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Abstract

It is one of the great challenges for a robot to learn compliant movements in interaction tasks. The robot can easily acquire motion
skills from a human tutor by kinematics demonstration, however, this becomes much more difficult when it comes to the compliant
skills. This paper aims to provide a possible solution to address this problem by proposing a two-stage approach. In the first stage,
the human tutor demonstrates the robot how to perform a task, during which only motion trajectories are recorded without the
involvement of force sensing. A dynamical movement primitives (DMPs) model which can generate human-like motion is then
used to encode the kinematics data. In the second stage, a biomimetic controller, which is inspired by the neuroscience findings in
human motor learning, is employed to obtain the desired robotic compliant behaviours by online adapting the impedance profiles
and the feedforward torques simultaneously. Several tests are conducted to validate the effectiveness of the proposed approach.

Keywords: Compliant Robotic Movements; Biomimetic Motor Control; Impedance Adaptation; Learning from Demonstration
(LfD); Human-Robot Interaction and Collaboration.

1. Introduction

Nowadays, an industrial robot is most likely to be pro-
grammed to perform tasks in structured environments. The
robot is controlled under a fixed position control mode with-
out much flexibility and adaptatibility. This kind of robotic5

manufacturing systems can not gradually meet the increasing
requirements of High-Mix, Low-Volume and Short-Cycle pro-
duction in the market [1]. One promising solution to this prob-
lem is to integrate human factors into the robotic manufacturing
systems in order to construct human-in-the-loop human-cyber-10

robot-systems (HCRS) [2]. By taking the advantages of both
robots (e.g., good-repeatability) and humans (e.g., flexibility
and adaptability), it has a great potential to improve the-state-
of-art robotic-based production and to remove the barriers to-
ward the new generation of intelligent manufacturing.15

A number of approaches have been recently developped for
the enhancement of robot learning in order to improve the
robotic manipulation abilities (e.g., [3, 4]). Specifically, learn-
ing from human demonstration has been considered as an ef-
fective and efficient way to bring together humans’ and robots’20

advantages [5, 6]. LfD allows to conveniently transfer human
skills to a robot without the need of an expert’s specific knowl-
edge. LfD has been widely utilized for robotic skill learning in
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the field of human-robot interactions and human-robot collabo-
rations in the last decades [7, 8, 9, 10, 11].25

Most of previous studies in LfD have only concentrated on
the learning of motion movements. These approaches can be
utilized to address the encoding of motion profiles in a specific
task. However, for force-dominant tasks these approaches may
be insufficient. Even in a simple robotic pick-and-place task,30

for instance, when it comes to the consideration of the task dy-
namics compliant manipulation not only the motion planning
should be addressed. Very recently, some researchers in the
society of robotics have developed force/impedance-based ap-
proaches to enable the learning of compliant behaviours from35

humans [12, 13]. What should be emphasized is that the vari-
able impedance control strategy has nearly become a common
view that could help to achieve this point [14, 15]. However, it
is not easy and continent to obtain variable impedance profiles,
and a time-consuming complex process is often required.40

In this work, we propose an approach based on the human
biomimetic motor adaptation to address the above problem.
The overview of the proposed approach is shown in Fig. 1.
It basically consists of there steps: a human user first demon-
strates the robot to perform a task during which the motion data,45

i.e., position and velocity trajectories, are recorded. The inter-
action force information is unnecessary and thus the force sen-
sor is not needed in our approach. This step is optional since
there are other ways to obtain the motion profiles; Then, the
motion encoding model is fitted using the data obtained in the50

first step; Subsequently, during the robotic reproduction of the
task the outputs of the model are used as reference position pro-
files, along which the compliant profiles (impedance and feed-
forward force) are learned based on the biomimetic controller.

Our contribution lies in the integration of biomimetic con-55

trol into a robotic skill learning framework. With our approach
compliant skills including impedance profiles can be efficiently
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learned along the movement trajectories during the task execu-
tions, which can greatly facilitate the learning of human-like
motor skills. Human-robot interactive and collaborative tasks60

have been performed and validated the proposed approach.
The rest of this paper is structured as follows. The related

work is summarized in Section 2. The methodology is present-
ed in Section 3. The experimental evaluation and discussion are
detailed in Section 4. Section 5 finally concludes this paper.65

2. Related Work

Until now, there are four main ways in the literature to ob-
tain proper stiffness trajectories for robotic variable impedance
control, i.e., the EMG-based; the optimization-based; the force-
based; and the biomimetic control approaches, which are sepa-70

rately introduced as below.
i) EMG-based: The EMG (electromyography) signals detect-

ed from human arms can be utilized to extract human limb s-
tiffness features. Therefore, the human arm stiffness profile can
be estimated based on EMG during the interactions with robot-75

s. A number of studies have reported their results on this point.
Typically, [14] proposed an EMG-based tele-impedance con-
cept which could enable to transfer the human arm stiffness to
a teleoperated robot. [16] and [17] proposed an EMG-based
human-robot stiffness transfer interface that could allow robots80

to imitate both motion and impedance behaviours from humans.
[18] and [19] proposed to use EMG signals to adapt impedance
in the human-robot collaboration and coordination control sce-
narios.

Most of the studies utilized the EMG signals to estimate the85

diagonal elements in the human arm endpoint stiffness matrix.
In [20], a model based estimator was developed to extract hu-
man arm complete joint stiffness. However, EMG-based ap-
proaches need a complex process to estimate the parameters of
the EMG-impedance mapping model, which may be sometimes90

time-consuming. The parameters vary from one human user to
another due to the different arm characteristics, and it is quite
difficult to learn a general model for multiple different human
demonstrators. Besides, the human arm configuration would
have a large effect on the estimation results.95

ii) Optimization-based: The optimization-based approaches
prefer to learn a proper stiffness profile for variable impedance
control by using optimization techniques such as reinforcemen-
t learning [21], black-box evolution [22], and adaptive control
[23], etc. A constant reference stiffness trajectory is used for100

the initialization of there models, and then a number of trials
are often required to learn a decent stiffness profile. The disad-
vantage of this method is that it is sometimes not easy to define
a good reward/cost function, especial for a complex task, result-
ing in the need of a large number of trial and error which could105

be harmful to the robotic platforms.
iii) Force-based: Force-based approaches refers to use a

force sensor mounted onto the robotic endpoint during demon-
stration to measure the interaction force, based on which the s-
tiffness is estimated. Typically, [7] used Gaussian mixture mod-110

el to encode the joint dataset (position and force) and then used

Gaussian mixture regression to get the stiffness profile based
on the learned model. [24] extended the work to use hidden
semi-Markov model to model the correction between the posi-
tion/rotation and the force/torque. In [25], the covariance ma-115

trix of the force data was first computed, then the stiffness was
estimated based on the eigenvalues/eigenvectors of the covari-
ance matrix.

Obviously, these approaches need at least one force to esti-
mated the stiffness which could increase the expenses of the120

robotic systems. More importantly, the stiffness estimation
strongly depends on the force signals, making it suffering from
noises and the performance of the force sensor.

The common shortcoming of the methods discussed above is
that they could not enable the robot to automatically adapt the125

impedance in an online manner, making it quite inefficient for
the learning of compliant movements.

and iv) Biomimetic control: Biomimetic control approaches
are inspired by the human motor learning. It argues that the
impedance and feedforward torque/force should be concurrent-130

ly adapted in order to deal with stable and unstable situations
in unknown environments [26, 27]. In [28], a biomimetic con-
troller was proposed based on this argument and implemented
on a robot with one DOF (degree of freedom). [29] extended
this controller for dual robotic arms (each with 2 DOFs) collab-135

oration task in simulation. So far few studies have been reported
to integrate biomimetic control into a robot learning framework
until this work. Here we propose an approach based on this bio-
inspired controller which can enable a robot with high DOFs to
learn compliant motor skills from the human demonstration and140

from the human-robot collaboration.

3. Methodology

In this section, we first introduce the task representation mod-
el used in our approach, i.e., the dynamical movement primi-
tives. Then, the impedance control model is simply presented.145

Finally, the biomimetic controller is given for the adaptation of
the impedance, as well as the feedforward torque.

3.1. Learning a task using DMPs

DMPs is a well-known model which is able to efficiently rep-
resent a skill/task, and has been widely used in a large number150

of articles. It can model and generate human-like movements.
For the sake of completeness, here we give a brief introduction
to DMPs. For more details, please refer to [30, 31, 32]

Basically, the DMPs model can be separated into the follow-
ing two parts.155

3.1.1. Constructing a second-order non-linear system
First, a second-order non-linear system is constructed to

model a specific motion trajectory. Based on the motion type-
s, i.e., the Discrete movements and the Rhythmic movements,
different non-linear systems are needed for different kinds of
tasks. Here we are interested in the former type. For a one-DOF
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Figure 1: The overview of the proposed approach for the learning of compliant skills.

movement trajectory, the system is defined by the following e-
quations [31].

τẏ = k(g − x) − dẋ − k(g − x0)s + k f (s) (1)

τẋ = y (2)

τṡ = −αss (3)

f (s) =

∑N
i=1 γiφi(s)s∑N

i=1 φi(s)
(4)

φi(s) = exp(−hi(s − ci)2) (5)

where x and y represent the angle in joint space (or the position
in Cartesian space) and corresponding velocity of the one-DOF
movement trajectory. The velocity is often obtained by the di-
rect numerical differentiation operation over the angle trajecto-160

ry x. x0 and g represent the initial value and the goal (i.e., the
last value) of the angle trajectory, respectively. Eq. 1 can al-
so be considered as a spring-damping system with the spring
parameter k and the damping parameter d, respectively, which
are often properly chosen in advance as d = 2

√
k. τ is the165

temporal constant which is used to control the evolution dura-
tion of the system. The whole system is driven by the phase
variable s generated from Eq.3 instead of directly using time
such that the evolution of the system can be efficiently edited.
s ∈ (0, 1] starts from 1 and monotonically converges to 0 along170

with the duration of the motion trajectory, granting that the mo-
tion finally converges to goal point. αs is a pre-defined constant
coefficient.

The non-linear force term f (s) in Eq. 1 is determined by E-
q. 4. φi(s) represents the widely used Gaussian basis functions175

with the width hi > 0, and the center ci which is evenly dis-
tributed along with the phase variable s. N represents the total
number of the Gaussian basis which needs to be set in advance.
γi represents the parameters of the DMPs model, which can be
utilized to regulate the shape of the force term and thus to reg-180

ulate the shape of the motion trajectory. It can be seen that the

specific task/skill can be parametrized by a set of parameters as-
sociated with corresponding motion variables (e.g., the starting
point, the goal and the duration of the movement).

Note that Eqs. 1, 2 and 4 are used for each separate DOF,185

which Eq. 3 is shared across all the DOFs. For example, for the
encoding of a 7-DOFs robot arm movements, all the 7 move-
ment trajectories (represented by Eq. 1) are driven by the same
phase variable such that the duration synchronization of the w-
hole system can be strictly guaranteed. Furthermore, Eqs. 1-3190

can be coupled with additional spatial and temporal terms for
specific usages [33, 34, 35].

3.1.2. Learning the DMPs model
The learning of the DMPs model here refers to the learning

of the parameters γi as described above, which can be basically195

considered as a supervised learning problem [6].
Given one demonstration data consisting of a movement an-

gle and a velocity trajectory {xi, ẋi, ẍi}
T
i=1, the following three

steps are performed accordingly to adapt the parameters of the
DMPs model. If the joint velocity and acceleration are not200

available, we can directly derivative the joint angle x at each
time step.

i) First step: s(t) is computed by integrating the canonical
system as shown in Eq. 3.

ii) Second step: we construct a target function ftarget based205

on Eq. 1.
and iii) Third step: locally weighted linear regression is u-

tilized to solve the following equation, and thus to obtain the
model parameter γi.

min(
∑

( ftarget(s) − f (s))2) (6)

We choose the DMPs as the task representation model thanks
to its a number of advantages. The first one of these lies in that
it can be efficiently learned and generalized to other similar task
situations. The second one is that it can represent any shape of210

trajectories theoretically. Furthermore, the optimization of the
parameters can be easily formed as a reinforcement learning
problem [21, 36, 37], which, however, will not be considered in
this work.
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3.2. Impedance Control Model215

Considering a robotic arm with n DOFs, it’s dynamics can
often be expressed in joint space as follows [38].

M(x)ẍ + C(x, ẋ)ẋ + G(x) = τc + JT F (7)

where x, ẋ and ẍ represent the joint angle, velocity and ac-
celeration, respectively. M(x) represents the inertia matrix4.
C(x, ẋ) denotes the Coriolis and Centrifugal forces, and G(x)
is the gravity force. F represents the force applied by the envi-
ronment (including a human operator) in a specific interaction.220

The robotic arm dynamics τdyn = M(x)ẍ + C(x, ẋ)ẋ + G(x) are
assumed known, they are provided by the robot manufacturer,
or they are identified based on nonlinear adaptive control tech-
niques (see e.g., [39]). J represents the robotic arm Jacobian
matrix. τc represents the input control torque which will be de-225

tailed in the following section.

3.3. Learning of Compliant Movement Profiles based on
Biomimetic Control

3.3.1. Robotic Compliant Movement Representation
Given the above robotic arm dynamics, we separate the con-

trol input τc into two parts. Inspired by the human arm motor
learning regulations, the control command can be represented
by the sum of a feedforward command and a feedback com-
mand [40, 41]:

τc = u + v (8)

where u represents the feedforward torque vector, and v repre-
sents the impedance (i.e., the feedback command vector) which
is defined as a PD form in this work.

v = Ke + Dė (9)

with the angle error and the velocity error:

e = xr − x (10)

ė = ẋr − ẋ (11)

where xr and ẋr represent the reference joint angle and the ref-
erence joint velocity, respectively, which are the outputs of the
DMPs model as explained in section 3.1. K and D represent
the stiffness matrix and the damping matrix, respectively. The
stiffness is a diagonal matrix, i.e.,

K = diag{k1, k2, · · · , kn} (12)

where each of the elements corresponds to each joint stiffness
of the robotic arm, and will be adapted according to the task
requirements. The damping matrix is also a diagonal matrix
determined by

D = diag{d1, d2, · · · , dn} (13)

4For simplicity we do not use bold formatting in this work.

Figure 2: The control digram for the learning of impedance and
feedforward force, they are simultaneously learned based on
the errors between the reference and the current robotic motion
ststes. This figure is adapted from [26].

which is determined by

di = 2
√

ki (14)

Until now, the compliant movements in our work include the
movement trajectories, the stiffness profiles and the feedfor-
ward torque profiles. We conclude the compliant movements
as below

Ω = {xi, ẋi,Ki, vi}
T
i=1 (15)

3.3.2. Adaptation Law230

The adaptation strategy of the variable impedance control is
shown in Fig. 2. It shows that the feedforward torque and the
impedance need to be updated at the same time within one con-
trol loop.

In the human motor learning, the goal is to minimize the
movement error and the effort. Accordingly, we consider the
following cost function [28].

Jcost =
α

2
vT v + γ

N∑
i=1

ui (16)

where the forward term is the cost for the movement feedback,235

and the last term is the cost for the feedforward. α and γ are
positive constant coefficients which will be later extended as
vectors for our usage.

With [28], each element in the feedback vector is assumed as
a linear function increasing in both directions.

vi = εi,+ + ζεi,−, ζ ∈ (0, 1) (17)

where εi,+ and εi,− represent the positive part and the negative
part, respectively.240

The sliding error is defined as

εi = π(ei + δėi) (18)

with the positive constant coefficients π and δ
The learning problem can be solved by the gradient descent

law

4ut = αvt − γ


1
...
1


N

(19)
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Then, based on the assumption Eq. 17, the above equation can
be split into three parts, i.e.,

4ut =
α

2
(1 − ζ)εt +

α

2
(1 + ζ) | εt | −γ


1
...
1


N

(20)

with
| ε |= (| ε1 |, | ε2 |, · · · , | εN |) (21)

Finally, yielding the following update law[28]

4Kt = β | εt | −γ (22)

4ut = αεt − (1 − µ)ut (23)

where β is a positive constant gain coefficients, and µ ∈ (0, 1)
is a relaxation factor. The stiffness Ki may become negative,
therefore, Ki are limited into a proper range [Ki,min,Ki,max]N

i=1
In this work, the following three aspects are modified for our245

usage:
i) For the convenient control of a robotic manipulator with

multiple DOFs, we first extend the constant coefficients to vec-
tors. α, β and γ are shared for all the muscles in the motor
learning. However, the joints are separated and not coupled to-
gether for the robot arm. Accordingly, the objective function is
thus adapted to [42]

Job j = min(
α

2
vT v +

N∑
i=1

γiui) (24)

with N dimension vectors α and γ.
ii) The last term of Eq. 22 is adjusted based on the sliding

error instead of constant values by

γi =
a

1 + b | εi |
(25)

where a and b are pre-defined positive constant coefficients.
With this formulation, γi can regulate the increment impedance
of the corresponding joint.250

and iii) The relaxation factor is also not fixed but adapted
based on the error. Eq. 23 is accordingly modified as:

4ut = αεt −
1

exp(| ε |)
ut (26)

The stiffness and feedforward torque are updated by using
Eqs. 22, 25 and 26 at each time step along the movement tra-
jectories.

4. Experimental Validation

In order to verify the effectiveness of the proposed approach,255

the following three experiments have been performed. For all
experiments, the robotic arm is controlled in joint space under
the torque control model with a sampling rate of 2000Hz.

4.1. Simulation Task
The first experiment is a simulation task performed based260

on a simulated Baxter robot in the Gazebo environment5. The
Baxter robot have two arms, each of them has 7 joints, i.e., 2-
DOF shoulder joint (S0, S1), 2-DOF elbow joint (E0, E1), and
3-DOF wrist joint (W0, W1, W2). The task is a simulation
“water-pouring” movement in which all the joints of the robot265

are involved. In the simulation, the robotic arm is controlled
under a free motion manner [see Fig. 3(h)], i.e., no external
force is applied onto the manipulator.

The parameter settings for the DMPs model are: τ =

1, αs = 1, k = 100. The parameter settings270

for this simulation task are as below: π = 1.2,
δ = 0.008, β = [0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.5]T , α =

[5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 8.0]T , a = 0.05, b = 10, and
[Ki,min,Ki,max] = [2, 200]7

i=1.
The simulation results are shown in Fig. 3(a-g). It shows the275

movement trajectories, the stiffness and the feedforward torque
profiles of the 7 joints. The straight dark lines are the trajec-
tories learned by the DMPs model, and the dash ones are the
measured angle trajectories during the reproduction of the task.
It also shows the adaptation of both stiffness and feedforward280

during the evolution of the movement trajectories. The move-
ment, impedance and force/torque of all the joints are adapted.
Almost all the stiffness profiles follow the same pattern: in-
creasing from a small value and then decreasing to a certain
value, which is basically consistent with the human experience285

when performing this kind of tasks. Besides, the adaptation in
time coordinate is also demonstrated as expected. Taking the
last joint (W2) for an example, the stiffness and feedforward
keeps constant during the reaching phase and thereafter they
adapt to complete the “pouring” step (starting from about 2.5s)290

4.2. Handover Task
The second task is implemented on a real-word Baxter robot

which has the same structure with the simulated Baxter robot in
the Gazebo. First, a human demonstrator teaches the robot how
to hand over an object to another human partner, during which295

the robot arm states are recoded. The recorded data are then
modelled by DMPs with the same parameters used in the first
task. Subsequently, the robot play back the handover movement
of the handover task without the human guidance again [see
Fig. 4(h)], during which the stiffness and the feedforward are300

learned at each time step.
The parameter settings for this task are as below: π =

1.3, δ = 0.008, β = [4.0, 2.5, 1.0, 3.5, 0.3, 0.3, 0.3]T , α =

[5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0]T , a = 0.8, b = 10, and
[Ki,min,Ki,max] = [15, 200]7

i=1.305

The experimental results of this task are shown in Fig. 4(a-
g). Again, it shows the robot is able to complete the task while
keeping as compliant as possible: increasing stiffness if needed
to compensate for the movement error, and keeping low if not
necessary. Unlike in the first task, not all the joints are needed310

to adjust their impedance and feedforward values. If one joint

5http://sdk.rethinkrobotics.com/wiki/Baxter_Simulator
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Figure 3: The experimental results of the simulation task.

is not particularly involved, its impedance keeps at the smallest
value.

4.3. Sawing Task

The third task is the human-robot collaborative sawing task.315

The setup for this task is shown in Fig. 5(e). A saw is connected
to one of the robotic endpoints through a specifically designed
module. The robot and the human partner collaborate to saw a
piece of wood which is mounted onto the table. In this task, the
reference angles remain unchanged and the reference velocities320

remain zero.
The settings for the sawing task are given as below: π =

1.3, δ = 0.01, β = [5.0, 2, 0.4, 0.75, 0.4, 0.6, 0.75]T , α =

[5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0]T , a = 0.6, b = 12, and
[Ki,min,Ki,max] = [5, 200]7

i=1.325

The experimental results of this task are shown in Fig. 5(a-
d). It shows the measured angles, the joint torques and the stiff-
ness of the 7 joints. There are three joints (i.e., S1, E1 and W1)
mainly involved during the task execution, while the others (i.e.,
S0, E0, W0 and W2) almost keep constant(see Fig. 5(d)) since330

these joint angles do not change much during the sawing peri-
ods. It can be seen that the stiffness profiles of the three joints
could be automatically adapted to the human partner during the
sawing process. When the human partner increases his strength
to pull the saw, the robot arm impedance increases gradually.335

When the robot arm impedance becomes large to some extent,
the robot would start to pull it back while the human partner
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Figure 4: The experimental results and setup of the handover task.

loosening this arm strength. This period then repeats over and
over until the task is finished finally.

4.4. Discussion340

From the experimental results, we can conclude that it is
meaningful and helpful for a robot in a dynamic environment
(e.g., handing over an object to a human partner, or collectively
sawing with its human partner) to continuously adapt the in-
teraction force/torque/impedance to satisfy the requirements of345

the task situations. Even for a free-force motion task (e.g., the
simulation task in this work), the adaptation of impedance and
feedforward torque can indeed help to obtain compliant robotic
behaviours. The impedance and the task-specific torque pro-
files are simultaneously obtained without the need of learning350

the interaction dynamics.

As stated before, several methods can be utilized to obtain
variable impedance profiles. The EMG-based stiffness estima-
tion methods (see e.g., [16, 17, 18, 43]) need an offline time-
consuming process to identify the human arm impedance mod-355

el. Another typical way to acquire proper impedance profiles is
to refine them through interacting the environment based on re-
inforcement learning (RL) [37] or black-box (BB) optimization
[44]. It usually needs a number of trials to finally learn a proper
stiffness trajectory which may also be time-consuming for some360

complex tasks. Furthermore, compared with the force-based s-
tiffness regulation methods (e.g., [24, 25], no additional force
sensor is needed in this work which could reduce the cost of the
robotic system.
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Figure 5: The experimental results and the setup of the collaborative sawing task.

There are at least two open strategies that may be used to im-365

prove our approach: i) Although the impedance and the torque
profiles are learned online and therefore it is free of the time-
consuming problem, however, it is difficult to always obtain a
good tracking performance because many coefficients need to
be properly set in advance. One possible solution is to balance370

the efficiency and the tracing accuracy by combination of the
proposed approach and the RL-based or BB-based optimiza-
tion techniques. ii) In this work, two-stage is needed for the
representation of the movement and the learning of impedance
as well as feedforward torque. The movement is encoded in375

parametric space, while the impedance and the feedforward are
updated at the trajectory level. It would be much better to de-
velop a unified representation for all the compliant profiles Ω

(Eq. 15), which will largely be advantageous to the robotic
skill learning.380

5. Conclusion

In this work we propose a approach that can enable robots to
learn compliant motor skills. Specifically, the compliant pro-
files include movement trajectories, impedance/stiffness pro-
files and joint feedforward torques. The DMPs model is utilized385

8



as the representation model for the encoding of the movement
trajectories. The impedance and the feedforward profiles can
be efficiently obtained based on a biomimetic controller dur-
ing the task executions, which is derived from the human motor
learning principles. The proposed approach has been verified390

by three tasks: the simulation task, the handover task on the
Baxter robot and the human-robot collaboration task. In the fu-
ture work, we will continue to improve the proposed approach
as discussed above, and to implement our approach on more
complex tasks.395
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