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A novel iterative identification based on the optimized topology for 

common state monitoring in Wireless Sensor Networks 

Power consumption and data redundancy of wireless sensor networks (WSN) are 

widely considered for a distributed state monitoring network. For reducing the 

energy consumption and data amount, we propose a topology optimization and an 

iterative parameter identification method for estimating the common model factors 

in WSN. The former method optimizes the decentralized topology such that all the 

leaf nodes in a community connect to the head node directly. A circle topology is 

built to enable the remote leaf nodes to link to the head node through two adjoining 

relay nodes to reduce the whole communication distance and power consumption. 

Based on the optimized topology, an iterative identification method is proposed to 

minimize the information capacity by transmitting the processed results instead of 

raw data to reduce the data amount for calculation and storage. Then, we prove the 

consensus and convergence of the proposed identification method. Finally, two 

simulations verify the effectiveness of the proposed method and the comparative 

results present the data reduction for the on-board calculation, communication, and 

storage in the practical use of WSN. 

Keywords: Wireless sensor networks (WSN); Power consumption; Iterative 

parameter identification; Convergence; 

1. Introduction 

WSN is consisted of large numbers of low-cost and low-energy sensors, with ability of 

collecting observations, on-board processing and wireless communication (Akyildiz and 

Su et al., 2002; Ruiz-Garcia, Lunadei, Barreiro & Robla 2009). In recent decades, the 

technique of WSN gains much attention in a wide range of areas including robot locating 

(Chen, Lu, & Peng, et al., 2019; Li, Wang, & Wang, et al.,2020; Zong, Ji, & Yu, et al., 

2020), and environment, construction and agriculture monitoring (Yang, Huang, Zhang, 

& Hua, 2016; Pakzad, Rocha, & Yu, 2011; Zhang, Yu, Song & Wang, 2013). High 

communication power consumption, data redundancy and no global identification (ID) 

for sensor nodes are main challenges for WSN (Dutta, Gupta, & Das 2012, Moschitta & 



Neri 2014, Rawat, Singh, Chaouchi, & Bonnin 2014). The recent work of Rawat, Singh, 

Chaouchi, & Bonnin (2014) presented that the power consumption for receiving circuitry 

is greater than the consumptions for transmitting circuitry and the baseband digital signal 

processing also consumes a lot of energy. Therefore, reducing data amount for delivery 

and calculation is helpful to reduce energy consumption. 

For reducing the data amount for communication, some scholars studied the data 

compression technology (Alsheikh, Lin, Niyato, & Tan, 2016), data fusion (Collotta, Pau 

& Bobovich, 2017; Lin, Chen, & Varshney 2005; Liu, Zhu & Anjum et al., 2020) and 

data filtering (Bashir, Lim, Hussain, & Park, 2011) to balance the demands of calculation 

and energy consumption in WSN. Parameter identification is widely used in WSN-based 

structure healthy monitoring (SHM) systems (Sim, & Spencer, 2009; Nagayama, & 

Spencer 2007) and helps to reduce data amount by delivering the processed results instead 

of raw data. A typical application is healthy monitoring of large bridges (like Golden Gate 

Bridge) using a WSN (Dorvash, & Pakzad, 2013). The vibration properties of the structure 

i.e. natural frequencies, damping ratios and mode shapes are identified using the 

measured response of the system by WSN to the environmental or forced excitations. 

WSN-based parameters identification is topology-related. In Kim et al., 2007; 

Chintalapudi et al., 2006, the topologies of WSN are divided into two groups: centralized 

group and independent group. The centralized group has poor scalability and high energy 

consumptions (Liu, Cao & Lai, et al., 2011). The independent group has a powerful data 

processing ability for each sensor node and the data processing outputs are sent back to 

the base station. The following researches improved the independent group and clustered 

sensor nodes into several communities (in Figure 1) and named it decentralized network 

topology (Cho, Park & Sim, 2015). In each community, there is only one head node and 



several leaf nodes linked to the head. The head node receives and sends processed outputs 

to the base station.  
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Figure 1. Decentralized network topology (the WSN is divided into several local sensor 

communities (circle), each of which contains one head node (blue node) and multiple leaf 

nodes (red node), and all the head nodes connect the central base station (computer) ) 

For the identification, the data are also processed on the sensor board then sent to 

the head node or a high-level base station. Some researchers have proposed methods for 

the decentralized structure. Pakzad, Rocha, & Yu (2011) utilized the distributed modal 

identification approaches to estimate the parameters in regularized autoregressive models 

that eliminate the computation of correlation between signals measured at nodes far apart. 

Nagayama, & Spencer (2007) and Sim, & Spencer (2009) divided the WSN into several 

sub-networks with cluster heads with a hierarchical topology and proposed an interactive 

modal identification (IMID) method for structural health monitoring, which can reduce 

the burden in time and energy and optimize the allocation. Liu & Cao et al. (2011) pointed 

out that each sensor node in most methods performs modal analysis only based on its own 

measuring data, and input change or measurement noise can easily degrade the identified 

local modal parameters and the errors cannot be reduced in the assembling process at the 

central unit. Thus they divided the whole network into a number of single-hop clusters (a 

hop occurs when a packet is passed from one network node to the centre node), and a 

cluster head (CH) is designated in each cluster to perform intra-cluster modal analysis. 



Cho, Park & Sim (2015) also utilized a stochastic subspace identification method to 

cluster leaf nodes for the decentralized identification. 

Compared with centralized mode, the decentralized identification reduces the data 

amount for communication with the head node, but it still can’t be used for the multi-hop 

WSN, which is consisted of several nodes, and some nodes are communicated through 

multiple hops, though its coverage area is larger than radio range of single nodes (Pešović, 

Mohorko, Benkič, & Čučej (2010)). Therefore, the nodes far away from the head will use 

other nodes as relays. Even if the relay nodes can help the remote nodes to deliver data to 

the head, it will cost a lot of energy and time. For the problem, we proposed a topology 

optimization method to transform the topology that all leaf nodes directly connecting to 

the head node into a multi-hop network. Then each remote leaf node just communicates 

with the two nearest neighbouring nodes. A novel iterative identification method is 

proposed based on the new topology that each leaf node can calculate, based on own 

measurements and delivered information from its neighbours. The delivered data is 

decreased to the minimum amount of model factors for identification.  Additionally, the 

computational complexity and energy consumption also decrease by avoiding inverse 

calculation of large matrices, which is shown in Table 2. Considering the head node 

cannot get the first-hand information from every leaf node directly and the processed 

results may cause estimation errors and bring uncertainties to the final conclusions of the 

head node, we prove that all the leaf nodes will acquire the global unbiased conclusions. 

The rest of this paper is organized as follows: Section 2 presents a topology 

optimization and an iterative parameters identification method. We prove the consensus 

and convergence of identified results for every leaf node and relay node based on several 

assumptions. Section 3 verifies the effectiveness of the proposed methods by simulations, 



and compares the data amount for communication, calculation and storage with those in 

other methods. Section 4 concludes this paper in the end. 

2. Topology optimization and iterative identification method 

2.1 Topology optimization algorithm and discussion 

Nagayama and Spencer (2007) proposed a NExT-based data processing approach, which 

divides the sensor network into several local sensor communities, and every community 

consists of a cluster-head node and several leaf nodes. The head node sends the processed 

data to its connected leaf nodes as references for correction, and every leaf node calculates 

correlation function based on the reference and own measurements. But this method only 

suits the single-hop WSN given that all the leaf nodes connect to the head node, even for 

remote ones. In this section, we will further optimize the connection topology based on 

the results of NExT-based method to reduce the distance of remote nodes linked to the 

head one.  

 

Algorithm 1. Topology optimization algorithm and illustrations 



Algorithm 1 presents the algorithm as well as the topology optimization process. 

First, in the pre-work step, all the leaf nodes connected to the head node by the clustering 

algorithm. After setting a threshold (line 3, initialization step), we initialize the flagged 

nodes whose distance are closer than the threshold and select two of them as the 1st and 

mth  nodes for the new topology. The two nodes are marked with flags and the current 

nodes are used for searching relay nodes to extend the communication channels (line 10). 

The extended nodes are selected as new searching nodes till all the remote leaf nodes are 

flagged (Extension and End steps on the right of Algorithm 1, and lines 11 to 21 on the 

left of Algorithm 1) to realize the connectivity of each node is 2.  

Seen from the last step named ‘End’ in Algorithm 1, the optimized topology is a 

combination of several single-hop connections and a multi-hop connection. The remote 

leaf node does not need to make a long-distance communication with the head, hence 

reducing energy consumption. Compared with the decentralized topology in Cho, Park & 

Sim (2015), the new topology enables the head node communicates with its neighbouring 

nodes to reduce power consumption for covering the whole community. But, the relay 

nodes should process the received information and send the results to neighbours such 

that their calculation burdens are increased. In Bashir, & Lim et al. 2011, the information 

is delivered with a feedback message mechanism with confirmation in a circle across the 

head node and all the leaf and delay nodes. Time delay is always a core issue for network 

system control (Peng, Qiao, & Xu, 2002; Wang & Qiao 2002). For the problems of long 

time delays and the increasing calculation burdens of relay nodes caused by the optimized 

topology, we propose a new iterative identification method. 

2.2 Iterative parameter identification method.  

In WSN, the data is collected with low installation and maintenance cost at high spatial 



and temporal resolution (Pakzada, Rochab & Yu, 2011), but with measuring biases and 

noise caused by calibration and installation errors etc. Researchers used Autoregressive 

with Exogenous model (ARX) (Dorvash, Pakzad, & Cheng, 2013), Autoregressive 

Moving Average with Exogenous (ARMAX) models, output-error (OE), Box–Jenkins 

(BJ) (Green, Nadimi, & Blanes-Vidal, 2009) and multivariate autoregressive (AR) model 

(Pakzada, Rochab & Yu, 2011) etc. to fit the measurements of the environment structure’s 

response. As each node processes the data for monitoring the same object, the model of 

identification is the same for every node. In this paper, we chose the ARMAX model to 

express the dynamics of the ith  node as 
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where ( )iy k  and ( )ix k  are output and input vectors at the thk  sampling time, ma  and nb  

are coefficients, and ( )i k  is measuring noise, and p  and q  are system orders for the 

autoregressive and exogenous parts. ( ) [ ( 1),... , ( ), ( ),... , ( )]T

i i i i ik y k y k p x k x k q   φ  

is an information vector ,and  1 2 0 1[ , ,..., , , ,..., ]T

p qa a a b b bθ  is a parameter vector for 

identification.  

Set ˆ( )kθ  as the estimation of θ  in time interval [ , ]kh kh h , and h  is the signal 

sampling interval for every sensor node. Several assumptions are proposed as follows. 

 Assumption1. All the sensors are isomorphic and their models share the common 

parametersθ , and the interval for signal sampling, delivering and processing is h . 

 Assumption2. Signals of all the nodes will be processed asynchronously, but the 

procedures will be completed within the interval h  till the beginning of the next 



circulation. Set , 1i i  as the communication time delay of node i and j and 
c

i as 

calculation time of node i , then in a community with m leaf nodes, we have 
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 Assumption3. Within time interval[ , ]kh kh h , with the increase of inputting data 

amount, the value of ˆ ( )i kθ  at time k is closer to the real value θ  than the previous 

nodes ˆ ( ), 1,2,..., , 1,2,... 1j l j m l k  θ  in the former sampling time interval.  

 Assumption4. Exist constants 0      and N n satisfying the condition 
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 Assumption5. The noise signal ( )i t is an orthogonal factor, and the expectation 

of ( ) ( )i jk k   is bounded with 2  

2 2
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i j
k k i m

i j
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Remark 1: Assumptions 1 and 2 are about time delays and proposed as the basic demands 

for the network. The two assumptions ensure the information for all the sensor nodes in 

a community are measured, processed and delivered within a sampling interval. 

Assumption 3 to 5 are basic theoretical bases for the parameter identification, which is 

introduced in (Ding, Shi, & Chen, 2006) and Ding, F. (2012) etc.  Assumption 3 shows 

the calculations based on the previous results are closer to the real values in statistic with 

the increase of data amount. Assumptions 4 and 5 present the input signals and noises are 

bounded and energy-limited physically.  



The traditional parameter identification methods like in Ding, Shi, & Chen, 2006 

are calculated based on own measurements as  
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The information cannot be shared and delivered between different sensor nodes. 

Based on the optimized connecting topology, we propose a new iterative identification in 

Figure 2. 

 
Figure 2. Flow chart of the iterative parameter identification method. 

The sensor nodes are located in the circle-topology route and transmit information 

in sequence from node 1 to node m and the head node. Every leaf node will collect ( )i kφ  

and ( )iy k from the environment and receive the processed information 1
ˆ ( )i kθ  received 

(or ˆ ( 1)m k θ  for  node 1) from the former node 1i  . The information is processed using 

the following eqs. (3) to (5) to get ˆ ( )i kθ . After waiting , 1i i  , the thi  node will receive 

ˆ ( )i kθ  and continue the calculation and data delivery till node m . The last node m  sends 

ˆ ( )m kθ  as the end of the thk  cycle to the head node, and the head node will make an 



average calculation using ˆ ( )m kθ  and the identifications of other independent leaf nodes 

and then send the final results to the base station and node 1 to start the next cycle. The 

procedures and mathematical expressions are presented as follows: 

(1) Initialize all the parameters and take 1 0
ˆ (0) / ,i n pθ 1  ( )i kP is a covariance matrix, 

0(0) ,i npP I  1,2,...,i m . 0p is a large enough number, and ( )kL  is a gain 

matrix and nI is a unit matrix. 

(2) Collect data ( )iy k and ( )i kφ in every leaf node respectively.  

(3) Initialize the parameter 1
ˆ (1)θ  of node 1 by  
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Then 1
ˆ (1)θ  is delivered to node 2. 

(4) According to Assumption 3, within sampling interval[ , ]kh kh h , 1
ˆ ( )i kθ  is closer 

to the real value θ  than ˆ ( 1)i k θ  acquired in [ , ]kh h kh . Compared with (2), we 

prefer to use 1
ˆ ( )i kθ to replace ˆ ( 1)i k θ  in (2) for the calculation of  ˆ ( )i kθ , and 

ˆ ( )i kθ  from node 2 to node m in Figure 2 are calculated by (4) as  
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(5) Node m  sends ˆ ( )m kθ  to the head node, and the head node transmits ˆ ( )m kθ  to 

node 1 at the same time.  

(6) Node 1 estimates 1
ˆ ( 1)k θ  based on ˆ ( )m kθ  by (5) to start the next circulation.  
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(7) Continue the calculating process till the terminated conditions.  

Remark 2: Seen from (4) and (5), the estimated result ˆ ( )i kθ  is calculated based on 

1
ˆ ( )i kθ  of the previous node, and 

1
ˆ ( )i kθ is based on 2

ˆ ( )i kθ , which means any identified 

results are the common effect of all the sensor nodes linked by the circle topology.  

2.3 Consensus and convergence proofs 

In this section, we will prove the proposed identification method achieves the same 

consistent and converging effect as the centralized and decentralized modes. Consensus 

means the estimations for all the sensor nodes keep the same, and convergence means the 

estimated parameters converge to the real values, eliminating measuring noise and biases. 

The proof contains two steps. The first is to prove consensus for all the parameters. If we 

can prove any leaf node can converge to the real value, all the estimations will converge. 

Submitting  (5) into (4), we can get  
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Then, a recursive conclusion can get   
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Eq. (7) can be expressed as  
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where   1 2[ ( ), ( ), , ( )]T

mk k k k  Δ . If the right equation of (9) converges to 0, then 

the left equation equals to 0 too. We will introduce the following two lemmas.  
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The proof of lemma is presented in appendix.  
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Define ( )tT  as 

 

1

( ) ( 1) ( ) ( ) ( 1)

( 1) ( ) ( ) ( 1)

T T

m m

m
T T

m i i m

i

k k k k k

k k k k


  

  

T θ Ψ Ψ θ

θ φ φ θ
. (11) 

Lemma 2. Based on the previous assumptions and Lemma 1, we can get when k  , 

the expectation of ( )kT  satisfies 
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The proof of lemma 2 is presented in appendix.  

Set  ( ) ( 1)T

mk k k  Ψ θ , then ( )kT  is expressed as ( ) ( ) ( )Tk k k  T . Using 

(12), we knows that the expectation of ( )k  is bounded. So expectation of the right item 
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mk k k Ψ θ Δ  in (9) is also bounded. When k  , ( )i kP will decrease to zero, 

then any vector ( ) ( ) ( )T

i i ik k kL φ P in ( )kL will decrease to zero gradually. Namely, the 



right formula in (9) converges to zero finally, so does the left.  The left equation of (9) 

can be written as  
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Similar to the simplifying process of ˆ ( )m tθ , we can get  
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Successive substitution proves that for every node, the relationship of ˆlim ( )i
k

k

θ

and ˆlim ( 1)i
k

k


θ can be expressed in a unique form as 
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j N j i

k k k k k k i m
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where 1,...,tN m  and
1, 1,2,..., 1

1 ,

j j m
s

j m

  
 


.  

The consensus of ˆlim ( ), 1,2,...,i
k

k i m


θ  can be proved by theorem 1.  

Theorem 1. For a system 
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where 1,...,tN m  and 0 1 ( 1)ija m    is a random number . If K , ( )i k  converge 

to the stable state at time k K , then all the state values of ( )i k  will approach to a 



constant simultaneously.  

Proof of Theorem 1. 

Following (16), we have 
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j j
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It is not hard to get ( 1) ( ),K K tk k K N     can be expressed by ( ) ( )i jk k   as 
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, we can express the 

relation of ( )k and ( 1)k  as 

 
21

1

1 2 32 21 32 31

( 1)

0 0

0
( )

(1 )

( ) ( )

m

j

j

m m

k

I

a I
k

a a a a a a I

k k



  

  
  
      
  
        

 



Π

. (20) 

Obviously, matrix ( )kΠ  is a full-rank time-varying matrix. If we set ( ) ,i k c   

ti N  and take it to (19), then ( 1) ( )i ik k constant    . So ( )kΠ always has the 

eigenvector 
1[1,1,...,1]T mR  . As the identification processes are converged, according to 



Lemma 3 in Olfati-Saber, Fax, & Murray (2007), the parameters ( )i k  will converge to 

a constant simultaneously. □ 

After proving the consensus for all the sensor nodes, we use the following Lemma 

3 and Lemma 4 to prove the parameters ˆ ( ), 1,2,...,i t i mθ  to converge to θ .  

Lemma 3. For a system ( ) ( ) ( )T

m m my k k k φ θ  in (1), satisfied all above assumptions , 

then the following inequality holds  
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where ( ) ( )V k S k represents the expectation of ( ) ( )V k S k . 
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The proof of Lemma 3 is presented in Appendix.  

Lemma 4. (Theorem 1 & Corollary 1, Ding & Chen, 2004) Suppose that all assumptions 

and Lemma 3 hold, and  ,  and N mentioned in assumption 4 satisfy 0c
N  , where 

0c is a constant. Then for 1c  , the parameters estimation errors associated with proposed 

algorithm hold 

 
2 (ln )

lim ( ) 0
c

m
k

N
k O

N

 
   

 
θ θ  

Though the measuring noises for each node are not zero-mean, the boundless and 

orthogonal property of the noise signals guarantee the convergence of calculations. 

Remark 3: Lemmas 1 and 2 are proposed for proving Theorem 1 of consensus of the all 

the state values ( )i k ( ˆ ( )i kθ  in (15) ). After confirming all the identified parameters will 



converge to the same value, we will use Lemmas 3 and 4 to prove the convergence of any 

identified parameter ˆ ( )i kθ converging to θ . The final converging errors depend on the 

noise signal ( )i t  and its boundary  , which have similar performances to the traditional 

identification algorithms like (2). The following simulations present the convergence of 

the proposed method in comparison with ordinary identification methods.   

3. Simulation and analysis 

The topology optimization algorithm and the iterative identification method are 

proposed separately but affect each other during the simulation. Optimization topology is 

the basis for parameter identification and determines the signal transmitting sequence for 

the leaf nodes. So the first simulation is about topology optimization and selects the head 

node located at [0.2,0.2] and 11 leaf points randomly distributed within a unit square. The 

threshold value is set as 0.4 (as the black dash line shown), and the simulation results are 

presented in Figure 3. 

 
(a)                                                         (b) 

Figure 3. Original connecting topology and the optimized topology (a) Original 

connecting topology with multiple single-hops (b) Optimized connecting topology with 

some short-distance single-hops and a multi-hop link  

There are two subfigures in Figure 3. Subfigure (a) shows the original connecting 

topology after point clustering such that all the nodes connect to the head node directly. 



The whole length for signal communication of all the leaf nodes is 4.88. Subfigure (b) 

shows the optimized topology. The red lines represent the direct links between the leaf 

nodes and the head one and the blue lines represent the optimized circle topology. The 

whole length decreases to 3.86, which is about 80% of the original one. Compared with 

subfigure (a), a shorter communication length and a smaller covering range of the head 

node will save more energy for data transmission. 

As the optimization process does not influence the direct connections of the leaf 

nodes nearby. Here, we consider the case of 8 leaf nodes located at the circle topology. 

The system function is  

( ) ( ) ( )

( ) 1.15 ( 1) 0.425 ( 2) 0.55 ( 1) 0.32 ( 2) ( )

T

i i i

i i i i i i

y k k k

x k x k x k y k y k k





 

         

φ θ
, 

where ( )i k  is the orthotropic noise with bounded variance 2 1.0  ,   [ ( ),i ik x kφ  

( 1), ( 2), ( 1), ( 2)]T

i i i ix k x k y k y k    is the information vector, and 0 1 2 1 2[ , , , , ]Ta a a b bθ  

[1, 1.15,0.425,0.55,0.32]T  is the parameter vector.  

We use the ordinary identification ( (2) and the leaf nodes are independent) and 

iterative parameter identification algorithms ((3) to (5)) to estimate θ  based on the same 

conditions: initial values are 6 1 5ˆ (0) 10i I θ , 
6 5 5(0) 10i I P  and sampling time interval 

is 4.h   Time delays are set as random values within [0.2,0.5]. The results are shown in 

Figure 4 (ordinary method) and Table 1 and Figure 5 (the proposed method). 



 

Figure 4. Estimation error rates   vary with t  in the normal identification method 

Table 1. The parameter estimates ( 2 1.0  ) 

k  0a  1a  2a  1b  2b    

100 0.912  -1.335  0.614  0.579  -0.412  8.52% 

200 0.834  -1.299  0.477  0.592  -0.387  2.02% 

400 0.881  -1.281  0.441  0.571  -0.324  1.70% 

800 0.975  -1.198  0.470  0.564  -0.332  2.10% 

1000 0.972  -1.183  0.473  0.569  -0.331  1.51% 

2000 0.998  -1.143  0.467  0.558  -0.319  0.46% 

3000 1.002  -1.150  0.448  0.551  -0.320  0.34% 

True values 1.000 -1.150 0.425 0.550 -0.320  

         *  ˆ k  θ θ θ represents the relative parameter estimation error rate 

 

Figure 5. Estimation error rates   vary with t  in the iterative identification algorithm 



Owing to the measuring noise, the estimation errors of different nodes converge 

to different values after about 1000 time iterations in Figure 4. Compared with Figure 4, 

the results in Figure 5 converge to the same states faster (less than 200 iterations) under 

the iterative calculation of all the nodes. The results verify the consensus and convergence 

of identification methods.   

As power consumption is directly determined by data amount for communication, 

calculation and storage, we set the dimension of input data for a leaf node as iN , the 

dimension of parameters as pN ( p iN N ), and the number of the leaf nodes as 2K  , 

then the data amount for communication, calculation and storage in different topologies 

are compared in Table 2 and further explained in Appendix D: 

Table 2. Compare of data amount in different algorithms 

 Centralized 

mode in Sim et 

al. 2009 

Decentralized mode 

in Nagayama, et al. 

2007 

Proposed method 

in this paper 

Communic
ation 

Leaf  iKN  pKN  pKN  

Calculation 
Leaf 0  3( )iK o N   3( )iK o N  

Head  3( )io KN  pKN  2 pN  

Storage 
Leaf 0   i pK N N   i pK N N  

Head iKN  pKN  2 pN  

Compared with centralized mode, the decentralized mode reduces communication 

data amount from 
iKN  to pKN , and distributes the calculation burden and data storage 

of the head node to the leaf nodes. Because, for the leaf node, the calculation is based on 

own state vector that is different from the head node combines the state vectors into a 

large matrix for matrix inversion and multiplication, the calculation complexities for all 

the leaf and head nodes are reduced.  The main improvement of the proposed method to 

the decentralized mode focuses on the topology. For the head node, the proposed method 

has fewer connections, thus that the data amounts for calculation and storage are reduced. 



The proposed method also has advantages of shorter communication distance shown in 

simulation 1 and consistent processed results to eliminate the cognition difference of leaf 

sensor nodes.  However, there are some limitations e. g. the optimized cycle topology and 

communication efficiency. Assumption 2 is also limited for a network with a larger cycle 

of leaf nodes or with small sampling time intervals. The proposed method suits the normal 

multi-hop topology as well, if the multi-poly lines can be seen as squashed circles that all 

the relay nodes and leaf nodes have two-way communications through the same channel. 

Communication efficiency is hoped to improve by increasing the connectivity of 

sensor nodes. Referring Assumption 3 and the consensus theory, adding the topology 

connectivity will accelerate the speed of synchronization. Then the identified results can 

update the consistent state faster. We make a simulation for the multi-link case, whose 

topology is shown in figure 6: 

 

Figure 6. Multi-link topology 

 

For every node, once the results are identified, the updated parameters will be 

transmitted to the neighbouring points. Similar to the assumptions proposed above, the 

calculation process is updated through the head node in a sampling period. The simulation 

results are presented as follows: 



 

Figure 7. Parameter estimation error rates   vary with t   of multi-link topology  

Compared with Figure 5, the identified results in Figure 7 approach to the 

consistent state faster with smaller differences. Time delay and packet dropout are also 

important for the WSN. In this paper, every node will update estimations based on the 

references transmitted from other nodes to reach to the asynchronous state. According to 

the consensus theory, the results can converge to the same state even if some packets are 

dropped. Whether the iterative identification method with multi-link topology can reduce 

the influence of packet dropout is worth further discussing. 

4. Conclusion 

For reducing power consumption and data redundancy in WSN, a topology optimization 

scheme and an iterative system identification method are proposed in this paper. Based 

on several assumptions, the consensus and convergence of the identified parameters are 

proved. Compared with the centralized and decentralized modes, the proposed method 

can reduce the data amount for communication, calculation and storage to some extent. 

Simulation results verify the effectiveness of the proposed method. The proposed iterative 

identification is also helpful for other distributed systems. As our current work is about 

human-inspired motion control (Yang, Chen, & Wang et al., 2018; Yang, Luo, & Liu et 

al.,2018; Yang, Wu, & Li, et al., 2017), the sensor nodes for measuring motions and EMG 

signals are expected to attached on human bodies for the large-group human behaviour 

monitoring and skill modelling.  
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Appendix 

Appendix A. The proof of Lemma 1 

Proof. Using Assumption 4, we have  
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. (21) 



Repeated substitution shows that  

( ) ( ) ( ( 1)) (( ) )T

i jk k k k k         φ φ I I . 

Appendix B The proof of Lemma 2 

Proof. To simplify the proving process, let ( ) ( )mk kθ θ and substitute (10) into ( )tT : 
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 .(22) 

Considering ( 1)k θ and ( )i t are orthogonal vectors, let 1( ) ( ) ( ) ( )T

i ik k k kV θ P θ , 

then (22) can be updated as 
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Let ( ) ( 1) ( ) ( ) ( 1)T T

i i ik k k k k  W θ φ φ θ , then ( )kT  can be expressed by ( )i kW  

 
1

( ) ( )
m

i

i

k k


T W . (24) 

Take (24) into (23), we have  
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Similar to the proof of Lemma 2 in Ding and Chen (2004), every item 

( ), 1,2,...,i k i mW  in (25) can be simplified as  
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According the definition of ( )i kP  
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Then the last item in (26) is not positive and take expectation on both sides of (26), 

we have 
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Considering all inequalities terms about ( ), 1,2,...,i k i mW , we have 
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As ( )i k  and ( ),j k i j   are orthogonal vectors, then (29) can be written as  
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Let
2

maxmax ( ) ( ) ( ), 1,2,...,i k k u k i m φ θ , and 1( )mk k  is the minimum among 

( )mik k , then the item of (30) can be simplified as  
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Because ( 1)i k P and ( 1)j k P are full-rank symmetric matrices, we have 
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When k  , 
1( 1) ( )i ik k P P I , then 1( ) 1mk k  , as max ( ) 0u k  , then the right 

formula of (32) satisfies 

 2
max 1( )[ 2 ( ) ] 0mu k m k k m  . (33) 

Submitting (32)  into (30) and using Lemma1, we have 
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Then at time k  , we can get  
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Appendix C The proof of lemma 3 
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Considering the definition of ( )mik k , then 1( )mk k   min( ( )), 1,2,...,mik k i m  and 

 1( ) 0,1mk k  . Moreover, we have 
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Because ( ) ( )i ik k  and ( )kθ  are orthogonal, then (38) can be simplified as 
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then 
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Appendix D Explanation for computational complexity in Table 2 

Computational complexity is consisted of three parts: data communication, 

onboard calculation and storage. Because the communications between the head node and 

leaf nodes are bidirectional with the same communication data amount, we only consider 

one-way communication from the leaf node to the head. As the computational complexity 

are determined by matrix inversion 
3( )io N and multiplication 

3( )io N , we refer Fraleigh 

and Beauregard, (1995) and Cormen, Leiserson, Rivest, and Stein, (2009) and list the 

explanations for Table 2 in the following table and the computational complexity of other 

modes are easily inferred from the calculations of the proposed method: 

Table 3: Explanations for Table 2 

Tags Expression Explanations 

Com_ Leaf pKN  
There are K leaf nodes send pN  identification data to 

the relay points or to the head node; 

Cal_ Leaf 
3( )iKo N  

Leaf nodes calculate the parameter identification by 

using matrix inversion and matrix multiplication based 

on the state vector of iN  measuring data;  

Cal_ Head 2 pN  
Head node collects and processes pN  identification 

data from 2 connected leaf nodes in the circle topology 

Sto_Leaf  i pK N N  
Leaf nodes store 

iN  measuring data and pN  

identification data; 

Sto_Head  2 pN  
Head node stores the identification data pN from  2 

leaf nodes in the circle topology; 



* Com = Communication, Cal=Calculation, Sto= Storage;  


