
Reinforcement Learning-Based Adaptive
Operator Selection

Rafet Durgut1[0000−1111−2222−3333] and Mehmet E. Aydin2[0000−0002−4890−5648]

1 Karabuk University, Engineering Faculty, Computer Engineering Dept., Turkey
rafetdurgut@karabuk.edu.tr

2 UWE Bristol, Dept. of Computer Science and Creative Technologies, Bristol, UK
mehmet.aydin@uwe.ac.uk

Abstract. Metaheuristic and swarm intelligence approaches require de-
vising optimisation algorithms with operators to let produce neighbour-
ing solutions to conduct a move. The efficiency of algorithms using sin-
gle operator remains recessive in comparison with those with multiple
operators. However, use of multiple operators require a selection mecha-
nism, which may not be always as productive as expected; therefore an
adaptive selection scheme is always needed. In this study, an experience-
based, reinforcement learning algorithm has been used to build an adap-
tive selection scheme implemented to work with a binary artificial bee
colony algorithm in which the selection mechanism learns when and sub-
ject to which circumstances an operator can help produce better and
worse neighbours. The implementations have been tested with commonly
used benchmarks of uncapacitated facility location problem. The results
demonstrates that the selection scheme developed based on reinforcement
learning, which can also be named as smart selection scheme, performs
much better that state-of-art adaptive selection schemes.

Keywords: Adaptive Operator Selection · Reinforcement learning · Ar-
tificial Bee Colony · Uncapacitated Facility Location Problem (UFLP).

1 Introduction

Metaheuristic and swarm intelligence algorithms have gained a deserved popu-
larity through the success accomplished over last few decades. Although they do
not guarantee globally optimal solutions within a reasonable time, the success
in offering useful near-optimum solutions within an affordable time has helped
gain such credit. This does not mean that metaheuristic and swarm intelligence
algorithms can be seamlessly implemented for a productive algorithmic solu-
tion. The main shortcoming arises in handling local optima capabilities, which
enforces researchers to build a balance in exploration for new and fresh solutions
while exploiting the gained success level within the search space. That is known
as Exploration versus Exploitation (EvE ) rate in the literature [5]. EvE rate
guides to search through as many neighbourhoods as possible while retaining
exploitation of achieved success and gained experience for a better performance,



2 R. Durgut and M.E. Aydin

where weaker exploration causes falling in local optima while weaker exploitation
would cause higher fluctuations in performance [13].

Metaheuristic approaches, especially population-based ones, use neighbour-
hood functions, also known as operators, to let the search process identify next
solutions to move to. It is conceivable that search with single operators would
have higher likelihood to stick in a local optima than multiple operators. Many
hybridisation approaches and memetic algorithms have been designed to help di-
versify the search through a balanced EvE, which usually appear in the form of
using multiple operators subject to a selection scheme. The idea an operator to
apply after another would prevent the search falling in local optima contributing
to diversification of the search. It appears that the nature of the operators to be
applied in an order and the order managed in use play very important role in the
success level of the algorithms. Adaptive operator selection schemes have been
studied for a while to achieve a useful balance in EvE and level of diversification
in search [12].

Adaptive operator selection is a process of two phases; (i) credit assignment in
which the selected operators are credited based on the level of success measured,
or (ii) operator selection in which an operator is identified to run based on
the credit level in order to produce a neighbour [11]. The amount of credit to
assign is decided using either the positive difference achieved in fitness values
or the categories of success or fail [10]. Credit assignment phase also covers the
calculation of the time window in which the amount of credit to assign to selected
operators is estimated [4]. On the other hand, operator selection phase imposes
prioritisation/rank of operators within a pool of functions/operators. Probability
Matching (PM), Adaptive Pursuit (AP) and Upper Confidence Bound (UCB)
are known to be among state-of-art operators selection schemes [4].

Adaptive operator selection schemes have been used in the literature with
evolutionary algorithms and swarm intelligence. Failho et. al [9] uses a multi-
armed bandits approach with genetic algorithms, while Durgut and Aydin [7]
comparatively studied the success of PM, AP, and UCB schemes to supply a
binary artificial bee colony algorithm. Yue et. al. [19] proposes a self-adaptive
particle swarm optimisation algorithm adaptively selecting among 5 operators
to solve large scale feature selection problems.

Adaptive operator selection schemes estimate likelihood of each operator
within the pool relying on credits gained to the time. The selection happens
through the estimated likelihoods irrespective of the problem state in hand. It is
clear that the success of selected operator is not sensitive to the problem state;
whether it is in a harsh neighbourhood or trapped in a difficult local optima or
not. Reinforcement learning (RL) gains more and more popularity day-by-day
to solve dynamic problems progressively, gaining experiences through problems
solving process [3, 17]. There are renown powerful RL algorithms let map in-
put sets to outputs through experiencing the the problems states and collecting
environmental responses to the actions taken [20].

In this study, an artificial bee colony (ABC) algorithm has been implemented
for solving uncapacitated facility location problems (UFLP) represented in bi-



Reinforcement Learning-Based Adaptive Operator Selection 3

nary form. ABC algorithms have been implemented to solve many real-world
engineering problems. Among them are combinatorial optimisation problems,
which formulated as binary optimisation problems. ABC can be viewed as multi-
start hill-climbing algorithms in optimisation, where new neighbouring solutions
are generated with operators as discussed above. In this study, the ABC algo-
rithm is furnished with multiple operators selected with reinforcement learning-
based selection scheme.

The rest of this paper is organised as follows; Adaptive operator selection
schemes are introduced in Section 2, the operator selection scheme developed
based on reinforcement algorithm is explained in Section 3. Experimentation and
results are presented and discussed in Section 4 while conclusions are briefed in
Section 5.

2 Adaptive Operator Selection

One of the common problem of heuristic-based optimisation algorithms is that
search is inevitably driven into local optima, which sometimes remains as the
offered final solution. The aim of use multiple operator is to help rescue the
search from local optima by the means of diversifying search using different
neighbourhood functions/operators interchangeably or systematically. Operator
selection schemes are used for this purpose.

Operator selection is not necessarily to be adaptive by nature, but, most of
recent studies have been developed as adaptive to insert smartness in the process
of selection. Metaheuristic and evolutionary approaches can come up with self-
imposing operator selection. Evolutionary algorithms such as genetic algorithms
and genetic programming have self-contained probabilistic operator selection
while metaheuristics such as variable neighbourhood search imposes a system-
atic count-based operator change mechanism to achieve diversity in search and
manage neighbourhood change. Operator selection built-in algorithms do not
offer much flexibility in working with multiple operators, while memetic algo-
rithms, hill-climbing style heuristic algorithms and modern swarm intelligence
algorithms allow customising operator selection mechanism to engineer bespoke
efficient optimisation algorithms.

Adaptive operator selection is the process of prioritisation of the operators
based on merits, which can be imported in the algorithms via crediting each
operator based on achievements gained. Although there are a number of adaptive
operator selection schemes studied, the general mechanism is depicted in Fig. 1 in
which a two phase process is run; (i) operator selection and (ii) credit assignment.
As suggested, the pool of operators holds a finite number of operators to select
an operator from in order to produce neighbours to move to, while the selected
operators is credited upon its action and success level it achieves in producing
new solutions. The credit level to assign to the selected operator is estimated
based on preferred rules.



4 R. Durgut and M.E. Aydin

Fig. 1. General overview of adaptive operator selection process with support of popu-
lation and pool of operators

2.1 Operator Selection

The first phase of operator selection process is to execute the selection rule im-
posed by operator selection scheme in order to produce neighbouring solutions
to move to. The main aim is to keep a EvE rate as balanced as possible so
that the search to be intensified within the neighbourhood as long as it produces
positively and to be diversified as soon as it turns to negative productivity. Liter-
ature reports a number of operator selection schemes; random selection, merit-
based selection, probability matching, adaptive pursuit and multi-arm bandit
approaches, e.g. upper confidence bound (UCB). Random selection chooses an
operator from the pool completely randomly, Roulette-wheel takes the success
counts of each operator into account to calculate a probability-based prioritisa-
tion, while probability matching (PM) approach accounts the success as merits
and lets to increase the selectability of non-chosen operators using the following
rule:

pi,t = pmin + (1−Kpmin)
qi,t∑K
j=1 qj,t

, i = 1, 2..K (1)

where K is the number of operators in the pool, pmin ∈ [0, 1] represents the
minimum probability of being selected, and qi,t is the credit level/value of op-
eration i at time t. Both PM and AP use pmin to set a base probability for
each operator, which would help address the EvE dilemma with allocating a
minimum chance to every operators to be selected. PM imposes to calculate
the probabilities of being selected per operation, while AP uses the strategy of
”winner takes all” approach that credits more to promising options. adaptive
pursuit (AP) calculates the probabilities with Eq. 2.

pi,t =

{
pi,t−1 + β(pmax − pi,t−1), if i = it∗
pi,t−1 + β(pmin − pi,t−1), otherwise

(2)

Both of PM and AP impose higher dominance for exploitation, which is
aimed to decrease by UCB using the following rule, which selects the operator
with highest probability.

pi,t =

{
1− pmin ∗ (K − 1) if i = it∗
pmin, otherwise

(3)



Reinforcement Learning-Based Adaptive Operator Selection 5

where K is the number of operators in the pool, pmin ∈ [0, 1] represents the
minimum (base) probability for being selected, it∗ is calculated with 4.

it∗ = arg max
i=1,..,K

{qi,t + C ×

√
2 log

∑K
j=1 nj,t

ni,t
} (4)

where opt represents the selected operator, C works as a scaling factor, n is
number of times the operator selected while qi,t and ni,t on the right-hand-side
of equation help control EvE dilemma, respectively.

2.2 Credit Assignment

The next phase of adaptive operator selection process is to estimate a credit to
be assigned to the operator just used. This involves how to estimate the amount
of reward to assign and what to be the base for estimate of a credit. Literature
suggests that mainly two classes of approaches have been implemented; whether
a success has been achieved or not, or how much positive difference accomplished.
The former approach considers if the result is ”success” or ”fail”, while the latter
processes the amount of achievement in quantity to estimate the level of reward
to assign.

The process of credit assignment entails clarifying the time window with
which the reward level is to be estimated. The time window can span from last
single step to a pre-defined number of previous steps in which the credit level
and/or the achievement level can be averaged. This reveals that a credit can be
decided as instant credit, an averaged credit or the maximum credit.

3 Proposed Approach: Adaptive selection with
Reinforced-Clusters

Operator selection adaptively developed and used for higher efficiency in diver-
sification of search process. The operator selection schemes, even the adaptive
ones, propose choosing an operator based on credits gained over the success
counts through out the search, but, regardless of the input sets, the problem
state, and search circumstances. The merit-based schemes usually select opera-
tors through a blind process, where the total gained credit is relied on regardless
of the status of search etc. It is known that operators do not always produce suc-
cess due to their limitations; each performs better under some circumstances,
while does worse in other circumstances. Once the fruitful circumstances are
ascertained for each operator, a complementary policy can be customised for
deliberative selection to achieve success.

This study aims to propose a more conscious selection process developed
based on reinforcement learning approach implemented into a distance-based
clustering algorithm in which the distance in between the input set and the
fine-tuned cluster centres is estimated and made reference index in operator se-
lection. The idea of setting up a selection scheme based on clusters is discussed



6 R. Durgut and M.E. Aydin

and implemented in machine learning studies. Reinforcement learning is known
to be very useful in handling dynamically changing environment and for solving
dynamic problems, particularly for operating within unknown dynamic environ-
ments. One of earlier studies proposes embedding reinforcement learning in a
distance-based clustering algorithm, namely hard-c-means algorithm, to train
agents to select the best scheduling operator subject to dynamic production en-
vironments to solve dynamic scheduling problems [2]. Inspiring of this study, a
reinforced-clustering algorithm is put together to optimise the cluster centres
so that the problem states can be classified with optimised clusters, where each
cluster will correspond to an operator. The algorithm will impose selecting the
cluster centre, operator, closer to the input set in distance. This will facilitates
a selection scheme conscious with problem state.

Operators are selected based on probabilities, pi,t, calculated as in Eq. 3,
where the best operator is determined using Eq. 5. The other operators are also
prioritised based on the distance in between the problem state at time t, xt,
and the cluster centres, ct - corresponding to the operators. Here, the distance
metric used in this study is hamming distance due to the binary representation
of the problem and the operators.

it∗ = arg min
i=1,..,K

{βqi,t + γei(xt)} (5)

where qi,t is the credit level/value of operation i at time t, while ei(xt) = ‖xt −
ci‖, the estimated distance between an input set and cluster ci, β and γ are
coefficients to balance between credit and distance metrics. Note that unlike
other methods, the reward value of good solutions is reflected as negative.

4 Experimental Results

The reinforced-clustering-based operator selection scheme has been tested with a
binary ABC algorithm to solve uncapacitated facility location problem (UFLP)
instances, which is one of well-known NP-Hard combinatorial problem. The de-
tails of UFLP benchmarking instances taken form OR-Library can be found in
many articles [1, 8].

The problem solving algorithm to use reinforced-clustering-based operator
selection scheme is chosen as the standard artificial bee colony (ABC) algo-
rithm reported in [14]. The standard ABC is designed for continuous numerical
optimisation problems, while UFLP is a combinatorial optimisation problem rep-
resented in binary form [18]. The algorithm has been rearranged to work with
state-of-art binary operators; binABC [16] and ibinABC [6] work on the basis of
XOR logical operator and disABC [15] uses a hamming distance-based binary
logic.

Algorithm 1 presents a pseudo code of ABC algorithm embedded with reinforced-
cluster-based operator selection scheme implemented for UFL problems. As seen,
ABC imposes a three-phase process to evolve a swarm (population) of solutions.
The first phase exploits employed bees to generate new solutions with selected



Reinforcement Learning-Based Adaptive Operator Selection 7

Algorithm 1 The pseudo code of binary ABC embedded with reinforced-cluster
based operator selection scheme

1: Initialisation phase:
2: Set algorithm parameters
3: Create initial population
4: while Termination criteria is not met do
5: Employed bee phase:
6: Select operators and assign to bees
7: for i=1 to N do
8: Select neighbour, apply operator and obtain candidate solution (vi)
9: if f(vi) is better than f(xi) then
10: Replace vi with xi

11: Get reward and add to rop,t and update centroid of cop,t
12: Reset trial counter
13: else
14: Increment trial counter
15: end if
16: end for
17: Onlooker bee phase:
18: Calculate probabilities for food sources
19: Select operators and assign to bees
20: Increment operator counter, t=0
21: for i=1 to N do
22: Determine current solution according to probability
23: Select neighbour food source
24: Apply operator and obtain candidate solution (vc)
25: if f(vc) is better than f(xc) then
26: Replace vc with xc

27: Get reward and add to rop,t and update centroid of cop,t
28: Reset trial counter
29: else
30: Increment trial counter
31: end if
32: end for
33: Update Phase:
34: Credit assignment
35: Memorisation
36: Scout bee phase:
37: if Limit is exceed for any bee then
38: Create random solution for the first exceeding bee and evaluate it
39: end if
40: end while

binary operators applying to the materials taken from a selected solutions and
one of its neighbours. The generated solution is added to the swarm if it is
better than the parents, the amount of reward to allocate to the operators is es-
timated and the position of centre for selected and used operator is updated. If
the the generated new solution is not better than the parent solution no reward
is generated and the trail counter is incremented.

The onlooker bees conduct the second phase of ABC in which the solutions
are selected with a probabilistic approach to let randomness contribute the di-
versity of the swarm. Similar to the first phase, the operator selection, the reward
estimation and crediting are performed and the corresponding cluster centres are
updated. The scout bees follow up the onlookers to replace from non-improvable
solutions with randomly generated ones to keep the swarm further divers.

The experimentation has started with parametric study to fine-tune param-
eters used in both the algorithm and within the mechanics of the operator se-



8 R. Durgut and M.E. Aydin

lection scheme. The experimentation for parametric study has been conducted
using the hardest benchmarking instance of UFL problem, which is known as
CapC. The parameters configured for best fit are tabulated in Table 4 and av-
eraged over 30 repetitions.

Table 1. Parameter configurations tested

Parameter Values
Reward Inst Avrg Max
Pmin 0.10 0.20 0.30
W 10.00 25.00 50.00
β 0.01 0.05 0.10
γ 0.10 0.50 0.90

Table 2 presents the hit metric, which is the number of trails attained the
optimum. The best performance so far is 25 hits out of 30 trails, where γ = 0.5,
β = 0.01 and Pmin = 0.1 are found and setup. Next, the reward estimation
across a time/iteration window is fine-tuned, where the parametric study results
obtained for average and extreme rewards are tabulated in Table 3. The best hit
values are obtained 25 and 27 out of 30 trails for average and extreme reward
cases. respectively.

Table 2. Parameter tuning for Instant reward measured with hit metric

γ

Pmin

0.1 0.2 0.3
β β β

0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1
0.1 24 16 20 18 24 24 24 24 24
0.5 25 21 19 19 19 21 24 19 14
0.9 16 21 14 21 21 14 17 21 17

The window size (W ) of 25 and 50 produce best results, while all trails are
tested with Pmin = 0.1, β = 0.05 and γ = 0.1. The averaged achievements
conclude that W = 25 produces the best configuration.

The best configuration concluded out of parametric study has been run with
hardest benchmark instances, CapC, to trace the operator selection through
timeline, where the progress of operation selection is plotted in Fig. 2. The
plot demonstrates that disABC operates best over the first 200 iterations and
then ibinABC takes over the best delivery. binABC doesn’t perform well in
comparison to other two as suggested in the plot.

The results by the proposed approach have been tabulated in Table 4 along-
side of other adaptive operator selection methods explained above for compara-
tive purposes. As seen, all adaptive methods embedded in binary ABC algorithm
have assisted solve all UFLP benchmark instances with 100% success except
CapC, where the Gap and St. Dev metrics are 0 and the hit measure is 30 out
of 30 for all instances except CapC. It is paramount to define the gap as the av-
erage difference in between the optimum value and the fitness/cost value found,



Reinforcement Learning-Based Adaptive Operator Selection 9

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

10

20

30

40

50

60

70

80

90

100
Operator Usage

binABC

ibinABC

DisABC

Fig. 2. Operator usage rates through search process

Table 3. Parametric fine-tuning results in hit metric for both average and extreme
rewards

Average
Reward

Extreme
Reward

Average
Reward

Extreme
Reward

γ γ γ γ
W Pmin β 0.1 0.3 0.9 0.1 0.3 0.9 W Pmin β 0.1 0.3 0.9 0.1 0.3 0.9

5

0.1
0.01 16 21 16 24 25 24

25

0.1
0.01 22 20 22 22 23 24

0.05 23 19 17 23 24 23 0.05 25 17 19 27 21 23
0.1 21 19 18 23 24 19 0.1 24 21 18 22 19 21

0.2
0.01 24 21 23 19 19 23

0.2
0.01 23 21 21 17 25 23

0.05 22 20 18 21 19 17 0.05 15 19 21 21 22 22
0.1 20 21 19 19 18 19 0.1 22 20 21 17 25 23

0.3
0.01 20 21 23 19 18 20

0.3
0.01 21 20 20 20 16 26

0.05 20 23 20 21 20 19 0.05 20 18 18 22 23 17
0.1 22 15 18 21 16 19 0.1 21 18 19 25 22 16

10

0.1
0.01 25 21 24 22 16 25

50

0.1
0.01 23 19 19 21 18 19

0.05 21 23 20 20 18 22 0.05 21 22 19 27 21 19
0.1 24 15 23 22 19 22 0.1 20 20 18 21 18 23

0.2
0.01 25 19 20 21 18 13

0.2
0.01 18 20 25 21 22 19

0.05 21 22 20 14 23 17 0.05 19 21 19 21 18 18
0.1 24 21 20 15 21 21 0.1 23 14 22 22 17 19

0.3
0.01 24 20 20 24 20 19

0.3
0.01 16 25 20 21 18 20

0.05 21 14 16 20 24 19 0.05 22 17 21 22 16 20
0.1 23 21 19 20 20 22 0.1 16 19 16 21 14 18

while St. Dev. is the standard deviation calculated over 30 repeated trails. CapC
seems to be the hardest benchmark instance, which helps fine-tuning the hyper
parameters and comparing the results produced by each rival approaches. The
proposed method, labelled as ”C-BABC” in the tables, produces the lowest gap
and st. dev and the highest hit in comparisons to ”PM-BABC”, ”AP-BABC”
and ”UCB-BABC”, which are the binary ABC algorithms embedded with PM,
AP and UCB as explained above.



10 R. Durgut and M.E. Aydin

Table 4. The comparative results obtained; the proposed operator selection scheme
vs alternatives

Benchmarks PM-ABC AP-BABC UCB-BABC C-BABC
Gap Std. Dev. Hit Gap Std. Dev. Hit Gap Std. Dev. Hit Gap Std. Dev. Hit

Cap71 0 0 30 0 0 30 0 0 30 0 0 30
Cap72 0 0 30 0 0 30 0 0 30 0 0 30
Cap73 0 0 30 0 0 30 0 0 30 0 0 30
Cap74 0 0 30 0 0 30 0 0 30 0 0 30
Cap101 0 0 30 0 0 30 0 0 30 0 0 30
Cap102 0 0 30 0 0 30 0 0 30 0 0. 30
Cap103 0 0 30 0 0 30 0 0 30 0 0 30
Cap104 0 0 30 0 0 30 0 0 30 0 0 30
Cap131 0 0 30 0 0 30 0 0 30 0 0 30
Cap132 0 0 30 0 0 30 0 0 30 0 0 30
Cap133 0 0 30 0 0 30 0 0 30 0 0 30
Cap134 0 0 30 0 0 30 0 0 30 0 0 30
CapA 0 0 30 0 0 30 0 0 30 0 0 30
CapB 0 0 30 0 0 30 0 0 30 0 0 30
CapC 0.0055 1428.003 25 0.0043 1302.539 26 0.0087 1694.457 22 0.0033 1149.5 27

The success of proposed method has been comparatively tested with a num-
ber of recently published studies, which can be considered as state-of-art works.
The comparative results have been picked up form corresponding articles [1]
and tabulated with the results produced by the proposed approach. As clearly
seen on Table 5, the proposed method, C-BABC, outperforms all the algorithms
known to be the state-of-the-art with a 100% success of solving all benchmark
instances except CapC, which is solved with the highest score, while binAAA
and JayaX solve all instances except CapB and CapC. Due to level of hardness
in solving CapB and CapC approaches are tested with, so is the proposed ap-
proach in comparative way. The difference between the results by the proposed
approach and other competitor algorithms have been tested statistically with
Wilcoxon signed rank and the results are presented in Table 6, where C-BABC,
the proposed method is significantly performed better.

Table 5. Comparative results; The proposed method (C-BABC) versus some state-of-
art approaches

Benchmark GA-SP BPSO binAAA JayaX C-BABC
Gap Std. Dev. Hit Gap Std. Dev. Hit Gap Std. Dev. Hit Gap Std. Dev. Hit Gap Std. Dev. Hit

Cap71 0 0 30 0 0 30 0 0 30 0 0 30 0 0 30
Cap72 0 0 30 0 0 30 0 0 30 0 0 30 0 0 30
Cap73 0.066 899.65 19 0.024 634.625 26 0 0 30 0 0 30 0 0 30
Cap74 0 0 30 0.0088 500.272 29 0 0 30 0 0 30 0 0 30
Cap101 0.068 421.655 11 0.0432 428.658 18 0 0 30 0 0 30 0 0 30
Cap102 0 0 30 0.00989 321.588 28 0 0 30 0 0 30 0 0 30
Cap103 0.063 505.036 6 0.04939 521.237 14 0 0 30 0 0 30 0 0 30
Cap104 0 0 30 0.040 1432.239 28 0 0 30 0 0 30 0 0 30
Cap131 0.068 720.877 16 0.171 1505.749 10 0 0 30 0 0 30 0 0 30
Cap132 0 0 30 0.058 1055.238 21 0 0 30 0 0 30 0 0 30
Cap133 0.091 685.076 10 0.082 690.192 10 0 0 30 0 0 30 0 0 30
Cap134 0 0 30 0.195 2594.211 18 0 0 30 0 0 30 0 0 30
CapA 0.046 22451.21 24 1.69 319855.4 8 0 0 30 0 0 30 0 0 30
CapB 0.58 66658.65 9 1.40 135326.7 5 0.24 39224.74 15 0.07 27033.02 26 0 0 30
CapC 0.70 51848.28 2 1.62 115156.4 1 0.29 29766.31 1 0.021 5455.94 17 0.0033 1149.5 27



Reinforcement Learning-Based Adaptive Operator Selection 11

Table 6. Statistical test results for state-of-art methods compared with proposed ap-
proach

binAAA JayaX BPSO GA-SP
Benchmarks p-value H p-value H p-value H p-value H
Cap71 1 0 1 0 1 0 1 0
Cap72 1 0 1 0 1 0 1 0
Cap73 1 0 1 0 1.E-01 0 1.E-03 1
Cap74 1 0 1 0 3.E-06 1 4.E-08 1
Cap101 1 0 1 0 2.E-01 0 4.E-04 1
Cap102 1 0 1 0 5.E-01 0 1 0
Cap103 1 0 1 0 1.E-06 1 1.E-06 1
Cap104 1 0 1 0 5.E-01 0 1 0
Cap131 1 0 1 0 1.E-06 1 1.E-06 1
Cap132 1 0 1 0 1.E+00 0 4.E-08 1
Cap133 1 0 1 0 2.E-06 1 1.E-06 1
Cap134 1 0 1 0 5.E-04 1 1 0
CapA 1 0 1 0 5.E-05 1 1.E-01 0
CapB 6.E-05 1 2.E-07 1 2.E-06 1 2.E-06 1
CapC 4.E-06 1 1.E-04 1 3.E-06 1 4.E-06 1

5 Conclusion

This study has been done to investigate how machine learning can help adapt a
dynamically updating scheme for operator selection within ABC algorithms as
one of recently developed swarm intelligence approaches in solving binary prob-
lems. The research has been done embedding an online learning mechanism into
binary ABC to learn which operator performs better in given circumstances.
The main contribution of this research is that the adaptive operator selection
has been achieved through reinforcement learning which is implemented with
Hard-C-means clustering algorithm converted its unsupervised nature into rein-
forcement learning. Unlike the previously suggested adaptive selection schemes,
this approach maps the binary input set into corresponding operators, hence,
each time the hamming distance between both binary sets is used to make the
selection, while the centres of the clusters are optimised/fine-tuned with es-
timated rewards per operator selection. The optimised cluster centres remain
as the basis of operator selection. The proposed algorithm is tested with solv-
ing UFL problems, and statistically verified that the proposed approach signif-
icantly outperforms the state-of-art approaches in solving the same benchmark
instances. It is also demonstrated that other existing adaptive approaches are
also outperformed.

References

1. Aslan, M., Gunduz, M., Kiran, M.S.: Jayax: Jaya algorithm with xor operator for
binary optimization. Applied Soft Computing 82, 105576 (2019)

2. Aydin, M.E., Öztemel, E.: Dynamic job-shop scheduling using reinforcement learn-
ing agents. Robotics and Autonomous Systems 33(2-3), 169–178 (2000)



12 R. Durgut and M.E. Aydin

3. Coronato, A., Naeem, M., De Pietro, G., Paragliola, G.: Reinforcement learning
for intelligent healthcare applications: A survey. Artificial Intelligence in Medicine
109, 101964 (2020)

4. DaCosta, L., Fialho, A., Schoenauer, M., Sebag, M.: Adaptive operator selection
with dynamic multi-armed bandits. In: Proceedings of the 10th annual conference
on Genetic and evolutionary computation. pp. 913–920 (2008)

5. Dokeroglu, T., Sevinc, E., Kucukyilmaz, T., Cosar, A.: A survey on new generation
metaheuristic algorithms. Computers & Industrial Engineering 137, 106040 (2019)

6. Durgut, R.: Improved binary artificial bee colony algorithm. Frontiers of Informa-
tion Technology & Electronic Engineering (in press) (2020)

7. Durgut, R., Aydin, M.E.: Adaptive binary artificial bee colony algorithm. Applied
Soft Computing 101, 107054 (2021)

8. Durgut, R., Aydin, M.E.: Adaptive binary artificial bee colony algorithm. Easy-
Chair Preprint no. 4687 (EasyChair, 2020)

9. Fialho, Á.: Adaptive operator selection for optimization. Ph.D. thesis, Université
Paris Sud-Paris XI (2010)

10. Fialho, Á., Da Costa, L., Schoenauer, M., Sebag, M.: Extreme value based adaptive
operator selection. In: International Conference on Parallel Problem Solving from
Nature. pp. 175–184. Springer (2008)

11. Fialho, Á., Da Costa, L., Schoenauer, M., Sebag, M.: Analyzing bandit-based adap-
tive operator selection mechanisms. Annals of Mathematics and Artificial Intelli-
gence 60(1-2), 25–64 (2010)

12. Hussain, A., Muhammad, Y.S.: Trade-off between exploration and exploitation
with genetic algorithm using a novel selection operator. Complex & Intelligent
Systems pp. 1–14 (2019)

13. Hussain, K., Salleh, M.N.M., Cheng, S., Shi, Y.: On the exploration and exploita-
tion in popular swarm-based metaheuristic algorithms. Neural Computing and
Applications 31(11), 7665–7683 (2019)

14. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (abc) algo-
rithm. Applied soft computing 8(1), 687–697 (2008)

15. Kashan, M.H., Nahavandi, N., Kashan, A.H.: Disabc: A new artificial bee colony
algorithm for binary optimization. Applied Soft Computing 12(1), 342–352 (2012)

16. Kiran, M.S., Gündüz, M.: Xor-based artificial bee colony algorithm for binary opti-
mization. Turkish Journal of Electrical Engineering & Computer Sciences 21(Sup.
2), 2307–2328 (2013)

17. Moerland, T.M., Broekens, J., Jonker, C.M.: Model-based reinforcement learning:
A survey. arXiv preprint arXiv:2006.16712 (2020)

18. Ozturk, C., Hancer, E., Karaboga, D.: Dynamic clustering with improved binary
artificial bee colony algorithm. Applied Soft Computing 28, 69–80 (2015)

19. Xue, Y., Xue, B., Zhang, M.: Self-adaptive particle swarm optimization for large-
scale feature selection in classification. ACM Transactions on Knowledge Discovery
from Data (TKDD) 13(5), 1–27 (2019)

20. Yang, T., Zhao, L., Li, W., Zomaya, A.Y.: Reinforcement learning in sustainable
energy and electric systems: A survey. Annual Reviews in Control (2020)


