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Abstract 

Nickel-based superalloys such as Hastelloy X (HX) are widely used in gas turbine 

engines for their exceptional oxidation resistance and high-temperature strength. The 

addition of ceramic reinforcement further enhances these superalloys’ mechanical 

performance and high-temperature properties. For this reason, this paper investigates 

the microstructure and mechanical property of laser powder bed fusion (LPBF) 

additively manufactured HX–1 wt.% WC (tungsten carbide) composite specimens. 

The results demonstrate that the LPBF-fabricated composite was observed to have 

several pores and microcracks, while only pores were detected in the as-fabricated 

pure HX. Compared to the fabricated pure HX, the tensile yield strength of such HX 

composite parts was increased by 13% without undue sacrifices to ductility, 

suggesting that the very limited number of microcracks were not sufficient to degrade 

the mechanical performance. The significantly increased dislocations were considered 

to be the primary contributor for the mechanical performance enhancement in the 

LPBF-fabricated composite material. The findings offer a promising pathway to employ 
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LPBF process to fabricate advanced microcrack-free composites with high-strength 

through a careful selection of ceramic reinforcement materials.  

Keywords: Additive manufacturing; Laser powder bed fusion; Ceramic particles; 

Composites; Mechanical performance; Cracking 

1. Introduction  

Laser powder bed fusion (LPBF) is an additive manufacturing (AM) process in which 

metallic powder is selectively melted layer by layer using a high-power laser source [1] 

[2]. Nickel-based superalloys are widely used in gas turbine engine components due 

to these materials’ unique combination of oxidation resistance, formability and 

mechanical properties in the temperature range of 540–1000 °C [3][4]. The benefits of 

using Hastelloy-X (HX) alloy over other nickel-based superalloys include superior high-

temperature strength, better oxidation resistance and stress-corrosion cracking 

resistance. For instance, compared to Inconel 718 and Inconel 625, HX alloy is 

resistant to stress-strain cracking in petrochemical applications and offers good 

ductility, even at temperatures as high as 1200 °C [5]. The inclusion of molybdenum 

enables HX harder, stronger at high temperatures, and also makes it great for welding 

applications. Because of these reasons, HX alloy is widely used in gas turbine engines 

for combustion zone components, such as transition ducts, combustor cans and flame 

holders.  Because of the capability and flexibility of the LPBF process, in which metallic 

components with complex geometries can be rapidly fabricated, the LPBF of nickel-

based superalloys has recently attracted increased attention as a promising 

technology for the manufacture of complex structural components for the gas turbine 

engine sector [6][7].  

Metal matrix composites (MMCs) exhibit the advantages of both matrix materials 

and reinforcement phases and are usable in various applications in the aerospace, 

defence and automotive domains [8][9]. Thus, the LPBF of MMCs has also received 

growing interest from both the academic and engineering communities. As a result, a 

wide range of reinforcement particles such as Al2O3, TiC, SiC, WC and TiB2 have been 

successfully employed in the LPBF of MMCs [10][11][12][13].  

To date, several studies have focussed on combining the LPBF of nickel-based 

superalloys and MMC philosophy to additively manufacture nickel-based composites. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



However, the matrix materials employed in these studies mainly include Inconel 718 

and Inconel 625. For instance, Gu et al. [14] investigated nano-TiC-reinforced Inconel 

718 composites and found that refined near-spherical TiC reinforcements were evenly 

distributed in the matrix after the LPBF process, and much higher nanohardness 

values and lower wear rates could be obtained compared to the un-reinforced Inconel 

718 components. Zhang et al. [15] studied the anisotropic corrosion resistance of TiC 

reinforced Inconel 718 composites fabricated by LPBF. They have found that the XZ-

plane (parallel to the build direction) exhibited a weak anti-corrosion property because 

of the inhomogeneous microstructures, while the XY-plane (perpendicular to the build 

direction) was more prone to corrosion due to the irregular pores and clustered ring-

like structures. Wang et al. [16] investigated the effects of carbon nanotube 

reinforcements on the LPBF-fabricated Inconel 625 composites. They have 

demonstrated that the composite exhibited a significant improvement in tensile 

strength with less elongation, this is because the composite offered a slightly faster 

cooling rate compared to the pure alloy. Rong et al. [17] investigated the gradient 

interface and wear performance of LPBF-fabricated Inconel 718-WC composite. Their 

findings revealed that the wear mechanism changed from abrasive wear to adhesive 

wear when the composite was subjected to dry sliding wear test. Nguyen et al. [18] 

studied the microstructure and mechanical properties of Inconel 718-WC composite 

fabricated by the LPBF process, with the size of the WC particles varying from 15 µm 

to 53 µm. They found that the WC particles hindered grain growth in the solidification 

stage and that the intermediate layer and strong bonding between WC particles and 

the matrix resulted in significant improvement in both microhardness and tensile 

strength. Thus, there is a scope to conduct similar research investigations but in the 

context of HX to study whether HX composites built with the LPBF could also exhibit 

similar improvements.     

Previous studies have reported that the strengthening effect improves with 

decreases in the size of the reinforcement particles [19]. However, when this size 

reaches the sub-micrometre and nano regions, the high surface-area-to-volume ratio, 

along with the strong van der Waals force, together enable the reinforcements to 

agglomerate and form clusters. In turn, this represents a challenge for dispersing 

uniformly the sub-micrometre reinforcement particles amongst the metallic powder. 

One common method for dispersing such sub-micrometre reinforcement particles is 
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the high-energy ball-milling process, in which a certain number of very hard milling 

balls are used to disperse the mixed powders for a few hours [20][21]. The high energy 

that is generated during the ball-milling process, however, can damage the crystal 

structure of the metallic powder in addition to the chemical contamination that 

generally takes place after a long milling time.  

In this context, the aim of this study is to synthesise HX with 1 wt.% sub-micrometre 

WC feedstock using a dual asymmetric high-speed mixing technique to uniformly 

disperse the WC reinforcement without damaging the crystal structure of the HX. The 

WC sub-micrometre ceramic particles were selected because WC could retain its 

room temperature hardness up to 1400 ˚C; it also exhibits excellent wear resistance, 

corrosion resistance and chemical stability with no phase changes during heating and 

cooling [22][23][24]. The addition of WC particles is expected to result in the 

enhancement in tensile strength and also improve the composite’s high-temperature 

properties, which offers great potential for advanced HX composite in the applications 

of gas turbine engines. Another novelty of this work is its exploration on the 

microcracking formation mechanism for LPBF-fabricated composites.  

2. Materials and experimental procedure  

2.1. Feedstock powder materials  

    The commercial HX powder used in this study was provided by Sandvik Osprey 

(Neath, UK) through gas atomisation with nitrogen. Using laser diffraction analysis, the 

HX powder was measured to have an average particle size of 34 µm, with a spherical 

morphology (Fig. 1a/c). The alloying composition (wt.%) of the HX powder is shown in 

Table 1.  

Table 1.  

Alloying composition of the HX powder. 

Element Cr Fe Mo Co W Si Ti Al C Ni 

wt. % 21.4 18.6 9 1.49 0.58 0.15 0.01 0.04 0.014 Bal. 

The sub-micrometre WC reinforcement particles (150–200 nm) were acquired from 

Sigma Aldrich (UK). As mentioned earlier, due to the high surface-area to volume ratio, 

such particles tend to agglomerate to form clusters (Fig. 1b).  
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Fig. 1. Feedstock powder materials used in this study: (a) original Hastelloy X powder; (b) 
agglomerated WC particles; (c) particle size distribution of Hastelloy X powder; (d) high-

speed mixed Hastelloy X with 1 wt.% WC composite powder. 

    A commercial high-speed mixer (SpeedMixer, DAC 800.1 FVZ, Hauschild, 

Germany) with a maximum speed of 2,000 rpm was used to synthesise the HX–1 wt.% 

WC composite feedstock. The mixer employs a dual asymmetric technology to 

disperse the WC particles. The mixing parameters include a mixing speed of 1,200 

rpm, with 5 minutes of mixing time. Fig. 1d shows the synthesised HX-WC composite 

feedstock. The WC clusters were successfully broken up and dispersed on the surface 

of the HX powder, which suggests that the high-speed mixing process separated the 

clusters by overcoming the van der Waals adhesive force.  

2.2. Specimens and selective laser melting 

A Renishaw AM250 (Renishaw Plc, UK) system was employed in this study to 

fabricate both the tensile and lattice specimens. Based on preliminary experiments, 

the optimum primary parameters for building the HX and HX-WC composite samples 

were determined to be as follows: laser power = 200 W; layer thickness = 40 µm; hatch 

spacing = 100 µm; scanning speed = 600 mm/s [25]. The rotation angle was set to 67º 

between any two adjacent layers to minimise the porosity of the fabricated samples 
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(Fig. 2a). The dimensions of the tensile specimens were determined based on the 

ASTM-E8/E8M-13a guidelines (Fig. 2b). The tensile specimens are used to examine 

the effects of WC reinforcement on the mechanical properties of the LPBF-fabricated 

composites. It should be noted that the laser beam is running in pulsed mode with a 

point distance of 60 μm to manufacture samples rather than in continuous mode (Fig. 

2c).  

 
Fig. 2. Schematic of the employed laser melting strategy and samples: (a) the laser melting 

strategy; (b) the dimensions of the tensile specimens; (c) the working mode of the employed 

pulsed laser beam.  

2.3. Material characterisation 

    Both pure HX and HX-WC composite samples were vertically sectioned, ground 

and polished prior to inspection via optical microscopy (OM) and scanning electron 
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microscopy (SEM) similarly to the procedure described in [26]. The polished samples 

were electrochemically etched using oxalic acid to reveal the microstructure and 

molten pools that formed. Backscattered electron (BSD) SEM mode was used to 

investigate the distribution of the WC particles and energy-dispersive X-ray 

spectroscopy (EDS) mapping was employed to examine the chemical composition of 

the as-fabricated specimens. Electron backscatter diffraction (EBSD) analysis was 

performed using a high resolution Jeol 7800F FEG-SEM equipped with an Oxford 

Instruments AZtec EBSD system, to study the microstructure evolution and grain 

crystallographic orientations. Uniaxial tensile testing was performed using a 

Zwick/Roell tester (maximum load of 100 kN) with a strain rate of 1.33 x 10-3 s-1 at 

room temperature. The engineering tensile stress-strain curves were then obtained on 

the basis of two specimens for each material.  

3. Results 

3.1. Surface finish 

Fig. 3 shows the surface finish of the as-fabricated pure HX and HX-WC composite 

samples. Both balling and spattering surface defects were observed on the top surface 

of the two samples (Fig. 3a–b). The balling defects were more likely to have been 

formed in the ‘valley zone’, where two adjacent tracks overlap. These defects typically 

occur because, during the solidification stage, the thermal gradient and surface 

tension gradient enabled the formation of unstable molten tracks. As a result, the 

molten materials tend to reduce the surface energy and to form balls on the track edge 

[27]. Balling is detrimental to surface quality and can be controlled by optimising the 

process parameters. 
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Fig. 3. Surface finish of as-fabricated samples: (a) pure HX; (b) HX–1 wt.% WC composite; 
(c)-(d) EDS spectrum taken from the zone in (b) showing the WC particles on the sample 

surface.  

In addition to balling defects, spattered particles were also observed on the top 

surface and were distributed more randomly [28]. These spattered particles may be 

classified into two types based on particle size: (1) large spatters with sizes greater 

than 10 µm, and (2) small spatters below 10 µm. The mechanism of spatter formation 

has already been investigated in several previous reports (see [29] [30] [31]) and will 

not be discussed in the present work. Fig. 3c and d show the EDS spectrum taken 

from the measured area referenced in Fig. 3b. In addition to peaks of the primary 

alloying elements (i.e. Fe, Ni and Mo), strong W peaks were also detected, implying 

the existence of WC particles on the surface of the HX-WC composite samples. The 

Marangoni convection drove the migration of WC particles in molten pools; the WC 

particles were dispersed and the majority stayed inside the molten pools, while the 

rest were pushed out and stayed on the surface after the solidification. Another factors 

that caused the WC particles motion to the surface zone include the recoil pressure 

induced by the evaporation of the boiled molten HX material [32] and the poor 

wettability of WC ceramic particles so that some WC particles remained on the surface 
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of the melt pools after rapid solidification. It should be noted that the poor wetting 

between the WC particles and the molten HX material may result in interfacial defects 

in the fabricated composite components.  

3.2. Microstructure analysis  

    Fig. 4 shows the microstructure of the vertical sections (parallel to the build direction) 

for both pure HX and HX-WC composite under optical microscopy (OM). Both samples 

were measured to have a relative density greater than 99.3%, on the basis of the 

Archimedes method. A few open pores smaller than 40 µm were observed on the pure 

HX (Fig. 4a), while several extra microcracks were found to have formed on the 

composite sample (Fig. 4c). The factors that could cause porosity include a lack of 

fusion [10], the inclusion of oxide [33], internal gas porosity from the feedstock [34] 

and gas entrapment during laser melting [35]. When the molten pools for the etched 

samples were compared, pure HX visibly exhibited much narrower and deeper molten 

pools compared to the composite, even though the samples were manufactured under 

the same conditions (Fig. 4b and d). This outcome may be explained by the addition 

of 1 wt.% sub-micrometre WC particles, which altered the material thermal conductivity 

and regulated laser absorption. Many studies have demonstrated that the composite 

powder feedstock witnesses a significant increase in laser absorption due to the 

increase in surface roughness [36][37][38], while the effective thermal conductivity 

reduces because of the interfacial thermal resistance compared to the matrix alloys 

[39][40]. The changes in thermo-physical properties could further affect the size of 

melted zone and heat affected zone. In addition, the melting dynamics is also altered 

due to the changes in viscosity and weldability after the addition of WC particles, which 

also changed the molten pool shapes of the as-fabricated composite. In addition to the 

open pores that were observed, several microcracks along the build direction (referred 

to and annotated as BD in Fig. 4 and following figures) were also detected in the 

composite specimen (Fig. 4d). The possible mechanisms for microcrack formation will 

be discussed in the next subsection.  
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Fig. 4. OM images showing the microstructure of vertical sections of (a)-(b) as-fabricated 
pure HX; (c)-(d) as-fabricated composite specimen.  

Fig. 5 shows the microstructure of the two samples under SEM examination. For 

both samples, fine cellular and columnar solidification structures were observed to 

have formed. The size of cellular structures and grains orientation are known to be 

linked to solidification conditions such as cooling rate and thermal gradient [41] [42]. 

One should note that the columnar grains grew across the fusion boundaries (Fig. 5a), 

indicating that the grains grew along the positive thermal gradient. The dendritic 

spacing was not found to differ significantly between the pure HX and composite 

specimens. The microcracks that formed in the composite were measured to vary from 

several to a hundred micrometres, which implies that the cracks propagated to a few 

layers along the build direction. In addition, the microcracks tended to form at the grain 

boundaries, which suggests that they were intergranular cracks.  
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Fig. 5. SEM images showing the microstructure of as-fabricated samples: (a) pure HX with 

typical solidification structure formed; (b) microcrack formed in the composite specimen. 

It should be noted that microcracks were not detected in the fabricated pure HX 

alloy, but were observed in the composite samples, suggesting that the added sub-

micrometre WC particles enabled the grain boundaries more susceptible to hot 

cracking. Considering the coefficient of thermal expansion (CTE) of HX alloy and WC 

ceramic material, which are 15 μm·m-1·K-1 and 5.5 μm·m-1·K-1, respectively, the 

difference in CTE thus was a possible contributor to the microcracks formation. 

Furthermore, the microcracks could be easily generated if the sub-micrometre WC 

particles agglomerated at the grain boundaries during the rapid solidification process.  
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Fig. 6. The uniform distribution of WC particles in HX matrix: (a) high magnification SEM 

image of the composite; (b)-(f) EDS mapping for the area shown in Fig. 6a.  

A high-magnification BSD-SEM micrograph reveals the distribution of WC particles 

in the HX matrix (Fig. 6a); considering the CTE difference between WC particles and 

the HX matrix, a higher dislocation density was expected in the as-fabricated 

composite to enhance the mechanical strength, which will be investigated in the next 

subsection. The BSD-SEM micrograph also clearly shows that the majority of the WC 

particles were uniformly distributed in the HX matrix, as confirmed by the EDS 

mapping analysis (Fig. 6b-f). This may be due to the fact that during the rapid melting 

and solidification stage, the Marangoni convection in the molten pool could have 

contributed to break the WC clusters and disperse the fine particles, rather than further 

agglomerating them together. The Marangoni convection is known to be derived from 
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the molten pool surface’s tension gradients; the molten fluid tends to flow from hot 

areas to relatively cool areas in the molten pool [43][44]. The EDS mapping analysis 

also reveals that segregation occurred within the LPBF process and the segregated 

phase was found to be Mo-enrichment around the fine cellular structure (Fig. 6c).  

Fig. 7 shows the EBSD micrographs for both pure HX and composite materials. 

These images are useful for the investigation of the added WC particles in changing 

the microstructure of HX-WC composites. Both materials offered random grain 

orientations but the grain size and morphology differed in the two samples after the 

LPBF process (Fig. 7a/c). In addition, a large number of columnar grains formed in 

both materials, suggesting that the added WC particles may not be an effective 

nucleating agent to promote the heterogeneous nucleation and formation of finer 

grains in the fabricated HX-WC composite. However, the composite exhibited a 

significant increase in LAGBs compared to the pure HX material on the basis of the 

EBSD image quality maps (Fig. 7b/d). The LAGBs or subgrain boundaries are those 

grains with a misorientation less than 10 degrees and are generally composed of an 

array of dislocations.  
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Fig. 7. EBSD images of the fabricated samples: (a) inverse-pole figure (IPF) map of the pure 

HX; (b) EBSD image quality (IQ) map with high-angle grain boundaries (HAGBs) and low-

angle grain boundaries (LAGBs) superimposed for the pure HX; (c) IPF map of the 

composite; (d) IQ map with HAGBs and LAGBs superimposed for the composite. HAGBs 

(>10°) are coloured blue and LAGBs (2°-10°) are red. 

As mentioned before, the difference in CTE between the HX matrix and WC 

particles was a possible contributor for the microcracks formation in the fabricated HX-

WC composites. On the other hand, such CTE mismatch was the primary contributor 

to the significant increase in dislocations for the composite. Previous studies have 

suggested that the contribution of CTE mismatch strengthening is significant in LPBF-

fabricated composites because the CTE difference between the matrix and ceramic 

particles increases with temperature [45][46]. The entanglements of dislocation lines 

were anticipated to hinder the dislocations’ motion and could have enhanced the 

mechanical strength of the fabricated composite material. It can be anticipated that the 
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LPBF-fabricated advanced composites with high-strength and without microcracking 

defect could be achieved through a careful selection of ceramic reinforcements.  

3.3. Mechanical behaviour  

    Fig. 8 shows the tensile test results of both the as-fabricated pure HX and HX-WC 

composite specimens and their fracture surfaces. The two specimens (hereafter 

referred to as HX-a and HX-b) were used to obtain the stress-strain curves for pure 

HX, while HX-WC-a and HX-WC-b were used for the composite material. The tensile 

performances for both cases were found to be very consistent. For pure HX, the yield 

strength and elongation were found to be 590 ± 5 MPa and 37 ± 2%, respectively. 

Compared to pure HX, the composite specimens were found to have a roughly 80 

MPa increase in yield strength, while no significant reduction was found in elongation; 

an average elongation value of 32% was determined. The 13% enhancement in yield 

strength may be explained by the addition of the 1 wt.% sub-micrometre WC particles. 

It should be noted that the limited number of microcracks that formed in the composite 

material were not found to have significantly degraded the tensile strength. However, 

these may reduce the fatigue performance of the LPBF-fabricated composite 

specimens.  

 

Fig. 8. Tensile performance of as-fabricated samples: (a) tensile stress-strain curves of as-

fabricated pure HX and HX-WC composite; (b) fracture surface for pure HX; (c) fracture 

surface for the composite.  
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    The fracture surfaces of both pure HX and HX-WC composite samples after tensile 

testing are shown in Fig. 8b-c. Both samples exhibited significant necking phenomena 

which is consistent with the fact that similar elongation values were found. Compared 

to the open pores observed in the as-fabricated samples, both the microcracks and 

pores were further opened under uniaxial loading. The limited number of cleavage-like 

fracture features and the large number of dimples observed imply a dominance of 

ductile fracture behaviour for both materials. This type of fracture behaviour in the 

present study was different from that found in the authors’ previous study [6], in which 

some elongated grains with a dendritic structure were observed in the fracture surface. 

This behaviour may be attributable to the difference in the build and loading directions. 

In particular, the build direction was parallel to the uniaxial loading direction in the 

previous work [6], while the two directions were perpendicular in the present work. 

Another possible factor could be the slight difference in alloying composition between 

the used HX materials.  

 

Fig. 9. ‘Yield strength’ versus ‘elongation to failure’ values between HX composites and 
typical Inconel alloys [47][48][49][50][16]. 

The ‘yield strength’ versus ‘elongation to failure’ values for HX composites 

materials reported in the present study compared to the typical Inconel alloys from the 

literature are shown in Fig. 9. The LPBF-fabricated Inconel 718 alloy exhibited over 

500 MPa increase in yield strength but also witnessed over 15% reduction in 

elongation to failure compared to the HX composites. The as-fabricated Inconel 625 
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alloy was found to have comparative yield strength values, but the elongation values 

were around 5% lower compared to the HX composites. The differences in mechanical 

performance between HX composites and typical Inconel alloys indicate that the 

chemical composition plays a significant role in determining the mechanical behaviour 

of LPBF-fabricated nickel-based superalloys. As mentioned before, the addition of 

molybdenum in HX alloy enables this material harder, stronger at high temperatures, 

and also makes it superior for welding applications compared to Inconel alloys.  

The underlying microstructure mechanisms between HX and typical Inconel alloys 

may be attributable to the different precipitation strengthening phases induced by the 

alloying elements. For instance, the addition of Al and Ti alloying elements in Inconel 

718 contributes to the formation of gamma prime phase, which significantly enhances 

the strength of LPBF-fabricated Inconel 718. The added Nb alloying element enables 

the formation of gamma double prime in Inconel 625 to strengthen this superalloy at 

lower temperatures (below 700 °C). Compared to Inconel 718 and Inconel 625, HX 

alloy is a solid-solution strengthening superalloy, which is composed of gamma phase. 

The addition of sub-micrometre WC ceramic particles could enhance the strength of 

LPBF-fabricated HX composites through the CTE mismatch strengthening and grain 

refinement strengthening mechanisms. 

4. Discussion  

The experimental results of this study demonstrate that the added 1 wt.% sub-

micrometre WC particles enabled a roughly 13% improvement in tensile yield strength 

on the basis of the tensile specimens. The high-speed mixing process was confirmed 

in this study to be capable of evenly dispersing WC particles on the surface of HX 

particles. Following the completion of the LPBF process, the majority of the WC 

particles were observed to be uniformly distributed in the HX-austenite matrix. The 

underlying microstructure evolution mainly include ceramic reinforcements 

strengthening and microcracking formation mechanisms induced by ceramic particles 

agglomeration. Fig. 10a shows a schematic of the potential strengthening mechanism. 

The primary strengthening mechanism could be the CTE mismatch strengthening that 

occurs in the composites, where the dislocation density and residual stresses increase 

due to the mismatch of CTE between the sub-micrometre WC and HX alloy. This 

strengthening mechanism has been confirmed by our EBSD examination that a much 
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higher dislocation density was detected in the fabricated composite samples 

compared to the pure HX alloy. However, during the rapid solidification stage in LPBF 

process, the relatively fine WC particles (150–200 nm) may not act as nucleation sites 

to promote heterogeneous nucleation and enable the formation of fine grains, because 

a large number of columnar grains also formed in the as-fabricated composite samples. 

This may be explained by the high lattice disregistry value between WC and Ni (the 

matrix in HX alloy) crystals. The degree of potency of the nucleation catalysts could 

be explained on the basis of the disregistry between the lattice parameters of the 

substrate and the nucleating phase via the planar crystallographic disregistry theory 

[51]. 

 

Fig. 10. Schematic of (a) the enhanced dislocation density mechanism and (b) intergranular 

microcrack formation.  

This study has confirmed that the addition of 1 wt.% WC particles could contribute 

to a remarkable enhancement in tensile strength of the as-fabricated composite at 

room temperature. Considering the high-temperature applications of the HX 

superalloy and the superior hardness, high melting point of WC ceramic particles, the 

SLM-fabricated HX-WC composite is expected to enable a significant improvement in 

mechanical performance at high temperatures compared to the pure HX alloy, which 

will be investigated in future work.  

The introduction of sub-micrometre WC particles, in addition to enhancing 

mechanical strength, was also found to result in microcrack formation at the grain 

boundaries, while those microcracks were not detected in the pure HX after the LPBF 

process. Fig. 10b shows a possible microcrack formation mechanism in the LPBF-

fabricated HX-WC composites. Because of the size of the WC particles (150–200 nm), 
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when a few particles agglomerated on the grain boundaries, those boundaries may 

tend to become susceptible to hot cracking. Previous studies have reported that Mo-

rich and Cr-rich carbides segregate at grain boundaries in the additive manufacturing 

of HX alloy [52][53]. The Mo-rich carbides were also detected in the fabricated 

composite sample based on our EDS mapping. The carbides, together with WC 

clusters, may result in microcrack formation when the accumulated thermal residual 

stress is sufficient to pull apart two grains, thus forming microcracks. Such microcracks 

could then propagate along the build direction and grain boundaries and extend to a 

few layers in length.  

5. Conclusion  

    This study has confirmed that the addition of sub-micrometre WC particles to 

Hastelloy-X (HX) powder could lead to improved tensile strength when manufacturing 

HX superalloy specimens using the laser powder bed fusion (LPBF) process. This 

result was derived by investigating for the first time the microstructure and mechanical 

behaviour of Hastelloy X–1 wt.% WC composite fabricated via LPBF additive 

manufacturing. This paper has also proposed the possible cracking formation 

mechanism induced by the added WC particles in the fabricated composites. The 

following findings were derived from the experimental work.  

(1) The LPBF-fabricated composite was observed to have a limited number of 

pores and microcracks, while only pores were detected in the as-fabricated 

pure HX. The cracks formed in the composite were distributed along the grain 

boundaries, indicating that they were intergranular cracks. One possible 

cracking formation mechanism was that the sub-micrometre WC particle 

clusters, together with the segregated carbides, caused the grain boundaries 

to be more susceptible to cracking; when the accumulated thermal residual 

stress is sufficient to pull apart the grains, hot cracking can occur.  

(2) Compared to pure HX, the introduction of 1 wt.% sub-micrometre WC particles 

contributed to an approximately 13% improvement in tensile yield strength on 

the basis of tensile specimens but without a significant sacrifice in elongation. 

The significantly increased dislocations were considered to be the primary 

contributor to the mechanical performance enhancement in the LPBF-

fabricated composite material.  
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Future work will study both theoretically and experimentally the microcracking 

formation and the corresponding elimination for composites manufactured via the 

LPBF additive manufacturing process. In addition, while this study has only 

investigated the effects of 1 wt.% sub-micrometre WC particles on the mechanical 

behaviours of LPBF-fabricated composites, different levels of WC reinforcement will 

be investigated in future work. It can also be anticipated that the LPBF-fabricated 

advanced composites with high-strength and without microcracking defect could be 

achieved through a careful selection of ceramic reinforcements. 
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