
Recommender systems algorithm selection using machine 

learning 

Nikolaos Polatidis and Stelios Kapetanakis 

School of Computing, Engineering and Mathematics, University of Brighton, BN2 4GJ, 

Brighton, U.K 

{N.Polatidis@Brighton.ac.uk, S.Kapetanakis@Brighton.ac.uk} 

Elias Pimenidis 

Department of Computer Science and Creative Technologies, University of the West of Eng-

land, BS16 1QY, Bristol, U.K 

{Elias.Pimenidis@uwe.ac.uk} 

Abstract. This article delivers a methodology for recommender system algo-

rithm selection using a machine learning classifier. Initially, statistical data from 

real collaborative filtering recommender systems have been collected to form the 

basis for a synthetic dataset since a real meta dataset doesn’t exist. Once the da-

taset has been developed a classifier can be applied to predict which recom-

mender system among a range of algorithms will predict better for a given da-

taset. The experimental evaluation shows that tree-based approaches such as De-

cision Tree and Random Forest work well and provide results with high accuracy 

and precision. We can conclude that machine learning can be used along with a 

meta dataset comprised of statistical information in order to predict which rec-

ommender system algorithm will provide better recommendations for similar da-

tasets.   

Keywords: Recommender Systems; Datasets; Meta recommender; Algorithm 

selection, Machine learning. 

1 Introduction 

Recommender systems have been widely used in e-Commerce domains for the recom-

mendation of products or more specific items such as movies, music or jokes among 

others [1-2]. It is a technology that allows a company to provide personalized recom-

mendations to users while having a domain in mind, which allows the discovery of 

more relevant items, reduce search time from a user point of view and increased sales 

from a company point of view. There are different ways to recommend products to 

users such as Collaborative Filtering which can be used to make recommendations to 

users according to common history with other users or content-based filtering which 

can be used to provide recommendations according to user preferences and item de-

scriptions [1]. Furthermore, there are methods that can be used to recommend items if 

mailto:S.Kapetanakis@Brighton.ac.uk


2 

these are similar to other items which is called item-based collaborative filtering. How-

ever, nowadays in most domains various algorithms of combinations of such are being 

used to provide all kinds of recommendations [2]. 

Extensive research in recommender systems has taken place usually in aspects 

such as algorithm improvement, application domains investigation and privacy protec-

tion [3-4]. While this is very good, with so much information and different application 

domains there is the need to be able to identify the best approach to use. Typically, a 

software developer will have to explore a variety of different algorithms for an approach 

such as user-based collaborative filtering where user ratings are being used and perform 

extensive evaluation tests to identify the most accurate recommendation method to use. 

The most straightforward way to identify the best method is time consuming, which 

will result to higher development costs, more time and possibly less testing to save time, 

thus resulting to a less accurate method. 

Therefore, in this paper we developed a methodology that uses a meta dataset 

and machine learning classification to help researchers and software developers to iden-

tify which is the best recommendation algorithm to use according to their domain with 

regards to approaches where user ratings are used, and recommendation are generated 

according to previous common rating history between users. 

The contributions of the paper are: 

 Development of a synthetic meta classification dataset that includes charac-

teristics of collaborative filtering recommendation datasets. 

 Application of machine learning classification methods to predict the best rec-

ommendation algorithm. 

 Experimental evaluation that shows that the proposed methodology is both 

practical and effective. 

The rest of the paper is organized as follows: Section 2 is the background, section 3 

describes the proposed methodology, section 4 explains the experimental evaluation 

and section 5 contains the conclusions. 

2 Related work 

There are many different works regarding algorithm development in recommender sys-

tems starting with traditional approaches such as the ones that are based on the Pearson 

or Cosine similarity to calculate similar users [6]. However, there are many more rec-

ommendation algorithms in the literature such as the multi-level collaborative filtering 

that breaks the Pearson similarity into multiple levels using thresholds [3]. Another 

method is a hybrid where collaborative filtering is integrated with meta search for prod-

uct recommendation in e-Commerce [5]. There is another modified collaborative filter-

ing approach where the neighborhood of users is formed according to highest ranking 

neighbors, thus increasing the accuracy [7]. One more modified collaborative filtering 

approach based on singularities this time is presented. The idea here is to consider con-

textual information collected from all users and calculate the singularity for each item 

[8]. Hybrid recommendation approaches are extensively discussed in ref. [9]. Here the 

authors explain different ways to combine algorithms together. In another work the 



3 

utilization of sparsity measures is presented as a way to increase the accuracy of col-

laborative filtering [10]. Another similarity method based on collaborative filtering that 

is based on more co-rated items is presented in [11]. Yet another recommendation 

method is one that is based on a hybrid user-based fuzzy collaborative filtering ap-

proach [12]. A somewhat different method is one that is used to correct noisy rating 

before collaborative filtering is applied [13]. Continuing in the collaborative filtering 

domain entropy can be used with collaborative filtering to calculate user similarity in 

recommender systems and improve accuracy over classical methods [14]. Deep learn-

ing can also be used to increase accuracy in collaborative filtering [15]. Personalized 

diffusions can be used to provide improved list of top-n recommendations [16]. More-

over, in improved top-N recommendation approaches conditional variational auto-en-

coders can be used [17]. A different collaborative filtering similarity metric where in-

tegral equations are used with linear differential equations and non-linear systems to 

calculate similarities between users is proposed in [18]. An approach that assumes spar-

sity is important is based on Bhattacharyya coefficient for collaborative filtering to im-

prove accuracy [19]. Finally, a hybrid collaborative filtering algorithm that is based on 

Kullback-Leibler divergence is presented [20]. 

3 Proposed method 

The proposed methodology section is based on a synthetic meta dataset. Due to the fact 

that there aren’t any available recommender systems meta datasets we manually devel-

oped one that is based on characteristics of some of the most known collaborative fil-

tering datasets. The first 14 entries of the dataset are based on statistical information 

from actual datasets and are shown in table 1. In total there are 150 entries in the meta 

dataset which are 14 real and 136 synthetic that are based on the statistical info of the 

first 14. For example, in most datasets the sparsity is very high, and the number of users 

is usually less than the number of ratings. Furthermore, there is a final prediction value 

at the final column which represents which algorithm is better for the particular dataset 

and this is the value that the classifier tries to predict. Numbers 1, 2 and 3 have been 

used to represent 3 recommendation algorithms with all values are randomly assigned. 

These 3 numbers represent which algorithm is better for the specific dataset and should 

be 2 or more options available each representing an algorithm. In this case these values 

do not represent a particular algorithm but rather explain how algorithm selection can 

take place. 

Table 1. Recommender Systems datasets. 

Dataset Users Items Ratings 

Min 

value 

Max 

value 

Do-

main 

 

Label 

Ciao 7375 99746 278483 1 5 

Gen-

eral 

1 



4 

Duban 129490 58541 16830839 1 5 Movies 1 

Epinions1 40163 139738 664824 1 5 

Gen-

eral 

2 

Epinions2 71002 104356 508960 1 5 

Gen-

eral 

2 

Epinions3 120492 755760 13668320 1 5 

Gen-

eral 

1 

Flixster 147612 48794 8196077 0.5 5 Movies 3 

FilmTrust 1508 2071 35497 0.5 4 Movies 3 

Jester 59132 140 1761439 0 1 Jokes 1 

Mov-

ielens1 943 1682 100000 1 5 Movies 

1 

Mov-

ielens2 6040 3706 1000209 1 5 Movies 

2 

Mov-

ielens3 71567 10681 10000054 1 5 Movies 

2 

Mov-

ieTweet-

ings 69324 36383 88452 0 10 Movies 

3 

Yahoo-

Movies 7642 11915 211231 1 13 Movies 

3 

Yahoo-

Audio 15400 1000 311704 1 5 Music 

1 

 



5 

Once the dataset has been developed a classifier such as the K nearest neighbors, Deci-

sion Tree, Random Forest, Artificial Neural Network Multi-Layer Perceptron or other 

can be applied to predict which recommendation algorithm is better for a given set of 

data that look alike other datasets for which we have ground truth. The diagram in fig-

ure 1 explains how the methodology works. 

Figure 1. Proposed methodology 

 

 

In the first step it is assumed that a researcher or developer wants to identify a good 

algorithm for their current data. At step 2, these data can be converted into numbers 

such as shown in table 1, except the label value at the end and in step 3 a classifier can 

predict which algorithm is good and presented in step 4. In offline evaluation condi-

tions it is assumed that the label value is present, and a training/testing or cross fold 

validation approach can be used to identify which classifier is better. 

4 Experimental evaluation 

For the experimental evaluation we have used the dataset explained in section 3 and the 
Python programming language along with the Scikit learn machine learning API. 5-
fold cross validation has been used in the experiments. Furthermore, for the evaluation 
the synthetic dataset that has been developed in the methodology section has been used 
which has collaborative filtering statistical information, while from the Scikit learn li-
brary the Random forest, Decision Tree, K-Nearest neighbor and Multi-layer percep-
tron classifiers have been used. The random forest classifier the number of estimators 
has been setup to 500 and the max features to 0.25. For the other classifiers the default 
settings have been used. The evaluation metrics have been used are the Accuracy de-
fined in equation 1, Precision defined in equation 2, Recall defined in equation 3, F1 
defined in equation and finally the AUC metric. All the metrics have been used from 
the Scikit learn API using 5-fold cross validation. 
 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

 
 



6 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(3) 
 

 
 

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

 
 
The results are presented below in the nine graphs and one table. Figure 2 presents 
comparison results of the classifiers over 5 tests for the accuracy metric, figure 3 for 
the precision metric, figure 4 for the recall metric and figure 5 for the F1 metric. Figures 
6, 7, 8 and 9 present the average accuracy, precision, recall and F1 results of the 5 tests 
presented in figures 2 to 5. Figure 10 presents the AUC results. Table 2 presents further 
evaluation results for the random forest classifier.  It is shown in the results that random 
forest outperforms all the other classifiers in all test and metrics and that the methodol-
ogy is accurate to an extend it is practical to use. We executed 5 different sets with 
different random data each time for training and testing and user different classifiers to 
be able to verify which classifier is the best for among others and for different random 
data. 

Figure 2. Accuracy results 

 

 

Figure 3. Precision 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5

Accuracy results

Random Forest Decision Tree

K Nearest Neighbour Multi-layer Perceptron



7 

 

 

Figure 4. Recall results 

 

Figure 5. F1 results 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5

Precision results

Random Forest Decision Tree

K Nearest Neighbour Multi-layer Perceptron

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5

Recall results

Random Forest Decision Tree

K Nearest Neighbour Multi-layer Perceptron



8 

 
 

Figure 6. Average accuracy results after 5 tests 

 

Figure 7. Average precision results after 5 tests 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5

F1 results

Random Forest Decision Tree

K Nearest Neighbour Multi-layer Perceptron

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Random Forest Decision Tree K Nearest Neighbour Multi-layer
Perceptron

Average accuracy



9 

 

 

Figure 8. Average recall results after 5 tests 

 

Figure 9. Average F1 results after 5 tests 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Random Forest Decision Tree K Nearest Neighbour Multi-layer
Perceptron

Average precision

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Random Forest Decision Tree K Nearest Neighbour Multi-layer
Perceptron

Average recall



10 

 

Figure 10. AUC results 

 
 
 

The variable max features make significant difference in the output of random forest. 
The results in table 2 indicate how the algorithm behaves with regards to the use of this 
variable. 

Table 2. Random forest evaluation results. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Random Forest Decision Tree K Nearest Neighbour Multi-layer
Perceptron

Average F1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Random Forest Decision Tree K Nearest Neighbour Multi-layer
Perceptron

AUC results



11 

Metric 

Max 
fea-

tures = 
0.25 

Max 
fea-

tures = 
0.35 

Max 
fea-

tures = 
0.50 

Max 
fea-

tures = 
0.75 

Accu-
racy 

64% 62.6% 56.6% 55.3% 

Preci-
sion 

65% 65.9% 59.4% 57.9% 

Recall 61% 61% 54.9% 52.1% 

F1 63% 61% 56.9% 53.6% 

AUC 74% 73.9% 72.3% 71.7% 

 

5 Conclusions 

Recommender systems are important in various e-Commerce and other domains to help 

users and businesses. However, with so many different algorithms it can be time con-

suming to find which algorithm is better for the data a business has. To this extent we 

have developed a methodology that helps developers and researchers to identify which 

recommendation algorithm will perform better if such an algorithm has previously per-

formed well in similar datasets and application domains. 

The experimental evaluation results indicate that tree-based algorithms such 

as the random forest and decision tree perform well compared to other classification 

approaches. Several metrics have been used and several experiments show the applica-

bility of the methodology. Furthermore, due to the size of the datasets and the values 

inside the output could vary significantly. However, due to the nature of the data tree-

based approaches perform better. 

In the future we plan to a) investigate how to improve the accuracy and how 

machine learning can be used for algorithm selection in other domains such as machine 

learning and neural networks, b) use SMOTE to generate more synthetic data and c) 

investigate domains other than collaborative filtering. 

References 

1. Bobadilla J, Ortega F, Hernando A, Gutiérrez A. Recommender systems survey. 

Knowledge-based systems. 2013; Volume 46, pp. 109-132. 

2. Lu J, Wu D, Mao M, Wang W, Zhang G. Recommender system application developments: 

a survey. Decision Support Systems. 2015; Volume 74, pp. 12-32. 

3. Polatidis N, Georgiadis CK. A multi-level collaborative filtering method that improves rec-

ommendations. Expert Systems with Applications. 2016; Volume 48, pp. 100-10. 

4. Polatidis N, Georgiadis CK, Pimenidis E, Mouratidis H. Privacy-preserving collaborative 

recommendations based on random perturbations. Expert Systems with Applications. 2017; 

Volume 71, pp. 18-25. 

5. Abdullah N, Xu Y, Geva S. Integrating collaborative filtering and matching-based search 

for product recommendations. Journal of theoretical and applied electronic commerce re-

search. 2013; Volume 8(2), pp. 34-48. 



12 

6. Konstan JA, Miller BN, Maltz D, Herlocker JL, Gordon LR, Riedl J. GroupLens: applying 

collaborative filtering to Usenet news. Communications of the ACM. 1997; Volume 40(3), 

pp. 77-87. 

7. Herlocker JL, Konstan JA, Borchers A, Riedl J. An algorithmic framework for performing 

collaborative filtering. In ACM SIGIR Forum 2017; Volume 51(2), pp. 227-234 

8. Bobadilla J, Ortega F, Hernando A. A collaborative filtering similarity measure based on 

singularities. Information Processing & Management. 2012; Volume 48(2), pp. 204-17. 

9. Burke R. Hybrid web recommender systems. InThe adaptive web 2007 (pp. 377-408). 

Springer, Berlin, Heidelberg. 

10. Anand D, Bharadwaj KK. Utilizing various sparsity measures for enhancing accuracy of 

collaborative recommender systems based on local and global similarities. Expert systems 

with applications. 2011; Volume 38(5), pp. 5101-9. 

11. Liu H, Hu Z, Mian A, Tian H, Zhu X. A new user similarity model to improve the accuracy 

of collaborative filtering. Knowledge-Based Systems. 2014; Volume 56, pp. 156-66. 

12. Son LH. HU-FCF: a hybrid user-based fuzzy collaborative filtering method in recommender 

systems. Expert Systems with Applications: An International Journal. 201; Volume 41(15), 

pp. 6861-70. 

13. Toledo RY, Mota YC, Martínez L. Correcting noisy ratings in collaborative recommender 

systems. Knowledge-Based Systems. 2015; Volume 76, pp. 96-108. 

14. Wang W, Zhang G, Lu J. Collaborative filtering with entropy‐driven user similarity in rec-

ommender systems. International Journal of Intelligent Systems. 2015; Volume 30(8), pp. 

854-70. 

15. Bobadilla J, Alonso S, Hernando A. Deep Learning Architecture for Collaborative Filtering 

Recommender Systems. Applied Sciences. 2020; Volume 10(7), 2441, pp. 1-14. 

16. Nikolakopoulos AN, Berberidis D, Karypis G, Giannakis GB. Personalized diffusions for 

top-n recommendation. In Proceedings of the 13th ACM Conference on Recommender Sys-

tems 2019, pp. 260-268. 

17. Pang B, Yang M, Wang C. A novel top-N recommendation approach based on conditional 

variational auto-encoder. InPacific-Asia Conference on Knowledge Discovery and Data 

Mining 2019, pp. 357-368.  

18. Gazdar A, Hidri L. A new similarity measure for collaborative filtering based recommender 

systems. Knowledge-Based Systems. 2020; Volume 188, 105058. 

19. Patra BK, Launonen R, Ollikainen V, Nandi S. A new similarity measure using 

Bhattacharyya coefficient for collaborative filtering in sparse data. Knowledge-Based Sys-

tems. 2015; Volume 82, pp. 163-77. 

20. Wang Y, Deng J, Gao J, Zhang P. A hybrid user similarity model for collaborative filtering. 

Information Sciences. 2017; Volume 4(18), pp. 102-18. 

 


