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Deep learning and Boosted trees for injuries prediction in power 
infrastructure projects 
 
 

Abstract 

 
Electrical injury impacts are substantial and massive. Investments in electricity will continue to 

increase, leading to construction project complexities, which undoubtedly contribute to injuries 

and associated effects. Machine learning (ML) algorithms are used to quantify and model 

causes of injuries; however, conventional ML techniques do not produce optimal results since 

they require careful engineering to transform data into suitable forms. In this study, we develop 

and compare state-of-the-art ML algorithms (deep learning and boosted trees) with other 

conventional methods to overcome this problem by analyzing incident cases obtained from a 

leading UK power infrastructure company. The predictive performance of the developed 

models was benchmarked using a statistical comparison between observations and predicted 

values. Results showed that the implementation of deep feedforward neural networks 

achieved the best predictions (accuracy= 0.967 and Cohen Kappa measure = 0.964). 

Furthermore, we conduct a sensitivity analysis to determine the effect of input parameters and 

data sizes on the modes’ behavior. The sensitivity analysis results showed strong 

generalization abilities of the deep learning and boosted tree models and their effectiveness 

for safety risks management. 

 
 
Keywords: Deep learning, Boosted trees, Predictive analytics, Power infrastructure 
 

 

1. Introduction 

Working in power infrastructure sites and maintaining high-voltage overhead power lines is 

risky, and accidents involving live lines maintenance are lethal [1]. These operations are risky 

because constructing power infrastructure projects is characterized by continual changes or 

personnel movement, poor working conditions, and unsteady employment. Other causative 

factors are extensive use of resources and working in harsh environments (e.g., noise, 

vibration, dust, and severe weather) [2]. Old and weakened pipelines to facilities such as high-

pressure gas mains and electric power substations also increase the potentials for 

unanticipated injuries, with impacts causing long-term physical and emotional distress to 

workers, their families and significant economic expenses. It is predicted that electrical utility 

companies will invest $1.5–$2.0 trillion in the power infrastructure by 2030 to keep up with 

increasing electricity demands [3]. This investment will increase the volume and complexity of 

constructing power infrastructure projects, which may lead to high frequency and severity of 

injuries and their associated monetary costs. 

 

Machine learning (ML) algorithms, due to their flexibility, predictive and interpretative 

potentials, are used to quantify the contribution of causal factors concerning the occurrence 

of injuries [4]. However, conventional ML techniques do not produce optimal results. They are 

limited in processing data in raw forms since careful engineering and considerable domain 

expertise are required to design feature extractors. Feature extraction algorithms transform 
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raw data into a suitable internal representation to enhance ML models’ predictive ability [4], 

[5]. Studies previously conducted have aimed to predict injuries in construction and 

infrastructure projects for improved safety-related decisions [6], [7]. This interest is associated 

with increasing efforts being expended by electrical contractors and utility companies to 

minimize injuries. However, accident occurrence is still a challenge, as evidenced by several 

injury prevention studies [2], [8], [9]. 

 
Therefore, electrical utilities and contracting companies are in dire need of strategies to reduce 

injury frequencies and severities resulting from the increased volume and complexity of 

electrical infrastructure works [7], [10]. Traditional ML techniques required manual extraction 

of features from the large pool of incident datasets to transform data into internal forms [5]  for 

guaranteed optimal results. Besides, the power infrastructure incident datasets are large, 

heterogeneous, and characterized by complex interactions between predictors [11], which 

may be difficult for conventional ML techniques to achieve optimal results. Thus, to optimally 

manage construction safety, a robust technique is desirable to enhance the predictive 

accuracy of non-fatal injuries for improved safety management in power infrastructure 

projects.  

 
We chose the deep learning technique because it is good at discovering intricate structures in 

high-dimensional data [5] in addition to its remarkable problem-solving success in several 

domains. Additionally, it has outperformed other traditional ML methods like principal 

component regression, support vector machines (SVM), and shallow artificial neural networks 

(ANNs) due to its superior representation ability in speech processing, image recognition, and 

natural language processing [12]. We also benchmark the predictive accuracies of deep neural 

networks with two powerful boosted tree techniques- gradient boosted machines (GBM) [13] 

and extreme gradient boosting (XGB) [14], and two conventional ML techniques, SVM and k-

nearest neighbors (KNN). Reviewing the literature on the accident analysis domain, 

techniques like SVM and KNN are popular because they have a robust theoretical grounding 

that facilitates learning from data and the capability to handle complexities not related to the 

computational complexity of the problem at hand [15]. GBM, however, outperforms other 

conventional ML models due to its ability to capture nonlinear and local relationships among 

predictors and targets [4]. In contrast, XGB is an accurate and efficient scalable 

implementation of GBM [16]. 

 
The rest of the paper is organized as follows: in the next section, we present a review of the 

literature. In Section 3, we discuss the methodology, in particular, incident datasets and pre-

processing, formal concepts of deep neural networks, boosted trees, and other ML techniques. 

We also discuss the predictive models' development and parameters tuning. In section 4, we 

present prediction results and the interpretability of the deep learning model. Finally, Section 

5 concludes the study and gives possible future research directions. 

 

2. Related work 

In the section, we discuss some pertinent issues in the literature, such as associated risk 

factors with non-fatal injuries in the power infrastructure industry and ML techniques for injury 

prediction and safety management. 
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2.1. Factors associated with non-fatal injuries 

In deepening the understanding of accident occurrence, several studies have been conducted 

to investigate and identify factors causing injuries in the power infrastructure construction. A 

leading indicator such as workplace activities (electrical works, heavy-lifting operations, 

manual handling, working at heights, and driving) are a significant cause of injuries [10], [17]. 

Electrical works, for instance, cause workers to sustain lost work times due to burns injuries 

[17], and manual handling of tools (i.e., ratchet cutters, manually operated presses, hammers, 

and ladders) also increases injury risk [18]. These manual tools are also hazardous to linemen 

due to increased exposure to vibrations, awkward postures, and repetitions [10], [19]. 

Similarly, heavy equipment operations (soil and material handling tasks) at construction sites 

produce complexities due to space limitations and constraints caused by the competing project 

components (i.e., tasks, crews, and materials). These complexities are indicative of the high 

occurrence of struck-by and crushed-by injuries during work activities involving heavy 

equipment such as cranes and boom trucks [20].  

 

Also, harsh weather, working environment, inefficient site planning and controls, and improper 

use of personal protective equipment contribute to injuries [7], [20], [21]. The significance of 

project-related attributes (project characteristics, cost, and other factors such as location, 

employee age, employee experience, time of the day, employee type, day of the week) have 

also been established in past studies [21], [22]. For instance, lack of safety training and 

unavailability of technical and safety instructions are part of significant reasons for injuries [7]. 

This study builds on these studies by implementing robust deep learning techniques to discern 

intricate structures and relationships amongst these factors in a high-dimensional power 

infrastructure incident dataset.   

 

2.2. Machine learning techniques for predicting injuries 

 

Several ML algorithms (depicted in Table 1) have been employed to analyze and predict 

construction work-related injuries. Commonly used conventional ML techniques are linear 

regression, support vector machines, decision trees, and artificial neural networks. 

Regression-type techniques such as generalized linear, logistic, and probability models have 

been used to identify factors affecting construction injuries. For instance, a logistic regression 

model was developed to analyze and predict the risk of roof fall injuries and occupationally 

induced human injuries  [21], [23]. 

 

Though the logistic regression model assumes that the independent variables are not 

dependent on each other, it is sometimes difficult to find such models. Another limitation is its 

difficulty capturing the nonlinear and local relationships among dependent and independent 

variables [4]. The KNN method is a well-known classification algorithm used in pattern 

recognition, and due to its simplicity, it has been used to classify workers according to their 

risk of suffering musculoskeletal disorders [8]. However, Liu et al. [24] revealed its difficulties 

in classifying close objects originating from different classes correctly. Due to its important 

characteristics, such as the ability to learn from data and fault tolerances, artificial neural 

networks (ANN) have been used in construction to analyze and manage safety conditions. 

[15], [25], [26]. However, ANN still suffers from the uncontrolled convergence speed and local 

optima. 
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Table 1. Previous studies using ML approaches for injury analysis 

Reference Algorithms Aim  

[27], [28] Decision trees (DT) and 
Associative rules 

ML models to identify factors influencing injuries at 
workplace.  

[8] KNN  Classify workers based on their risk of suffering 
musculoskeletal disorders. 

[6] SVM, DT, and Bayesian 
networks 

Analyze injury data and identify most relevant variables to 
improve prediction capability. 

[15] ANN, SVM, Genetic 
Algorithm (GA) 

ML techniques to predict occupational incident outcomes.  

[25], [29] ANN Neural networks to analyze incident dataset and manage 
safety conditions. 

[26] ANN for developing early warning systems for construction 
workers  

[30] Ontology-based classifier 
with SVM  

Ontology-based text classification with SVM to match safe 
approaches identified in existing resources with unsafe 
scenarios.  

 [4] Random Forest (RF) and 
Stochastic Gradient Tree 
Boosting (SGTB) 

ML models to predict safety outcomes from construction 
attributes.  
 

[7] GBM; Particle Swarm 
Optimization  

ML models to find complex patterns and reduce unrelated 
attributes in datasets for optimal future decision-making. 

[21], [23] Logistic Regression, RF, 
SVM, DT 

Compared ML techniques and developed a model that 
produces safety leading indicators for predicting safety 
risks.  

 
Also, parameters of neural networks with more than two layers are difficult to optimize using 

the traditional gradient descent [31]. Furthermore, SVM, due to its low computational costs 

and accessible optima, is often used for pattern recognition and classification problems [15]. 

SVM is also efficient for small data sample problems and classifying workers suffering from 

work-related injuries  [21], [30]. However, its computational complexity grows exponentially 

with the size of training samples [31]. 

 

Decision trees  [6], [27], [28], have also been used as a non-parametric tool based on the rule 

induction to analyze the occupational injury data. However, Bengio et al. [32] revealed their 

inability to generalize to examples not seen in the training set. Recently random forest  [4], 

[21], and gradient boosting machines [4] approaches have made great attempts at analyzing 

construction injury data and predicting injuries, but the error rates are still unsatisfactory. 

 

Apart from attendant limitations confronting these conventional models, a significant problem 

is their limited ability to process raw data as considerable efforts are needed to transform the 

raw data into the appropriate internal form [5]. A dataset of carefully selected features has to 

be manually extracted from a large pool of an incident dataset for these techniques to achieve 

high prediction accuracy [4]. Data and algorithm-level methods are continually improving, and 

hybrid approaches are gaining momentum with current researches focusing on 

computationally efficient methods for analyzing data are evolving. Based on the preceding, 

state-of-the-art techniques such as deep neural networks are used to analyze incident 

datasets to improve injury prediction accuracy for safety risk management. Deep learning has 

gained increasing attention and motivated numerous successful applications [33] [12], where 

they outperform traditional methods such as principal component regression (PCR), SVM, and 

ANN [31]. Moreover, unsupervised and supervised learning techniques are appropriately 
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integrated to yield a semi-supervised model [34], which is lacking in traditional ML techniques. 

Up till now, deep learning applications have not been profound in injury management and 

safety modeling in the power infrastructure sector with incident datasets characterized by 

complex interactions of predictors [11].  

 

Thus, the study employs the advantages of deep feedforward neural networks to evolve 

accurate predictive models to analyze incident datasets for enhanced safety management. 

We also benchmark the performance of deep feedforward neural networks with boosted tree 

techniques (GBM and XGB). As reported in the literature, GBM and XGB outperformed other 

conventional ML techniques in injury outcomes prediction [4], [16]. 

3. Methodology 

In this section, we discuss the methodology adopted, namely the incident dataset relevant to 

the domain of interest and ML techniques (deep learning and boosted tree techniques) 

employed. We also discuss the development of predictive models using tested industry-based 

techniques and adopting rigorous performance testing to guarantee accurate and robust 

classification. 

3.1. Incident datasets 

We obtained incident cases related to power infrastructure projects between 2004 and 2016 

from a leading UK power infrastructure company. Though the dataset is enormous, there are 

also challenges such as name disambiguation, spelling errors, duplications, missing entries, 

and skewed data distribution. For some instances of missing entries, especially text attributes, 

we derived attributes from existing attributes using string functions in R to extract appropriate 

attributes. The derived attributes are used as substitutes for unreported instances. For other 

cases, the mean/median imputation technique (the mean for all samples belonging to the 

same class) was used in filling missing values. To handle outliers, we used box plots to detect 

outliers and filter them out appropriately, while sorting and spell checking are used to eliminate 

duplicates and spelling errors. In solving name disambiguation, we used string processing and 

pattern matching techniques to find attributes referring to the same entity but written differently. 

For instance, for the predictor "EQP_T," the equipment named "Mobile elevating work 

platform" appeared in the dataset as an aerial work platform, or bucket truck, or MEWP, or 

elevating work platform. All these terms are written as 'MEWP' to improve prediction accuracy. 

 

After the data preprocessing stage, we observe significantly fewer reported cases of certain 

classes of the dependent variable. This imbalanced data issue is prevalent in many real-world 

data sets, and if not handled, it will skew prediction results considerably in favor of the majority 

class [35]. We handle this problem using the under-sampling technique because of its 

popularity and shorter training times [36]. We also removed from the “Injury type” predictor, 

attributes such as loss or damage, legal, quality, complaints, and security that have no direct 

impact on the current study.  

 

As a result of the sensitivity of data involved and in conformity with the EU General Data 

Protection Regulation (GDPR), we anonymized the data in other not to compromise the 

privacy of subjects. We followed Sarkar et al. [15] recommendation that ML algorithms 

produce better results with numerical features than categorical features. After eliminating 
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outliers, we normalized and standardized the dataset using the Z-score method, the regularly 

used score normalization method [37].  The total number of predictors in the dataset was 

initially twenty-eight. The selected predictors are based on the Gedeon feature selection 

method  [38], which used the brute force technique to determine the functional contribution of 

variables to outputs. The predictors derived using a deep learning model with default 

parameters (trained without parameters tuning) are depicted in Table 2, Also shown in Table 

2 are studies employing these predictors in modeling work-related injuries together with the 

outcome variable (IBP), representing the injured human body parts. 

 
Typically, ML methods require datasets to be split into three subsets (training, validation, and 

test) for benchmarking. The historical incident dataset (168,574 data cells) was divided into 

training, validation, and test, with a split ratio of 8:1:1. The training set (80% of the sample) 

was used for training, the validation set (10%) for tuning hyperparameters, and the test set 

(10%) for evaluating models. Fig. 1 gives an overview of the steps adopted in this study for 

managing non-fatal injuries. The steps include data pre-processing, training and testing of 

models, benchmarking models’ performance, and creating interpretable models for the best 

classification model. 

Table 2. Predictor and outcome variables 

Variable ID Min Mean Max Description Reference 

DURATION -1.36 0.00 1.88 The length of the construction period: very short, short, 
medium, long, very long 

[27] 

COST -1.46 0.00 1.81 The cost of projects, classified as very low, low, moderate, 
expensive, very expensive  

[21], [28] 

PROJ_T -1.28 0.00 1.25 Identifies a specific project type (overhead lines, 
underground cabling, substation) 

[21], [28] 

PROJ_C -0.89 0.00 2.67 Determines the project complexity, i.e., whether the project 
is a new build, maintenance, or refurbishment.  

[39] 

REGION -2.09 0.00 1.08 The five UK regions where projects are constructed. [28] 
LOC -1.12 0.00 2.64 The project site, location, or work environment.  [22] 
CLT  -2.11 0.00 2.65 The client contracting out the project, i.e., Energy 

companies, communications, digital, and power supplier 
contractors. 

[40] 

EQP_T -1.90 0.00 3.12 Equipment types (Elevator, Drill, Hammer, Haulage.)  [20] 
EQP_S -1.20 0.00 1.19 The state of the equipment (Good, moderately in good 

condition, not in good condition). 
[40] 

EMP_A -0.73 0.00 1.96 Age expressed in a predefined range (16-25,26-44, 45-
60). 

[41] 

EMP_E -1.40 0.00 1.54 Qualification and the length of time on the job (<1 year, 1-3 

years, >3years)  
[22] 

EMP_C -0.78 0.00 1.28 Employment contract type, defined as either temporary or 
permanent. 

[22] 

YEAR -3.26 0.00 1.86 The year of project construction. [29] 
SEASON -1.19 0.00 1.46 Seasons (winter, spring, summer, autumn). [41] 
MONTH -1.67 0.00 1.55 The month (1-12) of construction. [41] 
TIME -1.02 0.00 0.98 Time (6 am-12 pm early in the day) or (12 pm-19 pm later 

in the day).  
[7], [41] 

DAY -1.53 0.00 1.63 Day name, i.e., Monday, Tuesday, Wednesday, Thursday  [7] 

CS -1.49 0.00 1.15 The contract status of the employing company i.e. main 
contractor, or subcontracted, or third-party company.  

[8] 

TASK -1.84 0.00 1.32 The specific tasks (i.e., lifting, cutting, loading, pushing, 
electricals).  

[10], [17] 

SHIFT_W -1.03 0.00 0.97 The form of the work shift (fixed or rotating) [42] 
WSLC -1.09 0.00 1.37 The working surface layout condition, i.e., Good condition, 

moderately in good condition, not in good condition. 
[8] 

HSRM -1.52 0.00 1.13 Safety risk management policies, i.e., risk management 
with supervision/control, risk management policy but no 
supervision/control, and no risk management 
policy/supervision or control. 

[21]  

IBP  
(Body parts) 

Output variable A factor 
with14 levels (1,2, 3, 
…14) 

Body parts namely, 1-ankle/foot, 2-arm/elbow, 3-
back/buttocks, 4-chest/abdomen, 5-ears, 6-eyes, 7-
face/shin, 8-groin/hip, 9-fingers, 10-head, 11-knee/leg, 12-
multiple parts, 13-neck/shoulder, and 14-no injury 

[4] 
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Fig. 1. Steps adopted for managing injuries  

 
3.2. Deep learning 

Deep learning is a new ML research area exploiting multiple layers of information processing 

in a hierarchical architecture for pattern classification and representation learning [34]. Deep 

feedforward neural networks consist of interconnected neurons, each receiving some inputs 

and supplying outputs. Each node in the output layer performs weighted sum computation on 

the values received from input nodes to generate outputs using simple nonlinear 

transformation functions. Changes to weights are made in response to individual errors 

encountered by the networks exhibit at the output nodes. Such corrections are usually made 

using stochastic gradient descent [43].  Deep learning models can achieve accuracy, 

sometimes exceeding human-level performance. They can derive high-level, complicated 

abstractions and data representations from massive datasets, making them attractive and 

suitable for Big Data Analytics. Empirical studies have confirmed the exceptional results of 
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deep learning models in different ML applications, including speech recognition, computer 

vision, and natural language processing [5], [12], [33]. 

 

In this study, we developed deep feedforward networks, a topology in which all nodes are 

organized into sequential layers, with every node receiving inputs only from nodes in previous 

layers. Fig. 2 depicts a structure of the deep feedforward neural networks with an input layer 

(I = 22 neurons), 2 hidden layers (H1 = H2 = 500 neurons), and an output layer (O = 14 

neurons). According to Lecun et al. [5], feedforward neural networks have the advantage of 

automatically discovering representations needed for detecting complex functions in raw data. 

A DNN is a function that finds a predictor of an output Y given an input X, i.e., 𝑌 = 𝑓(𝑋). The 

mapping f(.) is usually parameterized by weights and optimized during the learning process. 

DNN uses data examples to train a model to make predictions while passing data features 

through the different hidden layers with many neurons existing in each layer [44]. 

 

 

Fig. 2. Feedforward neural networks topology 

 

The existence of multiple levels of representations in DNN distinguishes it from the traditional 

artificial neural networks that allow the discovery of intricate structures in high-dimensional 

data rather than learning key features of data designed by human engineers [5]. 

  

We formally describe deep learning as follows. Denote the output of a neuron at layer ℓ by ℎℓ, 

and its input vector from a previous layer by ℎℓ−1, then we define the activation of neurons as 

ℎℓ = 𝜎(𝑏ℓ+𝑊ℓℎℓ−1). Where  𝑏ℓ is a vector of biases, 𝑊ℓ is a matrix of weights and 𝜎(∙) is the 

activation function (i.e., tanh, rectifier, maxout) employed to improve the model’s training. At 

the input layer, the input vector, 𝑥 = ℎ𝑜, is analyzed by the network and the output vector ℎℓ(in 

the output layer) is used to make predictions. Stochastic gradient descent is often used to 

optimize neural networks [5]. This method consists of showing the machine, an input vector of 
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some patterns, computing outputs together with errors, estimating the average gradient for 

the patterns, and accordingly modifying the weights. The procedure is repeated for many 

subsets of patterns in the training set until the average of the objective function converges.  

Two primary data types are handled by the ML models, the continuous (numerical) and 

categorical types, described in Table 2. The categorical form is represented internally using 

the One-Hot encoding, the most common and often recommended approach. 

 

3.2.1 Building feedforward neural networks 

Constructing a deep architecture for any problem involves defining the number of layers and 
neurons in each layer. Neurons determine the complexity of a deep learning model, and the 
more complex a model is, the more it is prone to overfitting. Deciding the number of neurons 
in the hidden layers is essential to the architecture of neural networks. We obtain a suitable 
value for this parameter by adding new neurons incrementally to grow the network, i.e., using 
the training data and an untuned single-layer network, we varied the number of neurons from 
100 to 800 while keeping other parameters at their default values. The resulting value is then 
used to determine the suitable number of layers by trying out different network topologies (1-
layer, 2-layer, and 3-layer, respectively) while keeping other parameters at default values and 
training the network for 125 epochs. 

We address overfitting using Lasso regression (L1) and Ridge regression (L2), which are the 

most common types of regularization  [47], [48].  L1 and L2 parameters are used to update 

the general cost function by adding a regularization term that decreases the values of the 

weight matrices. L2 is defined in Eq. (1), where k represents the number of cases, l is the sum 

of squares of residuals, w represents weights, and λ is the regularization parameter whose 

value is optimized for more reliable results.  

𝑐𝑜𝑠𝑡 = 𝑙 +
𝜆

2𝑘
∗ ∑‖𝑤‖2             (1) 

 

L2 regularization forces weights to decay towards zero and is computationally efficient. The 

absolute value of weights is reduced to zero in L1 (Eq. (2)), and it is computationally inefficient 

since it uses an iterative fitting technique. 

𝑐𝑜𝑠𝑡 = 𝑙 +
𝜆

2𝑘
∗ ∑⟦𝑤⟧                 (2) 

 

It is presumed that deep neural networks with smaller weight matrices lead to a simpler model, 
which in turn reduces overfitting. In this study, the optimal values of L1 and L2 arrived at using 
the random search algorithm are 1e-6 and 1e-7, respectively. 

We employed Softmax as the output layer’s activation function and used ADADELTA [43], 

[49],  an advanced optimization routine to train the network with the adaptive learning rate time 

smoothing factor (𝜖) set at 1e-8, and the learning rate decay factor (𝜌) at 0.9999, as they 

resulted in improved classification accuracy. Using ADADELTA aims to overcome the 

sensitivity in selecting hyperparameters and the continual decay of learning rates [49]. The 

simulation was carried out on a single-core, with a seed parameter at -1 to realize 

reproducibility. Other potential tuning parameters are set to their H2O default values. 

 
3.3. Boosted trees  

This ML algorithm is an ensemble of multiple weak trees to improve robustness over a single 

predictive model [45]. The idea of a boosted tree algorithm is that many decision trees perform 

better than a single one. The benefits of using this approach are: first, it is nonparametric (it 
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does not require assumptions about the data), and the number of parameters (parameters 

related only to algorithms themselves) grows in symmetry to the number of the training set. 

Second, it is quick and easy to implement. Two examples of boosted tree algorithms 

considered in this study are Gradient Boosted Machines (GBM) and Extreme Gradient 

Boosting (XGB).  GBM works by sequentially applying weak learners to repeatedly re-

weighted versions of the training data. After every boosting iteration, the model increases the 

weights of misclassified examples and lowers the weights of correctly classified examples. 

Hence, each successive classifier focuses on examples that are hard to classify in previous 

steps. After a series of repetitions, a group of weak classifiers' is combined by a weighted 

majority vote into a final prediction. XGB is an optimized version of GBM, designed for speed 

and performance. XGB is a scalable end-to-end tree boosting system that handles massive 

data using the following: cache-aware pre-read technology, distributed memory computing 

technology, and AllReduce fault-tolerant tools to improve the computation speed of the 

existing boosting tree algorithm [46].  

 

For boosted tree algorithm, small depth trees (decision trees) are created on a sample of rows 

and features at each step, and these trees are used to devise a prediction.  A decision tree is 

a flowchart-like structure with each internal node representing a "test" on an attribute (e.g., the 

lineman's sex or whether a lineman uses personal protective equipment or not), each branch 

is an outcome of the test, and each leaf node is a class label representing a decision to be 

taken. The paths from the root to the leaf represent the classification rules. 

  

For instance, Fig. 3 illustrates a simple example of using two Classification and Regression 

Trees (CART) to predict one of two probable outcomes (“no injury” or “hand injury”) using 

predictors project type, equipment, and the operation type. The algorithm classifies members 

of a family into different leaves. In Fig. 3, hands and forks (manual operations) are grouped, 

while hands, shoulders, and the back are body parts classified together for lifting operations. 

The algorithm then assigns each leave a score (i.e., -0.2, 0.1, 2, 0.7, and -0.7), as depicted in 

Fig. 3.  The prediction scores of each tree are then summed up to get the final score. The 

smaller the score, the better the structure is. Here, the algorithm predicts a hand injury since 

it has a smaller score. 

 

Mathematically, given a dataset with n examples and m features, D={(𝑥𝑖, 𝑦𝑖)}(|𝐷| = 𝑛, 𝑥𝑖𝜖𝑅𝑚), 

a tree ensemble model uses K additive functions to predict the output. The space of regression 

trees (say F) is defined in Eq. (3), where m denotes the number of features, q denotes the 

structure of each tree and w denotes the weight vector of each leaf. 

 

𝐹 = {𝑓(𝑥) = 𝑤𝑞(𝑥)}(𝑞: 𝑅𝑚 ⟶ 𝑇, 𝑤 𝜖 𝑅𝑚)          (3) 

Decision rules in the trees (q) are used to partition the dataset recursively into leaves, and the 

final prediction is calculated by summing up scores in corresponding leaves (given by w). We 

give the equation of this final prediction value in Eq. (4).  

𝑦̂𝑖 = Φ(𝑥𝑖) = ∑ 𝑓𝑘(𝑥𝑖), 𝑓𝑘 𝜖 𝐹                     (4)
𝐾

𝑘=1
 

Learning a tree ensemble involves optimizing the regularized objective function in Eq. (5).  

𝐿(Φ) = ∑ 𝑙(𝑦̂𝑖 , 𝑦𝑖) + ∑ Ω(𝑓𝑘)

𝑘

, Ω(𝑓)

𝑘

           (5) 
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Fig. 3. Injury to body parts classification with boosted trees 

 

The objective function (Eq. 5) calculates the quality of the training set, and Ω calculates the 

complexity of the model in avoiding overfitting. That is, Ω(𝑓) = 𝛼𝑇 + 1

2
𝛽‖𝑤‖2, where  and  

are parameters controlling the tree size (or depth) and the minimum number of samples in 

terminal nodes (leaves), respectively.  

 

3.3.1 Tuning gradient boosted machines (GBM) 

For most ML algorithms, GBM inclusive, the issue of overfitting, is a concern. Overfitting is the 

tendency of a model to fit the training data too well at the expense of generalization. This 

situation occurs when an unusually high number of trees and tree depths are used. Several 

approaches, i.e., evolutionary, genetic algorithm, and random search, can be used to 

determine these parameters' optimum values. In this study, we used the search grid method 

due to its simplicity. The search grid method involves defining a grid of hyper-parameters 

combination, building a model for each combination, and selecting the optimal combination 

using appropriate metrics to quantify the model performance on the testing set. We used 

AdaBoost [50] to deploy decision trees as weak learners and tuned key four hyper-parameters 

for enhanced classification performance. The four parameters tuned are the number of trees 

(ntree), tree depth (max_depth), the learning rate (learn_rate), and the column sample rate 

per tree (col_sample_rate). Boosting may potentially overfit for large ntree; hence we limited 

the number of iterations to 80 - a very conservative value compared to examples provided in 

the literature [42]. 

 

The tree depth between 4 and 8 has been empirically shown to give the best results [42]. 
Moreover, stumps with only one split allow for no variable interaction effects. Thus, we used 
a tree depth of 4 to allow for five-way interaction. Hastie et al. [42] recommended learning 
rates lower than 0.1, but considering the small number of trees used, and a computationally 
feasible model, we set the learning rate at 0.01. The column sample rate per tree 
(col_sample_rate) is from 0.0 to 1.0, and we used the default value (i.e.,1) since this value 
reduces the miscalculation error far better than other values. We derived the optimal number 
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of trees (130) using the random search strategy, and set other tuning parameters to their 
default values. The seed value was set at -1 to support reproducibility. 
 

3.3.2 Tuning extreme gradient boosting (XGB) 
 
XGB is a supervised learning algorithm that predicts an outcome by combining the estimates 

of a set of simpler and weaker models [46]. XGB can compute parallel operations on a single 

machine and learn iteratively from previously built weaker models to minimize error rates. We 

build the XGB model iteratively by tinkering with three hyperparameters to reduce error rates. 

The iteration that produces the minimum error rate is selected for the prediction problem. The 

three crucial hyperparameters of XGB are the number of iterations or the number of trees 

(ntree), the maximum tree depth (max_depth), and the learning rate (learn_rate) [46]. 

Similarly, we fixed the maximum tree depth and learning rate values at 4 and 0.01, 

respectively. Low values are set for these parameters to prevent overfitting and ensure the 

model’s generalization on new data. For the number of iterations, we used the random search 

strategy to find the optimal setting for this parameter, and 120 was arrived at as the optimal 

number of iterations. 

 

3.4. Conventional machine learning techniques 
 

3.4.1. Support vector machine (SVM) 
 
SVM is a universal approximator of any multivariate function to any desired level of accuracy. 

It has been used in different engineering fields with good accuracy, and theoretically, it has 

lesser overfitting problems and generalizes well. However, the main problem with the SVM 

model is the selection of the training parameter values.  Inappropriate parameter setting often 

leads to poor prediction accuracy. We refer readers to [30] for the basic understanding of the 

SVM working principles. 

 

3.4.2. k-Nearest neighbor (KNN) 
 
KNN classifies an observation by looking at the closest k observations. The nearest neighbor 

decision rule is used to assign a new sample point to the classification based on the nearest 

of a set of previously classified points. The two decisions needed in the KNN algorithm are the 

value of k and the distance function. The value of k is determined by trying different values 

and finding the best with the highest prediction accuracy. The Euclidean distance, interpreted 

as the physical distance between two-dimensional points, is used for computing the distance 

function in the KNN. The readers may refer to [8] for a summary of the algorithm. 

 

3.5. Performance evaluation 
 
To evaluate the performance of the classification models, we used per-class metrics such as 

precision, recall, and F-1 score. Precision is a fraction of correct predictions for a specific 

class, while recall is the model’s ability to classify relevant cases. F-1 score defines the 

harmonic mean (or a weighted average) of precision and recall, and it reaches its best value 

at one and its worst at zero. These metrics are defined in Eq. (6), where TP (True Positive) 

denotes data points correctly labeled or predicted. The false positive (FP) signifies an 

outcome incorrectly predicted as the positive class by a model, while true negatives (TN) are 

data points incorrectly labeled as negatives. False negatives (FN) denote 
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outcomes wrongly predicted as the negative class. For the overall prediction performance of 

models, the per-class metrics (precision, recall, and F1-score) are averaged (i.e., 

𝑚𝑎𝑐𝑟𝑜𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∑ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖

𝑛
𝑖

𝑛⁄ ) over all the classes to give the macro-averaged precision, 

recall, and F-1. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝑓1𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

            (6) 

 
Similarly, we used the Cohen Kappa statistic [51], a measure of agreement between the actual 

and predicted labels. This metric, defined as 𝑘 = (𝑡 − 𝑦) (1 − 𝑦)⁄ , where y is the model output, 

and t is the desired output, offers a useful measure to handle both multi-class and imbalanced 

class problems effectively. The closer to 1 a Kappa metric is, the better the classifier when 

compared to a random chance classifier. For all the models, an oversampling technique to 

tackle the imbalanced class issues was used. Models for deep feedforward neural networks 

and boosted tree algorithms are constructed using the training and validation sets described 

earlier. 

 
All the development and experimental works are carried out on the Intel Core i5 2.50 GHz with 

32GB RAM.  Subsequently, we evaluated the models’ outputs against the testing sample, and 

the models' performance metrics are calculated appropriately. The testing set was randomly 

divided into two subsets (Test A and Test B) in the ratio of 60:40 to determine the effects of 

different data sizes on the models’ performance and sensitivity. 

 

4. Results and discussion 

4.1. Determining model’s parameters  

The optimal number of neurons (500) and network topology (a two-layer network (500 X 500) 
arrived at with the highest prediction ability is as depicted in Figs 4a and 4b.  We settled for 
this network (2 hidden layers, each with 500 neurons) as the base deep learning model. A 
topology of ‘22-500-500-14’ with an input layer matching the 22 predictors, two hidden layers 
(each with 500 neurons), an output layer for the outcome variable (13 body parts representing 
13 classes), and the 14th class representing no injury. In arriving at this topology, we followed 
the recommendation of LeCun et al. [5] by setting the number of neurons in the first hidden 
layer of the network to correspond to the size of the input and then using regularization 
techniques to address any possible overfitting.  

 
Fig. 4c shows the root-mean-square error (RMSE) curve for the different iterations on the 

training and validation sets, with the optimal iteration at 230. This steady slope (at epoch = 

230) signifies that the model generalizes well enough on the validation set. The rectified linear 

was used as the activation function for the two hidden layers because of its popularity, and it 

has demonstrated high performance in computer vision research [5].  
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Fig. 4. Designing the optimal deep learning architecture 

 

 
4.2. Feature selection  
 
We show the topmost ten significant predictors (using scaled importance) derived by the three 

models in Fig. 5. For the DNN model, the significant predictors are selected using the Gedeon 

feature selection method [38], and by the Gini index for both XGB and GBM, respectively. As 

shown in Fig. 5, the predictors LOC (location), EQP_T (equipment), and TASK (operations) 

have the highest explanatory power, as confirmed by all models. After these top three 

influential predictors, each model finds its unique structure and signals within the data. Other 

predictors identified are REGION, EMP_E (employee experience), PROJ_C, SEASON, DAY, 

HSRM, CLT, REGION, EQP_S, DURATION (project duration), and YEAR. The spread 

between LOC (top) and EQP_S (bottom) for the GBM model is more pronounced when 

compared to other models because of its lower tree depth. The first three critical predictors 

extracted by the three models agree with the literature [28].  

 
The predictor LOC refers to the project site characteristics such as terrains, ground conditions, 

structures, unsafe conditions, site logistics, and rapidly changing environments. For instance, 

slippery ground surfaces in winter or rainy periods result in injury to ankles while working or 

walking outdoors on muddy and unmade surfaces. Also, windy locations can blow grits or dust 

in the eyes, especially when no or defective safety glasses are worn. Besides, a restricted site 

location is a significant cause for traps and struck by/against events. These features have a 

positive association with unsafe behaviors and injuries [28]. Furthermore, equipment and 

operations have also been identified as critical sources of injuries. According to Hinze and 

(a). Number of neurons versus accuracy (b). Topology versus accuracy

(c). Learning rate
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Teizer  [52], outcomes from injuries with different equipment types such as dump trucks, 

forklifts, excavators, and graders are prevalent in visibility-related injuries. 

 

 

Fig. 5. Top ten predictors by DNN, XGB, and GBM 

    
Being caught in/with equipment or electric shocks is closely related to power machinery [22], 

including drum machines and mixer-grinders. These injuries are caused mostly by the 

inappropriate use of safety and protective devices when operating, loading, and transporting 

power equipment. Also, construction-related tasks, such as plant operations, working at 

heights, and manual handling operations, coupled with workers’ attitudes and behaviors, are 

sources of injuries [53]. Other predictors (project characteristics, employee experience, day, 

and season) identified in this study corroborated findings from the literature  [21], [22]. 

 

4.3. Prediction accuracy of models 

The classification accuracy of models for the outcome variable "IBP" is summarized in Table 

3. The predictive accuracies and Kappa measures of models on different data sizes (Test A, 

Test B, and All test) are almost equal irrespective of their size, with the absolute difference 

ranging from 7e-3 to 1.3e-2. Different data sizes are insignificant for their performance since 

they produced highly consistent results that are invariant across samples. This attribute makes 

predictions stable for new examples. 

Table 3. Predictive performance of models 

Metric GBM XGB DNN 

 Test A Test B All test Test A Test B All test Test A Test B All test 

Accuracy 0.963 0.950 0.958 0.966 0.961 0.963 0.970 0.963 0.967 

Kappa 0.959 0.945 0.954 0.963 0.957 0.961 0.967 0.960 0.964 

 

Accordingly, based on the overall performance, as depicted in Table 3, DNN is considered the 

best model with the highest predictive accuracy (0.967) and Kappa value (0.964). XGB ranked 

DNN

XGBoost GBM
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second with accuracy (0.964) and Kappa value (0.961), while GBM came last with a 

classification accuracy and Kappa value of 0.958 and 0.954, respectively. Though both XGB 

and GBM followed the principle of gradient boosting, XGB focuses on the computational power 

and uses a more regularized model formalization. This formalization makes it resistant to 

overfitting and robust to noisy feature space, thus, giving it a better performance over the GBM 

technique [46]. We noted that all the models predicted reasonably well with high accuracy and 

within the limits of Kappa's substantial agreement. 

 

The precision, recall, and F1-score metrics for all the models are presented in Table 4. The 

recall measure gives useful insights into the specific performance of a class, and in this study, 

the predictive performance of models on injured body parts is beneficial. Again, DNN recorded 

high recall (0.97) for most body parts except "arm/elbow", "hand/fingers", and "Knee/leg"; this 

means there is a 3% probability of misclassifying an observed injured body part. XGB (overall 

recall = 0.97) and GBM (overall recall = 0.96), in contrast to DNN, had a slightly higher recall 

for the classes – "arm/elbow", "chest/abdomen", and "head".  The SVM model had an overall 

recall of 0;91, while KNN had the lowest recall (0.77).  

The following body parts: backs/buttocks, ankle/foot, eyes, groin/hip, neck/shoulder, 

chest/abdomen, arm/elbow, hand/fingers, and head are predicted accurately by the models 

(high recall values). The primary sources of injuries on these body parts are caught 

in/between, struck by objects, manual handling operations, working outdoor, and walking on 

uneven or slippery surfaces. Similarly, the overall precision for DNN, XGB, GBM, SVM, and 

KNN are 0.97, 0.96, 0.95,0.90, and 0.78, respectively. This high precision is necessary before 

the commencement of a construction project since a prospective client may want to reduce 

injuries and consequences to the barest level. For a positive prediction of the head injury, for 

instance, safety managers will react to this by ensuring the appropriate use of personal 

protective equipment and other safety measures to mitigate the effects and occurrences of 

such an injury. 

Also, overall f1-scores (Table 4) for the models are 0.97 (DNN), 0.97 (XGB), 0.96 (GBM), 0.91 

(SVM), and 0.77 (KNN). The high precision, recall, and f1-score (> 0.75) obtained by the 

models show they are extremely accurate for prediction problems. However, based on the 

results obtained here, DNN comes out as the best performing ML algorithm, with its validation 

also authenticating the reliability of the selected predictors. The deep neural networks support 

massively scaled models with several features and millions of parameters, offering significant 

potential for further investigations. However, all the models except SVM and KNN are 

computationally efficient regarding the training times required to build them. As a result, they 

can conveniently be built on most machines. 

 

4.4. Sensitivity analysis  

Sensitivity analysis is a procedure to identify predictors that potentially influence the outputs 

of the problem.  We carry out sensitivity analysis on the best three models' input parameters 

(neurons for the feedforward neural networks and number of trees for boosted tree models) to 

assess their sensitivity to fluctuations. In Table 4, we compare different configurations of 

models, i.e., baseline models versus models with reduced parameters (configuration A) and 

models with increased parameters (configuration B) using the accuracy metric. Reducing the 
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input parameters here means splitting the baseline models' parameters into halves, while 

increasing input parameters means doubling their values.  

 

For instance, we changed the "number of trees" parameter for GBM from 120 (Baseline) to 60 

(Configuration A), and from 120 (Baseline) to 240 (Configuration B), respectively. Also, the 

number of neurons in the first hidden layer of the deep feedforward neural networks was 

changed appropriately for Configuration A (reduced) and Configuration B (doubled), 

respectively.  

 

In Table 5, we observe that both XGB and GBM models produced consistent prediction 

accuracies irrespective of the number of parameters (i.e., trees or neurons) used. A slight 

improvement is noticeable except for DNN when parameters' values are doubled (i.e., GBM 

from 0.9579 to 0.9599, and XGB from 0.9642 to 0.9653) or reduced (i.e., GBM from 0.9579 to 

0.9484, XGB from 0.9642 to 0.9562; DNN from 0.9673 to 0.9252). This result revealed that 

boosted tree methods are easier to configure and more robust. The prediction accuracy of 

DNN, though negligible, dropped by a fraction of 0.04 (in both configurations); that is, adding 

more neurons than necessary usually improves the performance on the training set but 

negatively impacts the performance on the test set. On the other hand, pruning many neurons 

will damage the performance, and performance drops are unrecoverable. 

 

Consequently, the configurations of the models (GBM, XGB, and DNN) performed well 

(accuracy > 0.90). The three models showed strong generalization abilities (errors between 

the baseline models and different configurations are negligible), indicating their effectiveness 

in predicting injuries. 

 

4.5 Model interpretability 

We used three global interpretation methods from Interpretable Machine Learning (IML) [54] 

to explore the internal workings of DNN as the best predictive model. The IML package 

provides some model-agnostic interpretation methods for ML models. It has internal support 

for some ML packages (i.e., mlr, caret, and KernLab); however, we carry out a few tinkering 

to set up an interface with the H2O framework, the popular and state-of-the-art ML package 

in use today. We first created a custom function to accept a dataset of class (data.frame) and 

designate predicted values as vectors. Then we created a predictor object to hold the model, 

data, and class labels to be applied to subsequent functions. The three global interpretation 

methods used are partial dependence, measuring interactions, and surrogate model. 

 

4.5.1 Measuring interactions 

Interactions among predictors can be measured to discover how strongly they interact with 

each other. The IML uses the H-statistic [55] to measure the predicted outcome's dependency 

on the predictors' interactions. The interaction effect among predictors captured by the DNN 

model, depicted in Fig. 6a, is strong, with LOC exhibiting the strongest interaction signal while 

SHIFT_W exhibited the least interaction. For a two-way interaction of LOC with other 

predictors depicted in Fig. 6b, the EQP_T:LOC (location and equipment) interaction had the 

most substantial influence on body parts injuries, confirming findings from  [22]. 
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Table 4. Precision, recall, F1-score of models 

 Recall Precision F1-score 

Body parts XGB GBM DNN SVM KNN XGB GBM DNN SVM KNN XGB GBM DNN SVM KNN 

Ankle/foot 0.98 0.97 1.00 0.96 0.90 1.00 0.97 1.00 0.98 0.97 0.99 0.96 1.00 0.97 0.93 

Arm/elbow 0.98 0.96 0.93 0.95 0.83 0.95 0.95 0.97 0.96 0.98 0.96 0.95 0.95 0.95 0.90 

Back/Buttocks 0.99 1.00 1.00 0.96 0.82 0.94 0.93 0.96 1.00 1.00 0.96 0.96 0.98 0.97 0.90 

Chest/abdomen 1.00 0.94 0.94 1.00 0.89 1.00 1.00 1.00 0.97 0.97 1.00 0.97 0.97 0.98 0.93 

Ears 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 

Eyes 1.00 1.00 1.00 1.00 0.90 1.00 0.95 0.97 0.97 0.97 1.00 0.97 0.98 0.98 0.94 

Face/Shin 0.96 0.97 1.00 0.84 0.76 0.96 0.96 0.86 0.90 0.68 0.96 0.96 0.93 0.87 0.72 

Groin/hip 1.00 1.00 1.00 0.98 0.91 0.98 1.00 0.98 0.98 0.98 0.99 1.00 0.99 0.98 0.95 

Hand/fingers 0.91 0.91 0.93 0.82 0.45 0.86 0.89 0.98 0.73 0.56 0.88 0.90 0.95 0.77 0.50 

Head 1.00 1.00 0.98 0.86 0.68 0.96 0.95 0.96 0.88 0.62 0.98 0.97 0.97 0.87 0.65 

Knee/leg 0.90 0.90 0.92 0.63 0.48 0.96 0.93 0.93 0.66 0.33 0.92 0.91 0.92 0.64 0.39 

Multiple parts 0.85 0.83 0.95 0.83 0.53 0.95 0.91 0.95 0.75 0.38 0.89 0.87 0.95 0.79 0.42 

Neck/shoulder 0.98 0.94 0.98 0.86 0.67 0.97 0.98 0.98 0.90 0.64 0.97 0.96 0.98 0.88 0.65 

No Injury 0.98 0.98 0.98 0.99 0.95 0.99 0.99 1.00 0.96 0.92 0.98 0.98 0.99 0.97 0.93 

Overall 0.97 0.96 0.97 0.91 0.77 0.96 0.95 0.97 0.90 0.78 0.97 0.96 0.97 0.91 0.77 

 

 

Table 5. Sensitivity analysis 

Model Baseline 
(B) 

Configuration 
A (CA) 

Configuration 
B (CB) 

Error 

XGB: no of trees 120 60 240   
GBM: no of trees 130 65 260   
DNN: no of neurons 22-500-500-14 22-250-500-14 22-1000-500-14   
      
Prediction accuracy 
on test data 

   |𝐵 − 𝐶𝐴| |𝐵 − 𝐶𝐵| 

XGB 0.9642  0.9562 0.9653 0.008 0.001 
GBM 0.9579 0.9484 0.9599 0.010 0.002 
DNN 0.9673 0.9252 0.9262 0.042 0.041 
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The TASK:LOC interaction was the second strongest predictor, significantly contributing to 

body parts injuries. Other significant interactions contributing to injuries 

include EMP_E:LOC, EMP_C:LOC, PROJ_C:LOC, WSLC:LOC,  and EMP_A:LOC. The 

YEAR:LOC interaction had the least influence on injuries to body parts. 

 
This result suggests that the condition of site locations and work surface layout designs are 

essential contributors to injuries. Linemen spend most of their time outdoors on unmade roads 

and in restricted workspaces while undertaking construction works. Planning of workplace 

layout, good access to sites, and safety controls may influence good safety practices, which 

will reduce injuries on sites. Also, work activities carried out by linemen are considered 

instrumental in determining whether or not injuries will occur. For instance, the more repetitive 

a task is, the more likely a lineman being injured. An automated system is, therefore, 

recommended to automate some of these operations to reduce injuries. 

 

 

4.5.2. Partial dependence 

The partial dependence plot (PDP) shows the marginal effect of one or two predictors on the 

predicted outcome, indicating whether the relationship between them is linear, monotonous, 

or complicated. A Partial class  [54] was used to illustrate this dependence. We implemented 

the PDP and individual conditional expectation (ICE) curves following the methodology 

documented in the literature [55]. 

 
Fig. 6c depicts ICE curves and the PDP curve (in yellow) for comparing the marginal impact 

of the predictor (EQP_T) on the likelihood of an injury. The relationship captured by DNN is 

nonlinear, and the PDP curve (thick yellow line) represents the average prediction across all 

observations. This nonlinear model exhibits behavior that seems intuitively reasonable, i.e., 

equipment when newly acquired functions optimally and efficiently (likelihoods of causing 

injuries is low), but they begin to malfunction at a later stage (likelihoods of causing injuries is 

high). However, they begin to operate optimally again when repaired. The ability of deep 

neural networks to capture this behavior partially explains their superior prediction 

performance. 

 

 

4.5.3. Surrogate models 

A surrogate model enables a sophisticated model to be more interpretable by replacing the 

“black box” model with a simpler one (i.e., a “white box” model such as decision trees). 

Surrogate models help in explaining complicated deep learning models to decision-makers 

and helping them identify risks accurately to provide appropriate mitigation plans. A decision 

tree algorithm trained using a maximum tree depth of 4 was used to interpret the internal 

workings of the DNN model. The decision tree explains the DNN predictions with a correlation 

coefficient value (R2 = 0.73). 

 

 



20 

 

 

 

Fig. 6. Explaining DNN with interaction strength and partial dependence plots 

 

 

Fig. 7(a) illustrates some rules describing the occurrence of injuries and the associations 

between the predictors determined from such rules. For instance, the rule (LOC>1.605 AND 

TASK>0.264) means certain tasks conducted in some locations will result in a 0.62 likelihood 

of ankle, 0.23 likelihood of head, 0.1 likelihood of eye, and 0.05 likelihood of face/shin injuries. 

Also, the rule (LOC > 1.605 AND TASK<=0.264 AND EQP_T <=-0.3) implies a 0.86 probability 

of a lineman getting multiple injuries and a 0.14 probability of injuring the ankle for specific 

tasks performed with some equipment in that location.  Similarly, another rule (LOC > 1.605 

AND TASK <= 0.264) AND EQP_T >-0.3) implies there is a 0.93 probability of a lineman 

injuring the head, 0.02 injuring eyes, and 0.05 injuring multiple body parts for certain 

operations executed with some equipment in certain locations. 

 

 

4.5.4. Local interpretation 

 

A Local Interpretable Model-agnostic Explanations (LIME) was also implemented to provide 

local explanations for the deep learning models. For instance, Fig 7b fits a local deep learning 

model for a lineman on the likelihood of a hand injury by checking the ten most influential 

predictors in the model. As shown in Fig 7b, predictors such as EMP_E (an inexperienced 

technician), PROJ_C (a new build), TASK (i.e., wiring), and EQP_T (i.e., manual tools) have 

a sizeable influence on this lineman having a hand injury. However, the predictor LOC does 

not influence the occurrence of a hand injury for this observation. A literal interpretation might 

be the lineman working on or near a wire that is thought to be dead but live and mistakenly 

touching the wire using specific equipment. Thus, new workers or inexperienced personnel 

need adequate training in equipment handling and operations.  

 

(b). A 2-way interaction strength of LOC and other predictors
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(c). Partial dependence plots for predictor EQP_T
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Fig. 7. Explaining DNN with a surrogate model and LIME 
 

 

4.6. Implications of the study 

This study has attempted to comprehensively consider current work safety situations in the 

power infrastructure viz-a-viz using more explanatory variables compared with other studies, 

developing classification models with state-of-the-art prediction techniques, and drawing on 

historical data to have a robust understanding of causes of injuries in power infrastructure 

projects. 

 

The models developed identified key predictors that contributed to injuries and showed how 

their combinations could lead to human body part injuries and serve as an essential reference 

to preventing injuries from occurring. For instance, before embarking on a power infrastructure 

project, critical features related to the project (location, equipment, tasks, regions, lineman’s 

experience, and duration) will be fed into predictive models to simulate various scenarios. 

 
The resulting output from this study can trigger proactive safety precautions to mitigate injuries 

and their consequences. Therefore, administrators having this pre-knowledge will ensure that 

preventive and safety measures are implemented to avoid or minimize injuries. Also, the 

sensitivity analysis results validated the stability of the models for consistent predictions 

irrespective of the testing data size and the number of parameters. Again, we used more 

predictors for work-related non-fatal injuries than most related works, and to the best of our 

knowledge, this is the first time the predictive performance of deep neural networks and 
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boosted trees are applied to predict injuries within the power infrastructure domain. Besides, 

the developed DNN model is sufficient, less computational, and can be adapted in related 

fields because it exhibits state-of-the-art features such as dropout regularization and 

ADADELTA optimization. 

 

5. Conclusions 
 

As demonstrated in this study, the application of robust ML techniques in the power 

infrastructure industry is timely. This industry is becoming conscious of the need to collect 

massive unstructured data and elicit meaningful value for decision-making. In this study, we 

adopted deep learning and boosted tree methods to analyze the power infrastructure incident 

datasets, and improve accuracies of injury prediction for safety risks management.  We 

benchmarked the predictive ability of deep neural networks with boosted trees on testing data 

using appropriate metrics. The deep learning outperformed boosted trees and other 

conventional ML techniques with an accuracy of 0.967 and a Kappa measure of 0.964. The 

sensitivity analysis of the deep neural networks and boosted tree models revealed their 

robustness and stability to changes in data sizes and architectures. This study has implications 

both in academia and industrial practice, mainly the revelation of critical predictors that can 

result in injuries and how they can serve as crucial reference points in injury prevention. Also, 

the computationally efficient models developed can be adapted in related fields. 

 
This study was limited in a way that it focuses on one construction company. Thus, the 

generalizability of these research findings to other companies can only be validated through 

additional research by collecting data from several organizations to study the organizational 

complexity effects on culture. We also desire to implement robust interface techniques 

(Generative Adverbial Networks and Convolutional Neural Networks) for near real-time video 

processing and prescriptive analytics to the developed deep feedforward neural networks for 

holistic safety management.  
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