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Abstract 

The structured life course modeling approach (SLCMA) is a theory-driven analytic 

method that empirically compares multiple prespecified life course hypotheses characterizing 

time-dependent exposure-outcome relationships to determine which theory best fits the observed 

data. In this study, we performed simulations and empirical analyses to evaluate the performance 

of the SLCMA when applied to genome-wide DNA methylation (DNAm). Using simulations, 

we compared five statistical inference tests used with SLCMA (n=700), assessing the family-

wise error rate, statistical power, and confidence interval coverage to determine whether 

inference based on these tests was valid in the presence of substantial multiple testing and small 

effects, two hallmark challenges of inference from omics data. In the empirical analyses, we 

evaluated the time-dependent relationship of childhood abuse with genome-wide DNAm 

(n=703). In simulations, selective inference and max-|t|-test performed best: both controlled 

family-wise error rate and yielded moderate statistical power. Empirical analyses using SLCMA 

revealed time-dependent effects of childhood abuse on DNAm. Our findings show that SLCMA, 

applied and interpreted appropriately, can be used in high-throughput settings to examine time-

dependent effects underlying exposure-outcome relationships over the life course. We provide 

recommendations for applying the SLCMA in omics settings and encourage researchers to move 

beyond analyses of exposed versus unexposed. 

 

Keywords: life course, structured approach, ALSPAC, omics, DNA methylation, post-selection 

inference 

 

Abbreviations: SLCMA (structured life course modeling approach); FWER (family-wise error 

rate); ALSPAC (Avon Longitudinal Study of Parents and Children); CpG (cytosine-phosphate-

guanine); DNAm (DNA methylation); CI (confidence interval) 
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Epidemiologists have long been interested in whether and how exposures over the life 

course affect later health outcomes. Guided by theories developed in life course epidemiology 

(Table 1), researchers are moving beyond simple comparisons of presence versus absence of 

exposure to characterize time-dependent exposure-outcome relationships (1).  Prior work in life 

course epidemiology has conceptualized timing effects in numerous ways, examining the role of 

the developmental timing of exposure (sensitive period hypothesis), number of occasions 

exposed across time (accumulation of risk hypothesis), proximity in time to exposure (recency 

hypothesis), and change in exposure status across time (mobility hypothesis). Researchers have 

adopted this life course perspective, uncovering mechanistic insights that advanced many 

subfields of public health and medicine (2–6). As different life course hypotheses correspond to 

distinct theories of disease etiology, efforts to formally compare competing hypotheses and 

identify those best supported by empirical data are needed to guide prevention and intervention 

planning.   

To address the need for systematic comparisons of life course theories, Mishra and 

colleagues introduced the structured life course modeling approach (SLCMA) (7).  The SLCMA 

allows researchers to compare a set of a priori-specified life course theories and use goodness-

of-fit criteria to determine which theory is best supported by empirical data.  Smith and 

colleagues later extended this approach with an alternative statistical model selection strategy 

that uses least angle regression (8), accommodates both binary and continuous exposures (9,10), 

and improves the accuracy of selecting the correct hypothesis. More recently, Madathil et al. 

proposed a Bayesian approach to life course modeling that does not perform variable selection, 

but rather estimates the posterior probability corresponding to each theoretical hypothesis while 

assessing the relative importance of a series of life course theories (11). Since its inception, the 
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SLCMA has been applied in a wide range of non-omics epidemiologic studies, including those 

examining the time-dependent impacts of childhood trauma, physical activity, or socioeconomic 

position on psychological, metabolic, and disease outcomes (12–18). Compared to other 

approaches that consider alternative classifications of the exposure, the SLCMA is better 

positioned to compare competing life course hypotheses simultaneously. By requiring that life 

course hypotheses are specified a priori based on theory, it prevents post-hoc hypothesis 

generation following exploratory analyses. Moreover, its model selection feature allows a 

structured assessment of hypotheses without requiring a saturated model.  

The growing availability of high-dimensional biological and phenotype data from 

longitudinal cohort studies has created new opportunities to assess time-varying exposures in 

epigenomics, transcriptomics, metabolomics, and other omics settings (19–21). While large 

cross-sectional omics studies have identified associations between biological differences and 

various traits (22), applications of the SLCMA to longitudinal data and high dimensional 

outcomes allow researchers to answer more complex questions about disease mechanisms. For 

example, Dunn and colleagues applied the SLCMA in a longitudinal birth cohort study to model 

timing effects of childhood adversity on DNA methylation, which is a widely studied epigenetic 

mechanism that could give rise to altered gene expression and phenotypic changes. Using the 

SLCMA, they found that DNAm differences were largely explained by the age at exposure, with 

the first three years of life appearing to be a sensitive period associated with more DNAm 

differences. Their results also showed that the SLCMA could identify associations not identified 

by an epigenome-wide association study of exposed versus unexposed to childhood adversity 

(23), underscoring the importance of alternative exposure classifications.  ORIG
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In this study, we aim to extend these findings with methodological contributions that 

outline the structured life course modeling framework and its application in omics settings. As 

outlined in Dunn et al. (23), application of the SLCMA to omics data presents unique challenges 

not yet systematically investigated.  First, it remains unknown whether theoretical properties of 

statistical inference, such as Type I error (i.e., family-wise error rate (FWER) in the presence of 

multiple testing) or confidence interval (CI) coverage, are valid in omics data. Second, it is 

unclear whether the SLCMA is sufficiently powered to detect the small effects commonly found 

in omics settings. Third, questions exist on how to balance decision-making regarding research 

evidence, because omics studies often rely on p-values and accurate statistical inference has 

become increasingly important. Moreover, epidemiologists and others increasingly prioritize 

other statistical evidence, such as effect sizes and CIs (24,25). We therefore performed 

simulations and empirical analyses to assess the performance of the SLCMA when applied to 

omics data, and illustrate how SLCMA can be applied to evaluate the time-dependent role of 

childhood abuse on genome-wide DNA methylation.   
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METHODS 

The structured life course modeling approach (SLCMA): an overview 

The SLCMA has been described in detail elsewhere (7,9,10). In brief, the SLCMA is a 

two-stage method that compares a set of life course hypotheses describing the relationship 

between exposures assessed over time and some outcome of interest. In the first stage of the 

SLCMA, each life course hypothesis is encoded into a predictor or set of predictor variables. 

Table 1 shows examples of predictors representing commonly studied life course hypotheses. A 

variable selection procedure is then used to select the subset of predictors that explain the 

greatest proportion of outcome variation. While it is possible for multiple predictors to be 

selected, the high dimensionality of the omics setting makes consideration more feasible of 

simple life course hypotheses (meaning those in which the exposure-outcome association is 

represented by a single predictor). Therefore, in this study, we focused on statistical inference 

regarding the single predictor explaining the greatest variation in the outcome.  

In the second stage of the SLCMA, post-selection inference is performed to obtain point 

estimates and CIs for the model identified from the first stage. Post-selection inference methods 

are used to derive unbiased test statistics because they account for the multiple testing that occurs 

when comparing multiple hypotheses (meaning, the multiple testing occurring at the first stage, 

instead of the number of outcomes examined), as the SLCMA iteratively works to select the 

variable with the strongest association with the outcome. Four inference methods that account for 

this “selective nature” are: Bonferroni correction; max-|t|-test (26); covariance test (27,28); and 

selective inference (29,30). These approaches are described in detail in Web Appendix 1.  

 

Simulation analyses 
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We performed simulations to examine the performance of these four post-selection 

inference methods compared to a naïve calculation (summarized in Table 2). To build these 

simulations in the context real-world applications, we modeled the simulation strategy based on 

the genome-wide SLCMA study performed by Dunn et al. (23). We evaluated each post-

selection inference method with respect to three statistical properties: family-wise error rate 

(FWER) (the probability of making one or more false discoveries out of multiple tests), 

statistical power (the probability of correctly selecting the predictor with a true association with 

the outcome), and CI coverage (the probability that a 95% CI contained the true effect estimate). 

Assessing these properties enabled us to determine whether inference based on these tests was 

valid in the presence of multiple testing and small effect sizes, which are two hallmarks of high-

dimensional data. Mathematical definitions of the test-statistics and procedure for constructing 

CIs, as well as example R code are included in Web Appendices 1 and 2.  All post-selection 

inference methods, including the naïve calculations, involved multiple testing correction for the 

number of cytosine-phosphate-guanine (CpG) sites tested using a Bonferroni correction (i.e., the 

p-value threshold was p<1x10-7).  

 

Simulations setup. We considered two scenarios, which differed in terms of the simulated 

outcome. In both scenarios, we simulated exposure to childhood sexual or physical abuse based 

on empirical data from the Avon Longitudinal Study of Parents and Children (ALSPAC), a 

population-based birth cohort (31–33). The sample size was set to 700 to be consistent with 

ALSPAC. Simulations were based on m=485,000 tests corresponding to an analysis of Illumina 

Methylation 450k Beadchip data. In scenario 1, the outcome (i.e., DNA methylation) was 

simulated from a normal distribution. In scenario 2, we resampled the outcomes under the null to 
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more closely resemble ‘beta’ values, which represent the proportion of cells in which the 

cytosine at the locus is methylated and ranges from 0 to 1. To assess statistical power and CI 

coverage, we simulated the outcome from a beta distribution, as proposed by Tsai and Bell (31). 

In both scenarios, the effect sizes were selected to illustrate a wide range of statistical power 

based on previous epigenome-wide association studies examining different exposures (32,33). 

To assess model misspecification, we also ran simulations in which: (1) the outcome 

variable was correlated with a variable encoding an alternative hypothesis (ever versus never 

exposed) not included in the prespecified set of hypotheses tested, (2) the outcome variable was 

correlated with two predictors (a compound life course hypothesis). We also varied the sample 

size to investigate its effect on statistical power.  

Full details of simulations are provided in Web Appendix 1.  

 

Measurement of power and confidence interval coverage. Conceptually, bias might arise from 

the SLCMA analysis in two ways: at the first stage, the model most supported by the sample data 

may not be the model most supported in the population. At the second stage, even if the model 

has been correctly selected, inference on that model may be biased. In our simulations, we 

considered both uncertainties residing in model selection and inference: power was calculated as 

the percentage of times that the first (variable selection) stage correctly selected the model and 

the second (inference) stage identified it as a below-threshold hit. Similarly, CI coverage was 

calculated as the percentage of times that the first stage correctly selected the model and the CI 

contains the true value. Alternatively, if the first stage selected the wrong model but the CI 

contains zero, we considered that the true effect (since there should be no effect) was captured by 

the CI.  
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Empirical analyses 

To illustrate how the SLCMA and the different corresponding post-selection inference 

methods work in practice, we reanalyzed data used by Dunn et al. (23). Briefly, we compared the 

effects of sensitive period, accumulation, and recency hypotheses for the associations between 

exposure to sexual or physical abuse and genome-wide DNA methylation at age 7 in ALSPAC 

participants. Sample characteristics and adversity measures are described in Web Appendix 3. 

Building from that study, which only used the covariance test, we additionally applied the other 

post-selection inference methods summarized earlier.  

The most widely used covariate adjustment strategy in the SLCMA is to regress the 

exposures on the covariates and enter the residuals into variable selection, which decreases the 

likelihood that observed associations are due to measured confounders. We also tested a new 

method for covariate adjustment that could be used alongside any post-selection inference 

method. Based on the Frisch-Waugh-Lovell theorem, this method also regresses the outcome on 

covariates and enters the residuals into the model selection procedure (34–36). A thorough 

description of this method and full list of covariates are available in Web Appendix 1. Of note, 

the SLCMA requires a common set of confounders to be pre-specified for all hypotheses; thus, 

bias may arise from time-varying or hypothesis-dependent confounding.  
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RESULTS 

Simulation analyses  

 Table 3 summarizes the main findings from the simulation analyses regarding the 

statistical properties and implementation of the assessed methods. 

 

Family-wise error rate.  Due to the high computational burden of genome-wide association 

studies, we illustrated FWER control of each inference test using a single simulation with 

m=485,000 tests. As shown in Figures 1 and 2, when compared against the expected p-value 

distribution under the null hypothesis, the p-values obtained from naïve calculations appeared 

too liberal in both scenarios, as suggested by the systematic upward departure from the diagonal 

line. P-values from the covariance test were also smaller than expected across scenarios. 

With normally distributed outcomes in Scenario 1, the p-values from the Bonferroni 

correction, max-|t|-test, and selective inference method followed the expected distribution closely 

(Figure 1). With empirical DNAm outcomes in Scenario 2, p-values from the three methods 

seemed conservative (Figure 2). Transforming the DNAm (beta) values to M-values did not 

affect the results (Web Figure 1). Together, these findings suggest that three methods 

adequately controlled the FWER: Bonferroni correction, the max-|t|-test, and the selective 

inference method. Estimates of FWER from repeated simulation experiments when the number 

of tests ranged from m=1 to 1,000 are available in Web Appendix 1.  

 

Statistical power and CI coverage.  We assessed the statistical power of the three methods that 

adequately controlled FWER. We did not evaluate the performance of the covariance test or ORIG
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naïve calculation, as these methods would have their statistical power unfairly inflated by their 

tendency to fail to reject the null hypothesis.  

Results suggested there was very little difference in statistical power between the three 

methods (Figure 3); they all had ideal statistical power (over 80%) when the effects were 

moderate to large (R2 > 0.06 in scenario 1; ΔDNAm > 0.25 in scenario 2). With normal outcomes, 

the selective inference achieved ideal CI coverage (around 95%) across all effect sizes with 

sample size n = 700; the max-|t|-test had slightly lower coverage when the effect size was small 

(R2 < 0.03). With beta distributed outcomes, the CI coverage probabilities were below the 

desired level (95%) when the between-group difference (ΔDNAm ) was below 0.3, though exceeded 

95% as the effect size increased. Bonferroni corrected CIs were over-conservative across effect 

sizes and scenarios, as expected (Figure 4).  

 

Robustness to model misspecification. If none of the predictors represent the true underlying life 

course hypothesis, then a misspecified model may be selected. In our simulations of this case, we 

found the accumulation or recency model were often selected, because they were highly 

correlated with the true predictor – ever versus never exposed (raccumulation=0.89, rrecency=0.82). 

However, the power was reduced compared to a correctly specified model (Web Figure 2). If 

the true hypothesis is represented by two or more predictors (i.e., a compound hypothesis), then 

the power to select one of these predictors may be diminished. In our simulations, the power to 

select one predictor was lower for selective inference (Figure 5). However, selective inference is 

the only method available for post-selective inference on the second predictor that does not 

inflate FWER. Statistical power increased with sample size for all methods considered (Web 

Figure 3).  
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Empirical analyses 

 Using the covariance test, Dunn and colleagues identified five CpG sites in ALSPAC that 

showed differential methylation profiles at age 7 following exposure to physical or sexual abuse 

in childhood; the “sensitive period” model was the selected life course theory for these five sites. 

We reanalyzed the genome-wide SLCMA analyses using two other post-selection inference 

methods that showed no inflation in FWER and desired CI coverage: the max-|t|-test and 

selective inference method. Results are shown in Web Table 1. While neither method identified 

any CpG site as significantly associated using a stringent Bonferroni corrected p-value threshold 

of p<1x10-7, the CpG site with the smallest p-value from the covariance test (cg06430102) 

remained the CpG with the smallest p-value (out of the 485,000 CpG sites tested) for the two 

alternative methods (Web Table 1). The CI calculated based on the covariance test, selective 

inference, and the max-|t|-test substantially overlapped (Figure 6; Web Table 1). On a genome-

wide level, the concordance between the liberal covariance test and recommended selective 

inference method was high, implying that both methods agreed on the loci with the strongest 

associations with the exposure (Web Table 2). 

After applying the Frisch-Waugh-Lovell theorem to additionally adjust for covariates, the 

p-values decreased at all five loci (Web Figure 4), suggesting that the approach improved 

statistical power while retaining control for confounding.  

  

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T D

ow
nloaded from

 https://academ
ic.oup.com

/aje/advance-article/doi/10.1093/aje/kw
aa246/5943467 by H

arvard Library user on 05 N
ovem

ber 2020



 
 

13 

DISCUSSION 

As the availability of longitudinal biological and phenotypic data grows in the era of big 

data, combining omics technologies with rigorous epidemiologic methods can reveal critical 

insights about biological mechanisms (37–39).  Specifically, methods from life course 

epidemiology can be translated to “harness the ‘omics’ revolution” (2) and give insights to how 

exposures become biologically embedded. We showed that, under a set of untestable 

assumptions, one such method – the SLCMA – can be used to directly compare life course 

theories and scaled-up to answer nuanced questions about time-dependent exposure-omics 

relationships. For example, if an early childhood sensitive period hypothesis was selected for a 

locus known to be implicated in circadian rhythms, this finding could point to ways in which the 

biological clock is influenced by exposures during periods of heightened plasticity. If the 

accumulation hypothesis was selected for most of the loci implicated in inflammation, this 

finding could suggest dose-response relationships between the exposure and inflammatory 

responses. 

Importantly, not all SLCMA methods for statistical inference are suitable in high-

throughput applications. Our findings recommend the selective inference method and max-|t|-test 

for post-selection inference in omics applications. Our simulations also showed that statistical 

power to detect effects depended on effect size, but not necessarily on the post-selection 

inference method used. When deciding between these two inference methods, researchers will 

need to consider several factors, including goals of analysis and study-specific contexts, as both 

methods have strengths and limitations in these areas (Web Appendix 1). The simulation 

analyses highlight the value of using simulations in scientific research (40,41), especially when 

theoretical assumptions may be violated in a new application setting.  
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The empirical example in the current paper extended the analyses performed by Dunn et 

al. (23), using one of the exposures and the same DNAm data (Web Appendix 3). However, 

these analyses differed by considering two alternative post-selection inference methods (selective 

inference and the max-|t|-test) in the simulations. Comparing the covariance test to these two 

methods, we showed that statistical significance based on p-values may differ across methods. 

The main reason for the discordance between the max-|t|-test and the two lasso-based tests is that 

the max-|t|-test only considers the first predictor selected, whereas the selected inference is based 

on lasso models that also consider subsequent predictors. Researchers should assess p-values in 

parallel with effect estimates and CIs, as decision rules of significance based on p-values of one 

method may be biased due to inflation or overcorrection. Triangulating evidence from multiple 

sources and methods may suggest directions for future replication (42). For example, a CpG that 

was identified as the top site by multiple methods and showed substantial changes in methylation 

levels between exposed versus unexposed individuals may be more likely to capture effects of 

the exposure and worth pursuing in experimental validation. 

Like any statistical method aspiring to address causal questions, the SLCMA relies on the 

usual assumptions that the model is correctly specified and that there is no unmeasured 

confounding (43). In simulations, we showed that when the model is misspecified, the SLCMA 

will identify hypothesized models with predictors that are correlated with the true model’s 

predictors, but with reduced power. Therefore, SLCMA users must recognize that the selected 

hypothesis simply explains the most variation out of the (combinations of) candidate hypotheses 

considered, and there may be another (or non-tested) theoretical model that explains more 

variation. Thus, careful formulation of the hypotheses is critical to capture the most plausible 

causal relationship based on prior literature or reasoning; consideration of alternative hypotheses 
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(beyond those already selected) is also needed as research evidence grows. We would also 

emphasize that the selection of life course models is based both on proper specification of the 

relevant hypothesis and the set of candidate hypotheses included. For example, in our set of 

candidate hypotheses, we considered one sensitive period per time point when the exposure was 

measured. This approach may be inappropriate when the measurements are assessed close 

together in time: for example, for some exposure-outcome pairs we might not claim to 

distinguish a sensitive period at 1.5 years from one at 2.5 years. In such cases, we recommend 

condensing measurements into longer sensitive periods, taking the average exposure over all 

measurements in time period defined by prior literature or reasoning. Such an approach increases 

the statistical power of variable selection procedures by reducing the number of, and correlation 

between, predictors. 

The SLCMA has some limitations beyond the usual assumptions: in the current study, we 

assumed the true hypothesis is represented by a single predictor (i.e., simple hypothesis). 

Identifying more complicated exposure-outcome relationships in the omics settings may be of 

interest but will require large sample sizes to achieve sufficient power. Moreover, the SLCMA 

currently does not accommodate time-varying confounding.  It also does not allow for a different 

set of confounders for each hypothesis. In the empirical analyses, we tried to include a 

comprehensive set of baseline covariates based on prior literature that may be related to both 

childhood abuse and epigenetic changes. In light of these issues, the current results should be 

interpreted as suggestive evidence of loci that warrant future examination and replication in other 

datasets.  Efforts to incorporate time-varying confounding into the SLCMA, such as marginal 

structural models (44,45), are also needed.  ORIG
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Several other limitations of the current study are noted. First, although we varied the 

effect size and compared normal versus empirical distributions of the outcome, we did not vary 

the distribution or correlation of the exposures, due to the number of possible combinations of 

these parameters. Thus, we encourage researchers to perform their own simulations to better 

understand the statistical properties of the SLCMA in their specific research context. Second, we 

restricted our analyses to linear regression-based model selection; a brief discussion on the 

possibility of implementing post-selection inference methods for generalized linear models is 

included in Web Appendix 1. Third, as suggested by the simulations, a typical longitudinal 

epigenetic study with a sample size under 1,000 is likely underpowered to detect small effects. In 

particular, when studying psychosocial exposures such as childhood abuse, we would not expect 

the exposure to have a large effect on DNAm at a single locus. For instance, power would likely 

be under 50% and CI coverage may be lower than 95% when the outcome variation explained is 

below 5%, which has been common in previous epigenome-wide association studies. One 

approach to improve statistical power is to combine data or summary results from multiple 

samples and perform a mega/meta-analysis; developing methods to meta-analyze results from 

SLCMA analyses is an important goal of future work. Another approach is to use the Frisch-

Waugh-Lovell theorem for covariate adjustment, which, as shown in this paper, led to 

improvement in power. Fourth, the current SLCMA framework in the omics setting does not 

restrict or penalize any loci based on their biological significance. One promising direction of 

future research is to leverage functional or regulatory information about the genomic regions 

under consideration (46,47), especially when developmental stage-specific knowledge is 

available, in order to improve power and gain biological insights.  ORIG
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In conclusion, the SLCMA is a useful approach that brings the life course perspective 

into the omics context. Compared to an analysis that only categorized exposure status as exposed 

versus unexposed, the SLCMA not only offers additional mechanistic insights about exposure 

mechanisms, but also increases statistical power when the true underlying exposure-outcome 

relationship is more nuanced (23). As a field, we should move beyond analyses of the presence 

versus absence of exposure, and make full use of repeatedly measured phenotype and omics data 

to generate knowledge that improves human health over the life course.  

 

Word count: 3,808 words 
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Table 1. Commonly Tested Life Course Theories. 

a 
The notations are based on the description of hypotheses by Smith et al.9 Let X1, …, Xm be a set of m repeated binary measures of exposure (0=unexposed; 1=exposed) and T1… 

Tm the corresponding age at the time of measurement. Xj represents the measure at the jth measurement occasion.  
b Examples of how the life course theories could be encoded are shown in the last column, which were tested in the empirical analyses of epigenome-wide structured life course 

modeling approach (SLCMA) of exposure to physical or sexual abuse in childhood. Of note, the accumulation models can also be parameterized differently, such as with non-

linear effects (“u-shaped” or “j-shaped” relationships).  However, for simplicity, we provide the simplest definition of accumulation here, which is also often the most often tested.  

Hypothesis Life course theory Definition Encodinga Exampleb 

Sensitive period The developmental timing 

of exposure X has the 

strongest effect on the 

outcome at a specific time 

point due to heightened 

levels of plasticity or 

reprogramming.  
 

Exposure at a particular time 

point j (Xj) is associated with 

the outcome  

Xj  abuseperiod1 (X1)=exposed (1) vs. 

unexposed (0) at time period 1  

 

Accumulation Every additional time 

point of exposure affects 

the outcome in a dose-

response manner, 

independent of the 

exposure timing.  
 

The accumulated sum of the 

number of exposure 

occasions (A) is linearly 

associated with the outcome. 

A = X1 + … + Xm abuseaccumulation (A) =count of the 

number of time periods exposed to 

abuse (range 0-6) 

Recency More proximal exposures, 

meaning those that happen 

closer in time to the 

measurement of the 

outcome, are more 

strongly linked to the 

outcome compared to 

distal exposures.  
 

The weighted sum (R) of the 

number of exposure 

occasions is linear associated 

with the outcome such that 

the weight of each exposure 

is proportional to the age at 

the time of measurement.  

R = X1T1 + … + XmTm abuserecency  (R) = abuseperiod1 

exposed (1) vs. unexposed 

(0)*(ageperiod1) + …+ abuseperiod6 

exposed (1) vs. unexposed (0) 

*(ageperiod6) 

Mobility The change in exposure 

status between two time 

periods, rather than the 

absolute state at each 

individual time point, 

affects the outcome.  

The unidirectional change 

(𝑀𝑗𝑘
+  or 𝑀𝑗𝑘

− )  between two 

measurement occasions (from 

jth to kth) is associated with 

the outcome. 

Positive change: 𝑀𝑗𝑘
+ =

(1 − 𝑋𝑗)𝑋𝑘    

Negative change: 𝑀𝑗𝑘
− =

𝑋𝑗(1 − 𝑋𝑘)   

 

Abusemobility
+,period1to2 (𝑀1,2

+ ) = [1-

exposed (1) at time period 

1]*exposed(1) at time period 2 
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Table 2. Summary of the Simulations Study Setup. 

a The table is divided into two approaches: to assess the family-wise error rate, we simulated the exposures and outcomes to have no association 

with each other (i.e., under the null hypothesis), and ran a single simulation of 485 000 tests to examine the distributions of observed p-values 

against the expected distribution. To assess the power and confidence interval coverage under the alternative hypothesis, we ran 2 000 simulation 

experiments to allow the confidence interval (CI) of the assessed metrics (i.e., power and CI coverage) to have a radius (i.e., margin of error) of 

1%, setting α to 5%. The two metrics of effect sizes were different with normal versus empirical outcomes due to the difference in the underlying 

data generating processes. Sample size was set to n=700 in all simulations based on the sample size of the empirical study.   
b R2: variance of the outcome explained by the selected predictor; ΔDNAm: difference in average methylation levels between the exposed and 

unexposed individuals 

 

 

 

Under the null (Family-wise error rate)a 

 Predictors Outcome Number of tests 

Normal outcomes Based on exposure to childhood abuse from 

ALSPAC. Seven variables encoding sensitive period, 

accumulation and recency hypotheses.  

𝑦~𝒩(0,1)  485 000 

Empirical 

outcomes 

Based on exposure to childhood abuse from 

ALSPAC. Seven variables encoding sensitive period, 

accumulation and recency hypotheses.  

Resampled DNAm values  485 000 

Under the alternative (Power and confidence interval coverage) 

 Predictors Outcome Effect sizeb 

Normal outcomes Based on exposure to childhood abuse from 

ALSPAC. Seven variables encoding sensitive period, 

accumulation and recency hypotheses.  

Simulated normal variables associated with 

the first predictor (earliest sensitive period) 
 

R2: 0.01 to 0.1 

Empirical 

outcomes 

Based on exposure to childhood abuse from 

ALSPAC. Seven variables encoding sensitive period, 

accumulation and recency hypotheses. 

Simulated beta variables associated with the 

first predictor (earliest sensitive period) 
ΔDNAm: 0.05 to 0.5 

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T D

ow
nloaded from

 https://academ
ic.oup.com

/aje/advance-article/doi/10.1093/aje/kw
aa246/5943467 by H

arvard Library user on 05 N
ovem

ber 2020



 25 

Table 3. Summary of Main Findings: Statistical Properties of Post-Selection Inference Methods. 
Method FWER 

(Figures 1 & 2) 

Statistical power 

(Figure 3) 

CI coverage 

(Figure 4) 

Software availability Computation time 

for an epigenome-

wide analysisa 

Naïve calculation Inflated p-values and 

FWER 

Biased due to 

inflated FWER 

Lower than 

expected coverage 

when effect size is 

small9 

 

Widely available Fast (24 minutes) 

Bonferroni correction Controlled at any 

level 

 

Comparable Overconservative 

(i.e., above 

expected coverage)  

 

Widely available Fast (24 minutes) 

Max-|t|-test Controlled at any 

level 

Comparable Lower than 

expected coverage 

when effect size is 

small 

 

R code provided in 

Web Appendix 2 

Slow (11 hours 51 

minutes) 

Covariance test Inflated p-values and 

FWER 

Biased due to 

inflated FWER 

Expected 

coverage;9 interval 

not necessarily 

contiguous 

 

R Package archived28 Moderate (1 hour 19 

minutes) 

Selective inference Controlled at any 

level 

Comparable Expected coverage R Package available;30 

possible to implement 

generalized linear 

models as well  

Slow (14 hours 13 

minutes) 

FWER: family-wise error rate; CI: confidence interval 
a Computation time was based on analyses running under R 3.4.0 using a high-performance computer cluster with 8GB RAM and a maximum of 6 

CPU cores allotted.  
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Figure 1. Q-Q plots comparing the expected versus observed p-values simulated under the null 

for naïve calculations and four post-selection inference methods (N=700) with normal outcomes, 

where the outcome variables were simulated to follow a normal distribution (scenario 1).  

Legend.A) naïve calculations; B) covariance test (27); C) selective inference (29); D) max-|t|-test 

(26); E) Bonferroni correction 
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Figure 2. Q-Q plots comparing the expected versus observed p-values simulated under the null 

for naïve calculations and four post-selection inference methods (N=700) with empirical 

outcomes, where the outcome variables were resampled from observed DNAm values (scenario 

2).  

Legend.A) naïve calculations; B) covariance test (27); C) selective inference (29); D) max-|t|-test 

(26); E) Bonferroni correction 
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Figure 3. Estimated statistical power and corresponding 95% CI in simulated epigenome-wide 

analyses (n=700), with varying effect sizes.  

Legend. A) normal outcomes; B) beta-distributed outcomes; Technical details about the selective 

inference (29) and max-|t|-test (26) are provided in Web Appendix 1.  
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Figure 4. Estimated confidence interval coverage probability and corresponding 95% CI in 

simulated epigenome-wide analyses (n=700), with varying effect sizes. Gray dashed line 

corresponds to the pre-specified coverage probability (95%).  

Legend. A) normal outcomes; B) beta-distributed outcomes; Technical details about the selective 

inference (29) and max-|t|-test (26) are provided in Web Appendix 1.  
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Figure 5. Estimated statistical power and corresponding 95% CI in simulated epigenome-wide 

analyses (n=700), with varying effect sizes, when the true causal relationship was represented by 

two hypotheses working in combination. 

Legend. A) statistical power of selecting the first hypothesis (n=700), when the true hypothesis is 

a compound hypothesis; B)  statistical power of selecting the second hypothesis (n=700), when 

the true hypothesis is a compound hypothesis; Technical details about the selective inference 

(29) and max-|t|-test (26) are provided in Web Appendix 1.  
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Figure 6. Overlap between confidence intervals based on the covariance test, selective inference, 

and the max-|t|-test in the empirical example, showing the top five loci. 

Legend. Technical details about the covariance test (27), selective inference (29) and max-|t|-test 

(26) are provided in Web Appendix 1.  

 

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T D

ow
nloaded from

 https://academ
ic.oup.com

/aje/advance-article/doi/10.1093/aje/kw
aa246/5943467 by H

arvard Library user on 05 N
ovem

ber 2020



−0.10

−0.05

0.00

0.05

0.10

0.15

cg01370449 cg05072819 cg05936516 cg06430102 cg19170021

E
ffe

ct
 E

st
im

at
e

Post−selection Inference Method

Covariance Test

Selective Inference

Max−|t |−Test

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
TD

ow
nloaded from

 https://academ
ic.oup.com

/aje/advance-article/doi/10.1093/aje/kw
aa246/5943467 by H

arvard Library user on 05 N
ovem

ber 2020




