑗 , 𝜐𝑘 , 𝑗, 𝑗 + 1)

. (11)

Then each of these points is projected onto the plane defined
by 𝑥 𝑗 and the normal at 𝑥 𝑗 : 𝑁 (𝑥 𝑗 ). Next an anisotropic Gaussian
N(𝜇, Σ; Υ, 𝑥 𝑗 ) is fitted to these points via weighted maximum likeli-
hood estimation where the weight of each point is that assigned to
each path: 𝜇 = 1

𝑀

∑𝑀
𝑛=1𝑤 (𝑛)𝜐𝑛𝑗 , and Σ = 1

𝑀−1
∑𝑀
𝑛=1𝑤 (𝑛) (𝜐𝑛𝑗 − 𝜇)

2.
This is recentered such that 𝜇 = 𝑥 𝑗 , leading to N(𝑥 𝑗 , Σ; Υ, 𝑥 𝑗 ). This
recentering is required such that the sampled point is close to the
original, and to ensure that the evaluation of the reverse transition
kernel returns a value similar to the proposed transition kernel in
the computation of the acceptance probability. The steps of this
algorithm are shown in Figure 5. Occasionally, all weights can be
zero, or a degenerate covariance matrix can be computed. We detect
these cases, and revert to a von-Mises Fisher distribution aligned in
the direction 𝑥 ′

𝑗−1 → 𝑥 𝑗 with a high concentration parameter for
sampling. Another approach could be to convolve with an isotropic
Gaussian similar to [Li et al. 2015], however the value to use for the
variance of the isotropic Gaussian is unclear in our case.

Once the anisotropic Gaussian is defined in world space, it is
sampled producing a point 𝑧′

𝑗
. This point may not be aligned to

the scene geometry, so a ray is traced from 𝑥 𝑗−1 in the direction
𝑥 𝑗−1 → 𝑧′

𝑗
, producing a new point on the scene manifold 𝑥 ′

𝑗
. The

density w.r.t. area of computing this point is 𝐾 (𝑥𝑖𝑗 → 𝑥 ′
𝑖
𝑗 |Y) =

N(𝑧′
𝑗
|𝑥 𝑗 , Σ; Υ, 𝑥 𝑗 )

𝐺 (𝑥 ′𝑗↔𝑥 𝑗−1)
𝐺 (𝑧′

𝑗
↔𝑥 𝑗−1) , where the final term stems from ratio
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(a) Initially the set of path
vertices from Υ are located
(empty circles) whichmay be
spread around the scene. The
resulting distribution needs
to be centered on 𝑥 𝑗 , shown
as the filled green circle

(b) The set of vertices
from Υ are weighted by
𝑆 (𝑥 𝑗 , 𝜐𝑘 , 𝑗, 𝑗 + 1) , blue
filled circles indicate larger
weights.

(c) All vertices are then are
projected onto the plane de-
fined by 𝑥 𝑗 and the normal
at 𝑥 𝑗

(d) An anisotropic gaussian
N(𝜇, Σ; Υ, 𝑥 𝑗 ) is created on
the plane from a weighted
maximum likelihood estima-
tion of the vertices from Υ
projected onto the plane

(e) The anisotropic gauss-
ian is then recentered at 𝑥 𝑗
producing N(𝑥 𝑗 , Σ; Υ, 𝑥 𝑗 ) . A
nearby sample can be gener-
ated by sampling the gauss-
ian (the red filled circle).

Fig. 5. The procedure to build and sample anisotropic gaussian transition kernels.

(a) The nearby directions 𝜔𝑛 from Υ are com-
puted and weighted (blue and black circles).

(b) A spherical distribution is fit to this set of
directions (orange)

(c) This distribution is then recentered around
the original direction (green circle), and a new
direction is sampled (red circle).

Fig. 6. Generating and sampling using the guided directional transition kernels.

of geometry terms resulting from the Jacobian from sampling a
point on the plane over which N(𝑧′

𝑗
|𝑥 𝑗 , Σ; Υ, 𝑥 𝑗 ) is defined, to the

scene manifold.
To compute the acceptance probability, this process has to be

computed in reverse, the distribution N(𝑥 ′
𝑗
, Σ; Υ, 𝑥 ′

𝑗
) is first com-

puted, then the vertex 𝑥 𝑗 is projected onto the plane defined by 𝑥 ′
𝑗

and 𝑁 (𝑥 ′ 𝑗 ) leading to a point 𝑧 𝑗 . This leads to a resulting ratio:

𝐾 (𝑥 ′𝑖𝑗 → 𝑥𝑖𝑗 |Y)

𝐾 (𝑥𝑖𝑗 → 𝑥 ′
𝑖
𝑗 |Y)

=
N(𝑧 𝑗 |𝑥 ′𝑗 , Σ; Υ, 𝑥

′
𝑗
)𝐺 (𝑧′

𝑗
↔ 𝑥 𝑗−1)𝐺 (𝑥 𝑗 ↔ 𝑥 𝑗−1)

N (𝑧′
𝑗
|𝑥 𝑗 , Σ; Υ, 𝑥 𝑗 )𝐺 (𝑧 𝑗 ↔ 𝑥 𝑗−1)𝐺 (𝑥 ′𝑗 ↔ 𝑥 𝑗−1)

.

(12)
A simpler version of this approach can be used on the image

plane. In this case, an anisotropic Gaussian can be fit to the image
plane coordinates of the paths in Υ, each weighted by the similarity
measure. Again, this can be centered at the image plane coordinates
of the current path, and a new point on the image plane for the
proposed path can be sampled from this distribution.

Guided Directional Transition Kernels
Guided anisotropic transition kernels form an anisotropic

distribution in world space. However, sometimes it is useful to
sample perturbations over solid angle. The linear hemispherical

transition kernel performs this, but restricted along a great arc.
Another approach is to fit a distribution on S2. Various approaches
for this exist, for example tabulated, spherical Gaussian or a
von-Mises Fisher distribution. Any distribution on the sphere
whose parameters can be estimated from a set of directions can
be used. Given a set of normalized directions from some base
vertex 𝑥 𝑗 to each member of Υ, 𝜔𝑛 = 𝑥 𝑗 → 𝜐𝑛

𝑗
, and weights

computed in the same manner as Equation 11, the parameters of
a distribution can be estimated. Similar to the guided anisotropic
perturbations, this distribution is recentered around the original
direction from the vertex. This can then be sampled generating direc-
tions which are guided by nearby paths. Figure 6 shows this process.

3.3 Guided Perturbation Strategies
The previous section defined a range of guided transition kernels
which are designed to update individual path vertices guided by
global information from the ensemble. When perturbing a path,
these guided transition kernels can be combined into a wide range
of guided perturbation strategies designed to explore different
lighting effects. Note that these can be combined with the original
mutation and perturbation strategies; this simply adds to the
strategies available. We always include the bidirectional mutation
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strategy from [Veach and Guibas 1997] as this ensures ergodicity,
thereby guaranteeing that the whole space will be explored. The
following lists the strategies we have implemented, but many more
can be built using combinations of the kernels defined in Section 3.2.

Linear Lens Perturbations

Fig. 7. Linear Lens Perturbation

The Linear Lens Perturba-
tion uses the linear transition
kernel on the image plane,
then similar to [Veach and
Guibas 1997] traces a subpath
over any specular vertices,
then connects to the original
path. As Υ contains paths with
similar interaction types and
lengths to the current path,
this strategy aims to explore
the image plane around similar

interaction types and also typically moves paths towards higher
contribution regions for that path type. This strategy samples a
path for the perturbation from Υ, where the weight for the 𝑘’th
path is given by 𝑆 (𝑥𝑖 ,𝜐𝑘 , 𝑗,𝑘)∑𝑁

𝑝=1 𝑆 (𝑥𝑖 ,𝜐𝑝 , 𝑗,𝑘)
, where 𝑗 is the index of a vertex

on the camera, and 𝑘 is the index of the first non-specular vertex in
the path. Figure 7 illustrates this strategy.

Linear Caustic Perturbations

Fig. 8. Linear Caustic Perturbation

Linear Caustic Perturbations
uses the linear hemispherical
transition kernel to perturb
the sampled direction on
the hemisphere to take into
account nearby caustic paths.
In this case, Υ will only contain
caustic paths of the same
number of path vertices, so
they are likely to be exploring
a similar region of the scene.
This first finds the best path

from Υ which closest matches the starting point and first specular
vertex of the original caustic subpath, and sets the directions
𝜔1 = 𝑥𝑖𝑐 → 𝑥𝑖

𝑐−1, and 𝜔2 = 𝑥𝑖𝑐 → 𝜐𝑛
𝑐−1. This then perturbs the

direction on the hemisphere, and traces the specular subpath to the
first diffuse vertex, and connects to the camera. This is visualized in
Figure 8.

Linear Multi-chain Perturbations

Fig. 9. Linear Multi-chain
Perturbation

Similar to the multi-chain
strategy described in [Veach
and Guibas 1997], Linear
Multi-chain Perturbations
uses the linear transition
kernel on the image plane
in the same way as the Lin-
ear Lens Perturbation. This
then traces a specular chain

until a non-specular vertex
is generated. A deterministic connection to the next specular
subpath is then made and this process repeats until the path can
be reconnected to the light subpath of the original path, see Figure 9.

Anisotropic Path Perturbations

Fig. 10. The Anisotropic Path Perturbation uses the guided anisotropic
perturbations for the first and second non-specular interactions from the
camera. This can either start from the camera (left image), or towards the
camera (right image)

This perturbation strategy comprises of using the guided
anisotropic transition kernels to perturb the current path. This can
be applied to any number of path vertices, either from the light
source or the eye. As the process of fitting an anisotropic Gaussian
is relatively expensive, we restrict this perturbation to the first two
vertices from the camera, and randomly select whether to sample
from or towards the camera. If sampling from the camera is selected,
an anisotropic gaussian is created on the image plane and sampled,
and for all other non-specular interactions the guided anisotropic
transition kernels in world space are used, then reconnected to the
original path. Likewise, if sampling towards the camera is selected,
the guided anisotropic transition kernel is used to generate path
vertices which are deterministically connected the camera. This
perturbation strategy helps to explore the local region around the
path, and sampling more than one vertex from the camera helps to
minimize the impact of the weak singularity in the geometry term
near edges visible from the camera (see Figure 10). Another option
is to sample with respect to solid angle similar to [Otsu et al. 2018]
or using the guided hemispherical perturbation which would cancel
geometry terms in the calculation of the acceptance probability.

Environment Perturbations

Fig. 11. Environment Perturba-
tion

This perturbation is designed to
explore environment lighting based
on nearby paths. This perturbation
uses the linear hemispherical transi-
tion kernel or the guided directional
transition kernel applied towards
the environment map to perturb the
direction to the environment map,
assuming that the first path vertex
from the light is non-specular. This
is illustrated in Figure 11. Variants
of this strategy can also be applied
to other area light sources, or for light source selection.
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3.4 Implementation Details
This method is initialized similar to the resampling approach de-
scribed in MLT [Veach and Guibas 1997]. A large set of paths is
computed with bidirectional path tracing, the contributions of these
paths stored and used to scale the result, then these paths are resam-
pled into two subsets: one to generate the ensemble 𝑋 , the other
used to generate the complementary ensemble 𝑌 .

There is no limit on the size of X and Y, however for convenience
we choose them to be the same size of |X| = |Y| = 16, 384, please
see the supplementary material for further analysis. There is also
much flexibility about when to update and swap ensembles (see
Section 3 for details). Although updating the data structures for
finding paths sampling is relatively inexpensive, this does come
with some computational overhead of clearing out previous values
and reinserting new values. Therefore, each path in the ensemble
is perturbed or mutated 𝑖𝑡 times (see Algorithm 1) before the en-
sembles are swapped which amortizes the overhead of updating the
data structure compared to swapping after every mutation or per-
turbation. We choose 𝑖𝑡 to take a value of

⌊
𝑊 ×𝐻
|X |+ |Y |

⌋
, where𝑊 and

𝐻 are the width and height of the image plane respectively, which
balances the computation cost of rebuilding the data structures and
runtime performance.
There is significant freedom to choose the value of 𝛼 used for

the linear transition kernels described in Section 3.2. However, the
method does not work well if this is set to a constant, as if the paths
in Υ are clustered in a small region of space, e.g. in a small area on
the image plane, then 𝛼 should be large to facilitate exploration of
a small space. Conversely when paths are spread over a large area
𝛼 should be small such that the proposed path is able to explore a
similar region of the space. We solve this issue by adapting 𝛼 based
on Υ. For a linear perturbation on the lens, we first compute a ratio
of the bounding box of the image plane coordinates of each path in
Υ to the image plane resolution: 𝑏𝑟𝑒𝑠 . 𝛼 is then computed by linearly
interpolating between two bounds 𝛼𝑙 and 𝛼𝑠 based on a weight

𝑤𝛼 =

(
1 + 𝑒−

𝑏𝑟𝑒𝑠−𝑐
𝜎2

)−1
, where 𝑐 ∈ [0..1]. This uses a generalized

sigmoid as a weighting function as it gives control over where and
how fast the weights transition from 0 to 1. We use the following
parameters: 𝛼𝑙 = 0.5, 𝛼𝑠 = 0.05, 𝑐 = 0.1, 𝜎2 = 0.02, although
the algorithm is quite robust to these values. The supplementary
material provides further details on the impact of 𝛼 .
For the linear lens, caustic and multi-chain perturbations, if the

number of paths in Υ is less than two then the original perturbation
strategies are used. This is to handle two situations: one is if no
nearby paths are found then the path can still be perturbed, and
secondly if only one path is found then there is too little information
about nearby paths to create a useful sampling distribution. We also
set the probabilities of sampling each proposed mutation type to be
equal.

4 RESULTS
EMLT, MLT [Veach and Guibas 1997] and Geometry Aware
MLT (GAMLT) [Otsu et al. 2018] were implemented into the
same rendering framework for comparison. We implemented the
Bidirectional, Lens, Caustic and Multichain perturbations in MLT,

and compare to Geometry Aware MLT as it is the closest method
to ours in terms of using adaptive sized perturbations in path
space. We tested the methods in a variety of scenes, from those
which exhibit challenging light transport where MCMC methods
are expected to perform well, to simpler scenes which represent
more common use cases for rendering. All results were computed
on a laptop with an i7-8750H and 16GB RAM. Computation was
spread over 12 threads using a thread pool to process paths in
parallel and the ensemble was the same size per scene (see Section
3.4 for more information). We set a constant probability for the
bidirectional mutation of 1

3 . All results were rendered at an average
of 64 mutations per pixel to allow equal comparison between
methods.

4.1 Indirect Lighting
Our method is primarily focused on efficiently computing global
illumination. Therefore, we first investigate the performance of
EMLT in scenes with indirect lighting only, as direct lighting can
be efficiently handled by other techniques in these scenes when
compared to MLT. We show results for six scenes which exhibit
different types of lighting effects. The DOOR AJAR scene in Figure
1 is a challenging scenario where light propagates through the ajar
door. Similarly, the BEDROOM scene in Figure 15 has thick, diffuse
curtains with a light source on the other side leading to a very chal-
lenging lighting scenario. The CLASSROOM scene in Figure 15 is lit
by an environment map with light entering through the windows.
The KITCHEN scene in Figure 15 shows strong indirect lighting on
the back wall and glossy reflections. The CORNELL BOX scene in
Figure 16 is representative of many real-world scenes with simple
lighting configurations. Finally, the STAIRCASE scene exhibits sim-
ple indirect lighting above the stairs, and more complicated indirect
lighting under the stairs. Insets in the images show details, and the
values printed on the top left of full resolution images correspond
to Mean Squared Error (MSE) for the whole image.
In Figure 17 we show loglog convergence plots for MSE versus

average mutations per pixel for the scenes used in this paper to
show how error decreases. This shows that there is an improvement
in convergence using EMLT (blue line) compared to MLT (green
line) and Geometry Aware MLT (red line, see below for further
discussion). This can be seen in the rendered images as a reduction in
noise compared to MLT. Diffuse and low glossy surfaces, such as the
walls in the DOOR AJAR, CLASSROOM and CORNELL BOX scenes,
or behind the cooker in the KITCHEN scene, exhibit significantly
reduced variance with EMLT. This is due to the transition kernels
adapting to both the illumination and scene as encoded in the paths
in the ensemble. However, EMLT also captures higher frequency
lighting effects, and can adapt to higher glossy materials, as can be
seen in the BEDROOM scene above the curtains, the metal on the
chairs in the CLASSROOM scene, and the strong indirect lighting on
the back wall in the KITCHEN scene. EMLT leads to improvements
in MSE for all tested scenes compared to MLT: 2.23× for DOOR
AJAR, 1.38× for the BEDROOM scene, 2.11× for the CLASSROOM
scene, 1.44× for KITCHEN, 1.71× for the STAIRCASE scene, and
2.93× for the CORNELL BOX scene.
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Fig. 12. Visualization of perturbations on the image plane for the KITCHEN
scene. Green colors mean perturbations were predominately vertical, red
mean predominately horizontal, and yellow means perturbations were pre-
dominately isotropic. The left image shows perturbations from MLT and
the right shows our method.

Figure 12 visualizes the anisotropic nature of the perturbations
proposed in this paper for the KITCHEN scene; other scenes are
shown in the supplementary material. The colors visualize the pre-
dominant direction of the perturbations on the image plane, green
represents vertical, red shows horizontal, while yellow are isotropic.
The perturbations for MLT are predominately isotropic, as the lens
and multi-chain perturbations use an isotropic transition kernel. In
MLT, caustic perturbations are isotropic over the hemisphere, but do
lead to an anisotropic distribution on the image plane. Our method
in contrast adapts to both geometry and lighting information as
can be seen in the right image in Figure 12. This shows that EMLT
proposes perturbations which are predominately horizontal in the
strong horizontal indirect lighting on the rear wall, whereas on the
rest of the wall the perturbations are predominately vertical.

4.1.1 Comparison to Geometry Aware MLT. Our implementation
of Geometry Aware MLT for indirect lighting used the geometry
aware multi-chain perturbations with the same parameters as
used for the results in [Otsu et al. 2018], and we also extended this
to use geometry aware lens and caustic perturbations following
the same approach as described in [Otsu et al. 2018]. We found
this significantly improved the results in GAMLT and these extra
perturbation strategies were implemented to facilitate a fair
comparison between EMLT, MLT and GAMLT. The convergence
plots in Figure 17 show that EMLT outperforms GAMLT in several
scenes, although both EMLT and GAMLT have similar variance
reduction properties in the KITCHEN and CLASSROOM scenes.
This is due to more small scale details in these scenes which
GAMLT can adapt to, leading to approximately equal performance
to EMLT. However, EMLT also adapts to these details, while also
adapting to incident illumination. GAMLT is also significantly more
computationally expensive than EMLT. In our implementation we
observed a four to ten times increase in time to generate the same
number of samples. Figure 18 shows results comparing EMLT to
GAMLT for the STAIRCASE scene. Both EMLT and GAMLT are
able to achieve variance reduction by considering scene geometry
in the transition kernels, but EMLT is also able to better adapt to
illumination, as can be seen in the inset images.

4.2 Ablation Study
We performed an ablation study to assess the impact of the proposed
strategies. We rendered the scenes using either the Anisotropic Path
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Fig. 13. Ablation study for the perturbation types presented in this paper,
where Ani refers to the Anisotropic Path Perturbation, Lin refers to the Linear
Guided Perturbations and EMLT refers to the combination. Combination
refers to using all strategies presented in this paper. The images show insets
of the scenes used in this paper, and MSE values are shown in Table 1.

Scene MLT Ani Lin EMLT
DOOR AJAR 7.32e-3 4.14e-3 3.86e-3 3.28e-3
KITCHEN 2.19e-2 1.75e-2 1.56e-2 1.52e-2
BEDROOM 1.15e-4 9.28e-5 9.24e-5 8.34e-5
STAIRCASE 7.42e-5 5.07e-5 4.92e-5 4.34e-5
CLASSROOM 2.45e-2 1.26e-2 1.32e-2 1.16e-2
CORNELL BOX 9.62e-3 4.72e-3 4.34e-3 3.28e-3

Table 1. MSE values for the different strategies used in the ablation study
for the scenes used in this paper, see Figure 13 for accompanying images.

Perturbation, the Linear Guided Perturbations or the combination of
these two strategies. Figure 13 shows zoomed in regions of the scenes
used in this paper highlighting the differences between strategies
visually, and Table 1 provides MSE values for these strategies across
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Scene MIS MLT EMLT
BREAKFAST ROOM 0.1082 0.0213 0.0177
SPONZA 0.0193 0.0038 0.0031

Table 2. MSE values for direct lighting.

all scenes. This shows that the Anisotropic Path Perturbation is ef-
fective at reducing noise in regions with low frequency variations in
lighting and is responsible for an average of 63% improvement over
MLT in the scenes in this paper. However, this exhibits noise when
sampling higher frequency lighting as the subset of paths contained
in Υ are less likely to be able to capture this type of lighting effect.
Conversely, the Linear Lens, Caustic and Multichain Perturbations
are efficient at capturing these higher frequency effects and are re-
sponsible for an average of 68% improvement over MLT, but exhibit
more noise in more uniform regions of the scene. The combination
of these strategies is able to reduce noise in both low and high
frequency variations in lighting.

4.3 Direct Lighting
To more clearly demonstrate the performance of the environment
perturbation, we apply our method to direct lighting. This uses
a combination of the Guided Lens Perturbation to perturb path
position on the image plane, and the Environment Perturbation
to guide sampling on the environment map. We compare with a
traditional approach of BRDF and environment sampling combined
withMIS, MLT applied to direct lighting, and EMLT. Please note, this
is not meant to compete with specialized direct lighting approaches,
but to illustrate the proposed perturbation strategies. In Figure 19
we show results for the BREAKFAST ROOM and SPONZA scene,
only showing direct illumination from the environment map. Table
2 shows MSE for the scenes and sampling techniques. This shows
that our perturbations outperform MLT, and significantly improve
on using MIS for direct lighting.

4.4 Performance
Our method has some computational overhead compared to MLT.
On average we observed an 18% overhead with our method due to
a) rebuilding the pools of paths, see Section 3.1.1, although this is
amortized by infrequently updating the pools, and b) slightly more
complicated procedures for sampling perturbations. The majority
of the overhead in our implementation comes from computing the
similarity measure (Section 3.1.2). The impact of this overhead is
illustrated in Figure 14, where we show results for equal time versus
equal quality for the scenes where our method performs best (DOOR
AJAR) and worst (KITCHEN). The images show the same insets
corresponding to Figures 1 and 15 respectively. These results show
that the overhead of our method is outweighed by the variance
reduction of guided transition kernels in EMLT.
EMLT also proposes perturbations which are more likely to be

accepted than with MLT. For the scenes in this paper, we observed
a 14% increase in the acceptance probability averaged over all the
scenes.

𝑇𝑖𝑚𝑒⇐⇒
𝑄𝑢𝑎𝑙𝑖𝑡𝑦
⇐⇒

MLT (30s) EMLT (30s) MLT (61.8s)

𝑇𝑖𝑚𝑒⇐⇒
𝑄𝑢𝑎𝑙𝑖𝑡𝑦
⇐⇒

MLT (30s) EMLT (30s) MLT (52.8s)

Fig. 14. Equal time versus equal quality for the DOOR AJAR and KITCHEN
scenes. The images correspond to the same insets as the main results. The
left column shows MLT rendered for 30s, the middle is EMLT rendered for
30s, and the right images show MLT rendered to the same MSE for the
whole image.

5 DISCUSSION AND FUTURE WORK
In this section we briefly discuss our method, and propose directions
to extend this work.

Derivative-Based Approaches
Our method guides sampling based on creating distributions

from an ensemble of paths which capture lighting information in
the region near the current path. The size of this region depends on
the number of paths selected from the pool (Υ), and the size of the
pool. Approaches such as [Li et al. 2015] and [Luan et al. 2020] use
gradient information associated with the path to create proposal
distributions which allow perturbations to be proportional to the
local gradient. Our work is complementary to these approaches
as we target perturbations guided over a wider region, and as
such can take into account larger scale geometric and lighting
details, whereas these approaches allow for more optimal local
perturbations but do not consider lighting from nearby paths,
or geometrical detail. Combining both approaches would be an
interesting avenue for future work.

Combination with Primary Sample Space
Our approach works in world space as discussed in Section 3.

However, using the approaches which fuse world space Metropolis
Light Transport and PSSMLT [Bitterli et al. 2018; Otsu et al. 2017;
Pantaleoni 2017] would allow our approach to be combined with
PSS approaches. Another approach would be to adapt our method
to work in PSS, however this is not trivial as discussed in Section 3.

Combination with Other Mutation Strategies
Perturbation strategies such as Manifold Perturbations [Jakob

and Marschner 2012], Multiple Try Metropolis [Nimier-David et al.
2019; Segovia et al. 2007], selectively choosing paths to perturb
[Bitterli and Jarosz 2019] and Delayed Rejection MLT [Rioux-Lavoie
et al. 2020] could all be combined with our approach into a larger
set of possible strategies. Manifold perturbations are especially
effective at locally perturbing specular paths, thus complementary
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Fig. 15. Results for the BEDROOM, KITCHEN and CLASSROOM scenes. The left images are the reference, middle is MLT, and the right images are EMLT.
Insets highlight reduced variance with our method, for example showing where the sampling has adapted to scene geometry or illumination.

to our approach which perturbs paths in a wider region. Delayed
Rejection MLT would help balance between when to use the
different strategies, leading to a more efficient method.

Parameters
Our method requires several parameters such as pool size, update

frequency, the number of paths in Υ, and the parameters used to
compute 𝛼 . We discuss these parameters in Section 3.4, however
we do not claim these parameters are optimal. Theoretically finding
optimal values of these parameters would be useful as it would

further increase the efficiency of our method. One possibility is to
use the scene acceleration structure to estimate maximum values
for the parameters used in the same manner as the approach taken
by [Otsu et al. 2018].

Limitations
While our method achieves variance reduction for scenes with

both complicated and simple lighting, there are some situations or
sets of parameters where our method is outperformed by MLT. An
example of this is when the size of the ensemble becomes very small.
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Fig. 16. Results for the CORNELL BOX scene. This illustrates that EMLT provides an advantage over MLT in simple scenes.
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Fig. 17. Convergence graphs showing MSE versus average mutations per pixel on a logarithmic scale for the scenes used in this paper. The blue line is EMLT,
green is MLT, and red is Geometry Aware MLT (GAMLT).

Fig. 18. Results for the STAIRCASE scene showing the reference on the left, Geometry Aware MLT (GAMLT) in the middle and EMLT on the right. This shows
that both EMLT and Geometry Aware MLT can adapt transition kernels to the scene geometry, but EMLT can also sample illumination, leading to variance
reduction.
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Fig. 19. Environment Lighting in the BREAKFAST ROOM scene (top row) and SPONZA (bottom row). The inset images show (left to right): Reference, MIS,
MLT and EMLT. Our guided perturbations reduce variance compared to MLT, and significantly compared to MIS.

In this case, there is not enough information in the complementary
ensemble to guide sampling, and our method falls back to MLT,
albeit with the computational overhead of maintaining a pool. We
found this was not a problem using the range of parameters outlined
in Section 3.4, but there may be scenes which require the ensemble
to represent more paths.
Finally, the approach of deterministically selecting a subset of

paths from an ensemble of paths could be used for path guiding
in non-MCMC methods such as path tracing. This would have the
advantage of no longer requiring an additional spatial data struc-
ture as is needed by the approaches in Section 2.2, and would likely
require different probability distributions than those used in this pa-
per. However we believe this could lead to conceptually simpler and
easier to implement path guiding with lower memory overheads.

6 CONCLUSION
This paper has presented a new family of transition kernels for
MCMC rendering algorithms. These are based on efficiently sam-
pling ensembles of transport paths, and utilizing these ensembles
to guide path mutations. This approach does not require spatial
caching of radiance or importance distributions, nor the associated
spatial data structures, yet is efficient and reduces variance in scenes
of different complexity and light transport effects. We believe that

many more transport kernels of the type presented in this paper are
possible, and we hope this work opens up new possibility for further
variance reduction strategies for MCMC methods in the future.
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