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Abstract—This paper introduces a new approach to identify
both individual and group trajectory outliers from ride-hauling
(taxi) trajectory databases. It proposes two approaches for
efficiently solving this problem: i) a Two Phase-based algorithm,
which consists of two main phases, the former determines the
individual trajectory outliers by computing the distance of each
point in each trajectory, whereas the latter identifies the group
trajectory outliers by exploring the individual trajectory outliers
using both feature selection and sliding windows strategies, and ii)
a GPU-based approach, which benefits from the massively GPU
computing and the sliding windows strategy to boost the run-
time performance of the two phase-based algorithm. Extensive
experiments have been carried out to thoroughly demonstrate
the usefulness of our methodology on both synthetic and real
trajectory databases. Experimental results show the efficiency
of the GPU approach compared with the sequential approach
by reaching an speedup of 341 using large synthetic databases.
Moreover, we show the usefulness of the proposed methodology
to detect both individual and group trajectory outliers on a real-
world taxi trajectory database. We also compare both the serial
and the parallel approaches with the baseline trajectory outlier
and group detection algorithms. The results are very promising
in terms of both computational time and the quality of returned
outliers. Finally, we prime our methodology and results for future
refinement using deep learning methodologies.

Index Terms—Trajectory Database, Outlier Detection, Individ-
ual Trajectory Outliers, Group Trajectory Outliers, Taxi Frauds,
GPU Computing.

I. INTRODUCTION

In recent years, due to the growth of database systems and
advances in high-support GPS technologies, countless num-
bers of sequence points represented by trajectory databases
are generated, stored, and analyzed. These trajectory databases
simulate various behaviours of different objects in several real-
world applications such as intelligent transportation [1]–[6],
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mobile traffic network [7]–[10], and climate change analy-
sis [11], [12]. Specifically, in the case of intelligent transporta-
tion, data analysts face a myriad of trajectories derived from
mobility of people, cars, buses, and taxis through inter or intra
smart cities.

Outlier detection, also known to anomaly detection, is
broadly used in the data mining community where unusual
observations, objects, and/or points are derived from normal
observations [13]–[18]. Finding the outliers is considered as
a major problem for providing security for intelligent and
transportation systems. In the context of trajectory analy-
sis, outlier detection aims to discover trajectories or sub-
trajectories that do not conform with the rest of trajectories
in a database [19]–[21]. Current solutions to trajectory outlier
detection only consider single view of outlierness in a whole
trajectory or a sub-trajectory. However, in real-world scenarios,
different types of trajectory outliers and useful features could
be identified such as ITF: Individual taxi Trajectory Fraud,
GTF: Group of taxi Trajectory Fraud, ICP: Individual Change
Point, and GCP: Group Change Point.

Example 1: Group of Taxi trajectory Fraud. Consider the
example of ride-hauling (taxi) trajectories illustrated in Fig. 1.
Here, each trajectory is mapped to the road map network of
the United States. Expected trajectories are illustrated in black
color. Traditional taxi trajectory fraud algorithms [20], [22],
[23] may detect outliers illustrated in green color, where a taxi
goes from Minneapolis, Minnesota to Denver, Colorado and
deviates through South Dakota and Wyoming. The deviation
may be legit, e.g. due to road maintenance, or be a fraud.

Fig. 1. Motivating Example I: Group of Taxi trajectory Fraud
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It is relatively easy to identify the anomaly when a single
trajectory deviates from the historic trajectories for the same
route. However, traditional algorithms cannot identify outliers
presented in red color, where a group of taxis deviate from
their usual trajectory, for the trip from Kansas City, Missouri to
Albuquerque, New Mexico. Detecting these trajectory outliers
where the group collectively deviate, not necessarily though
the same paths, is not straightforward. Detecting such outliers
could help planners to study the different correlations between
these trajectories to deduce useful and pertinent information.
For instance, taxi trajectories shown in red color could indicate
that the taxis are partners in a potential taxi fraud, whereas
for the green trajectory only individual deviation is observed.
In this work, we focus on studying and determining outliers
where multiple taxis may partner in fraud as a group. To
perform this, we first define a new problem called Group
Trajectory Outlier Detection. Next, we propose different ap-
proaches for finding these kind of anomalies through analysing
real-world ride-hauling datasets.

Example 2: Change points detection. Consider the four
sketched examples of taxi trajectories illustrated in Fig. 2.
Each taxi trajectory starts from the source point and ends at
the destination point. Traditional trajectory outlier detection
algorithms [24]–[27] may detect outliers illustrated in Fig. 2(a)
in red color, where taxi4 follows the normal trip from the
source to the destination until a given point, in which it
deviates from the taxis taxi1, taxi2, and taxi3. Traditional
trajectory outlier detection algorithms cannot determine the
individual change point for this case. Moreover, the whole
process is not able to identify outliers presented in red and
green colors in Fig. 2(b), 2(c), and 2(d). In Figure 2(b),
different taxis (taxi5 and taxi6) deviate from their normal

ITF

Taxi 1,2,3

Taxi 4

(a) Individual Change Point: Individ-
ual Taxi trajectory Fraud

GTF

Taxi 1,2,3,4

Taxi 6

Taxi 5

(b) Group Change Point (example1)

ICP

Taxi 1,2,3,4

Taxi 5,6

(c) Group Change Point (example2)

GCP

Taxi 1,2,3,4

Taxi 5

Taxi 6

(d) Group Change Point (example3)

Fig. 2. Motivating Example II: Change Points Detection.

trips at the same group change point but follow different
trajectories (green trajectory for taxi5 and red trajectory for
taxi6). In the case illustrated in Figure 2(c), two taxis deviate
from their normal trip at the same group change point and
follow the same trajectory shown in red color. Moreover, the
last case sketched in Figure 2(d), taxis (namely taxi5 and
taxi6) deviate from their normal trip at different group change
points but follow the same trajectory. Detecting these different
kinds of outliers and change points could help city planners
to extract patterns and discover relevant knowledge through
careful analysis of the trajectories. For instance, the case of
Figure 2(a) may allow the determination of individual taxi
fraud through detecting frequently individual taxi fraud at the
same individual change point. These actions can support city
planners making good decisions such as putting surveillance
cameras at known common change points. In the case of
Figs. 2(b), 2(c), and 2(d), detecting group trajectory outliers
allows city planners to make fair decisions regarding taxis
outliers. Taxis which deviate from the same group change
point but follow different trajectories have a strong probability
that their aim is to avoid malicious circumstances like traffic
jams rather than committing taxi fraud. However, group taxis
outliers at the same or different group change points with the
same trajectory have a strong probability that they are partners
in taxi fraud. The problem related to the existing taxi fraud
detection algorithms is how to derive individual and group
change points efficiently.

Contribution: To answer the previous questions, this paper
presents a new approach that allows identifying taxi trajectory
outliers with different contexts by detecting taxi individual
outliers and groups of taxi outliers. We also investigate on
detecting the individual and group change points of different
taxis. The main contributions of this work are summarized as:

1) We propose a general two phase-based algorithm for taxi
frauds. The first phase aims to identify taxi trajectory
outliers based on the distance of each point in each taxi
trajectory. The second phase aims to explore the taxi
trajectory outliers to derive the group of taxis outliers
by using feature selection.

2) We incorporate a GPU-based version of the two phase-
based algorithm with the sliding windows strategy to
boost the performance and scalability of the outlier
detection process on large-scale taxis trajectories and
point spaces.

3) We evaluate our novel methodology in several well-
known trajectory databases and study the scalability of
the algorithms in terms of runtime, the number of out-
liers, and speedup by analyzing the performance under
different parameters. We illustrate the performance of
the proposed algorithms on a real-world taxi trajectory
database. We compare both the serial and the parallel
approaches with the baseline trajectory outlier and group
detection algorithms. The results are very promising in
terms of both computational time and the quality of
returned outliers. We also link our results gathered in
this paper to future enhancements using deep learning
methods under future work.
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Outline: The remainder of the paper is organized as
follows. Section II reviews the main existing trajectory outlier
detection algorithms, followed by a detailed explanation of
our framework of multi-view trajectory outliers in Section III.
Section IV presents the performance evaluation. Finally, Sec-
tion V concludes the paper and outlines our future work.

II. RELATED WORK

Qin et al. [28] developed a probability-based taxi fraud
detection algorithm which consider both the behavior of taxi
drivers and the traffic variability. The set of route choice of all
taxi drivers is first generated from the taxi trajectory database.
The choice probability of each route is then calculated by
joining all taxi driver choice taking this route. The anomaly
score of each taxi driver is finally determined using the
probability values of all routes visited by such taxi driver.
Ammar et al. [29] developed a smart system which integrate
the images databases in detecting anomalies. The convolution
neural network is applied to extract both the trip, and en-
gineering features. The random finite set algorithm is then
performed to derive outliers. Zhang et al. [30] proposed the
iBAT (Isolation-Based Anomalous Trajectory) algorithm. The
“few and different” properties of anomalous trajectories are
then exploited where a random tree is generated by dividing
the trajectories until almost all of them are isolated. This
generation produces shorter paths for anomalous trajectories
which are isolated faster than normal trajectories isolated in
longer path. Chen et al. [31] proposed the iBOAT (Isolation-
Based Online Anomalous Trajectory) algorithm. This algo-
rithm aims to find anomalous taxi sub-trajectories in real time.
It is used to automatically detect fraud implied by rapacious
taxi drivers who take unnecessary diversions during the trip.
When the outlier sub-trajectory is determined, the notification
of possible fraud could be suggested to the passenger, even
the taxi is still in use. Ge et al. [32] introduced a route-
based structure to represent the taxi driving paths. This allows
to expand the generative statistic approach to analyze the
distribution of taxi driving, and identify the taxi frauds. The
same authors [33] investigated the use of data mining in
developing a taxi business intelligence system to help taxi
companies in understating the behavior of taxi drivers. The taxi
drivers are grouped into similar clusters, where on each cluster
the taxi frauds are identified by exploring heterogeneous
trajectory GPS traces using Demptser-Shafer theory. In the
same context, Yuan et al. [34] suggested a smart taxi fraud
detection system by exploring a large taxi GPS logs. Both
occupied and unoccupied taxi trajectories are mapped to the
road network. The source-destination trajectories are retrieved
from the mapped trajectory database. The iBAT algorithm is
then applied to derive the taxi frauds. The framework also ale
to rank taxi drivers and distinguish the best drivers from the
drivers causes frauds. Leng et al. [35] studied the two Chinese
taxi system, Didi and Kuaidadi, in analyzing taxi frauds from
large taxi trajectories database. The correlation among spatio-
temporal traveling patterns are determined using density val-
ues, this allows to detect hot spots, and isolated regions, which
helps to deduce the taxi frauds. Zhang et al. [36] investigate

prediction of taxi destination in the taxi fraud system. The
time-related feature pre-processing step is first processed to
accurately embed the data. A data-driven ensemble learning
solution, which combines the merits of the support vector
machine, and the deep learning to identify segment deviation
of different taxi trajectories. Wang et al. [37] analyzed different
anomalous patterns from taxi trajectory data. The difference
and intersection metric set is calculated between each two
pair of taxi trajectories, in order to define the anomaly scores.
Anomalous trajectory detection, and classification algorithm is
then proposed to analyze the different taxi trajectory frauds.
Xudong et al. [38] applied a probabilistic tensor factorization
algorithm to measure the expected and predicted probability of
each taxi trip. Each taxi trip is assumed as an observation on
multivariate data distribution. The tucker decomposition with
an accurate expectation maximization are used to approximate
such distribution of taxi trips. Smolyak et al. [39] addressed
the lack of ground truth in finding the trajectory anomalies,
and developed a hybrid generative adversarial network with
infinite Gaussian mixture model to generate synthetic and real-
istic trajectory data and therefore facilitate trajectory anomaly
detection.

As can be seen from the literature overview, existing so-
lutions for taxi frauds focus on discovering individual taxi
trajectory frauds. In addition; there is no work which identifies
the change points of taxi trajectory frauds. Therefore, in this
paper paper we propose the first dedicated algorithms to detect
both individual and group taxi trajectory frauds and also to
detect the change points.

III. METHODOLOGY

A. Problem Formulation

To introduce the multi-view taxi frauds problem we need
a few preliminary definitions. A taxi trajectory is a sequence
of taxi location points in space. We will denote by p a single
spatial location point, where each p is a tuple of two values,
the latitude and the longitude of this location.

Definition 3.1 (Taxi Trajectory Database): We define a taxi
trajectory database Λ = {Λ1,Λ2, . . . ,Λm}, where each raw
taxi trajectory Λi is a sequence of spatial taxi locations points
with timestamps {pi1, pi2, . . . , pin} obtained by localization
techniques such as GPS.

Definition 3.2 (Candidate Taxi Sub-Trajectory Outlier): We
define a candidate taxi sub-trajectory outlier Λxyi as a sub-
sequence of points pix, pix+1, . . . , piy in the whole trajectory
Λi.

Definition 3.3 (Order Relation): A point p1 is highly ordered
with respect to p2 in the trajectory database if and only if the
time of p1 comes before the time of p2.

A recent survey in the literature [40] details how the location
points which are similar enough are aggregated into regions.
Let us denote by R a location region in space.

Definition 3.4 (Mapped Taxi Trajectory Database): We
define a mapped taxi trajectory database Λ = {Λ1,Λ2...Λm},
where each mapped taxi trajectory Λi is a sequence of spatial
location regions {Ri1, Ri2...Rin}, obtained by replacing each
point pik in Λi with its region Rik.
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Definition 3.5 (Taxi Trajectory Similarity): The similarity
between two taxi trajectories Λi and Λj , denoted as d(Λi,Λj),
is defined by their symmetric difference, i.e., the number of
all regions in the two taxi trajectories minus the number of
shared regions in the two taxi trajectories. Formally:

d(Λi,Λj) = n− {|(Ril, Rjl)|,∀ l ∈ [1..n]} (1)

Definition 3.6 (Group Taxi Frauds): We define
the set of the candidate group taxi frauds
G = {Λs1,e11 (G),Λs2,e22 (G)...Λ

s|G|,e|G|
|G| (G)}, where the

starting point s of each taxi sub-trajectory Λsei (G) should be
highly ordered an ending point e of at least one another taxi
sub-trajectory in the same group G.

Definition 3.7 (Density Point): We define the density of the
point pij as follows:

DP(pij) =

∑m
l=1 distance(pij , plj)

m
(2)

where m is the number of all taxi trajectories. Note that the
distance between two points p1, and p2 is computed using the
spatial information (latitude: p1.x, p2.x and longitude: p1.y,
p2.y) in the Euclidean space as follows:

distance(p1, p2) =
√

(p1.x− p2.x)2 + (p1.y − p2.y)2 (3)

The density of a group is an important concept in our
analysis. Intuitively, it is defined as the number of shared
regions between all the taxi trajectories of the group.

Definition 3.8 (Group Density): We define the density of the
candidate group of taxi trajectory frauds, G, as

Density(G) = |{R|∀Λi ∈ G, R ∈ Λi}| (4)

Definition 3.9 (Individual Taxi Trajectory Fraud Problem):
The Individual Taxi Trajectory Fraud Problem aims to discover
for a given density threshold µ, the set of all individual taxi
trajectory frauds I∗ such as:

I∗ = {Λsei |∀j ∈ [s, . . . , e], pij ∈ Λsei ,DP(pij ≤ µ)} (5)

Definition 3.10 (Group Taxi Trajectory Fraud Problem): The
Group Taxi Trajectory Fraud Problem aims to discover a group
taxi trajectory fraud G∗ such as:

G∗ = max
G
{DG(G)} (6)

B. Two Phase Approach

Before presenting the Two Phase-based approach, we define
some useful concepts.

Definition 3.11 (ITF: Individual Taxi trajectory Fraud): We
define ITF by the set of individual taxi trajectory fraud where
each taxi trajectory in ITF satisfies the requirements in Eq. 5.

Definition 3.12 (GTF: Group Taxi trajectory Fraud): We
define GTF by the set of group taxi trajectory fraud where the
trajectories in GTF satisfy the requirements in Eq. 6.

Definition 3.13 (ICP and GCP: Individual and Change
Points): We define ICP (Individual Change Point) by the point
that causes frauds of the set ITF. Similarly, GCP (Group
Change Point) is the point that causes frauds of the set GTF.

Algorithm 1 Two Phase-based algorithm
1: Input:

Λ = {Λ1,Λ2...,Λm}: The taxi trajectory database.
µ: The density point threshold.
γ: The density group threshold.

2: Output:
ICP : Individual Change Point.
ITF : Individual Taxi trajectory Fraud.
GCP : Group Change Point.
GTF : Group Taxi trajectory Fraud.

3: {First Phase: Determine individual taxi trajectory frauds}
4: for i=1 to m do
5: for j=1 to n do
6: dij ← DP(pij); {See Def. 3.7}
7: end for
8: end for
9: ICP ← ∅;

10: ITF ← ∅;
11: flag ← false;
12: c← 1;
13: for i=1 to m do
14: for j=1 to n do
15: if dij ≤ µ then
16: if flag=false then
17: AddElementToList(ICP [i], pij);
18: ICP ← ICP ∪ pij ;
19: CreateList(ITFc[i], pij);
20: flag ← true;
21: else
22: AddElementToList(ITFc[i], pij);
23: end if
24: else
25: flag ← false;
26: ITF ← ITF ∪ ITFc[i];
27: c← c+ 1;
28: end if
29: end for
30: end for
31: {Second Phase: Determine group taxi trajectory frauds}
32: Open← ∅;
33: for i=1 to m do
34: if ICP [i] 6= ∅ then
35: for j=1 to c do
36: AddElementToList(Open, ITFj [i]);
37: end for
38: end if
39: end for
40: while Open 6= ∅ do
41: node← RemoveFirstElement(Open);
42: DG(node); {See Def. 3.8}
43: AddElementsToList(Open,GPN(node));

{With respect to Def. 3.6}
44: Best← SaveBest(Open);
45: end while
46: GTF ← Best;
47: GCP ← LastPoint(ICP );
48: return (ICP, ITF,GCP,GTF );

Proposition 3.1: A sub-trajectory Λxyi belongs to a group
trajectory outliers if and only if Λxyi is an individual trajectory
outlier.

Based on Proposition 3.1, this approach is performed into
two main phases, first determining individual trajectory out-
liers, and then determining group trajectory outliers as follows:

1) Determining individual trajectory outliers. In this
phase, the individual trajectory outliers are derived.
The process starts by computing the density of each
point in the whole set of trajectories Λ using the point
density measure (See Def. 3.7). This allows to derive the
individual change point, if it exists, for each trajectory.
From the individual change point, the process continues
to determine the individual trajectory outlier. For each
point highly ordered to the individual change point, if
the density of this point is less than a density threshold
µ, then this point is added to the individual trajectory
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Fig. 3. Two Phase Illustration

outlier started by such individual change point. This
process is repeated until a normal point is found (its
density is greater than µ). The whole process is repeated
until all points of all trajectories are scanned.

2) Determining group trajectory outliers After deter-
mining the individual trajectory outliers, the next step
is to derive the group trajectory outliers. A feature
selection technique is evaluated, where each individual
trajectory outlier is considered as one feature, and the
aim is to select the most relevant features from the
whole individual trajectory outliers. The relevant set of
features is then considered as group trajectory outliers.
The evaluation of the selected features is computed using
the group density measure (See Def. 3.8), in which the
aim is to maximize this measure. In this context, a depth
first strategy is used by starting with the empty node ∅
that contains any trajectory, to the full node that contains
all individual trajectory outliers. The group change point
is finally obtained, which is the last individual change
point of all trajectories in each group trajectory outliers.

Algorithm 1 presents the pseudo-code of the Two Phase-
based algorithm for solving the multi-view trajectory outlier
detection problem. The input consists of the trajectory database

Λ, the density point, and the density group thresholds. The
output comprises the sets ICP, ITF, GCP, and GTF. The
algorithm starts by computing the density of each point in the
trajectory database (from line 4 to line 8). It then constructs
the sets ICP and ITF using the µ threshold (from line 13
to line 30). The depth-first search strategy is then applied to
each ITFj to determine the best features (group taxi trajectory
fraud) with the group change point (from line 33 to 47). The
algorithm uses some pre-defined methods:

1) AddElementToList(L, e): Add an element e at the end of
the list L.

2) AddElementstoList(L, E): Add all elements in E at the
end of the list L.

3) CreateList(L, e): Create a new list L, and assign an
element e as the head of this list.

4) x ← RemoveFirstElement(L): Assign to x the first ele-
ment of the list L before removing it.

5) SaveBest(L)): Return the current best element in the list
L regarding the DG formula.

6) LastPoint(L): Return the last point of the list L, regard-
ing the order relation definition (Def. 3.3).

The complexity of this algorithm depends on the number
of trajectories m, the number of points n, and the number
of the individual trajectory outliers c generated in the first
stage. The cost is equal to the sums of costs of the first and
the second phases. In the first phase, the density computation
requires m2×n operations, the construction of the individual
trajectory outliers is performed on m operations, the total cost
of this stage is (m2 × n) + m. For the second phase, the
feature selection is performed on the c individual trajectory
outliers, which generates (2c − 1) nodes, and each node is
evaluated on c operations cost. The total cost of this phase
is c × 2c − c. The total complexity cost of the Two Phase-
based algorithm is O(m2×n+ c× 2c). From this complexity
analysis, we can remark that two phase-based algorithm is
quadratic on the number of trajectories, polynomial on the
number of points, and exponential on the number of individual
trajectory outliers. The overall performance of such algorithm
is reduced when the number of trajectories becomes too large.
In the next section, we propose a GPU-based sliding window
algorithm for boosting the performance of the two phase-based
algorithm.

C. GSW-TP: GPU-based Sliding Window for Two Phase-
based algorithm

The aim of this approach is to improve the overall per-
formance of the two phase-based algorithm proposed in the
previous section using both a sliding window strategy and
the GPU architecture. Graphical Processing Units (GPU) have
been recently used for solving complex problems [41]–[45].
The GPU programming model consists of many GPU threads
that are logically grouped into several blocks of threads. Each
thread in a block shares a memory space with the other threads
in the same block. All blocks have also access to constant
and global memories. Threads are grouped into warps of
32 threads, and thread blocks of up to 1024 threads. Taxi
trajectories database is first divided into k sliding windows,
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where k is the number of the GPU-blocks used in the mining
process. These sliding windows are then sent to the shared
memory of the GPU, where each block bi is mapped to one
sliding window SWi. The jth thread in bi, thij , determines
the local individual trajectory outliers by performing the lines
4 to 30 on the trajectory Λj . In the case of the density of
the ending point of the trajectory Λj on the sliding window
SWi−1 and the density of the starting point of Λj on the
sliding window SWi are less than µ, the part of the individual
trajectory outlier Λj on SWi−1 is concatenated with the part of
Λj on SWi, and the average point will be the average of both
parts of Λj . Afterwards, the threads of each block compute
the local average points of each individual trajectory outliers.
Each block then finds the local group trajectory outlier at each
sliding window. A global group trajectory outlier will be a
local trajectory outlier that maximizes a function described in
Def. 3.10. From a theoretical standpoint, GSW-TP improves
the sequential version of the two phase-based algorithm by
exploiting the massively threaded computing of GPUs while
determining both individual and global trajectory outliers.
GSW-TP also minimizes the CPU/GPU communication by
defining only two points of CPU/GPU communication. The
first one takes place when the trajectory database is loaded
into the GPU in the beginning, and the second one when
the individual and the global trajectory outliers are returned
to the host memory. Moreover, GSW-TP minimizes threads
divergence, which is a typical issue in GPU-based computing.
Threads divergence only takes place when the threads of
different blocks and belong to the same wrap process different
number of individual trajectory outliers. However, this issue
needs several GPU synchronization points.

IV. PERFORMANCE EVALUATION

Thorough experimental analyses have been carried out to
evaluate the proposed framework using both synthetic and real-
world trajectory databases. The synthetic trajectory databases
are first used to study the behavior of the two proposed algo-
rithms (the two phase-based and the GSW-TP) with varying
the number trajectories, the number of points, and the number
of GPU blocks/threads. A sketch of individual and group
trajectory outliers are shown on a real-world case study on a
trajectory database [46], which contains 1, 710, 671 different
taxi trajectories. Regarding the quality, a common problem of
outlier detection techniques is the evaluation procedure of the
quality of returned outliers, in particular for new applications
such group trajectory outliers, where a ground truth is not
defined or does not exist. To facilitate a quantitative evaluation,
we inject synthetic group trajectory outliers as follows:
Injecting individual trajectory outliers: Individual trajectory
outliers are generated by adding noise several times with a
certain probability p ∼ U(0.8, 1.0) and a given threshold µ.
Injecting group trajectory outliers: From the individual
trajectory outliers, noise are added few times with a certain
probability p ∼ U(0.0, 1.0) and a given µ.
For both injections, each point pil in the trajectory Λi is
changed as in Equation 7.

pil =

{
pil + n ∼ N (0, 1) if p ≥ µ
pil otherwise. (7)

Thus, the evaluation of the returned outliers is performed
using F-measure, and mAP (mean Average Precision), which
are common measures for the evaluation of taxi fraud methods.
They are defined as:

1) F-measure. It combines the precision and recall mea-
sures as follows:

Fmeasure =
2×Recall × Precision
Recall + Precision

(8)

where Recall = |CRF |
|F | is the ratio of the number of

correct retrieved fraud (CRF) to the total number of all
frauds (F), and Precision = |CRF |

|RF | is the ratio of the
number of correct retrieved frauds (CRF) to the total
number of retrieved frauds (RF).

2) mAP. It is computed as:

mAP =

n∑
i=0

AvgP (i)

n
, (9)

where n is the number of all frauds to be identified,
and AvgP (i) is the precision at rank i, i.e., the first i
ranked frauds considered while the remaining frauds are
ignored.

The sequential experimentation were run on a computer
with 64 bit core i7 processor running Windows 10 and 16
GB of RAM. The parallel code has been implemented in the
CUDA language. The CPU is an Intel Xeon E5520 2.27 GHz
with 2 GB RAM. The GPU is a NVIDIA Tesla C2075 with
448 CUDA cores (14 multiprocessors with 32 cores each), a
clock speed of 1.15 GHz, 2.8 GB of global memory, 48 KB
of shared memory. Both the CPU and GPU are used in single
precision mode. The parallel algorithm was evaluated in terms
of the speedup compared to the sequential version.

A. Synthetic Trajectory Databases

Fig. 4. (a) presents the runtime performance of the two phase-
based pattern mining algorithm using synthetic trajectory
databases by varying the number of points from 100 to 1, 000,
the number of trajectories from 1, 000 to 50, 000, and with
different grid sizes (100 ∗ 100, 200 ∗ 200, and 500 ∗ 500). The
results reveal that by increasing the parameters values, the
runtime of the two phase-based algorithm is highly increased.
Thus, for 100 points, and 1, 000 trajectories, and with grid
size 100 ∗ 100, the Two Phase-based algorithm needs 12
seconds, however, for mining big trajectory databases, with
1, 000 points, 50, 000 trajectories, and 500 ∗ 500 as grid size,
the two-phase based algorithm needs 2, 000 seconds to retrieve
the taxi frauds, and the change points. The reason of obtaining
these results is the complexity of the mining process to
derive both individual and group taxi trajectory frauds, where
two expensive steps are needed to do such task efficiently.
Moreover, the recursive process in retrieving change points is
also high time consuming, where all points in the trajectories
need to be checked.
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a. Runtime in seconds of the Two Phase-based Algorithm
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b. Number of Individual Taxi Trajectory Frauds
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c. Speedup of the GSW-TP Algorithm
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Fig. 4. Runtime in seconds, Number of Individual Taxi Trajectory Frauds
of the Two Phase-based Algorithm, and Speedup of the GSW-TP Algorithm
using Synthetic Trajectory Databases

Fig. 4. (b) presents the quality performance of the two phase-
based algorithm using synthetic trajectory databases by vary-
ing the number of points from 100 to 1, 000, the number of
trajectories from 1, 000 to 50, 000, and with different grid
sizes (100 ∗ 100, 200 ∗ 200, and 500 ∗ 500). The results
reveal that by increasing the parameters values, the number
of individual taxi trajectory frauds returned by the two phase-
based algorithm increased. Thus, for 100 points, and 1, 000
trajectories, and with grid size 100 ∗ 100, the number of
individual taxi trajectory frauds retrieved by the Two Phase-

based algorithm is 15, however, for mining big trajectory
databases, with 1, 000 points, 50, 000 trajectories, and 500∗500
as grid size, the number of individual taxi trajectory frauds
returned by the two-phase based algorithm is 102. Moreover,
the number of individual taxi frauds is very sensitive to the
number of points in the grid. Dealing with large number
of individual taxi frauds trajectories may reduce the runtime
performance of the two phase-based algorithm in the second
phase to derive the group taxi trajectory frauds. For instance,
when we deal with 50, 000 trajectories, 1, 000 points, and grid
of 500 ∗ 500, 102 individual taxi trajectory frauds are found.
This could generate 2102 − 1 potential nodes in the feature
selection phase, which is very prohibitive as cost to derive
the group taxi trajectory frauds. Consequently, in the next
experiment, we show the effect of the GPU and the sliding
window strategies to boost the runtime performance of the
two phase-based algorithm.
Fig. 4. (c) presents the speedup of GSW-TP algorithm using
synthetic trajectory databases by varying the number of tra-
jectories from 1, 000 to 50, 000, the number of blocs from
128 to 1, 024, and the number of threads of each block from
128 to 512. The number of points and the grid size are set to
1, 000 and 500 ∗ 500, respectively. The results reveal that by
increasing the parameters values, the speedup of the GSW-TP
increased. Indeed, when the number of blocks and threads per
block is 128, the GSW-TP algorithm is 25 times faster than the
two phase-based algorithm, and this for dealing with 1, 000
trajectories. However, when 1, 024 blocks with 512 threads
per block are used, the GSW-TP algorithm is more than 300
times faster than the two phase-based algorithm for dealing
50, 000 trajectories. These results are obtained thanks to the
massively threaded GPU model and the efficient mapping of
the trajectories among different GPU blocks. Moreover, with
accurate management of the different GPU levels memories
help in improving the performance of the GSW-TP.

The next experiment aims to show the effect of the sliding
windows on the overall performance of the mining process.
Several experiments have been carried out using synthetic tra-
jectory databases containing 50, 000 but with different number
of points 100, 1, 000, and 10, 000. The results are reported in
Table I. By varying the sliding windows from 1 to 1, 024,
the number of individual taxi trajectory frauds per block is
highly reduced. For instance, when the number of sliding
windows is set to 1 (which simulates the sequential version
of the two phase-based algorithm), the maximum number of
individual taxi trajectory frauds returned is 75, 181, and 614
for 100, 1, 000, and 10, 000 points respectively, however, when
the number of sliding widows is set to 1, 024, the maximum
number of individual taxi trajectory frauds returned is 2, 4,
and 11 for 100, 1, 000, and 10, 000 points respectively. This
allows to prune the search of the group trajectory outliers in
the next phase. For instance, the two phase-based approach
needs 2614 − 1 nodes exploration to deal with 10, 000 points,
where with 1, 024 sliding windows, only 211 nodes exploration
to deal with the same number of points, and all this to find
the group taxi trajectory frauds.

The last experiment of this part is to show the quality of the
returned taxi trajectory frauds of our algorithm with different
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TABLE I
NUMBER OF INDIVIDUAL TAXI TRAJECTORY FRAUDS PER GPU BLOCK BY

VARYING BOTH THE THE NUMBER OF SLIDING WINDOWS AND THE
NUMBER OF POINTS

|SW | Number Min. Indiv. Avg. Indiv. Max. Indiv.
of Points Frauds Frauds Frauds

100 57 63 75
1 1,000 149 164 181

10,000 369 451 614
100 32 35 39

2 1,000 74 89 105
10,000 191 221 376

100 19 25 33
4 1,000 63 66 74

10,000 150 201 336
100 16 21 25

8 1,000 55 57 61
10,000 121 182 302

100 12 15 17
16 1,000 41 42 44

10,000 101 115 119
100 10 12 13

32 1,000 33 35 36
10,000 85 89 93

100 9 10 11
64 1,000 21 28 30

10,000 61 63 64
100 7 8 9

128 1,000 15 21 23
10,000 50 51 52

100 5 5 5
256 1,000 10 11 12

10,000 31 33 36
100 3 4 5

512 1,000 7 7 7
10,000 21 23 24

100 1 2 2
1,024 1,000 4 4 4

10,000 7 9 11

TABLE II
QUALITY OF RETURNED TAXI FRAUDS BY VARYING BOTH THE THE

NUMBER OF SLIDING WINDOWS AND THE NUMBER OF POINTS

|T | Number of Points Fmeasure mAP
100 0.74 0.76

1K 1,000 0.75 0.76
10,000 0.83 0.79

100 0.79 0.84
10K 1,000 0.82 0.85

10,000 0.84 0.87
100 0.86 0.88

50K 1,000 0.91 0.92
10,000 0.94 0.95

trajectory database sizes. Several experiments have been car-
ried out using synthetic trajectory databases containing 1, 000,
10, 000, and 50, 000 but with different number of points 100,
1, 000, and 10, 000. The results are reported in Table II. By
increasing the number of trajectories from 1, 000 to 50, 000,
the quality of the returned frauds, in terms of F-measure and
mAP are highly increased, from 0.74 to 0.94 for F-measure
value, and from 0.76 to 0.95 for mAP value. Again, while
increasing the number of points from 100 to 10, 000, the
quality of the returned frauds is also enhanced. These results
are explained by the fact that our approach is very appropriate
for sparse and big trajectory databases, as the case of real-
world applications.

B. Real Taxi Trajectory Databases

The second experiment aims at demonstrating the usefulness
of our framework in a real-world scenario of taxi trajectories.
the taxi trajectory service of Porto1 is used. The dataset
contains real taxi trajectories retrieved from 01/07/2013 to
30/06/2014 of the 442 taxis running in the city of Porto, in
Portugal. This allows to recuperate more than 3 GB of data
stored in one single CSV file. Each row contains information
related to one trip including: TripID, CallType, TaxiID. The
last component of the row contains a list of GPS coordinates.
This list contains one pair of coordinates for each 15 seconds
of trip. The last list item corresponds to the trip’s destination
while the first one represents its start. Useful information about
this trajectory data could be found in [46].
Fig. 5(a) presents the number of taxi trajectory frauds with
different number of trajectory sizes, and different density point
threshold values. By increasing the number of trajectories from
1 to 7, 000, the number of individual taxi trajectory frauds
increased. Indeed, the number of taxi trajectory frauds is 35
for 700 trajectories, and reaches 72 for 7, 000 trajectories.
However, when the density point threshold increased from
0.1 to 1.0, the number of individual taxi trajectory frauds
decreased. Indeed, the number of trajectory frauds is 72 for
density set = 0.1, and decreases to 60 for density set = 1.0.
Fig. 5(b) contains the results of both individual and group taxi
trajectory frauds by applying the two phase-based algorithm
on the same trajectory database. From this figure, we remark
that the two phase-based algorithm is able to detect group taxi
trajectory frauds (marked by red color) against normal trajec-
tories (marked by black color). These group taxi trajectory
frauds represent different taxi trips. One of the reason that
these taxis deviate from the normal trajectories is the high
traffic jam of Porto city, in a peak hours, where the flow rate
is too high.

C. Comparison with the State-of-the-art Approaches

In this part, we compare our approaches with the existing
baseline approaches using the real taxi trajectory database. We
consider the baseline AGJFD [47] and FGM [48] algorithms
for our serial approach, and SolvingSet+ [49] for our GPU-
based version.
Serial Approach Table III presents the accuracy of the
proposed serial approach and the baseline algorithms (AGJFD,
FGM) in terms of F-measure value. By varying the percentage
of trajectories used as input from 10% to 100%, our solution
outperforms the baseline for almost all cases. This comes from
the fact that our solution uses more accurate strategies by
incorporating feature selection for identifying both individual
and group taxi trajectory frauds. However, the baseline ap-
proaches employ statistical distribution to find the group taxi
trajectory frauds. In real scenarios, it is hard to fit the whole
trajectory data to the corresponding distributions.

To validate the previous results, we conduct the Z-test for
Two Phase-based approach compared with AGJFD and FGM.
The validation process can be modelled as follows:

1http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html
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Fig. 5. Case Study of Real Taxi Trajectory Database

TABLE III
QUALITY OF THE SERIAL APPROACH AND THE BASELINE GROUP

DETECTION APPROACHES

% Trajectories Two Phase AGJFD FGM
10 0.94 0.91 0.92
20 0.92 0.91 0.92
30 0.92 0.91 0.92
40 0.91 0.91 0.91
50 0.90 0.90 0.91
60 0.89 0.88 0.88
70 0.89 0.88 0.87
80 0.89 0.87 0.85
90 0.88 0.86 0.84

100 0.88 0.84 0.81

1) Each approach is viewed as a normal variable.
2) Each case among the ten cases (10% to 100%) represents

an observation.
3) Each case‘s result is a sample.

Two estimators, Ê1, and Ê2 are used as follows,
Ê1 = Mean(TwoPhase)−Mean(AGJFD)

Ê2 = Mean(Ê1)−Mean(FGM)
First, the normality of three approaches is checked using the
Shapiro-Wilk test which is available on XLSTAT. Therefore,
the first hypothesis, H0, and the alternative hypothesis, Ha are
defined as follows:

1) H0: The approaches follow a Normal Distribution.
2) Ha: The approaches do not follow a Normal Distribu-

tion.

The used significance level α was set to 0.01. The results of
the Shapiro-Wilk test indicate that the unilateral p-values for
all approaches are greater than α. We conclude from this table
that H0 cannot be rejected. Hence, the approaches follow the
normal distribution. In other words, the non-normality is not
significant. Afterwards, we performed the Z-test, it is first used
with α = 0.02%, to compare the three approaches. XLSTAT
gives Ê1 = 0.008, and Ê2 = 0.009. These results confirm that
the proposed approach statistically outperforms the two other
approaches (AGJFD, and FGM) by Z-test.

TABLE IV
RUNTIME (SEC) OF THE GSW-TP APPROACH AND THE BASELINE

SOLVINGSET+ APPROACH

% Trajectories GSW-TP SolvingSet+
10 157 284
20 233 335
30 259 448
40 274 512
50 291 597
60 334 614
70 394 678
80 475 710
90 574 814

100 681 928

GPU-based Approach Table IV shows the runtime in seconds
of the GSW-TP with the baseline SolvingSet+ algorithm.
By increasing the percentage of trajectory sizes from 10%
to 100%, the GSW-TP outperforms SolvingSet+ in terms of
processing time, whatever the case used as input. Thus, GSW-
TP’s runtime is 681 seconds to deal with the whole trajectory
data, while SolvingSet+ needs 928 seconds for processing the
same trajectory data. These promising results are obtained due
to the efficient mapping between trajectories and the GPU
threads/blocks.

Again, to validate the previous results, we conduct the Z-
test for GSW-TP approach compared with SolvingSet+. The
validation process can be modelled as follows:

1) Each approach is viewed as a normal variable.
2) Each case among the ten cases (10% to 100%) represents

an observation.
3) Each case‘s result is a sample.
An estimator Ê1 = Mean(GSW − TP ) −

Mean(SolvingSet+) is used. First, the normality of
the two approaches is checked using the Shapiro-Wilk test
which is available on XLSTAT. Therefore, the first hypothesis,
H0, and the alternative hypothesis, Ha are defined as follows:

1) H0: The approaches follow a Normal Distribution.
2) Ha: The approaches do not follow a Normal Distribu-

tion.
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The used significance level α was set to 0.015. The results
of the Shapiro-Wilk test indicate that the unilateral p-values for
all approaches are greater than α. We conclude from this table
that H0 cannot be rejected. Hence, the approaches follow the
normal distribution. In other words, the non-normality is not
significant. Afterwards, we performed the Z-test, it is first used
with α = 0.025%, to compare the two approaches. XLSTAT
gives Ê1 = 0.014. These results confirm that the GSW-TP
approach statistically outperforms the SolvingSet+ by Z-test.

D. Discussions

In this section, we provide the insights on several open
research issues regarding the application of the proposed
algorithms in taxi trajectory frauds: Several directions could
be investigated to improve the quality of the detected taxi
trajectory frauds:
1) It may be by studying the different dependencies between
the historical taxi trajectories. Incorporating pattern-mining
approaches, and exploring the discovered patterns with the
existing taxi trajectory frauds is a challenging problem and
may improve the quality of the returned taxi frauds.

2) It could be by adapting more specific advanced methods
such as spatial data, graph data, or time series and sequence
data. All these special scenarios are somehow related to
possible scenarios in tackling taxi trajectory databases.

3) Using high performance computing tools for handling
taxi frauds in real time environments is a challenging
issues. Several questions should be addressed. For example,
which architectures should be used? how do we efficiently
partition the data among the different jobs? how can we
design a parallel approach respecting the high performance
computing challenges such as reducing communication
and synchronization cost or increasing load balancing and
optimizing memory management?.

4) Solutions of taxi trajectory frauds could identify different
anomalous patterns from the same taxi trajectory data. The
problem is how to decide which patterns are useful for the city
planners. To improve the usefulness of the detected patterns, a
crowdsourcing approach may be applied, where different taxi
trajectory frauds approaches should work together to identify
the best anomalous patterns delivered to the city planners.

V. CONCLUSION

This paper introduced a new approach whose goal is to
discover and extract individual and group taxi trajectory
frauds, and also the change points. In order to solve such
problem efficiently, two approaches have been introduced: i)
The Two Phase-based algorithm explored two main phases,
it first determines the individual taxi trajectory frauds by
computing the distance of each point in each trajectory, and
a second phase identifies the group taxi trajectory frauds
by exploring the individual taxi trajectory frauds using both
feature selection, and sliding windows strategy, and ii) The
GSW-TP approach, which exploits the merits of the GPU

architecture with the sliding windows strategy to improve
the runtime of the phase-based algorithm. To demonstrate
the usefulness and efficiency of the proposed framework,
several experiments have been carried out on synthetic and real
trajectory databases. Experimental results reveal the scalability
of the parallel approach compared to the sequential version
by reaching a speedup of up to 341 when dealing 50, 000
trajectory database. Moreover, the results reveal the usefulness
of exploring different kinds of taxi trajectory frauds when
dealing with real taxi trajectory database. The results also
reveal the superiority of our approaches compared to the
baseline methods in terms of both computational time and the
quality of returned frauds.
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J. Schneidewind, D. Keim, and T. Schreck, “Urban mobility analysis
with mobile network data: A visual analytics approach,” IEEE Trans-
actions on Intelligent Transportation Systems, vol. 19, no. 5, pp. 1537–
1546, 2018.

[8] T. Kieu, B. Yang, and C. S. Jensen, “Outlier detection for multi-
dimensional time series using deep neural networks,” in 19th IEEE
International Conference on Mobile Data Management (MDM). IEEE,
2018, pp. 125–134.

[9] M. Ghahramani, M. Zhou, and C. T. Hon, “Mobile phone data analysis:
A spatial exploration toward hotspot detection,” IEEE Transactions on
Automation Science and Engineering, vol. 16, no. 1, pp. 351–362, 2018.

[10] K. Lu, J. Liu, X. Zhou, and B. Han, “A review of big data applications in
urban transit systems,” IEEE Transactions on Intelligent Transportation
Systems, 2020.

[11] G. Atluri, A. Karpatne, and V. Kumar, “Spatio-temporal data mining:
A survey of problems and methods,” ACM Computing Surveys (CSUR),
vol. 51, no. 4, pp. 83:1–83:4, 2018.

[12] M. Das and S. Parthasarathy, “Anomaly detection and spatio-temporal
analysis of global climate system,” in 3rd International Workshop on
Knowledge Discovery from Sensor Data. ACM, 2009, pp. 142–150.

[13] M. Gupta, J. Gao, C. C. Aggarwal, and J. Han, “Outlier detection for
temporal data: A survey,” IEEE Transactions on Knowledge and Data
Engineering, vol. 26, no. 9, pp. 2250–2267, 2014.

[14] R. Conforti, M. La Rosa, and A. H. ter Hofstede, “Filtering out infre-
quent behavior from business process event logs,” IEEE Transactions on
Knowledge and Data Engineering, vol. 29, no. 2, pp. 300–314, 2017.

[15] M. Salehi, C. Leckie, J. C. Bezdek, T. Vaithianathan, and X. Zhang,
“Fast memory efficient local outlier detection in data streams,” IEEE
Transactions on Knowledge and Data Engineering, vol. 28, no. 12, pp.
3246–3260, 2016.

[16] Y. Djenouri, A. Zimek, and M. Chiarandini, “Outlier detection in urban
traffic flow distributions,” in IEEE International Conference on Data
Mining (ICDM). IEEE, 2018, pp. 935–940.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 11

[17] Y. Djenouri, A. Belhadi, J. C.-W. Lin, and A. Cano, “Adapted k-nearest
neighbors for detecting anomalies on spatio–temporal traffic flow,” IEEE
Access, vol. 7, pp. 10 015–10 027, 2019.

[18] K. Thiyagarajan, S. Kodagoda, R. Ranasinghe, D. Vitanage, and
G. Iori, “Robust sensor suite combined with predictive analytics enabled
anomaly detection model for smart monitoring of concrete sewer pipe
surface moisture conditions,” IEEE Sensors Journal, 2020.

[19] Z. Zhu, D. Yao, J. Huang, H. Li, and J. Bi, “Sub-trajectory-and
trajectory-neighbor-based outlier detection over trajectory streams,” in
Pacific-Asia Conference on Knowledge Discovery and Data Mining.
Springer, 2018, pp. 551–563.

[20] J. Mao, P. Sun, C. Jin, and A. Zhou, “Outlier detection over distributed
trajectory streams,” in SIAM International Conference on Data Mining.
SIAM, 2018, pp. 64–72.

[21] A. H. Milaghardan, R. A. Abbaspour, and C. Claramunt, “A dempster-
shafer based approach to the detection of trajectory stop points,” Com-
puters, Environment and Urban Systems, vol. 70, pp. 189–196, 2018.

[22] Y. Yu, L. Cao, E. A. Rundensteiner, and Q. Wang, “Detecting mov-
ing object outliers in massive-scale trajectory streams,” in 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 2014, pp. 422–431.

[23] C.-L. Yu, Yanwei, E. A. Rundensteiner, and Q. Wang, “Outlier detection
over massive-scale trajectory streams,” ACM Transactions on Database
Systems (TODS), vol. 42, no. 2, pp. 10:1–10–33, 2017.

[24] J.-G. Lee, J. Han, and X. Li, “Trajectory outlier detection: A partition-
and-detect framework,” in IEEE International Conference on Data
Engineering. IEEE, 2008, pp. 140–149.

[25] Y. Ge, H. Xiong, Z.-h. Zhou, H. Ozdemir, J. Yu, and K. C. Lee,
“Top-eye: Top-k evolving trajectory outlier detection,” in 19th ACM
International Conference on Information and Knowledge Management.
ACM, 2010, pp. 1733–1736.

[26] Z. Liu, D. Pi, and J. Jiang, “Density-based trajectory outlier detection
algorithm,” Journal of Systems Engineering and Electronics, vol. 24,
no. 2, pp. 335–340, 2013.

[27] Y. Zheng, “Trajectory data mining: an overview,” ACM Transactions on
Intelligent Systems and Technology (TIST), vol. 6, no. 3, pp. 29:1–29:41,
2015.

[28] G. Qin, Z. Huang, Y. Xiang, and J. Sun, “Probdetect: A choice
probability-based taxi trip anomaly detection model considering traffic
variability,” Transportation Research Part C: Emerging Technologies,
vol. 98, pp. 221–238, 2019.

[29] A. M. Kamoona, A. K. Gostar, R. Tennakoon, A. Bab-Hadiashar,
D. Accadia, J. Thorpe, and R. Hoseinnezhad, “Random finite set-based
anomaly detection for safety monitoring in construction sites,” IEEE
Access, vol. 7, pp. 105 710–105 720, 2019.

[30] D. Zhang, N. Li, Z.-H. Zhou, C. Chen, L. Sun, and S. Li, “iBAT: detect-
ing anomalous taxi trajectories from GPS traces,” in 13th International
Conference on Ubiquitous Computing. ACM, 2011, pp. 99–108.

[31] C. Chen, D. Zhang, P. S. Castro, N. Li, L. Sun, S. Li, and Z. Wang,
“iboat: Isolation-based online anomalous trajectory detection,” IEEE
Transactions on Intelligent Transportation Systems, vol. 14, no. 2, pp.
806–818, 2013.

[32] Y. Ge, H. Xiong, C. Liu, and Z.-H. Zhou, “A taxi driving fraud detection
system,” in 2011 IEEE 11th International Conference on Data Mining.
IEEE, 2011, pp. 181–190.

[33] Y. Ge, C. Liu, H. Xiong, and J. Chen, “A taxi business intelligence sys-
tem,” in Proceedings of the 17th ACM SIGKDD international conference
on Knowledge discovery and data mining, 2011, pp. 735–738.

[34] Y. Yuan, K. Miao, D. Zhang, L. Sun, and C. Chen, “An osgi-based smart
taxi service platform,” in 2012 IEEE Asia-Pacific Services Computing
Conference. IEEE, 2012, pp. 173–178.

[35] B. Leng, H. Du, J. Wang, L. Li, and Z. Xiong, “Analysis of taxi drivers’
behaviors within a battle between two taxi apps,” IEEE Transactions on
Intelligent Transportation Systems, vol. 17, no. 1, pp. 296–300, 2015.

[36] X. Zhang, Z. Zhao, Y. Zheng, and J. Li, “Prediction of taxi destinations
using a novel data embedding method and ensemble learning,” IEEE
Transactions on Intelligent Transportation Systems, 2019.

[37] J. Wang, Y. Yuan, T. Ni, Y. Ma, M. Liu, G. Xu, and W. Shen, “Anoma-
lous trajectory detection and classification based on difference and
intersection set distance,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 3, pp. 2487–2500, 2020.

[38] X. Wang, A. Fagette, P. Sartelet, and L. Sun, “A probabilistic tensor
factorization approach to detect anomalies in spatiotemporal traffic
activities,” in 2019 IEEE Intelligent Transportation Systems Conference
(ITSC). IEEE, 2019, pp. 1658–1663.

[39] D. Smolyak, K. Gray, S. Badirli, and G. Mohler, “Coupled igmm-gans
with applications to anomaly detection in human mobility data,” ACM

Transactions on Spatial Algorithms and Systems (TSAS), vol. 6, no. 4,
pp. 1–14, 2020.

[40] Y. Djenouri, A. Belhadi, J. C.-W. Lin, D. Djenouri, and A. Cano, “A
survey on urban traffic anomalies detection algorithms,” IEEE Access,
vol. 7, pp. 12 192–12 205, 2019.

[41] A. Cano, “A survey on graphic processing unit computing for large-
scale data mining,” Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, vol. 8, no. 1, p. e1232, 2018.

[42] Y. Djenouri, A. Belhadi, P. Fournier-Viger, and H. Fujita, “Mining
diversified association rules in big datasets: A cluster/GPU/genetic
approach,” Information Sciences, vol. 459, pp. 117–134, 2018.

[43] Y. Djenouri, D. Djenouri, A. Belhadi, and A. Cano, “Exploiting GPU and
cluster parallelism in single scan frequent itemset mining,” Information
Sciences, vol. 496, pp. 363–377, 2018.

[44] V. Roberge, M. Tarbouchi, and G. Labonté, “Fast Genetic Algorithm
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