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Abstract 6 

Elevated urban Nitrogen Dioxide (NO2) is a consequence of road traffic and other fossil-fuel 7 

combustion sources, and the road transport sector provides a significant contribution to UK 8 

NO2 emissions. The inhalation of traffic-related air pollution, including NO2, can cause a 9 

range of problems to human health. Due to their developing organs, children are particularly 10 

susceptible to the negative effects of air pollution inhalation. Accordingly, schools and 11 

associated travel behaviours present an important area of study for the reduction of child 12 

exposure to these harmful pollutants. 13 

COVID-19 reached the UK in late January, 2020. On the 23rd of March that year, the UK 14 

government announced a nationwide stay-at-home order, or lockdown, banning all non-15 

essential travel and contact with people outside of their own homes. The lockdown was 16 

accompanied by the closure of schools, public facilities, amenities, businesses and places of 17 

worship. 18 

The current study aims to assess the significance of nationwide NO2 reductions at schools in 19 

England as a consequence of the lockdown in order to highlight the benefits of associated 20 

behavioural changes within the context of schools in England and potential child exposure. 21 

NO2 data were collected from all AURN (Automatic Urban and Rural Network) monitoring 22 

sites within 500 metres of nurseries, primary schools, secondary schools and colleges in 23 
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England. A significant reduction of mean NO2 concentrations was observed in the first month 24 

of the UK lockdown at background (-35.13%) and traffic (-40.82%) sites.  25 

Whilst lockdown restrictions are undoubtedly unsustainable, the study results demonstrate the 26 

possible reductions of NO2 at schools in England and potential reductions of child exposure 27 

that are achievable when public behaviours shift towards active travel, work from home 28 

policies and generally lower use of polluting vehicles. 29 

Keywords: COVID-19; Lockdown; NO2; Nitrogen Dioxide; Schools; England 30 

1.0 Introduction 31 

Elevated urban Nitrogen Oxides (NOX) are a consequence of road traffic and other fossil-fuel 32 

combustion sources. The road transport sector accounts for a significant proportion of UK 33 

NOX emissions, contributing 31% (NAEI, 2020). The inhalation of traffic-related air 34 

pollution, including Nitrogen Dioxide (NO2), a component of NOX, can cause a range of 35 

problems to human health. Short-term exposure to these concentrations can lead to the 36 

aggravation of existing respiratory problems (Esposito et al., 2014; Goldizen et al., 2016; 37 

Searing & Rabinovitch, 2011), and increased cases of hospitalisation (Kampa & Castanas, 38 

2008). Long-term exposure has been linked to further issues, including greater susceptibility 39 

to infections of the respiratory system (Ryan et al., 2013). Children have been identified as a 40 

vulnerable group due to their developing organs, making them particularly susceptible to the 41 

negative effects of NO2 (Guarnieri & Balmes, 2014; WHO, 2018). Accordingly, schools and 42 

associated travel present an important area of study for the reduction of child exposure to 43 

harmful traffic-related pollutants. 44 

COVID-19 reached the UK in late January 2020. On the 23rd of March the same year, the UK 45 

government announced a nationwide stay-at-home order, or lockdown, which banned all non-46 
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essential travel and contact with people outside of their own homes (Iacobucci, 2020). This 47 

was accompanied by the closure of schools, public facilities, amenities, businesses and places 48 

of worship. Whilst forecasts predicted the negative financial consequences of a prolonged 49 

lockdown, the considerable effects of population confinement and travel restrictions on air 50 

pollution reduction were promptly highlighted (Berman & Keita, 2020; Dutheil et al., 2020).  51 

The current study aims to assess and highlight the benefits of these behavioural changes 52 

within the context of schools in England, to demonstrate the child exposure reductions that 53 

are possible when public behaviours shift towards active travel, work from home policies and 54 

generally lower use of polluting vehicles. The study does not seek to estimate actual 55 

reductions in child exposure for the study periods, due to children’s absence from schools 56 

during the lockdown period. 57 

It is not the intention of the current research to attribute pollutant reductions to specific 58 

behavioural changes as a consequence of lockdown measures, nor does it seek to quantify the 59 

influence of other factors, such as pollutant transportation. This study acknowledges that a 60 

deeper analysis is required to accurately ascertain this information. However, the effects of 61 

the lockdown measures on air pollution provide a unique opportunity to assess the reductions 62 

that are possible due to the associated behavioural change, and to determine further policies 63 

for the reduction of child exposure to these harmful pollutants. 64 

1.1 Research Question 65 

The study aim can be summarised in the following statement: 66 

• To assess the significance of nationwide NO2 reductions at schools in England as a 67 

consequence of the lockdown in order to highlight the benefits of associated 68 
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behavioural changes within the context of schools in England and potential child 69 

exposure. 70 

Accordingly, the aforementioned study approach can be summarised in the following 71 

research question: 72 

• To what extent did traffic-related air pollution reduce around schools in England 73 

during the first month of the UK lockdown in 2020? 74 

2.0 Methods 75 

Air quality data were collected from background and traffic monitoring sites within 500 76 

metres of schools in England. The data was analysed using R (Version 3.6.3) in R Studio 77 

(Version 1.3.1093) to determine the significance of difference between the lockdown period 78 

and the same time period for the five previous years, and to adjust the data for meteorological 79 

influence. 80 

2.1 Site Selection 81 

Using ArcGIS Pro (Ver 2.4.0, Esri Inc.), school locations in England were plotted with 82 

Automatic Urban and Rural Network (AURN) air quality monitoring sites. AURN monitors 83 

are sited according to specific requirements (Directive 2008/50/EC) and are defined in terms 84 

of background sites that are representative of general urban population exposure, and traffic 85 

sites located within 10 metres from the kerbside and at least 25 metres from major junctions. 86 

Background sites are located so that recorded pollution levels are not significantly influenced 87 

by any single source and are representative of several square kilometres. Traffic sites are 88 

located so that recorded pollution levels are predominantly determined by nearby traffic 89 

emissions, and are representative of air quality for a street segment greater than 100 metres 90 
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(Defra, 2020a). All AURN site information, including historical data, is made freely available 91 

by Defra (Defra, 2020b). 92 

A Geographical Information System (GIS) was used to identify all AURN sites in England 93 

within 500 metres of an educational establishment for use as representative of pollution levels 94 

and exposure. The locations of all AURN sites are made available by Defra and are 95 

searchable by location (Defra, 2020c). The 500-metre distance is supported by studies that 96 

have suggested exposure to NO2 within 500 metres of the source is potentially hazardous to 97 

human health (Zhou & Levy, 2007). Educational establishments included nurseries, primary 98 

schools, secondary schools and colleges. The list was classified by AURN site type and all 99 

valid urban background and traffic sites were selected for further analysis and comparison. 100 

Using the Openair package in R Studio, data for all selected AURN sites were collected for 101 

the years 2015 to 2020. The data included the site names, NO2 concentration readings for the 102 

5-year period, and modelled temperature, wind speed and wind direction (Defra, 2020d). 103 

2.2 Data Preparation 104 

The first month of the lockdown period was considered appropriate for the scope of the 105 

investigation. This time period is representative of the time that lockdown measures were 106 

more closely followed by the general public (Sibley et al., 2020). Longer time periods would 107 

incur the effects of too many variables, including ‘crisis fatigue’ (Aras & Yorulmazlar, 2020), 108 

and a general easing of attitudes and compliance with the measures (Jackson et al., 2020), due 109 

to the public becoming accustomed to the impositions and more willing to contravene the 110 

restrictions. To prepare the datasets for analysis the sites were categorised into background 111 

and traffic groups, and time periods were selected within each category. Time periods were 112 

specified as ‘Historical’ (23rd of March to 23rd of April, each year from 2015 to 2019, as a 113 

combined average) and ‘Lockdown’ (23rd of March to 23rd of April, 2020). Weekend data 114 
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were removed and weekday data retained to better represent the days children attend school. 115 

Datasets were also created for each site category for weekdays between January and August, 116 

2020, for time series analysis. 117 

2.3 Analysis 118 

Descriptive statistics were calculated for the data and the normality of the data was checked 119 

by visual inspection. To confirm the data distribution, the Anderson Darling test was 120 

conducted. The data did not follow a normal distribution so a Mann-Whitney U test was used 121 

to determine the significance of difference in background and traffic NO2 concentrations 122 

between the Lockdown and Historical periods. Time variation data was plotted for pollutant 123 

concentrations at background and traffic sites before and after the lockdown measures (from 124 

January to August, 2020) to assess the pollutant reduction as a consequence of the 125 

restrictions. 126 

2.4 Adjustment for Meteorological Influence 127 

A persistent issue when analysing air pollution levels is the role of the weather, which can 128 

affect changes in concentrations. The general weather of 2020 was relatively mild when 129 

compared to the average temperature, and the start of the year was particularly windy. These 130 

weather events may potentially impact the recorded reduction of concentrations as a 131 

consequence of lockdown measures (Grange et al., 2020). Due to the central role played by 132 

meteorology in affecting atmospheric pollutant concentrations, the consideration of air 133 

pollutant trends can be problematic. Because of the difficulties in determining whether 134 

concentration changes are due to emissions or meteorology, it is imperative to ensure an 135 

adequate understanding of the role of weather in the recorded pollution levels and observed 136 

reduction (Carslaw, 2020; Grange et al., 2020). All functions used in the procedure for 137 

metrological adjustments are part of the Openair package for R. A segment of data (January 138 
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to August, 2020) was selected for background and traffic sites to perform initial model 139 

viability testing with the commonly-used covariates of wind speed, wind direction, air 140 

temperature, hour, weekday, week and NO2. The testMod function was then used to build and 141 

test models to derive the most appropriate. Variables including ‘hour’ ‘month’ and ‘weekday’ 142 

were used as proxies for the determination of variation (Carslaw, 2020). 143 

Once it was established that a suitable model could be developed, the buildMod function was 144 

applied to the background and traffic data. Partial dependencies were plotted using the 145 

resultant datasets and the plotALLPD function. The interaction between wind speed and air 146 

temperature was then considered using the plot2Way function on the modelled data. 147 

Meteorological averaging utilises the model to perform multiple predictions with random 148 

meteorological condition sampling (using the metSim function). The resulting trends were 149 

then plotted for the period between January and August, 2020, to provide a before-and-after 150 

picture of the lockdown period, and the subsequent return to business-as-usual. 151 

3.0 Results 152 

This section presents the results of the data analyses. Time periods are displayed as Historical 153 

(23rd of March to 23rd of April, each year from 2015 to 2019) and Lockdown (23rd of March 154 

to 23rd of April, 2020). 155 

3.1 Statistical Analysis 156 

3.1.1 Descriptive Statistics 157 

Descriptive statistics for background and traffic sites are shown in Table 1. The Lockdown 158 

NO2 concentrations for background sites were M = 15.75 (µg/m3), SD = 12.98. This was 159 

lower than the Historical concentrations M = 24.28 (µg/m3), SD = 17.67. The Lockdown NO2 160 

concentrations for traffic sites were M = 22.82 (µg/m3), SD = 16.37, which was also lower 161 
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than the Historical concentrations M = 38.56 (µg/m3), SD = 27.00. The mean NO2 reductions 162 

during Lockdown compared to the Historical period were 8.53 (µg/m3), or 35.13%, and 15.74 163 

(µg/m3) or 40.82%, at background and traffic sites, respectively. 164 

Table 1 Descriptive statistics for lockdown and historical periods at background and traffic sites. 165 

 
Lockdown NO2 (µg/m3)  Historical NO2 (µg/m3)  

 
Background Traffic Background Traffic 

Count 28057 20267 115206 83738 

Mean 15.75 22.82 24.28 38.56 

Standard Deviation 12.98 16.37 17.67 27 

Median 11.67 18.43 19.57 32.53 

Standard Error 0.08 0.11 0.05 0.09 

 166 

The standard deviations around the means appear substantial, although the coefficient of 167 

variation (CV) in all cases is <1 (CV= standard deviation/mean). The medians in all cases are 168 

less than the mean values, indicating the data is skewed to the right. This comparison 169 

introduces a considerable disparity in the number of counts in each sample used for the 170 

calculations. However, all standard errors are low, indicating a greater likelihood that the 171 

sample mean is close to the population mean. 172 

3.1.2 Normality Tests 173 

The Anderson-Darling test was conducted and the outcome confirmed the non-normal 174 

distribution of the background (AD = 4933.2, p = < 2.2e-16) and traffic (AD = 1154.8, p = < 175 

2.2e-16) concentration data. 176 

3.1.3 Tests of Difference 177 
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The 2-group Wilcoxon Rank Sum Test was used to test the difference between lockdown and 178 

historical concentrations. The following null hypothesis was used: 179 

 H0 There is no difference in NO2 concentrations between the first month of 180 

lockdown and the same time period in previous years. 181 

The Wilcoxon Test indicated that a significant difference existed between the Historical and 182 

Lockdown periods for background (p = < 2.2e-16) and traffic (p = < 2.2e-16) sites, and the 183 

null hypothesis was rejected. 184 

3.2 Time-Series Analysis 185 

Having determined the significance of the NO2 reduction during the Lockdown period when 186 

compared to the Historical time period, the NO2 trend was plotted for January to August, 187 

2020 to visualise the concentration reduction (Figure 1).  188 

 189 

Figure 1 Smooth trend plot for NO2 (µg/m3) at background and traffic sites between January and August, 2020. 190 

Time variation analyses of NO2 concentrations were plotted for January to August, 2020 191 

(Figures 2 and 3). The pre-lockdown period (January 1st to March 22rd, 2020) of this study 192 

spans approximately three months, and the post-lockdown period (April 23rd to August 31st, 193 
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2020) spans approximately four months. NO2 concentrations appear to follow a similar 194 

diurnal pattern, although they are clearly reduced following the implementation of the 195 

lockdown measures. Daily concentration patterns are also evident with morning and 196 

afternoon peaks corresponding to peak traffic times. The time variation plots clearly show 197 

NO2 reductions as a consequence of the measures, with diurnal variation for all days showing 198 

lower levels. 199 

 200 

Figure 2 Time variation of NO2 (µg/m3) during pre- and post-lockdown periods for background sites between January and 201 

August, 2020 (Confidence Interval is represented by line width). 202 
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 203 

Figure 3 Time variation of NO2 (µg/m3) during pre- and post-lockdown periods for traffic sites between January and August, 204 

2020 (Confidence Interval is represented by line width). 205 

Descriptive statistics were also produced for the pre- and post-lockdown periods in 2020 (see 206 

Table 2). For the pre-lockdown period, mean NO2 concentrations (µg/m3) at background sites 207 

were 20.49 (SD = 17.05, SE = 0.06), and at traffic sites mean NO2 concentrations were 29.83 208 

(SD = 22.81, SE = 0.10). For the post-lockdown period, mean NO2 concentrations (µg/m3) at 209 

background sites were 11.74 (SD = 12.98, SE = 0.08), and at traffic sites mean NO2 210 

concentrations were 19.8 (SD = 14.92, SE = 0.05). 211 

Table 2 Mean NO2 (µg/m3) comparisons pre-, during, and post- lockdown at background and traffic sites. 212 

 
Pre-lockdown Lockdown Post-lockdown 

 
Background Traffic Background Traffic Background Traffic 

Count 70098 49296 28057 20267 107998 77073 

Mean 20.49 29.83 15.75 22.82 11.74 19.8 

Standard Deviation 17.05 22.81 12.98 16.37 9.53 14.92 

Median 15.23 24.66 11.67 18.43 9.08 16.15 

Standard Error 0.06 0.10 0.08 0.12 0.03 0.05 

 213 
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3.3 Meteorological Adjustment 214 

The outcomes of the testMod function were suitably low and the root mean squared was 215 

sufficient to provide confidence in the model, with -1% for background sites and 1.8% for 216 

traffic sites. The two-way interactions between wind speed and air temperature indicate that, 217 

particularly at background sites, NO2 concentrations were higher when atmospheric 218 

conditions were stable with low temperatures and low wind speeds (Figures 4 and 5). The 219 

plots also indicate thatNO2 concentrations tend be higher with higher temperatures. This is 220 

likely due to greater available ground-level O3 for conversion of NO to NO2.  221 

 222 

Figure 4 Modelled two-way interactions between wind speed and air temperature on NO2 (µg/m3) (y) at background sites. 223 
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 224 

Figure 5 Modelled two-way interactions between wind speed and air temperature on NO2 (µg/m3) (y) at traffic sites. 225 

A comparison between the meteorologically adjusted predicted NO2 concentrations and the 226 

recorded data for the month following the lockdown measures (23rd March to 23rd April, 227 

2020) is shown in Table 3.  228 

Table 3 Comparison of recorded (observed) and meteorologically adjusted (predicted) mean data. 229 

 
Background Traffic 

NO2 (µg/m3) Observed Predicted Observed Predicted 

Count 28057 576 20267 576 

Mean 15.75 14.18 22.82 20.93 

Standard Deviation 12.98 2.39 16.37 3.52 

Median 11.67 13.53 18.43 19.89 

Standard Error 0.08 0.1 0.11 0.15 

 230 

For the lockdown period, meteorologically adjusted predictions of NO2 concentrations for 231 

background sites (M = 14.18, SE = 0.1) are lower than recorded concentrations (M = 15.75, 232 
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SE = 0.08). Meteorologically adjusted predictions of NO2 concentrations for traffic sites (M = 233 

20.93, SE = 0.15) are lower than recorded concentrations (M = 22.82, SE = 0.11). 234 

The meteorological adjustments for NO2 are representative of the potential effect of weather 235 

on recorded background and traffic concentrations, reducing levels by 9.97% and 8.28%, 236 

respectively. 237 

4.0 Discussion 238 

The analysis provides an overview of the air pollution changes as a consequence of the 239 

COVID-19 lockdown, and the reductions of NO2 in the vicinity of schools in England. A 240 

significant reduction of NO2 took place following the stay-at-home order on March 23rd and 241 

the trends indicated a sustained reduction of NO2 at background and traffic sites for several 242 

months following the announcement. 243 

Both traffic and background site data indicated significant reductions on schooldays. Around 244 

schools in England, NO2 concentration reductions during lockdown when compared to the 245 

five-year historical mean for background and traffic sites ranged between 35.13% and 246 

40.85%. Once the data was adjusted for meteorological influence, the potential reductions 247 

increased, although the range narrowed to between 41.60% and 45.75 %. The general trends 248 

show a steep decline of NO2 concentrations at both background and traffic sites at the start of 249 

the lockdown measures.  250 

Temporal trends for both site groups were similar, although a sharper reduction was visible at 251 

the traffic sites, indicating a lag between the traffic and background sites. This behaviour is to 252 

be expected when considering pollution from traffic sites, which are characteristically 253 

proximal to road sources, and background sites, which are further from those sources, and 254 

will take longer to be affected by any related changes. For the same reason, it is also 255 



15 

 

understandable that diurnal traffic would not affect background sites as much as those near 256 

roadsides. 257 

The lockdown NO2 concentration means showed a reduction of 4.74 µg/m3 for background 258 

sites and 7.01 µg/m3 for traffic sites when compared to the pre-lockdown period. This trend 259 

continued into the post-lockdown period, with further respective reductions for background 260 

and traffic sites of 4.01 µg/m3 and 3.02 µg/m3, although an increase is observable towards the 261 

end of the period as restrictions become more relaxed. Analyses of the reduction support 262 

arguments for lower levels of traffic around schools to reduce potential child exposure to air 263 

pollutants. Policies that encourage active travel and discourage unnecessary vehicular use 264 

during peak traffic times can lower air pollution in the vicinity of schools when children are 265 

on the school run, but can also improve air quality for all of those who must travel at these 266 

particularly polluted periods of each day. 267 

Improvements to traffic management can help to reduce pollution at the most congested 268 

periods of the day, which is particularly relevant for the reduction of child exposure to 269 

pollutants during peak traffic periods on weekday mornings. Indeed, policies and 270 

interventions that encourage active travel will be further benefitted by more general 271 

reductions in peak traffic and accompanying pollution. The study results support the position 272 

of research relating to measures for improved management of traffic, including school travel 273 

planning (Cairns et al., 2008), promotion of active travel (McDonald et al., 2014; Smith et al., 274 

2015), walking school buses (Dirks et al., 2016), improved workplace travel initiatives and 275 

planning (Macmillan et al., 2013), improvements to public transport, school buses and related 276 

incentives (Schraufnagel et al., 2019), carpooling and car-sharing (Hasan et al., 2016), 277 

teleworking (Giovanis, 2018) and anti-idling campaigns (Eghbalnia et al., 2013; Ryan et al., 278 

2013). The results indicate that practices such as working from home, active travel, and a 279 
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reduction of non-essential travel can help to maintain these reductions outside of the 280 

lockdown, and the discouragement of driving to school during peak traffic times can also 281 

assist in the reduction of child exposure to harmful pollutants. 282 

5.0 Conclusion 283 

Due to their sensitivity, developing physiology and regular exposure to heavy traffic, children 284 

are an at-risk group who are particularly susceptible and vulnerable to high concentrations of 285 

traffic-related air pollution. Schools and associated travel present areas of interest for the 286 

reduction of traffic-related air pollution and the mitigation of child exposure. The current 287 

study has demonstrated that the measures taken as part of the UK stay-at-home order, such as 288 

teleworking, the reduction of non-essential travel and the removal of traffic related to school 289 

runs, have significantly reduced air pollution in the vicinity of schools in England. 290 

Limitations of the current study include the focus on NO2 and schools in England. Future 291 

research should investigate the interactions between other traffic-related pollutants, including 292 

the effects of meteorology, and in different regions of the UK. 293 

In order to maintain the pollution reductions highlighted in the current study, it is essential to 294 

develop and implement effective behavioural strategies towards the reduction of peak traffic. 295 

Whilst this can be partly achieved by a reduction of school-related traffic, it is also important 296 

to develop broader strategies to reduce overall levels of traffic to ensure that child exposure 297 

in active travel at peak times remains low.  298 
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