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Abstract: Predicting potential cancer treatment side effects at time of prescription could decrease
potential health risks and achieve better patient satisfaction. This paper presents a new approach,
founded on evidence-based medical knowledge, using as much information and proof as possible to
help a computer program to predict bladder cancer treatment side effects and support the oncologist’s
decision. This will help in deciding treatment options for patients with bladder malignancies. Bladder
cancer knowledge is complex and requires simplification before any attempt to represent it in a formal
or computerized manner. In this work we rely on the capabilities of OWL ontologies to seamlessly
capture and conceptualize the required knowledge about this type of cancer and the underlying
patient treatment process. Our ontology allows case-based reasoning to effectively predict treatment
side effects for a given set of contextual information related to a specific medical case. The ontology is
enriched with proofs and evidence collected from online biomedical research databases using “web
crawlers”. We have exclusively designed the crawler algorithm to search for the required knowledge
based on a set of specified keywords. Results from the study presented 80.3% of real reported bladder
cancer treatment side-effects prediction and were close to really occurring adverse events recorded
within the collected test samples when applying the approach. Evidence-based medicine combined
with semantic knowledge-based models is prominent in generating predictions related to possible
health concerns. The integration of a diversity of knowledge and evidence into one single integrated
knowledge-base could dramatically enhance the process of predicting treatment risks and side effects
applied to bladder cancer oncotherapy.

Keywords: bladder cancer; healthcare; treatments; side-effects; safety; evidence-based medicine;
knowledge representation; health informatics; reasoning

1. Introduction

Bladder cancer (BC) remains a major concern for urologists worldwide despite consid-
erable advances in the medical field. BC has a standardized overall age-specific mortality
rate estimated at 4.7 per 100,000 [1]. It is of a particular importance in the field of urological
carcinology in predicting treatment side effects (SEs), due to its frequency, its anatomopatho-
logical polymorphism, the difficulty of precise staging and the great prognostic uncertainty.
Prediction, early detection, prevention and treatment of the long-term complications of
such diseases should help to limit costs, and promote the emergence of new organizations
that are more effective and secure than conventional practices and usually offer a better
quality of life to patients.

As a multifactorial disease, cancer has become the disease that kills the most. The
quantity of data and knowledge contribution to the theories within this discipline plays an
important role in the management of many inclusive pathologies. Oncotherapy choices
have grown considerably since the deciphering of the human genome and the collection of
specific data with the adoption of evidence-based medicine principles [2]. We are now able
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to predict with ever-increasing accuracy related health risks for the patient, particularly
possible future cancers.

As far as the prescribing of drugs, we are aiming to be able to assess at an early stage
the effectiveness of the chosen treatment option by referring to the latest studies in this field.
Thus, we can avoid those treatments reported as more problematic and expensive, as well
as less effective. Such a proactive approach to prescribing is highly recommended before
the onset of the disease to prevent or delay it. This breakthrough belongs to the major
evolution in oncology referred to as precision or personalized medicine, which makes it
possible to decide on the right treatment for the patient.

Semantic web technologies primarily driven by ontologies could provide a good
approach for managing BC knowledge including oncotherapy procedures and their related
clinical processes. They are highly used in a wide range of clinical applications in which
domain knowledge is modelled and conceptualized, in a formal way, to support computer-
based processing and reasoning. These functionalities could help to reason and to generate
new knowledge automatically. Particularly, in this paper, this reasoning serves the main
goal of our work, which is the development of a decision-making tool to assist oncologists
throughout the process of treatment prescribing. An effective decision support system
(DSS) in this context should allow the application of scientific findings in the field of BC
to medical cases. This includes theoretical and empirical knowledge in the domain along
with archived cases of patients previously diagnosed with and treated for this epidemic.
The gathering of all this variety of knowledge within a unified semantic knowledge-base
(KB) sets the foundation for the ontological evidence-based approach we are presenting in
this work.

To model the patients’ medical case, we used contextual information capturing the
necessary parameters for making the right diagnosis, including interrogation, clinical
examination medical tests, and other complementary examinations.

In this paper, the work will be structured into sections starting in Section 2 with
an overview of BC treatments and related SEs. We also present in the same section a
summary of related works on automated predictions in oncology and the use of semantic
web technologies, with relation to oncology and to evidence-based medicine (EBM) in
general [3]. We move in Section Three to a presentation of the set of methods and the
methodology we have adopted to develop our ontology-based approach for an automated
prediction of BC SEs. The description of our ontology composition and its features will be
presented in the results and discussion within Section 5. Finally, at the end of this paper, a
general conclusion and a set of future recommendations will also be presented.

2. Background

Following a patient’s discovery of BC, the care team develops a personalized treatment
plan. This is based on the patient’s health and specific information about cancer. When
deciding which treatments are to be offered, consideration is given to the stage, grade,
risk category, functional index, and other medical conditions that affect the patient and
the preferences of the patient concerned. The different types of possible treatment for this
pathology include surgeries and in particular Transurethral Resection of the Bladder Tumor
(TURBT), Cystectomy and Pelvic lymph node dissection, among the popular treatment
options. Immunotherapy, Chemotherapy and Radiation therapy are also common practices
for the treatment of BC [4]. However, these procedures have many side and unwanted
effects including mouth sores, tiredness, changes in kidney or liver function, diarrhea,
dry mouth, changes in fingernails or toenails, changes in mineral levels in the blood, loss
of appetite, loss of taste, anemia, dry skin, dry eyes, and hair loss, along with redness,
swelling, peeling or tenderness on the hands/feet, constipation, belly pain, nausea, and
muscle pain. In addition, eye problems can occur. These include blurred vision, loss of
vision or other visual changes. In most cases irritation and a burning feeling in the bladder
occur, along with blood in the urine [5]. SEs will vary in type and severity depending on
the administered treatment and on the medical case of each patient. Our aim is to capture
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and provide the right knowledge for a computer agent to assist the doctor during the
process of treatment prescribing by deducing the possible SEs for a selected treatment type,
applied to a specific medical case of a patient suffering from a BC case.

Related Work

In the literature, only a few works focus on the application of information technology
to optimize oncotherapy treatment processes. To the best of our knowledge, no effort
has been put into the relationship to BC oncology. In general, the research effort has
been directed to the construction of medical ontologies [6,7], as well as the translation of
many existing thesauri, terminologies, and classifications into the ontology web language
(OWL) [8,9]. Beyond the construction of ontologies, some works aimed to exploit the po-
tential of the semantic web in medical and clinical applications: for example, computerized
patient records [10] or knowledge management in clinical processes [11]. So far, several
studies have attempted to suggest predictive computer approaches and models that are
based on mathematics, semantics and logic for use in health systems, e.g., the probabilistic
models [12–14], the Bayesian network [15] and the rule-based therapeutic recommenda-
tions for infectious diseases [16]. These approaches were welcomed at first, but studies
have revealed some major inadequacies [17,18]. This is mainly due to the presentation of
results in the form of probable treatments with their consequences, but without explana-
tions. These approaches did not convince doctors particularly in the case of probabilistic
approaches since they are not able to say explicitly “why” and “how” they produced such
results. In contrast, the semantic modelling in association with the rule-based reasoning
we provide in this work allows us to identify patients at high risk of oncotherapy SEs in
the case of BC. This has also permitted the development of computer-based prediction of
treatment for SEs while taking into consideration medical proof and evidence specified as
contextual information within our ontology.

Over the last decade, several studies have investigated the effectiveness, vigilance
and responses of treatments applied to patients with BC [19–21]. However, no consistent
conclusions have been reached among those studies. Thus, this research provides a syn-
thesis of current evidence to investigate and predict the possible SEs of treatments for BC
cure. Only a few approaches have been adopted on the prediction of SEs during cancer
treatment. Isaksson et al., developed a machine learning-based model for toxicity outcome
prediction in Radiotherapy (RT) which was considered as a valid model [22], but there
are still loose ends on the clinical applicability of RT-induced toxicity models. However,
an effective prediction strategy for SEs is necessary. Hirahara et al. carried out a study to
predict postoperative complications and survival after laparoscopic gastrectomy using Risk
Index in elderly gastric cancer patients and the Clavien-Dindo (CD) classification for SE
evaluation [23]. For statistical analysis they used the non-parametric Mann–Whitney U test,
the Chi-squared test, the Kaplan–Meier method, the log-rank test and the Cox proportional
hazards regression models within the retrospective cohort study. These methods and
the risk index proved their reliability within this approach, but knowledge models still
need to be implemented for semantic prediction. Jing et al. used a strategy that combines
pharmacovigilance data and omics data, and assessed relationships between multi-omics
factors and immune-related adverse events (AEs), reporting odds ratio across different
cancer types [24]. They identified a bivariate regression model that predicted complications
through LCP1 and ADPGK biomarkers.

As mentioned by Wang et al., current artificial intelligence (AI) was employed for
automating and improving several medical aspects such as RT [25]. Many algorithms
in RT planning were created to support planners through automated planning and ra-
diation dose optimization. This featured automated rule-making and reasoning, prior
knowledge modeling and optimization of many criteria in clinical practice. New treatment
planning solutions based on AI used knowledge-based and deep learning. In terms of
efficiency and uniformity, this optimized treatment planning. AI models with data-driven
approaches such as machine learning and deep learning are improving the clinical RT
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workflow. However, a lack of knowledge and of AI models processing can prevent wide
and comprehensive use in clinical practice. In a review carried out by Liesbeth et al., it was
found that the implementation of AI models in the RT workflow and their quality assur-
ance (QA) were supported by specific guidelines [26]. This measured treatment reliability
through comprehensive patient safety monitoring. Commissioning, implementing, and
case-specific QA are emphasized for the most used applications in RT.

It is also worth mentioning the work done by Brooks et al., in which they developed a
clinical prediction model to assess patient-specific risk of chemotherapy-related hospital-
ization using the readily available clinical data [27]. They abstracted risk factors, patient,
and treatment characteristics from the medical records, to model patient-specific risks. In
addition, Tramèr et al. found that learning models such as statistical methods improve
precision in additional cases [28]. However, there are major ways in which ontology-based
EBM differs from traditional statistics and learning models: predictions are made for
categories or groups and can suit individuals belonging to the group. Second, it relies
upon a normal bell-shaped curve, based on past treatment outcomes as well as the latest
medical research published in scientific journals and databases, to reach the top of the
curve of unsuspected new predictive associations [29,30]. Still, in these approaches the user
usually has minimal intervention such as supplying machines with administrative data or
non-clinical information about the patient. Meanwhile our models enrich the application
area by incorporating various personal factors. Hence, it has the potential to improve
patient safety by predicting adverse AEs that might not have been observed within the
clinical trials. To present the different methods and the research methodology adopted
in this work, we rely mainly on a scenario describing an instance of the process a doctor
adopts to make a choice of treatment protocol for a patient suffering from BC.

As mentioned by Zang et al. [31], several studies related to BC treatment reported
on libraries and databases, such as the Cochrane Library Central database (CENTRAL),
PubMed/MEDLINE and Embase, from which randomized controlled trials (RCT) and
records were retrieved. Other various biomedical sources were included in BC study-
based research, such as the WHO’s international clinical trials registry platform (CINAHL)
and clinicaltrials.gov.

Many of the works shown below have examined the application of DSS for ontology
cooperation. Shen et al. developed a DSS for cancer treatment and prognosis based on an
existing Disease Ontology (DO) to improve the reasoning task of the DSS using Case-Based
Reasoning (CBR) [32]. This system estimated the stage of the cancer. The system searches
result in using the CBR database as reference for future reasoning, instead of using its own
outputs. Moreover, this DSS still struggles with assisting doctors in using drugs rationally
according to the patient’s specific situation. Zhang et al. proposed an ontology-based
DSS to solve some issues in multi-level integrative data analysis studies for oncology re-
search, through theory-based guidance for multi-level variables and data source selection,
a standardized documentation of this data selection and an ontology-based integration
process [33]. Hence, the approach enabled the sharing of reports among scientists. But
the system is still not automated and needs a standardized framework for operational use.
Redjdal et al. reported that the guideline-based DSS (GL-DSS) of the DESIREE project and
OncoDoc are examples of clinical DSS applied to breast cancer [34]. The team reused the
OncoDoc multidisciplinary tumor board (MTB) RCTs. The approach included two differ-
ent knowledge representation models and two formalisms. Therefore, a transformation
sequence was proposed, involving synthetic patients, the DESIREE ontology improvement,
and the abstraction of RCT outcomes. Complex cases within the approach that were not
handled by guidelines needed effective analyses. In a review carried out by Pavithra et al.,
clinical reasoning ontology (CRO)–based clinical DSS (CDSSs) in oncology were evalu-
ated to identify and classify knowledge, reasoning concepts and properties within these
ontologies [35]. The team found that ontology-based methods make inferences according
to the relationships implicating EHRs. Moreover, 16% used algorithms, 79% of CDSSs
used rule-based computation for inferencing, 5% used fuzzy logic, 58% used an ontology-
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based method and 8% used machine learning and natural language processing. Other
computational methods included probability, proximity-based, anchor-based, and ranking
of weighted option, but more research is needed for high quality ontology-based CDSSs.

Generally, BC therapy is based on international guidelines, including those of the
society of urologic oncology (SUO) [36], the National Comprehensive Cancer Network
(NCCN) [37], the Canadian Urological Association (CUA) [38], the National Cancer In-
stitute (NCI) [39], the First International Consultation on Bladder Tumors (FICBT), Con-
sultation on Bladder Cancer (SIU-ICUD) [40], the PDQ bladder cancer [41], the American
Urological Association (AUA) [42], the European Society for Medical Oncology (ESMO) [43]
and the European Association of Urology (EAU) [44]. This practice has the drawback of
not necessarily, accurately or appropriately recommending the options and alternatives
as mentioned in the local recommendations for local clinical practice or specific cancer
states. Recommendations based on international guidelines and other references are not
always suitable for all cases, with some drugs and treatment techniques or technologies
not licensed for use in some places.

A reasonably substantial number of BC RCTs have been included and been considered
appropriate to improve these guidelines by our prediction results and evidence-based
reasoning. This ontological guidance provides an overview of BC treatment in the indi-
vidual clinical stages, followed by clinical questions that encounter issues in daily clinical
practice. In a study conducted by Zhang et al., it was found that the quality of the current
BC recommendations and guidelines was controversial. Moreover, these guidelines varied
in different ways [45]. Despite many similarities, there were several inconsistencies in
the recommendations.

3. Materials and Methods

To present the different methods and the research methodology adopted in this work,
we rely mainly on a scenario describing an instance of the process a doctor adopts to make
a choice of treatment protocol for a patient suffering from BC.

Our primary outcomes included: (i) SEs’ prediction and detection rate using knowledge-
based reasoning in relation to BC, including NIBC, NMIBC and MIBC; and (ii) overall
survival and progression-free survival within AEs’ severity grades. Secondary outcomes
were SE management, preventing recurrences and occurrences of SE risks and the impact
on quality of life.

3.1. Knowledge and Data Collection

In this study, we used a crawler “pubCrawler” as a selective information dissemination
service (SDIS) to extract information from various online knowledge sources, particularly
evidence-based knowledge and data about past events and facts in BC treatments. This
systematic review framework was applied to search, extract, and assess scientific papers.
We used a keyword search strategy to find relevant articles that contain knowledge about
BC treatment risks and effects and research about BC ontologies. Journals, books, guide-
lines, and taxonomies are also included in these crawling events. Additionally, research
was applied to find clinical anonymized and non-identifiable data and indications about
patients and related clinical cases used in previously published studies about BC. Whether a
study refers to random samples or is broadly applicable to many different types of samples,
data are labelled with good generalizability.

We adopted a comprehensive literature search that included RCTs and data-based
knowledge from Pubmed/Medline, Embase, Cochrane CENTRAL and the Allied and
Complementary Medicine Database (AMED). Our review process was based on Cochrane
guidelines for systematic reviews of interventions [46]. Terms and their combinations were
searched following specific criteria as described in Table 1 including the ongoing trials.
Within some databases, such as Pubmed, we used the “related articles” function to refine
the search. On the other hand, we manually searched in the retrieved studies’ references
as they were cited. We have retained the most complete and updated studies, to which
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the outcomes were different in measures and time. This was to avoid multiplicity and
similarities included in reports with the same samples and results. All BC treatment SE-
related Knowledge and RCTs will be included. Our search focused on studies with extended
research findings and conclusions, from a small sample study to a larger population. The
larger the population, the more the data is generalizable. This method provided information
on a dedicated web page whenever new hits on articles appeared in PubMed and the US
National Library of Medicine (NLM) or when new sequences were found in Science Direct
or GenBank that were specific to our customized queries. These targets provided access to
their databases.

Table 1. Search criteria and selection of BC treatments risks and effects crawling variables.

Search Lines Alias Query Description Search Terms and Field Filters

Line 1 ‘Query Alias 1’ Cancer and BC
strategy management

‘cancer’ (J1) OR (‘bladder’ AND
‘treatment options’ AND ‘treatment

workflow’ OR ‘oncology care pathway’
AND ‘models’ AND ‘clinical trial’)

(T2/A3) AND ‘ID’ (LID4)

Line 2 OR ‘Query Alias 2’ OR BC Treatments’ effects and risks

(‘bladder cancer’ AND ‘side effects’
AND ‘treatments’ AND ‘patients’ AND
‘prediction’ AND ‘grades’ AND ‘stages’

AND ‘risk factors’ AND ‘risks’ AND
‘severity’) (T/A) AND ‘ID’ (LID)

AND ‘patient’ (J)

Line 3 AND ‘Query Alias 3’ AND BC Treatments

(‘bladder cancer’ AND
‘immunotherapy’ OR ‘chemotherapy’

OR ‘radiation therapy’ OR ‘surgery’ OR
‘intravesical instillation’) (T/A) AND

‘bladder cancer’ (Ta5) AND ‘patient’ (J)

Line 4 AND ‘Query Alias 4’ AND Patients and trials

(‘bladder cancer database’ AND
‘patient’ AND ‘case study’ AND

‘samples’ AND ‘electronic medical
record’ AND ‘age’ AND ‘Sex’ AND

‘medical history’ AND ‘diagnosis’ OR
‘clinical trial’) (A/T) AND ‘patient’ (B)

Only studies with BC treatment AEs and SE severity grades related to the clinical
state of patients were included. Furthermore, any other treatment of BC different from the
performed one was used as a comparator, including SEs. On the other hand, we avoided
any use of studies with RCTs implicating the same treatments/procedures and the same
AE severity grades.

We provide some details about the exclusion and remaining records and papers as
described in Figure 1. As detailed in Table 1, four queries were launched together and
returned 3858 hits that were received by our crawler as shown in Figure 1.

Inclusion and exclusion criteria are characteristics that prospective studies must have
to screen and review searched studies. These criteria are based on our PICOs of interest,
with the agreement of all the research team. The PICO method is a process used in evidence-
based practices to develop search strategies. It contextualizes and answers questions about
healthcare and clinical observations. We referred to the PICO model to define our clinical
questions, or PICOs, and to help find relevant evidence in the studies searched. This
consists of concepts relating to (P) patient problem/characteristics, (I) intervention, (C)
comparison with interventions/where applicable and (O) outcomes to measure.
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Figure 1. Flow diagram for BC data collection and study selection.

For general knowledge, we used background questions in the form of a wh-question
about aspects of healthcare in BC treatment. For specific knowledge, we used foreground
questions affecting clinical decisions and includes indications about medical and clinical
problems, such as treatments’ SEs. As follows, we present examples of our PICO questions:

• In a 65-year-old male patient, smoker, diagnosed with BC Papillary Carcinoma (P),
does a chemotherapy treatment (I) worsen the situation of the patient more than
immunotherapy (C) for more serious SEs (O)?

• In adults with NMIBC (P), what does a TURBT (I) cause as SEs (O)?

First, duplicates were removed. Then, we focused on checking the titles and abstracts.
This helped us to reduce the number of articles to 279 to refine the set of records gradually.
In this screening phase, we found that there were many papers discussing cancers, and
general knowledge about treatments such as numbers and statistics. However, few of these
papers reviewed the risks and effects of BC treatments regarding evidence-based medicine
and semantic web technologies. Moreover, we only considered articles that strongly
focused on providing data about BC patients and cases, which was our main concern in this
information gathering. We also focused on knowledge acquisition. We mainly excluded
research that did not include examples and patients’ parameters and characteristics related
to BC treatments. Only 93 remaining papers and records met the criteria to be included for
quantitative synthesis and utilization as medical evidence and cases.

3.2. Data Collection and Analysis

For our studies selection we used the EndNote X7.8 as a tool to import our crawled
reports and to perform data deduplication on our gathered information from previous
studies (literature). Among the authors, two independent researchers browsed the content
of all relevant studies and scanned their taxonomy, abstracts, location ID and titles to
extract knowledge data from the included RCTs. Furthermore, based on our predefined
eligibility criteria as mentioned in Table 1, unassociated contents were excluded from our
identified studies. Then, full text evaluation was processed for eligibility and inclusion



Informatics 2021, 8, 55 8 of 28

as shown in Figure 1. Both researchers independently extracted, selected, and evaluated
the quality of the recorded studies using the recommended tool Cochrane risk of bias tool
(RoB 2) [47] within the included RCTs and PICOs based on the consolidated standards of
reporting trials (CONSORT) [48]. Any conflicting views, disagreement or inconsistencies
were resolved by consensus with the help of another researcher, the adjudicating senior
author who reached a final decision after discussion.

We used Cohen’s kappa, as it determines agreement between both investigators
involved in data collection and analysis. The interpretation of kappa results is as follows:
poor (κ < 0), slight (κ = 0.00–0.20), fair (κ = 0.21–0.40), moderate (κ = 0.41–0.60), substantial
(κ = 0.61–0.80), or almost perfect (κ = 0.81–1.00). We used the following Cohen’s kappa
formula for agreement between our two investigators:

κ = (p0 − pe)/(1 − pe) = 1 − [(1 − p0)/(1 − pe)] (1)

where: p0 is the relative observed agreement among raters and pe is the hypothetical
possibility of chance agreement.

The methodological quality of all included RCTs was appraised by two independent
researchers. We used Cohen’s kappa as it determines agreement between both investigators
involved in data collection and analysis. The interpretation of kappa results is as follows:
poor (κ < 0), slight (κ = 0.00–0.20), fair (κ = 0.21–0.40), moderate (κ = 0.41–0.60), substantial
(κ = 0.61–0.80), or almost perfect (κ = 0.81–1.00).

We used the crosstabulation table Table 2, to understand the degree to which both
raters agreed and disagreed. As described in Table 2, the researchers rated 93 RCT studies
targeted for inclusion after evaluation. 80 RCT studies received confirmation for further
study as agreed by both investigators. Furthermore, both researchers agreed that there
were 6 RCT studies not confirmed for further study. Thus, there were 7 RCT studies for
which the investigators could not agree on their status.

Table 2. The investigators’ RCT studies agreement and disagreement—kappa data crosstabulation.

Count

Researcher 2

Confirmed for
further study

Not confirmed
for further study Total

Researcher 1 Confirmed for
further study 80 5 85

Not confirmed
for further study 2 6 8

Total 82 11 93

Based on data in Table 2 we have p0 = 0.92 and pe = 0.81, k = (p0 − pe)/(1 − pe): then
k = 0.57. Our Cohen’s kappa (k) is 0.57. This states a moderate strength of agreement. It is
statically significant (95% CI, p > 0.0005).

Moreover, we used calculable decision-making markers of treatment effects to evalu-
ate studies including RCTs about the rate of AEs in BC treatments (for example the risk of
life-threatening AE rate). We also compared SEs of a prescribed treatment (intervention)
to another as a standard of care (control). For risk quantification of treatments, we com-
puted the absolute risk reduction (ARR) difference between both treatments (intervention–
control). The ARR indicates the treatment with less life-threatening risk. Additionally, the
number needed to treat (NNT): NNT = 1/ARR, which indicates the number of patients
that must receive the treatment for one patient to benefit. We used the relative risk (RR)
as the ratio of risks in intervention treatment subjects to the risks in the control treatment
subjects. With a (RR > 1) we have a treatment with a high-risk of bad outcome compared
to control trials. However, a (RR < 1) indicates greater treatment benefit with decreased
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risks. The relative risk reduction (RRR): RRR = 1–RR indicates the amount of risk reduction
performed by the treatment. For the assessment of treatment AEs, we used the absolute
risk increase (ARI) which measures the difference between a treatment event rate and a
control event rate. Moreover, the inverse of ARI is the number needed to harm (NNH):
NNH = 1/ARI and this indicates the number of patients that must receive the treatment
to have an AE. In this case, the RR > 1 indicates a greater treatment risk. Identically, the
higher the relative risk increase (RRI): RRI = R −1, the higher the harm rates.

Statistical Analysis

For meta-analysis, we used the Cochrane collaboration’s software Review Manager
(RevMan 5.3) which uses the Cochran–Mantel–Haenszel test method (CMH) [49] to carry
out statistical analysis [50]. Treatment SEs of continuous data were considered as a stan-
dardized mean difference and dichotomous data as a risk ratio, while 95% confidence
intervals were provided. A p-value ≤ 0.05 was considered statistically significant which
indicates strong evidence against the null hypothesis (no significant difference) which
is rejected, and the alternative hypothesis (difference is anticipated) is retained which
states that the results are significant in terms of supporting the investigated study and 95%
confidence intervals (CI) are provided.

The CMH-χ2-test was used to evaluate statistical heterogeneity within the used studies
and a p-value < 0.1 was of significance. However, the I2 statistic was used to quantify
heterogeneity across the included RCTs and to examine the null hypothesis. When I2 ≤ 50%,
homogeneity is detected, and a fixed-effects model is applied. However, I2 > 50% suggests a
significant heterogeneity and a random-effects model meta-analytical technique is utilized
with a subgroup to specify this heterogeneity.

3.3. BC Story Example

A patient aged 60 years old was initially diagnosed with a high grade (fast growing)
non-invasive papillary carcinoma (Ta) BC: Stage 0a: Ta, N0, M0 (no involvement of regional
lymph nodes and absence of distant metastases). Cancer was only in the inner lining layer
of the bladder. The tumor size was >3 cm. It should be noted that when diagnosing this non-
muscle invasive BC (NMIBC), the transurethral resection of the bladder tumor (TURBT) of
the second look revealed a low-grade pTa tumor/lesions, so the rate of recurrence after
intravesical treatment was not minimal. Moreover, it was diagnosed along with a high
level of smoking intoxication.

The doctor chose the resection as a first intention treatment and consulted the ontology
system to identify possible risks. As described in Figure 2, the system checks the risks and
effects of the selected treatment via SE queries. In addition to the diagnosed cancer type
and stage, the queries used take into consideration other contextual information such as
the type of the proposed treatment and its extended practice and the patient’s medical and
demographic data including age, medical history, doses, sex, weight, activity, symptoms,
and parallel treatments.

These indicators should match patient information that is usually recorded in their
electronic medical record (EMR) [51]. Moreover, the decision-making engine retrieves re-
lated knowledge and evidence included in the ontology to reason about the consequences
of the selected treatment. Then, it generated a list of SEs associated with this prescribed
treatment with reference to their severity grade scale as specified by the Common Termi-
nology Criteria for Adverse Event (CTCAE) [52] and based on expert panel opinions (the
International BC Group (IBCG) and the Cancerology Committee of the French Urology
Association (CCAFU)) [53,54]. For example, as a result of this TURBT treatment for our spe-
cific patient case, our system should report related SEs that belong to the second grade on
the severity scale, and that these SEs will not last long with reference to the right standard
as listed in Table 3.
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Figure 2. Case scenario of BC treatment process and the required generated SE prediction ap-
proach; (a) Treatment suggested for evaluation; (b) Evaluation; (c) Prediction results for decision; (d)
Treatment procedure following TURBT.

Table 3. Predicted risks and side effects’ results related to the applied treatment.

Treatment Risks/Effects Grade of Severity Reference Standard

TURBT

• Hematuria and painful
urination

• Incontinence
• Tiredness
• Lower abdominal ache

and cold sweats
• Bladder perforation and

infection

II CTCAE v.5 (2017)

3.4. Building an Ontology for BC Knowledge Representation

In this study, a patient was represented by an instance of the class Patient,
which was mainly expressed by two main subclasses, PatientBiophysicalInformation and
PatientClinicalInformation.

We also introduced Pathologies as a class, in which we mainly focused on Bladder-
Cancer as a subclass describing its grades, characteristics and malignancy using class
hierarchy. Besides the BladderCancer subclass, we identified BodyDisease as a subclass de-
scribing other tumors and diseases/illnesses that could be bound to BC or mentioned as a
possible-related complication.

The Treatment class was designed to categorize BC therapy strategies and protocols in
which we record applied treatment-related clinical evidence. This was to model knowledge
about TreatmentType, Drug, ClinicalTechnique and TherapyProtocol. This class is related to
both the RiskSideEffect and the BladderCancer (grades) classes to obtain possible compli-
cation about each suggested clinical act. This class is the clinical evidence basis element
of our semantic prediction rules used to reason and decide about prediction results of
treatment’s SEs.

We included a RiskSideEffect class in which we created two main subclasses: Risk-
Severity and Complication. This describes possible treatment SEs threatening the bladder
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and other organs when applying a therapy. When matched with BC grade and treatment,
severity can help in managing complications correctly. It is important to be mentioned and
includes the assessment criteria used to compare patient’s BC details with BC treatment’s
evidence. Moreover, this class includes clinical evidence outcomes as good and bad effects
to be compared and anticipated for the treatment decision making.

Another important concept in our ontology is the Anatomy class. It contains knowledge
and gender-based details about human body organs and describes AnatomyAbnormality
and ConventionalAnatomy. This is to obtain more precise predictive results when locating
treatment SEs damages to the patient’s health. The subclass OrgansBiophysicalSensitivity
helps in understanding BC behavior and complications in addition to the body’s physical
responses to undertaken treatments.

The inferred results were supported by the TreatmentSEStandard class, including texts
and standards about treatment related SEs, extracted from the international standard
CTCAE and the published guidelines of the international cancer research foundations with
reference to BC treatment clinical practice guidelines [55–60].

The construction of our ontology was semi-automatic. Information and knowledge
representation design was applied to obtain a pre-formal metamodel ontology for rule-
based prediction. It included classes, properties and attributes as static components.
Additionally, the BC treatment process with SE prediction diagram was a part of the model.
This model was a convenient tool to represent and formalize our domain knowledge.
Furthermore, our descriptive representation was also understandable by medical team
actors (clinicians and technicians) for both assessment and follow-up. This was to provide
more semantic clinical evidence details, used as instances and concept values, so that we
could obtain an ontology model.

The next step was to represent complex concepts in our ontology, using semantic and
logic-based specifications. Regarding the variable conditions of each patient, our semantic-
based explicit criteria rules were needed to help in discovering complications and to tag
the source causes. We used Protégé to manually transform our model into an ontology
OWL-DL model format. Our domain knowledge was represented by a set of classes and
instances. OWL:Thing is the root class of this model, the set of subclasses representing the
common domain terminology used to describe our conceptual knowledge model.

The main concepts in our ontology were modelled in a hierarchical manner which
is a feature of OWL inherited from previous languages for graph representation, such as
RDF [61]. The higher level of hierarchy was initially reserved for BC treatment domains.
The main concepts were modeled as classes or categories of concepts. One class can be a
subclass of several series of classes.

Creating a Cancer sub-class within the Pathology class highlighted this to be prominent.
For example, BladderCancerPapillaryCarcinoma is both a Carcinoma and a Cancer. Therefore,
we defined a BladderCancerPapillaryCarcinoma class as having two levels of super-classes
on the hierarchical scale of the Pathology class: Carcinoma and Cancer. All instances of the
BladderCancerPapillaryCarcinoma class would be instances of both the Carcinoma class and
the Cancer class: a super-class can access sub-classes’ instances and attributes. However,
the BladderCancerPapillaryCarcinoma class inherited attributes and facets from parent classes.
We specify a class attribute using OWL Properties (binary predicates/formulae with two
free variables). This is a logic descriptor of a given concept modelled as object properties
or data type properties, for example, tumPapillaryCarcinomaOf(x,y) denotes that y is a
papillary carcinoma of a given tumor x; or as atomic properties to denote the set of each
objects (instances of a class x) classified under a defined class, for example, Cancer(x),
InvasiveCarcinoma(x), etc.

We can also use Data type properties which are a type of predicate capable of linking
an instance (or object of a specific class type) to a range of data values (similar to the data
types used to define the columns of a database).

An example of the use of a property could be as described in the following triplet:
<NonInvasivePapillaryCarcinoma has TreatmentName, TURBT>
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This is to say that a BC NonInvasivePapillaryCarcinoma object is linked to the range of
data values TURBT (transurethral resection) by the datatype property hasTreatmentName.

We can also represent the level of risk severity that is associated with a specific
treatment option using data type properties, as shown in the following triplet example:

<IntravesicalTherapy has RiskSeverity, 4>
This example links the object class IntravesicalTherapy to the data value 4, indicating

its risk severity grade, by the use of the datatype property hasRiskSeverity. On the CTCAE
SEs scale, the grade 4 refers to life-threatening consequences with an urgent intervention to
be indicated.

In OWL, we can also use Restrictions on attributes (facets, sometimes called role re-
strictions) to map pre-identified classes into definitions in a language that is understandable
by a reasoning engine and therefore will be understood by a computer or a digital device.
Here, our knowledge was explicitly included in our ontology in the form of restrictions.
To define these restrictions, we rely on the notation allowed by the OWL language. In
these definitions we also use the Existential Restriction most common in OWL ontologies.
This restriction describes a class of individuals, which maintains at least one (some, ∃)
relationship with an instance of a specific class.

Example 1. BladderCancerPapillaryCarcinoma is a Cancer which is not manifested by Adenoma.
We can define this class as the combination of the following definitions:

• not Adenoma, denoted as ¬ Adenoma
• not BladderCancerPapillaryCarcinoma and (manifestedBy some Adenoma) denoted in OWL

as ¬ BladderCancerPapillaryCarcinoma u (manifestedBy ∃ Adenoma)

In addition, we can also use OWL Universal restriction (only ∀) to describe classes of
individuals which for a given relationship are related (only) to individuals of a specific
class. For example, the class of individuals which only has anatomy (hasAnatomy) and
individuals belonging to the Bladder denoted as BladderAnatomy.

Example 2.

• BladderCancer has Anatomy only, the DetrusorMuscle and Adventitia, which is only, a part
of some BladderWall or Peritoneum.

• BladderCancer has Anatomy only (DetrusorMuscle and Adventitia only (partOf some (Blad-
derWall or Peritoneum))

• BladderCancer u hasAnatomy ∀ (DetrusorMuscle u Adventitia ∀ (partOf ∃ (BladderWall t
Peritoneum)))

We have also used many features of OWL that could be found in the world wide web
consortium reports and Jain et al. [62,63]. These include enclosure, intersection, union,
inverse, and equivalence (of classes and properties). All these elements were created to
identify the quantitative assessment model and predictions generated by our knowledge-
based approach.

3.5. A Semantic Rule-Base for Decision Support in BC Treatment Selection

Based on the given conceptualized domain vocabulary (as provided by our OWL2
ontology in the previous section) and an extended syntax with logic-based descriptions,
we can produce sets of decision support rules using the semantic web rule language
(SWRL) [64]. As an OWL-DL based language combined with Horn-like logic rules of the
rule markup language (Rule-ML), this is used for developing rule-based approaches. The
rules assessment and firing tasks were passed to the rule engine (Pellet 2) [65]. This engine
played the role of a deductive system which, starting from formulas of the language chosen
as premises (axioms already represented in the ontology), made it possible to construct new
formulas in the form of new premises to be added to the ontology. The newly generated
knowledge by the rule engine will be offered to medical practitioners as decision support
guidelines. The set of rules are run in a query-like mode of knowledge reasoning and
retrieval. In this sense, a condition that is tested by the first part of a rule is true if its query
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is valid. For example, “All patients who are taking external beam radiation therapies are at risk”
can be written as:

ExternalBeamRadiationTherapy (x)→ atRiskOf (x,y)

where x and y represent some given patient and health risk, respectively.
We could then deduce “there are radiation therapies that are presenting a health risk to the

patient” which could be recorded in the OWL ontology formalism as:
∃ x RadiationTherapy (x) ∧ atRiskOf (x,y)
This could be recorded in the ontology thanks to the generalization hierarchy, by

minimizing differences between classes by way of extracting their common characteristics.
The combination represents a specialization of a superclass with a multileveled hierarchy
using inheritance.

To ask and determine cases and possible undesirable events according to the defined
evidence, we used semantic query-enhanced web rule language (SQWRL) queries examina-
tion. As a SWRL-based query language, this queries OWL ontologies and affords SQL-like
services to model the retrieved knowledge [66]. The following example shows a query
examination we used in our ontology:

Patient (?P) ∧ hasStage (?P, ?S) ∧ swrlb:greaterThan (?S, 1) ∧ hasSideEffect (?P, ?SE) ∧
hasStandardReference (?SE, ?SR) ∧ hasTreatment (?P, RadiationTherapy)→ sqwrl: select (?P,
?SE) ∧ sqwrl: select (?SR)

This aims to detect all BC SEs within an advanced stage (greater than 1) and associated
with a given patient/treatment combination when the treatment is radiation therapy as
shown in Table 4. This result is also supported by the afforded standard reference.

Table 4. SQWRL side effects’ results and their related standard reference.

?P 1 ?SE ?SR

PMIBC001 2

Peeling, Blistering, Diarrhea,
Incontinence, Hematuria, Nausea, Painful

urination, Cystitis, Tiredness, Anemia,
Bruising, Erection problems, Infection

Moschini, et al. (2019)
doi.org/10.1016/j.eururo.2018.09.034

1 Patient, 2 Patient muscle invasive bladder cancer 001(ID).

Patient (?P) ∧ hasStage (?P, ?S) ∧ swrlb:greaterThan (?S, 1) ∧ hasSeverityGrade (?SE,
?SG) ∧ hasSideEffect (?P, ?SE) ∧ hasTreatment (?P, RadiationTherapy) → sqwrl: select (?P,
?SG) ∧ sqwrl: sum (?SG) ∧ sqwrl: avg (?SG)

In this query we added a SEs severity grade criterion to detect each severity grade
of the predicted SEs related to a BC patient treated with radiation therapy (stage > I)
Table 4. Since hasSeverityGrade (SG) is a datatype property of the class RiskSideEffect, we
can use this semantic relationship to relate each SE to its own severity grade. Moreover,
this query gives the total score and the average value of the obtained severity grade using
SWRL aggregation operators sum and avg. Results are shown in Table 5. Severity grades
are ranked from 0 to 5 according to the CTCAE related to the cancer therapy evaluation
program (CTEP).

Table 5. SQWRL severity grades results related to predicted side effects.

?P1 1 = p1 Selected Values of ?SG Returned Sum (?SG) Returned Avg (?SG)

PMIBC001 2 2, 1, 1, 3,1, 1, 2, 2, 1, 2,3, 1, 2, 2 24 2
1 Patient, 2 Patient muscle invasive bladder cancer 001(ID).
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Here, the result shows a severity grade rate of 2, which refers to moderate AEs related
to the indicated intervention. The strategic approach that has been adapted for the design
and development of our ontology is detailed in Figure 3.

Figure 3. Ontology map and design methodology.

Both SWRL and SQWRL queries rely on OWL inferences since they were both built
primarily on OWL-DL. Therefore, the complementarity of these languages made it possible
and easier to reach our objective. We have relied on Protégé in its version 3.5 as ontol-
ogy and rule-base editor [67]. This is a platform and an environment for development
and it built and managed our ontology, using tools for the construction of oncology and
oncotherapy conceptual models. Clinicians and patients are the potential users of this on-
tology. Many plugins have helped us to accomplish our mission and enhance our ontology
performance while editing the main semantics and test cases for our predictive rules.

4. Results

In order to describe our ontology about BC treatments risks and SEs, we rely on the
graph and figures presented in Figure 4. These describe the composition of the ontology in
terms of various structured components including:

There are -6 super-classes targeting the BC, treatments, procedures, risks, and evidence,
each of which contains a large number of hierarchical subclasses (all types of examinations
and existing oncotherapy techniques) linked to instances describing concrete objects about
BC cases: 42 subclasses of the second level, 60 of the third levels, 198 of the fourth level,
251 of the fifth level, 284 of the 6th level. Concepts are classified by types and families of
medical examination techniques.

- 80 “object-properties” between classes and 176 “data-type-properties” between
classes and instances, indicating the values and the parameters related to the
occurred examinations.

- 1825 instances with actual objects of knowledge: 35% of these instances are data. 65%
of our instances are presented as the finest values of knowledge and evidence. Here,
we define data as analysis’ elements, while knowledge is the synthesis of evidence
and information flow which presents data with a context.

- 621 different rules for the checking of SQWRL and SWRL risk and SE identification
queries. These tests deploy as parameters the type of examination in treatment
procedure as well as the probable risks, with selective results of examinations.
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The validation of our produced ontology is an essential step. We followed special
criteria according to which the ontology had to be validated in terms of consistency,
taxonomy, and inference Figure 5. This checking validates the SWRL rules which are
based on valid relationships to predict and detect SEs from the given prediction criteria (as
mentioned in Section 3.3).

Figure 5. Checking the consistency of the classes (a1) and their properties (a2), the taxonomy (b) and the inference (c) within
the model through Pellet reasoner dialogue.

Furthermore, formal correctness was evaluated according to criteria as disjunction
errors which aimed to identify a class as a conjunction of distinct classes. We also checked
the consistency and coherence to verify the accuracy and the semantic and syntactic
representation of BC treatment and SEs knowledge without contradictory conclusions.
Moreover, we checked duplication errors to remove redundant elements which can be
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deduced from the others. Completeness was also evaluated to measure the conformance
and compatibility of both ontology and our domain-model. This criterion was based on
covering all elements and terms related to BC treatments by proving the incompleteness of
elements to check the completeness of the ontology as mentioned by Gómez et al. [68,69].
To do this, we used Pellet as a java based OWL2DL reasoner [70].

The semantic reasoner and SWRL Rules are the constructive elements of the system’s
rule engine within our model. For application, the SWRLTab interface plugin allows the
creation and the management of our SWRL and SQWRL (SQL-like query features). A
graphical format sample of these rules is shown in Figure 6.

Figure 6. The graphical format of SQWRL (a) and SWRL; (b) rules.

To reason about a prescribed treatment and anticipate SEs and possible complica-
tions, the model is performed within a clinical administration unit. When the healthcare
provider supplies the queries by the required predefined criteria through an application
programming interface (API), the model requests its query processor. Accordingly, the
model checks the relations between SEs, complications, and treatments with reference to
guidelines and elements identified in the edited SQWRL and SWRL rules. The model
manages the interactions of both KB and user. Therefore, the model generates a detailed
decision about the treatment SEs, its severity grade and the required reference standard.
Then, results are displayed on the user interface as an output of the model.

JessTab is used in Protégé to perform the querying tasks. The key forms of performance
for retrieving knowledge from ontology are SWRL and SQWRL queries. SWRL rules are
launched in the Jess inference engine after the class consistency checking. The results and
the validation process of the Jess inference tab are shown in Figure 7.

The generated SQWRL and Jess results are shown in Figures 8 and 9.
The obtained outputs were considered as new evidence to supply the model by being

stored in the properties of class instances.
As shown in Figure 9, the instance PMIBC001 of the class Patient who has a stage

2 MIBC and has radiation therapy as a planned treatment is predicted to have anemia,
blistering, etc., as listed in Figure 9 with a severity grade 2. This is the output of the SWRL
rule that we defined previously, including all the factors of predicting treatment SEs. The
obtained outcome is stored in our model to supply our ontology for future reasoning
Figure 9. Before rules processing, the content of SEs, severity grade and standard reference
was empty, and then supplied by the inferred results of prediction.
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Figure 7. Results and validation of Jess and axioms inferences.

Figure 8. Model-based SQWRL results displayed in Protégé.

Figure 9. Jess query results generation and output reintegration into the ontology model.

Thus, we customized an easily accessible java swing-based user interface API, to let
healthcare providers and clinicians anticipate AEs of prescribed BC treatment and support
their decision making. This provided options to query our ontology model directly and
predict BC treatment SE elements according to the required criteria. As inspired by the
work of Kayes et al. [71], we present, in Table 6, examples of operator-defined reasoning
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rules from our rule-base followed by a descriptive simplified conceptual model of our
ontology with details of the Pathology concept, as shown in Figure 10.

Table 6. Examples of operator-defined reasoning rules from our rule-base.

No Rule

Rule 1 Patient (?P) ∧ hasStage (?P, ?S) ∧ swrlb:greaterThan (?S, 1) ∧ hasSideEffect (?P, ?SE) ∧ hasStandardReference
(?SE, ?SR) ∧ hasTreatment (?P, RadiationTherapy)→ sqwrl: select (?P, ?SE) ∧ sqwrl: select (?SR)

Rule 2 . . . Patient (?P) ∧ hasStage (?P, ?S) ∧ swrlb:greaterThan (?S, 1) ∧ hasSeverityGrade (?SE, ?SG) ∧ hasSideEffect (?P,
?SE) ∧ hasTreatment (?P, RadiationTherapy)→ sqwrl: select (?P, ?SG) ∧ sqwrl: sum (?SG) ∧ sqwrl: avg (?SG)

Rule 7 . . . Patient (?P) ∧ hasStage (?P, ?S) ∧ swrlb:greaterThan (?S, 1) ∧ hasSideEffect (?P, ?SE) ∧ hasStandardReference
(?SE, ?SR) ∧ hasTreatment (?P, RadiationTherapy)→ sqwrl: select (?P, ?SE)

Rule 92 Patient (?P) ∧ hasSideEffect (?P, Incontinence) ∧ hasTreatment (?P, TURBT)→ hasSeverityGrade (?P, 3)

Figure 10. Conceptual knowledge model of our bladder cancer treatment side effects ontology.

Based on the previously published RCTs in the literature, the performed model re-
sulted in elements constructing prediction conclusions that were displayed on the user
interface for consideration by the clinicians Figure 11.

When the prediction inference is processed, the newly registered patient (e.g., PMIBC001)
within the Patient class of the model is tagged and its demographic (e.g., age, gender) and
biophysical (e.g., medical history, BC type and stage) data are imported in the queries for
the required reasoning. Launching the reasoning process through the interface involved
patient identification, the required treatment selection among the imported list of the
prescribed treatments for the whole therapy to this patient (including procedure details
and treatment dose) and the BC stage retrieval. All the used data, knowledge, rules,
and queries were retrieved automatically from our performed knowledge model. The
output of the Java-based API is displayed on the user-interface as treatment SE prediction
information (AEs and severity grade) with reference to the prediction knowledge standard
references and guidelines (related to the obtained SEs severity grade), as shown in the
validation example of Figure 11. A decision is also displayed within the interface importing
the content of the instance (Decision_001) generated by the model and stocked in the KB.
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Figure 11. Results displayed on the bladder cancer treatment side effects prediction API frame.

For clinical practice, the proposed model is implemented using OWL as described in
the implementation and clinical application process presented in Figure 2. Furthermore,
adopting the W3C-based web service activity ensures interoperability and services com-
munication. This will aid in the identification of the desired and most effective treatment,
as well as the restrictions that must be adhered to.

This helped to verify the absence of contradictions between ontological elements, in
addition to the conceptual matching between them. We also checked the completeness,
ensuring that all ontological elements are either explicitly declared or inferable. In our
ontology all defined elements obey the principle of concision. Furthermore, we can add
new knowledge without changing the old ones originally specified in our ontology, which
satisfies the criteria of extensibility which an effective conceptual model should hold.

After formal validation and inconsistencies evaluation, we were concerned by the
validation of the domain conceptualization. Experts’ feedback was an important step in
validating and modifying the ontology. This step allowed us to obtain a confirmation
about the accuracy and the correctness of our knowledge with object-oriented explanations.
Positive feedback had no impact on our knowledge model, but it was a valid confirma-
tion. Only feedback with domain conceptual notes was considered to make updates and
modifications using RDFS rules. To help in the validation task, we used factual questions
to improve and enrich our ontology. Feedback showed a rate of 0.48% (compared with
our ontology composition: 2933 elements) representing 14 elements to add as knowledge
representation items (concepts, relationships, and individuals) and logical chaining sugges-
tions. Moreover, Boolean-like questions about BC treatments relating SEs to risk indicators
helped in correcting and updating our knowledge model. This survey resulted in nine
questions with “no” answers from a total of 210 Boolean questions, representing a rate of
18.90%. Modifications and suggestions represented 19.38%. Hence, this step showed a total
satisfaction rate of 80.62%.

For decision-making markers of treatment effects calculation, we took this example:
in a stage I BC patient in which the tumor had spread to the connective tissue layer of the



Informatics 2021, 8, 55 20 of 28

bladder but has not reached the muscle layer, we indicate that the tumor was removed,
then intravesical BCG (immunotherapy) or mitomycin (chemotherapy) was delivered.
Table 7 shows the AE results of a RCT that compares the intravesical BCG treatment to
mitomycin treatment.

Table 7. AE results of a RCT that compares the intravesical BCG treatment to mitomycin treatment.

Treatment Mitomycin (N = 1210) Intravesical BCG (N = 430)

Life-Threatening AE Rate 9 (0.7%) 13 (2.8%)

A
dv

er
se

ev
en

ts

Nausea and vomiting 23 (1.9%) 8 (1.8%)

Autoimmune reactions 9 (0.7%) 77 (17.9%)

peripheral neuropathy 54 (4.5%) 12 (2.8%)

A major efficacy prediction endpoint is the life-threatening AE rate, which was higher
in intravesical BCG subjects (2.8%) than in the mitomycin ones (0.7%). The RR calcula-
tion for life-threatening AE rate is: 0.007/0.028 = 0.25 (25%). The RRR is 1 − 0.25 = 0.75,
which means that there is a 75% decreased risk of life-threatening AE in patients receiv-
ing the mitomycin treatment compared to those receiving intravesical BCG. The ARR is
0.028 − 0.007 = 0.021 (2.1%). The NNT is 1/0.021 = 47.6 (≈48): This means that 48 patients
need to receive mitomycin so that one patient gets benefit.

For treatments’ SEs measurement prediction and comparison, we take the example of
peripheral neuropathy. Based on data in Table 7, we find that mitomycin treatment subjects
(4.5%) had a significantly higher rate of peripheral neuropathy than intravesical BCG (2.8%).
The associated RR for infusion reactions is 0.045/0.028 = 1.6. The RRI is 1.6 − 1 = 0.6 (60%)
which means that the rate of peripheral neuropathy occurrence is 60% higher in subjects
receiving mitomycin. The ARI for mitomycin treatment subjects relative to intravesical
BCG is the difference between the rates of peripheral neuropathy: 0.045 − 0.028 = 0.017
(1.7%). The NNH is 1/0.017 = 58.8, which means that 59 subjects need to receive mitomycin
to arrive at one more case of peripheral neuropathy.

To evaluate our approach, we performed tests on 110 BC anonymized cases collected
from different sources. Around 67 open BC stories were found to be useful and informative,
as they include details about specific BC treatment journeys and witnessed SEs. These
type 1 cases were extracted from sources such as the Urology Care Foundation and Amer-
ican Urological Association guides and patients’ stories [72], Fox Chase Cancer Center
Health [73], Temple Health [74], BC advocacy Network (BCAN) [75,76], Action BC UK
and Patient Resource Publishing [77]. On the other hand, we obtained 43 more cases from
reviewed research papers including post and pre-treatment information and clinical details
collected from studies involving BC patients. These type 2 cases were found in 43 papers
among our 93 selected studies as described in the “Materials and Methods” section. From
each paper we chose one case that meets the criteria of testing (treatment type, cancer type
and effects).

The number of these cases is considered adequate, considering the type of BC related
to each case, the age, sex, weight and performed treatments (as detailed within patients’
treatment protocol stories including procedures and delivered therapeutic doses), along
with some behavioral factors as mentioned in the descriptions, such as post/perioperative
smoking, alcohol drinking and chronic diseases [78]. To cover most possible scenarios of
our ontology-aided BC treatment SE prediction, we were referred to BC types, for which a
sample of cases has been assigned. We describe these types as non-invasive bladder cancer
(NIBC) which covers non-invasive papillary carcinoma (stage 0a) and carcinoma in situ (Cis)
(stage 0is), non-muscle invasive bladder cancer (NMIBC) (stage I) and muscle invasive
bladder cancer (MIBC) (stages > I). The tested scenarios were processed as described
in Table 8.
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Table 8. BC sample cases distributed according to treatment and BC stage.

Type Stage Cases Sample Sources

NIBC
0a 19 S1

0is 18 S2

NMIBC I 20 S3

MIBC

II 17 S4

III 16 S5

IV 20 S6

These cases were carefully collected and formed the core of the KB upon which our
ontology was created. The queries that were tested and executed by the Pellet2 rule engine [79]
focused on inferring possible SEs related to each type of treatment, administrated for the
considered cases of BC to predict its impact on patient health and safety. Each treatment type
was tested by a query. Results were obtained including the possible SEs related to each type of
treatment. The inferred results also contain a reference to the patient identifier (as mentioned
in Table 4). An average score of severity grade was also concluded for each predicted SE
using semantic queries (as mentioned in the Section 3.5). In Table 9, we present the resulted
average severity grade score per sample. Then, we compared our predicted SEs to AEs that
were reported in patients’ descriptions and stories: this was processed by manual check. For
example, and as described in Table 9, a patient represented by sample (S1), diagnosed with
low grade NIBC (stage 0a), was predicted to develop mild SEs with a (SG = 1) considering all
indicators that we defined previously. This patient’s prediction results showed SEs such as
pain when urinating, low grade bladder infection, hematuria, and incontinence when applying
TURBT treatment, and bladder irritation and burning feeling in the bladder when receiving
a post-TURBT intravesical chemotherapy (mitomycin). However, the reported AEs showed
that the patient developed pain when urinating, hematuria, low grade bladder infection, but
no incontinence effect as post-TURBT SEs. Real SEs were bladder irritation, burning feeling
in the bladder, loss of appetite and insomnia for post-intravesical chemotherapy. As a result,
our reasoning predicted 75% of AEs for post-TURBT procedure and 80% for post-intravesical
chemotherapy. This means that for this case, results were compatible at 77%.

Table 9. Results for average severity grade score per sample SG and a comparison with real reported
side effects.

Sample
Results

Average Severity Grade Score per Sample SG Comparison with Real
Reported Side Effects

SG Sample Rate (% of Compatibility)

S1 2 73% 86%
1 27%

S2 2 87% 81%
1 13%

S3 2 11% 78%
3 89%

S4 4 36% 82%
3 64%

S5 5 07% 79%
4 93%

S6 5 10% 76%
4 90%
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5. Discussion

Thanks to the capability of OWL’s terminology, in particular its expressiveness, our
ontology’s concepts have been represented in a syntax as close as possible to natural
language. Composite concepts were classified according to their semantics. Hence, the
initial semantics were preserved by the proposed formal representation.

In general, our results presented 80.3% of the real reported BC treatment SEs prediction.
These results also showed that the more we go through the advanced stages of BC, the
more the treatment protocol becomes complex and presents important and serious SEs.
Moreover, the results obtained from our ontology prediction approach were close to real
AEs recorded within the collected test samples.

For heterogeneity, a part of our records, four cross-sectional studies [80–83] reported
on the overall cystitis AEs and complications, allowing for different time intervals relative
to the treatment of patients with high-risk T1G3 BC (TURBT-Radiation therapy versus
TURBT-BCG Immunotherapy). We excluded all BC types and stages different than T1G3
(cross-sectional studies).

24.5% of patients who received TURBT-Radiation therapy compared with 16.8% of
patients who received TURBT-BCG Immunotherapy (controls) had cystitis. According to
Figure 12 (df: degree of freedom; M-H: Mantel-Haenszel), meta-analysis showed that the
overall cystitis AEs and complications relative to TURBT-Radiation therapy versus TURBT-
BCG Immunotherapy ranged from 2% to 27%. This showed a significantly higher cystitis
SE rate by TURBT-Radiation therapy than TURBT-BCG Immunotherapy (rate difference
11%; 95% CI; 2–27%; p = 0.03; I2 = 81; χ2 = 16.13).

Figure 12. Overall AEs and complications in patients treated with TURBT-Radiation therapy (TUR-RT) versus in patients
who received TURBT-Immunotherapy BCG (TUR-BCG), excluding all BC types and stages different than T1G3 (cross-
sectional studies).

Our evidence-based reasoning approach, combined with the semantic KB model,
helped to generate predictions related to possible patient health issues during and even
before treatment application. Integrating a diversity of knowledge and evidence into a
single KB and ontology has improved the process of predicting treatment risks and the SEs
associated with oncotherapy in BC. Furthermore, improving and adding more inheritance
edges between concepts helped to obtain better prediction accuracy. This makes it more
robust, especially in the BC domain, involving highly complex and specialized knowledge
and semantics.

With reference to previous studies, our approach highlighted digital SE prediction
through information technology to optimize oncotherapy treatment processes in BC oncol-
ogy. Besides the knowledge representation method, we adopted a crawler-based knowl-
edge gathering method to overcome difficulties encountered within computerized patient
records or knowledge management in clinical processes, as reported in the study of Mas-
ters et al. and Manika et al. This fact helped in supervising most of the useful digital
resources and covered more specific reports to enhance the validation of our results. So
far, our ontological approach combined the conceptual semantics and the fundamentals
of the probabilistic models and Bayesian network, instead of using them separately as
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reported in previous studies which revealed some major fuzziness and inaccuracies in
results. However, our results represented treatments with their detailed consequences
and explanations, which enhanced their credibility as compared to patient-reported SEs.
Identifying patients at high risk of BC treatment SEs through a semantic-based prediction
method included medical proof and evidence. Compared to the studies of Brooks et al. and
Tramèr et al., which only abstracted risk factors about patients and used statistical models
for prediction, we found that predictions made for categories or groups (classes) can suit
individuals belonging to the group. The approach also relies on past treatment outcomes as
well as the latest medical research published in scientific journals and databases, to reach
the curved top of unsuspected new predictive associations. This adds to the conclusions
of Malterud et al. and Hang et al. in their studies of rule-based and EBM studies. Our
approach incorporates various personal factors and improves patient safety by predicting
SEs that can be hidden for some patients with specific factors. Our approach could be
extended in the future to cover other cancers and help in solving theoretical and technical
problems, such as the real-time procedural confusions and difficulties that oncologists can
face within medical protocols and standards for clinical pathways and treatment provision.

Our study findings could influence decisions and clinical practices at many levels of
BC treatment. Clinicians can apply the presented methods of predicting and estimating BC
treatment SEs that are commonly reported in published studies. Furthermore, measures of
treatment of SEs can be calculated by clinicians themselves for use in clinical practice even
when these indicators are not directly provided by the system. As a result, both patients
and clinicians can predict and interpret the results. Following this assessment, users can
introduce these measures for treatment of AEs into the system to increment the system’s
KB, thus contributing to generating clinical decisions for future medical cases.

Our knowledge-based model can be easily deployed within clinical information
systems (CIS), communicating with many unit information systems. Featuring our findings
with electronic health record (EHR) information allows access to evidence-based tools that
providers can use to make decisions about a patient’s care. Information about patient
treatment and SEs embedded in a clinical document architecture (CDA) [84]—as a health
level 7 (HL7 V.3) [85] standard—within an EHR can communicate easily with our OWL
mapping model to supply our ontology with information. Thus, our semantic decision rules
are fired to predict and decide about treatments’ SEs. Even more, within a decision support
system (DSS), our findings improve patient safety and health quality through computerized
alerts that prompt clinicians regarding possible treatment SEs and their severity grades.
This helps in better optimizing treatment management plans in a risk-aware manner. Our
approach serves as a Supplementary Material source of proof for evidence-based practice.
This includes the integration of available evidence, clinical expertise, and health policy
decision-making. Furthermore, clinicians can agree or disagree about the system’s output
with relation to a treatment of their choice and recommend or rate the decision for future
use. If they disagree, they can override the decision by introducing justification from their
own previous experience in an anonymous way. Security issues should also be studied in
the future, following the approach that data and documents should normally be shared on
a health information system (HIS).

Using a knowledge-based approach provided the study with an extensive KB. This
allows healthcare providers to shape a strategy for working with the patient based on
trusted, credible resources and to improve both focus and precision within healthcare
practice. Thus, clinicians with a knowledge-based background have a wide marketing
edge. As a main feature of our approach, heterogeneous data inclusiveness enables the
support and the reuse of the semantics when building decisions. This is essential to prepare
the environment to extensible host evidence-based practice knowledge and to integrate
additional utilities in the future. It is important to model the flow of information necessary
to simulate a cancer treatment case and to allow reasoning about possible undesirable
effects and consequences. It is also reassuring to link the system generating results to
scientific references and publications from which the generated knowledge was retrieved.



Informatics 2021, 8, 55 24 of 28

This approach shows how to benefit from previous research studies and how to consider
their outcome as historical knowledge (how to benefit from past clinical and research
experience to enhance patient experience in an actual clinical context). In comparison with
data driven approaches, there is less dependence on human participation and primary
research. In our context, we did not have to deal with occurrences of data incompleteness.
It is a fact that the outcome of data-driven studies is usually affected by an insufficient
amount of data. A knowledge-based model is more effective at predicting effects and future
events than data driven models with a high prediction accuracy [86]. Moreover, calculating
measures of treatment effect and providing clinicians with SEs’ severity grades empower
the clinical practice. This also helps clinicians to set a solid strategy for AE management
when referring to our prediction results, including knowledge standard references and
guidelines as provided by the TreatmentSEStandard class, as defined in our ontology.

Despite our rigorous methodology, our approach only supports clinical decisions and
does not afford an ultimate commitment regarding clinical trials. The inherent limitations
related to the included studies disallowed us from reaching definitive conclusions. Statisti-
cal results are also influenced by patient historical backgrounds, biological mutations, and
clinical analysis methods. The community-based transfer of outcomes may also need more
effort, because of the extended range of studies and their high-volume of organization.
Through our feasibility study we are looking to test other types of cancer in the future,
to cover both cancerology and oncology disciplines. Data was partially automated to the
ontology feeding channel, which makes human intervention necessary. In addition, we
would like to optimize our method of risk severity evaluation. In fact, treatment of SEs
and AEs cannot be adequately concluded using a single measure. Along with measures
of treatment of SEs, it is recommended also to report the standard of care and the control
event rate (CER) [87] as a standard rate. We are looking forward to extending a data driven
approach in which tests will use data extracted directly from electronic health records and
cancer registries. Thus, integrating the work with a hospital information system and a real
electronic health record management system will require adoption of the Fast Healthcare
Interoperability Resources (FHIR) [88] standard data model.

6. Conclusions

This paper presented a model-driven evidence-based medicine for predicting BC
treatment risks/effects. It is based on the use of ontologies and semantic models to allow
sharing and managing of cancer research outcomes and knowledge in this field. Particularly,
this was related to increasing patient safety by helping the doctor to choose treatment with
less SEs taking into consideration the specific medical case and demographic information.

Our results showed the effectiveness of our approach in predicting risks before ap-
plying the prescribed treatment process, not only to prevent potential effects, but also to
improve prescriptions with less sides effects, and helping in deciding between complex
therapy approaches. Moreover, developing automated evidence-based medical tools is
essential to advance the way cancer treatment is managed. However, success in this mission
relies on the explicit formal representation of the terminology used by experts in the field.
The use of an ontology of BC allowed us to encompass the maximum number of concepts
with structural, regulatory, and standardized oncotherapy knowledge. We relied on recent
domain studies to obtain the required knowledge and medical cases. In addition, the
formal representation of clinical knowledge and evidence allowed us to effectuate clinical
reasoning about the collected knowledge which is very close to human cognitive processes
usually effectuated by oncologists to assess the SEs of a selected treatment. In contrast with
the human cognitive process of thinking, the use of an automated reasoning allowed links
between a great deal of evidence, proofs and contextual information about the medical
case of the patient. Hence, by referring to this tool, doctors could be seamlessly assisted
while deciding about patient treatment adequacy and efficiency. In addition, this decision
support approach allows healthcare professionals to review the choices of BC treatment
they previously offered to their patient to evaluate their treatment protocols.
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Deciphering future medical future populations is not without societal consequences
and must be accompanied and anticipated to allow a safe usage of the automated pre-
diction tool. This work will be extended in the future to help generate contextualized
clinical pathways and strategic action plans through an evidence-based approach for BC
treatment processes.

Extending our biomedical ontology will be a challenging task that can never be
deemed to be complete because of the continuously increasing understanding of cancer
behavior and treatment advances. Extension can profit from the automation of certain
procedures and therefore allow specialists to concentrate on more serious concerns. We
are working on a strategy to reinforce the automation of updated and semantic capturing
within ontology extension, where the need is found for specific properties or concepts.
We are planning to apply supervised learning to features of our current ontology. We
will identify the concerns of prediction for our ontology evolution, and build a general
framework for ontology extension and prediction of treatment of SEs. The idea is to
help focus either manual or semi-automated extension methods on areas that need to
be expanded into any other ontology, moreover, helping in reducing the risk of bias
or confusion between diseases or treatments generating the same complications when
compared to other type of cancer. This will help in increasing the availability of the data
and enhance interoperability between HISs. Hence, it reduces time and highlights resource
investment. This extensibility aims to improve the interoperability among our domain’s
growing number of ontologies and solve term redundancy among ontologies to avoid
issues of achieving data. We will ensure term reuse and semantic alignment within our
ontology and work on community extensibility by application to more clinical trials and by
using cases in a broader community. To reinforce our algorithm and make certain that the
approach is extremely reliable, we will compare the results to treatment standards and care
labels, and carry out an automated text mining of the scientific literature. The risk faced by
future participants during the first non-human clinical trials might then be reduced and
the risk for patients minimized if a treatment or a drug is approved by the FDA and enters
clinical application.
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