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Abstract: When checking frequency and magnitude tables for disclosure risk, the cell threshold (the 

minimum number of observations in each cell) is the crucial statistic. In rules-based environments, this 

is a hard limit on what can or can’t be published. In principles-based environments, this is less 

important but has an impact on the operational effectiveness of statistical disclosure control (SDC) 

processes.  

Determining the appropriate threshold is an unsolved problem. Ten is a popular number for both 

national statistics institute (NSI) outputs and research outputs, five and twenty less so. Some 

organisations use multiple thresholds for different data sources. 

Unfortunately, these are all entirely subjective. Three is the only threshold which has a solid statistical 

foundation, but many argue that this leaves little margin for error. There is no equivalent statistical case 

for any larger number: ten is popular because it is popular 

This paper tries to provide some empirical analysis by modelling alternative threshold assumptions on 

both synthetic data and real datasets. The paper demonstrates that there is no ‘best’ option; moreover, 

there is no linear relation between a threshold and risk, as higher thresholds can increase disclosure risk 

in some cases. It also notes that there are disclosure checking practices which can reduce risk 

irrespective of the threshold. 

 

1 Introduction 
When checking frequency and magnitude tables for disclosure risk, the cell threshold 

(the minimum number of observations in each cell) is the crucial statistic. In rules-

based environments, this is a hard limit on what can or can’t be published. In 

principles-based environments, this is the default rule which determines how 

conversations about acceptable outputs will go (see Ritchie and Elliott, 2015, for a 

description of the difference between rules- and principles-based checking schemes).  

This threshold, often the first rule in any statistical disclosure control (SDC) guide, has 

to do a lot of heavy lifting. In a rules-based world, that one number has to balance 

usability and confidentiality of outputs. This is an impossible task for a single 

measure, and it is straightforward to demonstrate how it fails to achieve either 

outcome (Alves and Ritchie, 2019). In ad-hoc or principles-based environments, the 

actual value is less important, but a poorly-chosen limit can still affect the efficiency 

of the environment and the credibility of the organisation setting the rules. 

The problem is: what is an appropriate threshold? Three is the only value which has a 

solid statistical basis, but many statisticians would argue that this leaves little margin 

for error, and encourages the idea that there is a statistically ‘right’ answer. Ten is a 

popular number for both national statistics institute (NSI) and research outputs, but 
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five comes close behind. Some organisations use multiple levels eg five for standard 

outputs, ten for outputs based on more sensitive data. One organisation uses thirty for 

research output but less for its own statistics.  

NSIs offer training to their own staff and to researchers, but rarely admit to the truth: 

that ten (or five, or twenty) is a subjective choice. I have observed training courses 

where the trainers try to defend ten as if it has some inherent, magical power. Trainers 

who try to do this invariably lose the argument, and thus their credibility, because the 

statistical case is absent. Ten is popular because (a) it is a nice round number (b) other 

people use it; in a world of uncertainty, doing what others do can be the easiest and 

most defensible option.  

For a limit above three, the main rationale is that a higher limit reduces the likelihood 

of disclosure by differencing. In the early 2000s, some simple statistical analysis (now 

lost) was carried out using randomly generated data by the Virtual Microdata 

Laboratory (VML) team at the UK Office for National Statistics (ONS). This 

suggested that the opportunities for disclosure by differencing decrease very rapidly 

once cell thresholds rise above five or six, and so ten seemed a very safe suggestion – 

and moreover, one which was acceptable to researchers. At that time, the decision to 

use 10 as the threshold by the VML was unusual, and not even common within ONS. 

Some fifteen years later, ten is the most common number used by it seems appropriate 

to review this choice again. 

This paper tries to provide some empirical analysis of what might be sensible by 

modelling alternative threshold assumptions on both synthetic data and on a real 

dataset used by researchers. The aim is not to prove that any particular threshold is 

‘best’ – this is not possible – but to provide supporting evidence for the subjective 

decisions that NSIs make. 

2 Literature review 
We are not aware of other literature covering this question. 

3 Conceptual review 

3.1 Strong versus weak differencing 

A threshold rule is applied to linear tabulations to prevent (a) direct re-identification of 

an individual and confidential data associated with them, and (b) indirect re-

identification through differencing. 

A single observation in a cell means that the characteristics of the cell respondent are 

unique and may be unambiguously associated with confidential information published 

using the same classification data. Two observations does not allow the general reader 

to uncover data about either respondent, but it affords each cell respondent an 

opportunity to find out something about the other (on the assumption that the 

respondents knows his or her own tabulated values). Three observations guarantees no 
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confidentiality breach, on the assumption that respondents do not co-operate in the re-

identification of others. Hence, most standard textbooks use three as the threshold for 

exposition, as it solves the problem of direct identification. 

In contrast, indirect identification through differencing (exploiting different numbers 

of observations across multiple tables to infer single observations) has no theoretical 

solution. For any table X there exists a second table Y such that (X-Y) has single 

observations in it. NSIs invest considerable time and effort to ensure that X and Y are 

not both generated, but this is not a guarantee of protection. Even if Y is not published, 

how can the NSI guarantee that Y could not be created by some combination of some 

other tables A, B, C, D…? A proof that a table cannot be differenced would require 

knowledge of every other table produced in the past, present and future on that data, 

which is clearly impossible. 

The theoretical impossibility of proving non-differencing is a straw man: no 

experienced organisation claims that as its target. However, organisations may have 

what could be described as a ‘strong differencing’ policy: 

Strong differencing: thresholds, and the choice of related tables to be 

checked, are chosen to ensure that there is no reasonable chance of 

differencing between published tables, given the likely set of published tables 

Strong differencing has two implications. First, tabular data protection is determined 

by history: the first table to be produced determines which others may be produced. 

This is a feasible policy for the official statistics produced by NSIs, where the full 

range of published outputs is typically planned in advance1. However, it is problematic 

for research outputs, where table production is determined by the interests of 

individual researchers on an ad-hoc basis.  

The second problem is that strong differencing pays no attention to the value of 

published outputs. While the publication of confidential data is clearly problematic, 

the non-publication of non-confidential data due to unfounded confidentiality concerns 

can lead to public benefits being lost.  

Strong differencing relies upon the assumption that the ability to uncover a cell value 

through differencing implies a breach of confidentiality. This is clearly not true. A 

single observation in a cell may disclose information about the individual; in practice, 

this is unlikely, except in cases where extreme values are being discussed (for 

example, the highest earner in a small geographical area). Avoiding cell counts of one 

or two to prevent direct identification seems a sensible precaution, as such small cells 

                                                 

1 NSIs may not review all possible combinations as this is computationally prohibitive in operational 

circumstances, and this has been shown to be problematic in rare cases.  



 

 

 

 

4 

are also likely to be of little value; it is not at all clear that the same standard needs to 

be applied to small counts arising from differencing2.  

An alternative approach might be described as a ‘weak differencing’ policy: 

Weak differencing: thresholds, and the choice of related tables to be checked, 

are chosen to ensure that the likelihood of differenced values being disclosive 

is balanced with the likely loss to public benefit of not producing the tables. 

This differs from strong differencing by acknowledging three things: 

• The reasonable possibility of differencing 

• The uncertain disclosiveness of differenced tables 

• The potential loss from unrealised public benefit 

This is much more explicitly a risk-benefit model, with the risks and benefits being 

very subjective. As a result, the perspective of the decision-maker has a strong 

influence over the table-checking regime and the choice of threshold.  

For example, the author has encountered ‘default-closed’ data holders (Ritchie, 2014) 

who argue that the public benefit of any particular table in social science research is 

negligible; hence, the possibility of disclosure by differencing must be exceedingly 

low to be outweighed by the benefit. In contrast, data holders following the EDRU 

ethos (Hafner et al, 2015; Green and Ritchie, 2016) would assume that the public 

benefit has already been established by the decision to use the data for research or 

official statistics, and therefore the onus is on those suggesting a cell be suppressed to 

prove the substantive case for a breach.  

3.2 The choice of threshold 

NSIs and other data holders, if they describe any policy on differencing, typically cite 

a strong differencing model as this allows them to establish credibility in protecting 

confidentiality. As noted, this is feasible for official statistics. However, for ad hoc and 

research outputs, most organisations apply weak differencing (even if default closed), 

and so the choice of threshold is highly subjective. 

In 2003 ONS’s Virtual Microdata Laboratory (VML), a secure facility for researchers, 

began using a threshold of ten instead of the three then in use. This was justified by (1) 

reference to Monte Carlo simulations of differencing (now lost) which showed the 

likelihood of difference became negligible after a threshold above 5; and (2) an 

analysis (ONS, 2007) which argued that this gave confidence that simple threshold 

check would also deal with the problem of multiple respondents from the same 

                                                 

2 There is also an argument that avoiding small numbers is important for the NSI or data holder to 

publicly demonstrate that it is not taking risks with confidentiality. Again, this is a valid argument for a 

minimum threshold rule, but it does not follow that this should also apply to implicit tables generated 

through differencing. 
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business when dealing with hierarchical data. However, a primary motivation for the 

choice of ten was that it was high enough to avoid questions of differencing but also 

acceptable to researchers3. 

The VML was not the first such research centre, but since 2003 the number of them 

has grown steadily, and all use a threshold higher than three. Ten appears to be the 

most popular, but we are not aware of any justification other than that this seems to be 

popular. In other words, everyone uses ten because everyone else uses it. In a world 

where data holders face considerable pressure to show that they are not unduly taking 

risks, following common practice is a sensible strategy. 

This is not universal. In the UK alone values from five to thirty are used. One 

organisations uses five as its default, but raises the threshold to ten for more ‘sensitive 

data’. This has the substantial advantage of demonstrating to all concerned that some 

data is more sensitive/risky and that the organisation is taking a more active approach 

than just applying a blanket rule. 

All discussions about confidentiality protection involve a large amount of subjective 

reasoning (Ritchie, 2019). However, for the threshold rule this is complicated by the 

apparent absence of any statistical evidence, save for the long-lost analysis of ONS.  

Two approaches may be considered to improve data holders’ confidence in their 

judgments. One is to create tables from a genuine research data source, and evaluate 

the impact alternative thresholds might have had on both disclosure and usability. The 

alternative is to carry out the same analysis but using simulated datasets to investigate 

the effect of different data profiles. 

Both of these approaches are tried here. The analyses cannot be definitive, as they are 

specific to the context (either categories chosen for the real data, or the simulation 

characteristics). Rather, the aim is to explore whether sufficiently general lessons can 

be learned from trying a range of alternative specifications. 

4 Approach 
We tackle this issue by considering three cases which seem to present the most 

obvious problems. We assume that cell counts of 1 and 2 are values to avoid, 

irrespective of the formal threshold.  

4.1 Case 1: differencing between a set and a subset 

In this case we assume a situation as in table 1 and 2: 

                                                 

3 Source: personal discussion.  
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Table 1 Residents 

Age Urban Rural Total 

50-54 20 12 32 

55-59 23 13 36 

60-64 26 14 40 

65+ 28 14 42 

 97 53 150 
 

Table 2 Homeowners 

Age Urban Rural Total 

50-54 20 11 31 

55-59 23 11 34 

60-64 26 14 40 

65+ 27 11 38 

 96 47 143 
 

Tables 1 and 2: Example of differencing in subset 

There is an implicit table 2a here where many 1s and 2s occur: 

Table 2a Non-homeowners 

Age Urban Rural Total 

50-54 0 1 1 

55-59 0 2 2 

60-64 0 0 0 

65+ 1 3 4 

 1 6 7 

Table 2a: The implicit differenced table 

In this example, a higher threshold would have prevented some of the small values, 

but not all of them. A lower threshold would not have had an effect. Note that we are 

not concerned that the implicit table has values below the threshold, as this is not what 

the threshold is designed to achieve. Only the 1s/2s are important. 

To consider this: 

• Create random category allocation for Age (X) 

• Create random urban/rural category allocation for residents (Y) with purban > 

50% 

• Create random homeowner/renter category allocation (Z) with phomeowner > 50% 

• Tabulate X:Y and X:(Z=homeowner), correcting for the threshold (zero is 

below threshold) 

• Tabulate X:(Z=renter) and count number of 1s/2s in cells where the originals 

were not suppressed 

• Store number of 1s/2s, mean observations and median observations of X:Y and 

X:(Z=renter)  

• Iterate N times with new random values 

4.2 Case 2: Row totals revealing suppressed cells 

Consider Table 3, placed alongside Table 1 for clarity: 
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Table 1 Residents 

Age Urban Rural Total 

50-54 20 12 32 

55-59 23 13 36 

60-64 26 14 40 

65+ 28 14 42 

 97 53 150 
 

Table 3 Education 

Age No degree Degree Total 

50-54 26 6 32 

55-59 29 7 36 

60-64 36 <5 36 

65+ 39 <5 39 

 130 13 143 
 

Tables 1 & 3: Example of de-suppression through differencing 

 Although Table 3 has the marginal totals correctly calculated (that is, they add up to 

the displayed values and so the missing values cannot be reconstructed from this 

table), it is clear that a comparison of Tables 1 and 3 reveals the suppressed values. 

Table 3 is the worst-case scenario: If there were more than two categories in Table 4, 

then row totals would not necessarily be sufficient to expose suppressed values. In this 

case, we are looking to uncover suppression rather than find 1s and 2s. 

In this case, a lower threshold would have avoided this problem as the 3s and 4s in 

Table 3 would not have been removed. A slightly higher threshold would not have 

addressed the problem but a much higher threshold may have as the ‘rural’ column 

may have been hidden. 

To consider this worst case, we  

• Use X and Z, as above 

• Create random binary category allocation for Qualifications (Q) using pdegree% 

such that one category is relatively rare 

• Tabulate X:Z and X:Q, correcting for the threshold and dropping rows in X:Z 

with no valid values (zero is below threshold) 

• Compare row totals 

• Store number of exposed cells (in both tables), mean observations and median 

observations of X:Z and X:Q 

4.3 Case 3: Direct disclosure by negation 

Finally, consider Table 4: 

 Table 4 Ethnicity 

Age Urban % white Rural % white 

50-54 20 90% 12 92% 

55-59 23 87% 13 92% 

60-64 26 85% 14 79% 

65+ 28 89% 14 93% 

 97 88% 53 89% 
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Tables 1 & 4: Example of differencing through complements 

As counts of humans must be integers, the complementary Table 4a can easily be 

determined: 

 Table 4a Non-white frequency 

Age Urban Rural 

50-54 2 1 

55-59 3 1 

60-64 4 3 

65+ 3 1 

 12 6 

Table 4a: The implicit low-frequency table 

In this case, it is likely that only a very high threshold would address this problem; a 

better guideline might be that, when a binary conditions being tabulated, the smaller 

fraction should always be displayed. 

To consider this case, we  

• Use X and Z, as above 

• Create random binary category allocation for Ethnicity (E) using pwhite% such 

that the negative is very rare 

• Tabulate X:W and X:(1-W), allowing for the threshold checks on the numbers 

themselves, but not on the percentages (ie X will be tested against the 

threshold, not whether X*p% is below) 

• Record number of implicit 1s and 2s (could check against implicit breaches but 

this would be very onerous and block most outputs unless number of obs is 

very high; don’t test for zero) 

• Don’t count the cells where the source number is supressed. 

For this, we could just have chosen rural or urban, so why both? The aim is to give a 

better sense of missed values: as a checker you would not be worried if there are high 

initial frequencies (w=urban) but might be worried if the initial frequencies awere low 

(w=rural), so running this way covers both options.  

4.4 Generating simulated data 

Data were initially generated using the following parameters 

• Number of iterations: 1,000 

• Number of observations in the dataset: 500, 1,000, 5,000 and 10,000 

• Number of X categories: (a) 10 uniformly distributed and  (b) 5 dominated by 

one category 
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• Values of p% (urban): 70%, 80%, 90%, 95% 

• Values of p% (homeowner): 70%, 80%, 90%, 95% 

• Values of p% (degree): 15%, 10%, 5% 

• Values of p% (white): 90%, 95%, 99% 

• Thresholds evaluated: each of 3-15, 20, 25, 30 (16 in total) 

Initially various combinations of values were entered. However, because (as will be 

shown later) the relationship between sample characteristics and risk potential is 

highly non-linear, the program was recoded to automatically generate and store 

multiple parameters values for graphing. 

The same exercise was then carried out on three genuine datasets: 

 Charity1 Teaching LFS2 LFS low-paid3 

Data source Published accounts Employee survey Employee survey 

Observations 686 19,032 4,859 

X (‘age’) ‘year’: 

2010 83 

2011 150 

2012 151 

2013 153 

2014 149 
 

‘age’: 

50-54 6,590 

55-59 6,366 

60-64 5,119 

65-69 957 
 

‘age’: 

50-54 2,091 

55-59 1,860 

60-64 850 

65-69 58 
 

Y (‘urban’) ‘big’: 49% `female’: 52% `female’: 58% 

Z (‘homeowner’) ‘survivor’: 65%   `england’: 82% `england’: 84% 

Q (‘degree’) ‘secure’: 6%   `degree’: 11% `degree’: 4% 

W (‘white’) ‘surplus’: 96% ‘white’: 97% ‘white’: 98% 
1
Green et al (2018). ‘Survivor’:still trading 2015. Secure and surplus relate to financial viability 

2
Labour Force Survey Teaching Dataset, UK Data Service dataset SN4736. Gender, ethnicity and age 

randomly perturbed; employed and age 50+ only 
3LFS data as above, restricted to subset earning under £10/hour 

 

Table 5: Datasets used 

Genuine variables were relabelled as X, Y, Z, Q and W to allow the same code as the 

simulated data to be run. The same thresholds were evaluated in the true datasets as in 

the simulated data but without multiple iterations and without different values for the 

y, z, q, or w percentages. 

The code produced, for both simulated and genuine datasets: 

The proportion of ‘bad’ results (that is, a failure as identified above)  

The proportion of ‘ok’ results (that is, the number of usable cells once thresholds had 

been applied 
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These are stored for every combination of thresholds and (for simulations) values of 

the simulated characteristics. 

The program is written in Stata and can be downloaded from 

http://www.felixritchie.co.uk/sdc_calculations/. 

5 Results 

5.1 Simulated data 

The simulations produce a very large number of results (2 types of data distributions, 

16 thresholds, 4 X categories, 3 or 4 other categories, and four sample sizes). This 

section therefore summarises key features rather than going though in detail. 

Annex 1 provides samples of results. The log files from running with 500 and 5000 

observations are available at the above website, along with a summary spreadsheet for 

the simulation results.  

5.1.1 Case 1 

As expected, a higher threshold reduces the proportion of ‘bad’ results (ie where the 

gap between two non-supressed cells is 1 or 2. As the number of observations 

increases, the proportion of ‘bad’ cells falls; see below for thresholds of 3, 10 and 30 

(there are 16,000 possible outcomes: 1000 random iterations each assessed at 4Y x 4Z 

proportions). 

 500 observations 5000 observations 

% bad 3 10 30 3 10 30 

0% 815 5230 8294 10480 10486 12535 

5% 1537 2151 1667 1548 1543 1634 

10% 1726 1542 1413 867 870 698 

15% 1787 1205 1219 593 589 327 

20% 1950 1106 1104 645 645 266 

25% 1826 1061 1069 685 687 232 

30% 1524 959 717 583 582 179 

35% 1229 733 392 379 378 90 

40% 1014 571 107 168 168 30 

45% 846 486 16 50 50 9 

50% 648 352 2 2 2 0 

55% 491 276 0 0 0 0 

60% 309 161 0 0 0 0 

65% 165 103 0 0 0 0 

70% 93 45 0 0 0 0 

75% 34 18 0 0 0 0 

http://www.felixritchie.co.uk/sdc_calculations/
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80% 5 1 0 0 0 0 

85% 0 0 0 0 0 0 

90% 1 0 0 0 0 0 

 

There is a dramatic difference in the usability of the data. The valid cells left after 

differencing for Table 2 are: 

 500 observations 5000 observations 

% usable 3 10 30 3 10 30 

0% 0 0 160 0 0 0 

5% 0 0 401 0 0 0 

10% 0 0 577 0 0 0 

15% 0 0 707 0 0 0 

20% 0 0 783 0 0 0 

25% 0 0 953 0 0 0 

30% 0 0 1378 0 0 0 

35% 0 0 1801 0 0 0 

40% 0 0 1989 0 0 0 

45% 0 0 2499 0 0 0 

50% 100 7689 4752 0 0 2508 

55% 344 994 0 0 0 959 

60% 711 739 0 0 0 416 

65% 955 802 0 0 0 93 

70% 908 828 0 0 0 23 

75% 809 803 0 0 0 23 

80% 742 793 0 0 0 56 

85% 961 772 0 0 2 164 

90% 1133 887 0 0 19 387 

95% 1383 1002 0 0 235 679 

100% 7954 691 0 16000 15744 10692 

5.1.2 Case 2 

For this case, there are 12,000 outcomes (1000 iterations by 4Y and 3 Q proportions). 

When considering row differences the question of bad cells (where the row totals in 

Table 1 allow the missing values in Table 3, or vice versa, to de recovered) is more 

complex. With 500 number of observations, then a threshold of 10 performs worse 

than either a threshold of 3 or 30. On the other hand, with 5000 observations, a 

threshold of 30 is considerably worse. The result seems to be because, as the number 

of observations increases, a higher threshold increase sthe chance that one or other row 

(but not both) has just one cell suppressed. 
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 500 observations 5000 observations 

% bad 3 10 30 3 10 30 

0% 2475 1363 5011 12000 11997 6005 

10% 1908 1806 3782 0 3 149 

20% 1466 1520 2101 0 0 242 

30% 1366 1143 833 0 0 295 

40% 1551 936 228 0 0 195 

50% 1484 973 43 0 0 178 

60% 971 990 2 0 0 398 

70% 559 817 0 0 0 894 

80% 191 862 0 0 0 1503 

90% 27 939 0 0 0 1486 

100% 2 651 0 0 0 655 

 

The results on usable cells are also complex. With a threshold of 10, in none of the 

1000 iterations do more 75% of the rows retain valid values; with 5,000 observations, 

only 28 iterations did not leave all values unsuppressed: 

 500 observations 5000 observations 

% usable 3 10 30 3 10 30 

40% 0 0 60 0 0 0 

45% 0 0 1076 0 0 0 

50% 88 5936 8396 0 0 952 

55% 384 3560 1776 0 0 1320 

60% 840 1740 512 0 0 1144 

65% 1104 612 140 0 0 444 

70% 912 128 36 0 0 128 

75% 692 24 4 0 0 12 

80% 840 0 0 0 0 0 

85% 1156 0 0 0 0 0 

90% 1560 0 0 0 0 4 

95% 2104 0 0 0 28 72 

100% 2320 0 0 12000 11972 7924 

5.1.3 Case 3 

As for Case 2, there are 12,000 outcomes (1000 iterations, 4Y and 3W proportions). 

When considering the risk in binary complements, there appears to be a large risk even 

with a threshold of 10 when the number of observations is small. More interestingly, 

increasing the number of observations has a much larger impact brings results for the 

lower thresholds very much in line with the higher ones.  
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 500 observations 5000 observations 

% bad 3 10 30 3 10 30 

0% 81 409 687 3392 3392 4382 

5% 328 894 1596 1071 1071 1999 

10% 792 1252 2135 835 835 1159 

15% 1238 1507 2219 882 882 692 

20% 1613 1773 2091 1087 1087 581 

25% 1548 1539 1568 1177 1177 591 

30% 1383 1265 1038 1058 1059 591 

35% 1185 898 485 845 845 561 

40% 1061 682 152 614 613 462 

45% 896 563 27 449 449 396 

50% 704 455 2 278 278 274 

55% 532 351 0 196 196 196 

60% 331 219 0 75 75 75 

65% 189 120 0 26 26 26 

70% 74 40 0 13 13 13 

75% 35 27 0 2 2 2 

80% 8 4 0 0 0 0 

85% 2 2 0 0 0 0 

 

More observations does increase the number of usable cells, but there remains a large 

information loss associated with the higher threshold : 

 500 observations 5000 observations 

% usable 3 10 30 3 10 30 

25% 0 0 3 0 0 0 

30% 0 0 120 0 0 0 

35% 0 0 465 0 0 0 

40% 0 0 1179 0 0 0 

45% 0 0 2007 0 0 0 

50% 9 5169 8226 0 0 441 

55% 72 714 0 0 0 831 

60% 213 171 0 0 0 930 

65% 519 210 0 0 0 543 

70% 666 510 0 0 0 177 

75% 675 732 0 0 0 75 

80% 582 795 0 0 0 3 

85% 540 525 0 0 0 0 

90% 837 519 0 0 0 0 
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95% 1200 1113 0 0 3 27 

100% 6687 1542 0 12000 11997 8973 

5.2 Genuine data 

In this section, we present simply the “none”, “some”, “all” findings. 

5.2.1 Case 1 

With the genuine data, Case 1 presents no problems for any dataset. There were no 

bad cells that could have been recovered. There were some suppressed cells for the 

smaller datasets (low pay at high thresholds, charity data across the board). 

 Usable cells  

 LFS Low pay Charity  

 75% 88% 90% 100% 75% 88% 90% 100% 75% 88% 90% 100% 

Threshold 

3    1    1   1  
4    1    1   1  
5    1    1   1  
6    1    1   1  
7    1    1   1  
8    1    1   1  
9    1    1   1  

10    1    1   1  
11    1    1   1  
12    1    1   1  
13    1    1   1  
14    1    1   1  
15    1    1   1  
20    1    1   1  
25    1  1     1  
30    1 1      1  

5.2.2 Case 2 

For Case 2 results are more mixed. For the largest dataset, a higher threshold creates 

problems where there were none. The smaller LFS dataset does not create a 

differencing problem at the highest or lowest threshold, but does at all others. For the 

smallest dataset, there is a positive relationship between the threshold and the number 

of at-risk rows.  

 LFS Low pay Charity 

Risky cells: none some all none some all none some all 
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Threshold 

3 1   1   1      

4 1    1  1      

5 1    1  1      

6 1    1  1      

7 1    1   1     

8 1    1   1     

9 1    1   1     

10 1    1   1     

11 1    1   1     

12 1    1   1     

13 1    1    1 

14 1    1    1 

15 1    1    1 

20 1    1    1 

25  1   1    1 

30  1  1    1     

No cells are suppressed for the LFS data except at the highest thresholds. For the 

smaller LFS dataset on low pay, 1 cell is suppressed at all thresholds. The small 

charity dataset sees cells being suppressed at thresholds above 5, with half the cells 

being suppressed at a threshold over 11. 

 LFS Low pay Charity 

 88% 100% 88% 50% 60% 70% 80% 88% 90% 100% 

Threshold 

3  1 1       1 

4  1 1       1 

5  1 1       1 

6  1 1      1  
7  1 1    1    

8  1 1   1     

9  1 1  1      

10  1 1  1      

11  1 1  1      

12  1 1 1       

13  1 1 1       

14  1 1 1       

15  1 1 1       

20 1  1 1       

25 1  1 1       
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30 1  1 1       
 

5.2.3 Case 3 

For the full LFS dataset, there are no suppressed cells and no differencing problems. 

For the other two datasets, there are some complementarity problems at every 

threshold, despite cells being suppressed only at a threshold of 30. 

5.3 Discussion 

The foregoing is an attempt to summary a very large range of statistical findings. 

Some general points can be brought out. 

First, as a general rule a higher threshold does provide a higher level of protection. 

However, it can also remove a substantial amount of useful information, even with 

large datasets. 

Second, this conclusion varies with the type of problem being solved. Simulation Case 

2 shows that the relationship between threshold and risk is concave; moreover, adding 

more observations improves the performance of lower thresholds for both risk and 

value, whereas for high thresholds it worsens risk without the expected gain in 

performance. 

Third, adding more observations does not necessarily improve outcomes. The negative 

performance for high thresholds in Case 2 persists with 10,000 observations (higher 

numbers not tested yet). 

Finally, for genuine data the usual differencing problem described as Case does not 

present realistic problems, even in small datasets. Case 2 does create differencing 

opportunities in the smaller datasets, but again the relationship with the threshold is 

non-linear. Case 3 present problems for the smaller datasets; this may be missed by an 

output checker as few cells in the ‘main’ table are suppressed, indicating plenty of 

observations.  

6 Conclusion 

This paper reports on an attempt to provide some evidence for the particular choice of 

a threshold. Ultimately this has been unsuccessful; the paper has demonstrated that the 

relationship between thresholds and risky cells is not linear and depends upon the type 

of differencing being guarded against, and that differencing measures may have 

irreconcilable targets. 

Some results, not presented here, suggest that as the dataset increases all problems 

disappear; this is both unsurprising and unhelpful, as in practice the number of 

observations in a dataset is a maximum, not a minimum.   
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On the other hand, when applied to genuine datasets, these results provide some 

cautious optimism. The largest real dataset, with 20,000 observations, is not 

particularly large by modern standards, and yet it poses almost no differencing risk. Of 

course, increasing the number of categories would increase the risk potential but, as 

demonstrated here, the actual impact would depend on the threshold and the measure 

of ‘risk’ being used. 

This paper provides little evidence that 10 is a better threshold (in terms of risk 

management) than any other, or a worse one. In some cases here, 3 performs best and 

30 performs worst; in other situations the case is reversed. The only thing that can be 

said for definite is that value is inversely and monotonically related to the threshold; 

again, this should not be a surprise. 

One interesting issue is that Case 3 (disclosure by complementarity) seems more 

problematic than the other cases. This case seems to be rarely discussed in texts, and 

yet it might be the one most likely to slip under the radar. This might be an area worth 

exploring further, although the solution might be better guidelines for output checkers 

and researchers rather than a higher threshold. 

All of the code and results are available online, and the reader is invited to 

experiment4. 
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Annex 1 Sample outputs 

Each analysis produces three types of outputs: 

The proportion of bad cells.  

The example below is taken from Case 1, 500 observations, 1000 iterations, Y=70% Z=70%. The table shows that in 145 

simulations out of 1000, none of the cells generated a re-identification problem when the threshold was 3; 997 out of 1000 

had no problems when the threshold was 30. When the threshold was 3-8, 1 simulation out of 1000 always showed that 

30% of the suppressed cells were problematic. 

Cells 
% bad 

Threshold 

3 4 5 6 7 8 9 10 11 12 13 14 15 20 25 30 

0% 145 147 150 156 172 209 252 321 421 525 638 726 810 973 991 997 

5% 369 370 374 379 389 396 422 427 386 344 288 238 174 27 9 3 

10% 274 271 269 267 261 245 222 177 148 103 62 29 14 0 0 0 

15% 153 155 152 149 131 116 83 60 38 25 11 6 2 0 0 0 

20% 42 40 40 35 34 25 14 13 7 3 1 1 0 0 0 0 

25% 16 16 14 13 12 8 7 2 0 0 0 0 0 0 0 0 

30% 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 

 

The proportion of usable cells in each source table 

This table shows how many cells out of the totals were not suppressed (a zero value was counted as not-surpressed). For the 

same data iteration, for Table 1 and 2. The table shows for, example, that 

• With a threshold of 3, no cells were suppressed in the original table in any iteration; 1 cell was suppressed 8 times 

(20 possible table cells, with 95% not suppressed) 

• With a threshold of 30, no more than 50% of cells in Table 1 were unsuppressed, and in Table 2at most 25% of cells 

were let unsuppressed 
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Table 1 
Ok% 

Threshold 

3 4 5 6 7 8 9 10 11 12 13 14 15 20 25 30 

25% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

30% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 

35% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 153 

40% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 350 

45% 0 0 0 0 0 0 0 0 0 0 0 0 0 1 199 340 

50% 0 0 0 0 0 0 0 0 0 0 0 1 1 269 707 116 

55% 0 0 0 0 0 0 0 0 0 0 0 1 2 396 66 0 

60% 0 0 0 0 0 0 0 0 0 0 0 0 17 251 1 0 

65% 0 0 0 0 0 0 0 0 0 0 3 11 71 69 0 0 

70% 0 0 0 0 0 0 0 0 1 2 21 76 189 13 0 0 

75% 0 0 0 0 0 0 0 0 0 11 52 164 250 1 0 0 

80% 0 0 0 0 0 0 0 3 13 69 163 247 234 0 0 0 

85% 0 0 0 0 0 0 3 16 75 176 290 267 163 0 0 0 

90% 0 0 0 0 3 7 31 108 209 290 264 169 66 0 0 0 

95% 0 1 7 24 53 127 234 360 401 320 167 58 7 0 0 0 

100% 1,000 999 993 976 944 866 732 513 301 132 40 6 0 0 0 0 

Table 2 

0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 156 

5% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 345 

10% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 327 

15% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 115 145 

20% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 225 25 

25% 0 0 0 0 0 0 0 0 0 0 0 0 0 3 305 2 

30% 0 0 0 0 0 0 0 0 0 0 0 0 0 23 216 0 

35% 0 0 0 0 0 0 0 0 0 0 0 0 0 121 88 0 
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40% 0 0 0 0 0 0 0 0 0 0 0 0 2 327 17 0 

45% 0 0 0 0 0 0 0 0 0 0 1 13 36 355 3 0 

50% 0 0 0 0 0 0 0 0 1 8 52 158 332 163 1 0 

55% 0 0 0 0 0 0 0 1 13 54 178 321 387 8 0 0 

60% 0 0 0 0 0 0 0 7 51 166 315 318 188 0 0 0 

65% 0 0 0 0 0 1 7 30 126 250 244 129 43 0 0 0 

70% 0 0 0 0 1 1 13 95 244 275 148 47 10 0 0 0 

75% 0 0 0 0 1 10 74 209 255 162 53 13 2 0 0 0 

80% 0 0 0 0 7 48 180 278 189 68 8 1 0 0 0 0 

85% 0 0 0 4 42 192 277 227 84 14 1 0 0 0 0 0 

90% 0 0 9 57 206 311 279 115 30 3 0 0 0 0 0 0 

95% 8 52 151 318 380 303 134 31 7 0 0 0 0 0 0 0 

100% 992 948 840 621 363 134 36 7 0 0 0 0 0 0 0 0 
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Overall perspective on problems 

The third table automatically produced summaries the proportion of problematic cells into a simple sum yes/no count; see 

below. The table below shows that, with a threshold of 3, every iteration produced at least one problematic cell. One in a 

thousand iterations turned a case with no problems when the threshold was 4 or 5. But even when the threshold was 30 in 

92 cases at least one cell would create a differencing problem between Table 1 and Table 2.  

Threshold none some 

3 0 1,000 

4 1 999 

5 1 999 

6 3 997 

7 13 987 

8 25 975 

9 73 927 

10 169 831 

11 301 699 

12 469 531 

13 620 380 

14 719 281 

15 791 209 

20 872 128 

25 881 119 

30 908 92 

 


