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ABSTRACT 

The quadric-surfaced sludge digester (QSD), also known as the egg-shaped sludge digester, 

has proven its advantages over traditional cylindrical digesters recently. A reduction in 

operational cost is the dominant factor. Its shell can be described as a revolution of a parabola 

with the apex and base being either tapered or spherical. This shape provides a surface free of 

discontinuities, which is advantageous regarding the efficiency during mixing. Since the shape 

does not produce areas of inactive fluid motion within the tank, sludge settlement and an 

eventual grit build-up are avoided. The stresses developed in the shell of the sludge digester, 

vary along the meridian and equatorial diameters. A non-dimensional parameter, ξ, defines the 

height-to-diameter aspect ratio which is used to delineate the parametric boundary conditions 

of the shell’s surface. Three groups of analyses were conducted to determine the orthogonal 

stresses in the shell of the QSD. The first-principles numerical models ran reasonably quickly, 

and many iterations were made during the study. The results showed that they were in within 

the range 5.34% to 7.2% to 2D FEA simulations. The 3D FEA simulations were within the 

range of 8.3% to 9.2% to the MATLAB time-history models. This is a good indicator that the 

first principles numerical models are an excellent time-saving method to predict the behaviour 

of the QSD under seismic excitation. Upon examining the criteria for the design, analysing the 

results for the 2D FEA simulations showed that the fill height is not a significant variable with 

sloshing however the 3D FEA showed that the hydrostatic pressure is a significant variable. 

The maximum principal stress was found to be 5.457 MPa whilst the maximum Von Mises 

stress was found to be 22.73 MPa With the maximum tensile stress of the 3D-printed ABS 

being 24.4 MPa, the overall maximum stress of 5.45 MPa, the criteria for design has been 

developed for the Serviceability and Ultimate limit states. Hence the material can be a viable 

option for the use of QSD construction in small island developing states (SIDS). A design guide 

has been developed that will aid the structural engineer to size the QSD as well as design 

against the failure criteria. 

Keywords: quadric-surfaced, egg-shaped sludge digester, 3D printing, wastewater reactor, 

shell structures, hydraulic infrastructure 
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1.0 Introduction  
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1.1 Overview 

1.1.1 Introduction 

Water conservation is a crucial objective in water resource management across the globe. Climatic 

changes have redistributed rainfall intensities causing smaller islands to look closer at water quantities 

accounting. The reuse of wastewater has now become essential in areas where low potable water levels 

are existent. Traditionally, domestic wastewater across small island developing states (SIDS), have been 

treated via localised septic tanks. In much low-income residential and rural communities, pit latrines 

are still being utilised. There is a degree difficulty for assessing proper functionality of these structures 

since little or no maintenance usually occurs during the life of these hydraulic structures. Hence, 

groundwater contamination in the indigenous aquifers becomes a high possibility. Centralised 

wastewater treatment facilities can eliminate groundwater contamination hence not only ensuring the 

non-pollution of groundwater but also providing reuse of treated water for commercial activities. Some 

SIDS are heavily dependent on tourism and are reliant on using water for activities such as landscaping 

(Hutchinson, 2010). Wastewater reuse can be a supplemental alternative for water resources when 

compared to the reliability of rainwater harvesting. The secondary treatment phase offers removal of 

bacteria and sludge from the effluent, preparing it for the final or tertiary stage of disinfection.    

Within the secondary treatment stage, anaerobic digestion of the sludge usually takes place in a sludge 

digester. These tanks are typically cylindrical. The problem with this shape is that due to improper 

mixing, dead zones (see Figure 1) develop, leaving a build-up of scum and grit on the tank walls 

(Zingoni, 2001). This inefficiency causes the plant operations to be temporarily halted to facilitate 

cleaning of the digesters. Recommencing operation of the tanks usually requires time and energy for 

the bacteria to develop which results in further delays. With the advent of the quadric surfaced sludge 

digester, the efficiency of mixing is increased, thus eliminating the scum build-up, hence reducing the 

overall costs associated with operation and maintenance.  
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Figure 1 (a) Plan of cylindrical tank. (b) Section X-X showing mixing pattern in a typical cylindrical digester 

showing dead zones 

 

The quadric-surfaced sludge digester (QSD) has seen few iterations in design since its initial 

development. Although the benefit of lower maintenance cost outweighs the initial cost of construction, 

this has not been an attractive reason for adoption in Caribbean small island developing states (SIDS). 
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It is due to the lack of construction expertise and procurement of special purpose-made formwork and 

other equipment that comes at a high cost. A reduction in this cost can provide a means for SIDS to 

adopt the QSD for integration in their wastewater treatment facilities. Replacing the primary material 

with a 3D printed polymer can provide rapid off-site production of the QSD in a modular manner, which 

can be shipped and assembled on-site with semi-skilled labour. This research examines the possibility 

of using acrylonitrile butadiene styrene (ABS) as the primary material and 3D fused deposition 

manufacturing as the main construction method. This study conducts various numerical analyses to 

determine the applicability of using 3D printed ABS for QSDs under seismic loads. The analyses 

conducted measured the load effects of hydrostatic and dynamic pressures on different height-to-

diameter ratios of a parabolic ogival form for the QSD. 

The QSD replaces the typical cylindrical sludge digester within the secondary stage of the treatment 

process (see Figure 2). During the primary treatment stage, undissolved solids removal which is settled  

 

Figure 2. Schematic of the secondary treatment process 

 

in primary sedimentation tanks. These are removed and sent for treatment in the secondary stage. 

Similarly, the undissolved coagulated solids that settle during the secondary sedimentation, in the 

secondary treatment stage, is also removed and sent for further treatment. Both are placed in a sludge 
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digester where anaerobic digestion stabilises the sludge. This digestion process utilises various 

anaerobic bacteria that produce biogas (Priadi et al., 2013) including methane which can be harvested 

and used as an alternative source of energy for various plant activities thus reducing the power 

consumption. The digestion process also degrades harmful bacteria by depriving them of oxygen since 

the most present gas is methane. Hence the methane sterilises the digested sludge which makes it safe 

for use as fertilisers post-treatment.  

1.1.2 The Form 

The quadric surfaced digester’s basic form can be described as a revolution of a parabola where the 

polar regions are either curved or conical (Zingoni, 2002) (see Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

 

The quadric-surfaced sludge digester must have smooth transitions, where there are changes radii along 

the meridional axes. It ensures optimal stress distribution throughout the shell, along these axes thus 

Figure 3. (a) Spherical ogival shell with spherical closures, (b) Parabolic ogival shell 
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minimising stress accumulation. The shell’s general form can be described as a vertical revolution of a 

parabola that tapers at each apex. This study utilises the parabolic ogival form since it contains no shell 

discontinuities. Zingoni (2001), has demonstrated parametric stress distribution due to hydrostatic 

loading. The aspect ratio is defined by the non-dimensional parameter: 

 
ξ =

𝐻

𝐷
 (1) 

 

 Where: H is the height of the tank and D is the diameter of the tank. 

 This parameter was used to analyse various forms of the digester (see Figure 4). 

  

Figure 4. Parabolic ogival QSD quarter profiles with ξ ranging from 1.0 to 3.0 

 

According to the Cohn-Vossen theorem, from differential geometry, inextensional deformation of the 

shell is not possible unless the lengths on the surface changes. Stiffness can be further increased at 

points of contact were the QSD is supported and connected to the foundation. Structurally, this is an 

advantage when designing QSDs to resist hydrostatic and hydrodynamic loads. This study utilises a 

shell of 3D printed acrylonitrile butadiene styrene as the primary material for the structural element. 
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1.1.3 Material 

1.1.3.1 Traditional Materials 

QSD shells can be constructed from various materials as the. Table 1 shows seven cities that utilise this 

technology for their secondary treatment. The two types of construction materials used are pre-stressed 

concrete and welded steel.  

Table 1. QSDs Primary Shell Material from around the world. (Lia et al., 2007). 

Country Location 
Number of 

tanks 
Volume [m3] Primary Material 

Australia Pertyh 2 2700 Prestressed Concrete 

Austria Fritzens 2 2700 Prestressed Concrete 

Germany Bottrop 4 5000 Prestressed Concrete 

Japan Kumamoto 2 3300 Prestressed Concrete 

Singapore Kranji 3 10000 Prestressed Concrete 

USA Baltimore 2 11350 Prestressed Concrete 

USA Utah 2 6245 Welded Steel 

 

In the 1960s, a 15,000 m3 pre-stressed QSD, the largest one of the bonded Prestressed QSDs constructed 

in the world, was designed and built successfully in Germany (Li, et al., 2007). After that, the trend of 

QSDs followed globally with Japan, Singapore, China and Europe furthering study and construction of 

concrete QSDs. In the United States, steel was the preferred material (Sutter, 1996). 

Prestressed concrete implores the use of reinforced concrete, which is embedded with post-tensioning 

tendons that are arranged both vertically and horizontally and which are anchored in the lower lifts and 

foundations. Construction progresses as horizontal layers are cast and the horizontal tendons are 

stressed incrementally until the concrete is poured and cured in the final layer. The vertical tendons are 

then stressed. Reinforcing steel that is used in this type of construction is mainly to assist in confining 

concrete, should have strains limited to about 0.1 % (i.e. 200 MPa stress), under ultimate loads. Also to 

resist primary tie (tension) forces should have stresses limited to about 250 MPa under service loads 

(Rogowsky and Marti, 1996). Associated temperature and shrinkage effects are accounted for with the 

placement of reinforcing steel bars. Figure 5 shows a prestressed concrete QSD under construction. 
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Figure 5. Prestressed Concrete QSD under construction Back River Wastewater Treatment Plant Baltimore, 

Maryland, USA. (Photograph courtesy Crom Corporation). 

 

Structural steel plates that are welded together is another type of construction method used to build egg-

shaped sludge digesters (see Figure 6). These types of QSDs are quite fewer since the construction 

becomes more complicated. Each steel plate has a synclastic curvature that is uniform only in the lateral 

direction. In the vertical direction, the plate may develop multiple radii depending on the vertical 

placement of the panel. Alternatively, single vertical strips can be welded together creating a similar 
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form. This, however, does not maintain the circumferential curvature, as with other construction 

methods, and results in a reduction of efficiency due to the development of dead mixing zones, at each 

plate junction, within the tank.  

Prestressed concrete is a preferred choice between the two primary materials described above. Despite 

the high cost in fabrication and erection of specialised formwork, it still outweighs the cost of fabricating 

steel panels with the required synclastic double curvature.  

 

1.1.3.2 Proposed 3D Printed Polymer 

The novel 3D printed polymer QSD employs acrylonitrile butadiene styrene as the shell material. The 

strength characteristics vary from raw ABS (see Table 2) since extrusions during the 3D printing process 

creates voids within the material (see Figure 7a) which reduces the net cross-sectional area. Hence the 

longitudinal direction would be that of the extrusion paths of the 3D printed material. Raw ABS has the 

same stress and strain properties in both longitudinal and transverse (perpendicular to the longitudinal 

direction) directions since the material is isotropic. 

Figure 6. Structural Steel QSDs at Newtown Creek Wastewater Treatment Plant, Brooklyn, New York, USA. 

(Photograph courtesy Newton Creek WWTP). 
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Table 2. Yield strength and strain values raw and 3D printed ABS (Rodríguez, 2001) 

Mesostructure 
Longitudinal (MPa] Transverse [MPa] 

Stress            Strain  Stress         Strain 

Raw ABS 31.2                0.0154   31.2            0.0154          

3D Printed ABS    24.4                0.0145   13.6            0.0104 

 

 

 

 

 

 

(a)                                                                  (b) 

Figure 7. (a) A cross-sectional sample of the mesostructure magnified for 3D printed acrylonitrile butadiene 

styrene (b) orientation of 3 axes of 3D printed ABS. (Adapted from Rodríguez, 2001) 

 

Hence the 3D printed ABS material carries lower longitudinal stress of 24.4 MPa and longitudinal strain 

of 0.0145 MPa. The transverse stress and strain for raw ABS are the same as that of the longitudinal. 

Since the strength characteristics differ in each axis orientation (see Figure 7b), the longitudinal 

direction (axis 1) is chosen to run parallel to the equatorial circumference. The filament orientation was 

chosen to accommodate the most significant forces of the QSD, which are hoop forces that would 

develop under full load.    
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1.14 Analyses and Experiments 

The study was conducted in two phases. The first examined the mechanical properties of the 3D printed 

polymer, and the second investigated the overall dynamics of the QSD utilising the properties of the 3D 

printed material.  

Phase 1 

3D printed samples were fabricated and examined for the basic mechanical properties, i.e. flexure, shear 

and torsion. Experimental work was conducted in the laboratory to investigate these properties. 

Numerical finite element analyses, which replicated the experiments, verified the results.  

 

Phase 2 

Finite element analysis (FEA) models were analysed in ABAQUS CAE. The height, H, of the tanks 

vary from 1 metre to 20 metres with shell thicknesses varying from 100 mm to 500mm. Further the 

equatorial diameter, D, varied utilising the aspect ratio with ξ =1.5, ξ =2.0, ξ =2.5 and ξ =3.0. Here the 

simulated tanks were subjected to a ground motion of 5 Hz and the results were recorded. A second 

numerical study where the tanks were analysed via first principles. This was used to verify the previous 

FEA results. Finally, a 6 degree of freedom (DOF) FEA model was created and was subjected to 

realtime earthquake time history ground accelerations.  

All the results were examined and comparisons made to determine the suitability of using 3D printed 

polymers in QSD construction. 

 

1.2 Aim and Objectives 

Aim 
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The aim of the study is to design novel quadric-surfaced sludge digesters applicable to wastewater 

treatment works with the primary shell material being a 3D printed polymer that can be used in small 

island developing states (SIDS) in the Caribbean region. 

This was achieved by conducting the following objectives: 

Objective 1 

To verify the mechanical properties of 3D printed polymers, specifically, ABS.  

Objective 2 

To investigate the global behaviour of the QSD under hydrostatic loads while utilising a 

chosen 3D printed polymer from objective 1. 

 

Objective 3 

Upon completing the first two objectives, the third objective was to determine the 

behaviour of a 3D printed polymer QSD under seismic conditions (Most of the earthquakes 

occurring in the Caribbean are either tectonic or volcanic in origin)  that would make it fit 

for use within the wastewater sector in the Caribbean. Models of various scales were 

analysed to determine the optimum size. 

 

1.3 Research Novelty 

This study examines modern materials that are commonly used in the light manufacturing industry. 3D 

printing for the construction sector is a niche market where new research is now being explored. The 

current materials of choice are the traditional reinforced concrete and steel. 3D printed polymers are 

utilised for household and general consumer products, many of which are still novelty items. The 

marriage of 3D printed polymers and the construction of large-scale civil engineering infrastructure is 
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in itself a novelty. In terms of previous research, the literature review did not substantiate any prior 

studies in this field.  

Another novel characteristic of this study is the use of QSDs in the Caribbean. As mentioned in 

section 1.1.1, the current types of wastewater infrastructure currently used are where the 

stakeholders continue to use out of comfort and lack of information about the behaviour of such 

structures in the region. This study addresses this concern thereby bridging the gap with its 

novelty. 

1.4 Thesis Outline 

This thesis is structured into six (6) chapters: 

Chapter 1: Introduction 

This chapter starts by introducing the reader to the QSD and the reason for its superiority 

over traditional cylindrical digesters. It continues to briefly describe the form and its 

geometry. The materials proposed to be examined is also introduced and the aim and 

research objectives are defined. Here the novelty of the study is also rationalised. 

Chapter 2: Literature Review 

In this chapter, all necessary elements that are required for carrying out the research 

objectives, were investigated. Firstly, the geometry of the parabolic ogival QSD shell 

is developed. Sloshing dynamics of the fluid inside liquid retaining structure were 

explored which is an essential part of the dynamic behaviour of any such structure 

subjected to seismic excitation. Finally, the 3D printed material was examined and 

the development of the mechanical properties were studied.  

 

Chapter 3: Methodology 
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This chapter describes the processes followed for the experimental and numerical 

investigation of the mechanical properties of 3D printed polymers. Then the 

methodology for modelling the tank in first principles is developed. Thereafter the 

finite element modelling is established. 

Chapter 4: Results  

This chapter describes the results from the experimental and numerical studies 

performed on 3D printed polymers. Results from the first principles analyses are then 

shown followed by those of the finite element analyses. A comparison of all the 

results for the QSD is then discussed. 

Chapter 5: Discussion  

This chapter discusses the results from the experimental and numerical studies 

performed on 3D printed polymers. Results from the first principles analyses are then 

discussed followed by those of the finite element analyses. A comparison of all the 

results for the QSD is then discussed together with the failure criteria for QSD design. 

Chapter 6: Conclusions and Future Work 

This section brings to a close the thesis. It pronounces the final conclusions from the 

stud which includes the lessons learnt. The sub-section on future work, briefs the 

reader with some of the work that can be continued on this topic in the future since 

there are many facets that can be considered.  

 

The undermentioned quick-guide flowchart maps the structure of the thesis. 
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Figure 8. Flowchart of Thesis Structure
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2.1 Introduction 

The literature review examined four main areas. The first investigated quadric-surfaced shells where the 

relevant principles were developed and its application to the QSD. In particular the parabolic ogival shell. 

The second section examined linear and non-linear sloshing dynamics as it pertains to liquid retaining 

structures. Thereafter the literature review investigated the numerical analyses for liquid sloshing. Finally, 

the mechanical properties of 3D printed polymers were examined.  

2.2  Quadric-surfaced Shells 

2.2.1 Introduction 

In civil engineering, shell structures have been established as a refined building element that utilises 

maximum efficiency of distributing forces throughout their cross-sectional areas for such elements. 

Reinforced concrete and structural steel have been the materials of choice for constructing shell structures. 

Shells are defined as the solid material enclosed between two doubly curved surfaces (Gibson 1965). As 

seen in Figure 9, the distance between the curved surfaces is the thickness, t. Shells are classified as either 

thick or thin. This is based largely on the proportions of the overall dimensions of the element in proportion 

with the thickness.  

 

Figure 9.  Diagram showing membrane stress resultants for a shell element. Adapted from Gibson, (1965) 

 

AB = OC = δx 

BC = OA = δy 
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New materials and manufacturing techniques are now being explored for use in shell construction. One 

such technique is the fused deposition manufacturing process (FDM), more commonly known as 3D 

printing. Various materials can be used with this method; however, the most common materials are 

polymers.  Glass transition temperatures during the FDM process alter the properties of polymers thus 

varying the rigidity, Rodriguez, et al (2001). During the process, voids are created between each layer of 

3D printed material. These voids can enhance or reduce the strength of the product. The problem then arises 

with deformations of the shell due to its flexibility. This chapter examines literature on the various 

deformation types within shell structures, namely the Saint-Venant shell deformations for use within the 

FDM quadric-surfaced sludge digester shell. It starts by defining the terminologies used in general 

plate/shell theory. The stress resultant equations as well as the equilibrium equations are then developed. 

The application of these equations is then shown on the parabolic ogival quadric-surface shell. The failure 

criteria are then examined based on the maximum stress resultants. Finally, the deformations of the Saint-

Venant problems are reviewed based on the equations developed in the previous sections. 

 

2.2.2 Plate Element Definitions  

Shell theory is subdivided into two main categories when external forces are applied. These are: (i) 

membrane action and (ii) bending action. Before these can be explained, reference is made to Figure 9, 

where the element defines the reference axis within a three-dimensional co-ordinate system. Element 

OABC has a reference plane (defined as the middle surface in the xy plane) which is located at 𝑡 2⁄ . Each 

side of the element is parallel to the opposing side and parallel to the xz and yz planes respectively. 

The shell undergoes membrane action. When external forces applied, they are transmitted by internal forces 

within the surface of the shell only. This means that the element resists forces axially. As can be seen in 

Figure 9, stress resultants Nx and Ny are normal to edges AB and BC respectively. The sense is also positive 

indicating that they are tensile in nature. These stress resultants are forces acting on the sides of the element 

and have the units force per unit length. Shear forces, Nxy and Nyx, carry the same units as stated above and 

run perpendicular to the stress resultants. The user coordinate system (UCS) located in the middle of the 
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element denote the positive directions of applied external forces in the x, y and z directions. These are area 

loads and the units are defined as force per unit area.  

In addition to membrane action the shell also experiences flexure where in order for equilibrium to be 

achieved, this bending must be resisted by internal bending moments induced within the shell element. 

Figure 10 shows bending moments Mx and My, at the edges, which rotate about the y and x axes  

 

Figure 10. Diagram showing bending stress resultants for a shell element. Adapted from Gibson, (1965) 

 

respectively. These are moment per unit length. Torsional moments are the combined Mx and My moments, 

namely Mxy and Myx which rotate about the x and y axes respectively. Qx and Qy are the transverse shear 

forces per unit length which act along the z-axis. 

Gibson (1965) explains that the determination of the resultant stress and moment resultants becomes 

complex since the use of static equilibrium equations alone are inadequate. Therefore, strain and 

displacement equations would have to be considered for the solution. Since the bending and membrane 

actions are co-dependent, solutions should not involve them independently. However, in some cases 

separate solutions were found to lead to accurate results.  
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2.2.3 Shells of Revolution 

The element as described in section 2.2.1 now has to be revolved about a main axis in order to generate a 

full surface. Various radii of curvature define the boundaries of each element (see Figure 11). The first main 

principal radius of curvature, r1, defines the meridian. The second principal radius, r2, is the length of the 

normal to the surface at point A. The intersections of radius r2 governed by φ and 

 

Figure 11.  Diagram showing membrane stress resultants for a shell of revolution. Adapted from Gibson, (1965) 

 

θ, defines a point on the surface of the element. If the element is bounded by 2 meridians and two parallel 

circles (which make up ABCD), the lengths of AB on the element is rdθ and AD become r1dφ. In relation 

to Figure 9, the element ABCD defines the middle surface of the shell of thickness t. Also the subscripts of 

φ and θ now replace x and y in Figure 9, thus the stress and shear resultants are presented analogously in 

Figure 11. As the stress resultant increases (from edge AB to CD) the term: 

 

 
𝜕(𝑁𝜑𝑟𝑑𝜃)

𝜕𝜑
∙ 𝑑𝜑 (2) 
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is added. The partial derivative of the stress resultant function is found so that the angle, θ, remains constant 

while r1 moves downwards from AB to CD. This small change in force correlates to a small change in the 

angle φ of the latitudinal circles. Hence, this increase is summed to create:  

 

 𝑁𝜑𝑟𝑑𝜃 +
𝜕(𝑁𝜑𝑟𝑑𝜃)

𝜕𝜑
∙ 𝑑𝜑 (3) 

 

Similarly, the term:  

 
𝜕(𝑁𝜑𝜃𝑟𝑑𝜃)

𝜕𝜑
∙ 𝑑𝜑 (4) 

 

is added to the shear resultant from AB to CD, thus producing:  

 𝑁𝜑𝜃𝑟1𝑑𝜑 +
𝜕(𝑁𝜑𝜃𝑟𝑑𝜃)

𝜕𝜑
∙ 𝑑𝜑 (5) 

 

Here again the angle, θ, remains constant while r1 increases.  

 

2.2.4 Equations of Equilibrium 

The equations for the solutions of the stress and shear resultants (Eq. (3) and Eq.(5)) must now include 

additional components of Nφθ and Nθφ respectively, to achieve equilibrium. The statically determinate 

problem can be deduced as follows: 

From Figure 11, The meridional tangents at A and B intersect at a point P, on the axis of revolution with 

an internal angle dα and lengths AP=BP=r2tanφ dα. With r = r2sinφ, angle dα can be written as: 

 𝑑𝛼 = 𝑑𝜃𝑐𝑜𝑠𝜑 (6) 
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With AD =BC = dα/2, the total horizontal (x-direction) stress resultant is 

 2𝑁𝜑𝜃𝑟1𝑑𝜑 sin (
𝑑𝛼

2
) ≈ 𝑁𝜑𝜃𝑟1𝑑𝜑𝑑𝛼 (7) 

 

Substituting Eq. (6) into Eq. (7) 

 𝑁𝜑𝜃𝑟1𝑑𝜑𝑑𝜃𝑐𝑜𝑠𝜑 (8) 

 

By using the static equilibrium equation, 
(+𝑣𝑒)
→   ∑𝐹𝑥 = 0 and summing all the horizontal forces (see Figure 

11): 

 

𝑁𝜑𝜃𝑟𝑑𝜑 +
𝜕(𝑁𝜑𝜃𝑟𝑑𝜃)

𝜕𝜑
∙ 𝑑𝜑 − 𝑁𝜑𝜃𝑟𝑑𝜃 + 𝑁𝜃𝑟1𝑑𝜑 +

𝜕(𝑁𝜃)

𝜕𝜃
𝑟1𝑑𝜑. 𝑑𝜃 − 𝑁𝜃𝑟1𝑑𝜑

+ 𝑁𝜑𝜃𝑟1𝑑𝜑𝑑𝜃𝑐𝑜𝑠𝜑 + 𝑋𝑟1𝑑𝜑𝑟𝑑𝜃 = 0 

(9) 

   

 

Where X is the external load applied to the shell element. Equation (9) can now be simplified into the final 

equation which yields: 

 
𝜕

𝜕𝜑
(𝑁𝜑𝜃𝑟) +

𝜕𝑁𝜃
𝜕𝜑

𝑟1 +𝑁𝜑𝜃𝑟1𝑐𝑜𝑠𝜑 + 𝑋𝑟𝑟1 = 0 (10) 

 

which is the equilibrium equation to solve for the stress resultant in the x-direction. The solutions for the y 

and z directions are similar in principle and the final equations are: 

 
𝜕

𝜕𝜑
(𝑁𝜑𝑟) +

𝜕𝑁𝜃𝜑

𝜕𝜑
𝑟1 −𝑁𝜃𝑟1𝑐𝑜𝑠𝜑 + 𝑌𝑟𝑟1 = 0 (11) 

 

And, 

 
𝑁𝜃
𝑟2
+
𝑁𝜑

𝑟1
+ 𝑍 = 0 (12) 
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2.2.5 Application to the parabolic ogival quadric surface shell 

In the previous section, the aforementioned equations of equilibrium give rise for solutions of resultant 

stresses due to applied external forces on a generically revolved shell element. The application of this to 

the quadric surfaced sludge digester (QSD) is examined from studies conducted by Zingoni (2002). The 

general shape of the QSD is a revolution of a parabola (see Figure 12).  

 

Figure 12. Geometric parameters of the parabolic ogival quadric surface shell. Adapted from Zingoni, (2002) 

 

Here, unlike spherical shells where the radii in both the meridional and latitudinal profiles are constant. In 

the parabolic ogival shell the radius, r2, changes constantly. Hence calculating the stress resultants, r1 and 

r2, become functions of the height, H and diameter, D. According to Zingoni (2002), r1 now becomes: 

 𝑟1 =
𝐻2

4𝐷𝑠𝑖𝑛3𝜑
 (13) 

 

φ φ r2 
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and r2 now becomes: 

 𝑟2 =
4𝐷2𝑠𝑖𝑛2𝜑 − 𝐻2𝑐𝑜𝑠2𝜑

8𝐷𝑠𝑖𝑛3𝜑
 (14) 

 

By means of substituting equations (13) and (14) into equation (10) and simplifying, the solution of the 

stress resultant becomes: 

 

𝑁𝜑 =
𝑋𝐻3

16𝐷2
(

𝑠𝑖𝑛𝜑

4𝐷2𝑠𝑖𝑛2𝜑 − 𝐻2𝑐𝑜𝑠2𝜑
) [−

𝐷(4𝐷2 + 𝐻2)

𝑠𝑖𝑛2𝜑
+
𝐷𝐻2

2𝑠𝑖𝑛4𝜑

− 𝐻(4𝐷2 + 𝐻2) (
𝑐𝑜𝑠𝜑

𝑠𝑖𝑛𝜑
) +

𝐻

3
(4𝐷2 + 𝐻2) (

𝑐𝑜𝑠𝜑

𝑠𝑖𝑛3𝜑
) (1 + 2𝑠𝑖𝑛2𝜑)

−
𝐻3

15
(
𝑐𝑜𝑠𝜑

𝑠𝑖𝑛5𝜑
) (3 + 4𝑠𝑖𝑛2𝜑 + 8𝑠𝑖𝑛4𝜑) + 𝐶 ] 

(15) 

 

Where C is a constant derived from the partial deferential equation. By applying a boundary condition at 

the apex of the shell, the angle φ becomes 0. Hence Nφ=0, thus: 

 

𝐶 =
𝐷(4𝐷2 + 𝐻2)

𝑠𝑖𝑛2𝜑0
−

𝐷𝐻2

2𝑠𝑖𝑛4𝜑0
+  𝐻(4𝐷2 +𝐻2) (

𝑐𝑜𝑠𝜑0
𝑠𝑖𝑛𝜑0

)

−
𝐻

3
(4𝐷2 + 𝐻2) (

𝑐𝑜𝑠𝜑0
𝑠𝑖𝑛3𝜑0

) (1 + 2𝑠𝑖𝑛2𝜑0)

+
𝐻3

15
(
𝑐𝑜𝑠𝜑0
𝑠𝑖𝑛5𝜑0

) (3 + 4𝑠𝑖𝑛2𝜑0 + 8𝑠𝑖𝑛
4𝜑0) 

(16) 

 

The stress resultant Nθ can now be calculated with Nφ known:  

 𝑁𝜃 = (4𝐷
2𝑠𝑖𝑛2𝜑 − 𝐻2𝑐𝑜𝑠2𝜑) [

𝑋(2𝐻𝐷2𝑠𝑖𝑛𝜑 − 𝐻2𝑐𝑜𝑠𝜑

32𝐷2𝑠𝑖𝑛4𝜑
−
𝑁𝜑

2𝐻2
] (17) 

 

Now with the known stress resultants and the thickness, t, of the shell, the stresses in both the meridional 

and latitudinal directions can be found, hence: 
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 𝜎∅ =
𝑁𝜑

𝑡
   and  𝜎𝜃 =

𝑁𝜃
𝑡
      (18) 

 

2.2.6 Failure criteria 

The development of the stresses in the previous section can now lead to the discussion on the failure criteria 

for the FDM ABS polymer shells. Since the polymer is extruded in adjoining layers, voids between each 

extrusion are created, thus this type of (3D-printed) material is known to have directional properties and 

hence anisotropic with the polymer being linearly elastic. Doyle (2001) stated that elastic constitutive 

relations become apparent where deformations occur such that the rotations and/or displacements are large 

while the strains are quite small in comparison. Hence, approximations are made which does not influence 

the accuracy of the analysis of results when calculating the stress resultants.  

The criteria for failure can be characterised in three areas. These are (i) the maximum principal stresses, (ii) 

the energy of distortion and (iii) the maximum shear stresses. The maximum principle stress is based on 

Rankine's theory and assumes that failure will occur at any point that reaches a value equal to the tensile 

stress in tension at failure. Thus inequalities for the principle stresses: 

 𝜎1 ≥ 𝜎𝑓       and    𝜎3 ≤ −𝜎𝑓 (19) 

where 𝜎𝑓 is the failure stress due to a single tensile force in one direction. While this is not a good predictive 

method for failure in most materials, it has proven to yield satisfactory results in brittle materials (Doyle 

2001). Hence, in the event of FDM ABS becoming brittle due to ultraviolet ray exposure, this criterion will 

be useful.  The energy distortion theory idealises the total strain energy the dilation of energy and the 

distortion of energy. The first is associated with the change of volume due to hydrostatic pressure whilst 

the latter deals with the deformation of the body. In both cases this particular criterion is not a good measure 

for failure of FDM materials since it is associated with isotropic linear elastic materials (Doyle 2001). FDM 

materials are anisotropic, mainly due to the existence of voids that are created along the extrusion path-line. 

The maximum shear stress theory compares maximum yield during shearing of the material and the 

maximum shear stress at yield of a sample undergoing a uniaxial tensile test. The failure criterion for the 

maximum shear is give as: 
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 𝜏𝑚𝑎𝑥 ≥
1

2
𝜎𝑌 (20) 

 

In the shell of liquid retaining structures, the shear usually is zero. Henceforth under hydrostatic loading, 

where the load is distributed along the surface area of the shell, this yield criterion will not be suitable for 

use. However since its applicability is good for predicting failure in ductile materials, it can still be used 

when examining failure due to various Saint-Venant deformations.  

 

2.2.7 Saint-Venant Deformations 

The Saint-Venant's principle allows for replacing complex stress distributions or weak boundary conditions 

(BCs) with ones that are simpler to solve, as long as that boundary is geometrically short (Naghdi and 

Yongsarpigoon 1985). In other words if the distance between two loads become large, the high order 

momentum of mechanical load decays quickly (at a rate of 1/𝑟𝑖+2, where r is the rate of decay) so that they 

never need to be considered for regions far from the boundary. Thus the difference between the effects of 

two different but statically equivalent loads becomes negligible.  

This principle is very useful in aiding the solutions of various types of deformations that can occur in shell 

structures. Axelrad (1987) explains that this principle can be applied to the solution of deformations in shell 

structures by prescribing only the load on an edge and not its distribution along the element’s edge or 

boundary contour. This application now reduces the three dimensional problem into a single dimension.  

According to Fried (1985) there are several applications for the Saint-Venant principle to flexible shell 

problems. These can be categorised as (i) rotationally symmetric problems and (ii) lateral and space bending 

problems. The latter does not have any significant application to the parabolic ogival quadric-surfaced 

sludge digester since the continuous shell surface does not give rise to such deformations occurring. Only 

if the design would accommodate geometrical discontinuities (other than increasing/decreasing the shell 

thickness) in the surface area, such as penetrations, then this would be of significant relevance to the study. 

In the case of rotationally symmetric problems, the deformations produced are axisymmetric in nature and 
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hence the shell of revolution remains axisymmetric as well. In such cases, the shell elements are in a state 

where flexure is 100% of the element’s force carrying capacity. The problem eliminates all shear resultant 

stresses and strains. Therefore, the three equations of equilibrium are satisfied (Eq. (9), (10) and (12)). The 

equilibrium equations for bending (given by Gibson 1965):  

 
𝑑(𝑁𝜑𝑟)

𝑑𝜑
− 𝑁𝜃𝑟1𝑐𝑜𝑠𝜑 − 𝑄𝜑𝑟2𝑠𝑖𝑛𝜑 + 𝑌𝑟1𝑟2𝑠𝑖𝑛𝜑 = 0 (21) 

 

 
𝑑(𝑄𝜑𝑟)

𝑑𝜑
+ 𝑁𝜃𝑟1𝑠𝑖𝑛𝜑 + 𝑁𝜑𝑟2𝑠𝑖𝑛𝜑 + 𝑍𝑟1𝑟2𝑠𝑖𝑛𝜑 = 0 (22) 

 

 
𝑑(𝑀𝜑𝑟)

𝑑𝜑
−𝑀𝜃𝑟1𝑐𝑜𝑠𝜑 − 𝑄𝜑𝑟1𝑟2𝑠𝑖𝑛𝜑 = 0 (23) 

 

where: Q is the transverse shear stress resultant and M is the resultant moment about the meridional element 

boundary, denote the equilibrium equations for flexure in the X, Y and Z-axes respectively. These equations 

become dominant in the Saint-Venant solutions since the load must act along the meridional axis, hence 

this assumption is made and the solution to calculate the displacements and forces are conducted.  

A second type of rotationally symmetric Saint-Venant deformation that is of interest to the QSD, relates 

directly to an axisymmetric torsional force, that rotates about the axis of the shell of revolution. With the 

introduction of this torsional force the six equations of equilibrium are satisfied. This is because the 

structure remains axisymmetric and the general form of the shell remains intact. Therefore, the shell 

elements experience pure shear strain, hence a stain energy equation needs to be introduced for solution of 

this type.  Consider the axisymmetric introduction of torsional force applied to the shell element in Figure 

11. The displacement of point A translates to A’ and D to D’ (see Figure 13). If point A displaces at a 

distance v, 
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Figure 13.  Diagram showing displacement of shell surface. Adapted from Gibson, (1965) 

 

then point D will have a displacement of 𝑣 + (𝑑𝑣/𝑑𝜑 𝑑𝜑) 𝑑𝜑. In the z-direction, AD will also be displaced, 

hence: 

 𝐴′𝐷′ − 𝐴𝐷 = (𝑟1 − 𝑤)𝑑𝜑 − 𝑟1𝑑𝜑 = 𝑤 𝑑𝜑 (24) 

 

Where w is the displacement along the z-direction. 

Thus by the principle of superposition, the displacements of points A and D in both the y and z-directions 

can be summed to get: 

 
𝑑𝑣

𝑑𝜑
𝑑𝜑 − 𝑤𝑑𝜑 (25) 

 

Recognising that the arc length 𝐴𝐷 = 𝑟1𝑑𝜑, the strain at the meridian will be: 

 𝜀𝜑 =
𝑑𝑣

𝑟1𝑑𝜑
−
𝑤

𝑟1
 (26) 

 

The circumferential strain is formulated by the new radius, 𝑟′ = 𝑟 − 𝑟𝑤𝑠𝑖𝑛𝜑 + 𝑣𝑐𝑜𝑠𝜑. Analogous to the 

solution for 𝜀𝜑 given above, the solution for the strain in the latitudinal direction, 𝜀𝜃, would be: 

𝑑𝜑 𝑣 +
𝑑𝑣

𝑑𝜑
𝑑𝜑 

𝑦 
𝑧 
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 𝜀𝜃 = 𝑣𝑐𝑜𝑠
𝜑

𝑟
− 𝑤𝑠𝑖𝑛

𝜑

𝑟
=
(𝑣𝑐𝑜𝑡𝜑 − 𝑤)

𝑟2
 (27) 

 

Hence, equations (26) and (27) can now be used to solve the final Saint-Venant torsional displacement 

problem. 

 

2.2.8 Summary 

In this section, it can be seen that previous studies in the geometry of QSDs are minimal. The development 

of stress resultant equations (equation (18)), for the parabolic ogival shell, by Zingoni (2002), is a 

continuation of studies conducted by Gibsom (1965).  Axelrad also developed these equations from first 

principles as well however his work was based on scalar matrices. Doyle’s work was also based on a method 

utilising scalar matrices. The solutions for the rotationally symmetric Saint-Venant shell distortion 

problems that can occur in QSDs were also examined even though the literature available did not conclude 

of any actual case studies with this type of failure. However, the literature can prove valuable when 

developing design code parameters for QSD shell design. 

 

2.3 Sloshing Dynamics in Liquid Retaining Structures 

2.4 Sloshing Dynamics 

 2.4.1 Introduction 

Sloshing is the dynamic behaviour of the free liquid’s surface, which is initiated by any disturbance to the 

liquid retaining structure. Sloshing is of significant importance and is one of the major concerns in the 

design of liquid retaining structures and fuel tankers for carriers. Abramson (1967) mentioned that for 

several years, this subject had been a significant concern for scientists, engineers and mathematicians. 

According to Ibrahim (2006), the free liquid’s surface can experience different motions comprising of 

simple planar, nonplanar, symmetric, asymmetric, rotational, irregular beating, quasi-periodic and chaotic, 
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all depending on the type of disturbance, amplitude and frequency of seismic excitation, properties of the 

liquid, height of liquid and the geometry of the retaining liquid container. When the frequency of the motion 

and the natural frequencies of liquid sloshing are close to each other, the resulting amplitudes of the sloshing 

wave would be very large increasing the sloshing dynamic forces on the shell surfaces of the container. The 

high hydrodynamic forces produced by the sloshing waves on the inner surface of the container affects the 

overall response of the container and causes a complex Fluid-Structure Interaction (FSI) phenomenon 

between the two materials concerning the liquid properties and retaining container properties. 

The difficulty of sloshing involves the assessment and estimation of the hydrodynamic pressure distribution 

on the container’s surface, moments, forces and natural frequencies of the system and the liquid surface. 

As cited by Ibrahim (2006), the non-linear phenomena of sloshing dynamics have an infinite number of 

natural frequencies where the lowest frequency is excited by concentrated seismic action which, directly 

affects the dynamic stability and performance of liquid retaining structures. This nonlinear phenomenon of 

sloshing results in the maximum response frequency being different from the linear natural frequency and 

is reliant on amplitude. Nonlinear effects encompass of amplitude jumps, chaotic liquid motion, parametric 

resonance and nonlinear sloshing mode interaction due to the occurrence of internal resonance between the 

liquid sloshing modes. For this reason, previous studies focused on investigating forced harmonic 

oscillations near the lowest natural frequencies that are computed by the fluid field linear equations. 

Challenges of sloshing dynamics are encountered in a wide array of engineering applications. In the design 

of high-performance automobiles, stationary liquid retaining structures and the reduction of noise due to 

fuel sloshing is becoming an increasingly significant consideration. A more pressing concern, according to 

Godderidge et al. (2012) is the effect of fuel slosh on the stability of road vehicles during sudden 

acceleration and deceleration. However, this would not be examined in this study. In large buildings, fluid 

sloshing in tuned liquid dampers counteracts earthquake or wind-induced motions and vibration. The water 

tower, reservoir and dam design also include sloshing concerns. 

Previous research of sloshing has a long history and presently continues to grasp the importance because 

of its significance in the application of structural and aerospace engineering. After several decades of 

research, several effective approaches for researching have been proposed. However, because of its extreme 
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nonlinear effects, solving the dynamics of sloshing is still a great challenge and a vast amount of work is 

still essential to develop and confirm theories and fully grasp the understanding of sloshing dynamics under 

seismic excitation. 

 

2.4.2 Linear Sloshing Dynamics 

2.4.2.1 Fluid field equations and Modal analysis of rigid tanks 

The theory of dynamic sloshing in liquid retaining structures is based on understanding the derivation of 

fluid field equations that are used to approximate the hydrodynamic shell forces and moments induced by 

sloshing waves. Solutions for simple geometry retaining structures such as the upright cylindrical and 

rectangular containers are possible by explicit analysis. Modal analysis is a linear dynamic response process 

which illustrates and evaluates the dynamic response and superimposes the free vibration mode shapes to 

characterise the displacement. Ibrahim, (2006) mentioned that by conducting a modal analysis on a rigid 

shell liquid retaining structure eliminates the boundary value problem for the dynamic response 

characteristics to seismic excitations, the natural frequencies of the sloshing mode shapes. The natural 

frequencies of sloshing are kinematic and dynamic on the fluid-structure boundaries rather than in form of 

the fluid continuity equation. 

For a tank geometry, which is open to the atmosphere, the BCs typically specify the value of the field at all 

nodes on the liquid’s boundary surface or the normal gradient to the container surface and sometimes both. 

According to Morse and Fesbach (1999), the BCs mentioned below, where each group has its appropriate 

equations associated with its boundary condition. 

i. Dirichlet BCs, which fix the value of the field on the surface. 

ii. Neumann BCs, which fix the value of the normal gradient on the surface. 

iii. Cauchy conditions, which fix both value of the field and normal gradient on the surface. 

The variational formulation proposed and used by Lawrence et al. (1958) is based on Hamilton’s principle 

as illustrated by Equation (28) and is observed as a powerful tool for developing the fluid field equations. 

As mentioned by Ibrahim, R. (2006), Hamilton’s principle states that the actual path in the configuration 
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space yields the value of the finite integral stationary with respect to all arbitrary variations of the path 

between two instants of times, t1 and t2, provided the path variations vanish at these two endpoints. 

Budiansky (1958) modified Hamilton’s principle and developed an integral equation for tanks with a curved 

geometry such as spherical tanks and horizontal cylindrical tanks. The variational approach is based on 

deriving the superlative of a function that describes the system behaviour. The Lagrangian, L=T-V, has to 

be minimised or maximised, where T and V are the kinetic and potential energies of the system, 

respectively. Hamilton’s principle is defined as; 

 𝛿𝐼 =  𝛿 ∫ (𝑇 − 𝑉)𝑑𝑡 = 0
𝑡2

𝑡1

 (28) 

Studies were carried out by Trotsenko (1967), where the liquid oscillations in cylindrical containers with 

annular baffles were investigated. Further studies were done by Lamb et al. (1970) with respect to sloshing 

for an inclined cylindrical container geometry with axial symmetry where they computed the normal modes 

and natural frequencies of sloshing and concluded that for spherical containers, solving sloshing shell forces 

would be a problem because the six degrees of freedom model would be analytically complex. For this 

complication, Leonard and Walton (1961), experimentally measured the natural frequencies and mode 

shapes in spheroidal containers with respect to different orientations. The dependence of the measured 

natural frequencies of the first three sloshing modes on the fluid depth ratio, h/2b or h/2a, or the three tank 

orientations and the respective plots in Figure 14. 

 

 

 

 

 

 

 

 

 

 

Figure 14. Dependence of liquid natural frequencies on depth ratio for three orientations of a spheroidal tank. 

(Leonard and Walton, 1961). 
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For the horizontal orientation case, the natural frequency of the free surface, computed from Equation (29), 

is compared with the measured results of a liquid in an upright circular cylindrical tank of radius, r, equal 

to the radius of the liquid surface and a liquid depth, hc, which yields the same liquid volume. 

 𝜔𝑛 = √
𝑔𝜉𝑛
𝑟
tanh(

𝜉𝑛ℎ𝑐

𝑟
) (29) 

 

where  

ωn – sloshing frequency of order n 

g – gravitational acceleration 

ξ – coordinate transformation function = 
𝑥

∝𝑅
 , where x is the coordinate on x-axis 

R – radius of curvature of the free surface 

∝ - factor = ∝=
𝑎

𝑅
< ∝ ≤ 1  , where a is half the width of the free surface on the x-axis 

 

Investigating the natural frequency of horizontal circular cylinders and spherical containers, Barnyak and 

Barnyak (1996) determined the normal mode frequencies of viscous liquid partially filling a horizontal 

cylinder. Lamb (1995) presented an energy approach to determine the natural frequency of the first 

transverse mode of the liquid’s free surface in a half-filled horizontal cylinder, that is, h = -R. He obtained 

Equation (30) which is an expression for the velocity potential function. 

 𝛷(𝑟, 𝜃) =
1

2
𝜔𝑟2 sin 2𝜃 − ∑𝐴2𝑛+1 𝑆𝑖𝑛(2𝑛 + 1)𝜃 (

𝑟

𝑅
)
(2𝑛+1)

 (30) 

 

where 

 𝐴2𝑛+1 = (−1)
𝑛+1 (

𝜔𝑅2

𝜋
) {(

1

2𝑛 − 1
) − (

2

2𝑛 + 1
) + (

1

2𝑛 + 3
)} (31) 
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where 

Φ – velocity potential 

ω – sloshing frequency 

n – order of operation 

R – radius of curvature of the free surface 

r – cylindrical tank of radius 

θ – angular coordinates 

The kinetic energy, T, of sloshing undergoing small oscillations is given by Equation 46 below. 

 𝑇 =
1

2
 𝜋𝜌𝑅4 (

4

𝜋2
−
1

4
)𝜔2 (32) 

 

where ρ is the density of the fluid. 

From this expression, the effective mass moment of inertia, Io(eff), of the liquid about the centre of 

the cylinder is given by Equation (33). 

 𝐼𝑜(𝑒𝑓𝑓) = 𝜋𝜌𝑅
4 (
4

𝜋2
−
1

4
) (33) 

 

The potential energy, U, is given by Equation (34). 

 𝑈 =
1

3
𝜌𝑔𝑅3𝜃2 (34) 

 

Bauer, (1964) analysed the liquid’s free surface oscillations in a partially filled tank and also with respect 

to the annular cross-section where he concluded that for both cases, the natural frequency of the liquid’s 

free surface displayed the same expressions as the cylindrical tank but with different roots of the Bessel 
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function. Mclver and Mclver (1993) investigated the liquid sloshing dynamic frequencies for different tank 

geometries, and Bauer and Eidel (1999) investigated the different configurations of cylindrical containers. 

Numerical studies of two-dimensional sloshing in rectangular geometry containers, Ibrahim (2006) 

mentioned that the natural frequency of sloshing depends on the liquid’s depth to width ratio and also stated 

that as the mode increases, the effect of liquid depth is reduced. Graham and Rodriguez (1951), solved the 

three-dimensional velocity potential for which the natural frequency depends on the three significant 

dimensions’ axis of the fluid. Ibrahim (2006) mentioned that the nonlinear dependence of the natural 

frequencies on the wave motion amplitude was resolved and the influence of damping on the natural 

frequency resulted for higher viscosities of kinematic viscosity v = 2.5 poise and the resonance frequency 

is slightly higher than the predicted value for an ideal liquid. 

The variational formulation approach is mainly used to attain the boundary value to solve the boundary 

value problem in one treatment. The modal analysis of sloshing is formulated for different tank geometries 

which resulted in the estimation of the velocity potential function given by Equation (35),  

 𝛷(𝑟, 𝜃, 𝑧, 𝑡) = ∑∑[𝐴𝑚𝑛 cos 2𝑚𝜃] sin(𝜔𝑚𝑛𝑡) {
cosh [

𝜉𝑚𝑛(𝑧 + ℎ)
𝑅

]

cosh 𝜉𝑚𝑛 ℎ
𝑅

} 𝐽2𝑚 (
𝜉𝑚𝑛𝑟

𝑅
)

∞

𝑛=1

∞

𝑚=0

 (35) 

 

where 

Φ – velocity potential 

ωmn– sloshing frequency of order m and n 

Amn – integration constants 

m – mass of liquid in the tank 

R – radius of curvature of the free surface 

r – cylindrical tank of radius 

θ – angular coordinate 

ξmn – sloshing amplitude of order m and n 

h – upper level of liquid volume 

t – time 
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J – first order Bessel function 

The natural frequencies of sloshing given by Equation (36) and the corresponding wave 

height are given by Equation (37).  Figure 15 illustrates the notations of a cylindrical tank. 

 

 𝜔𝑚𝑚
2 =

𝑔

𝑅
𝜉𝑚𝑛 tanh (

𝜉𝑚𝑛ℎ

𝑅
)  ,        𝑚, 𝑛 = 0,1,2, … . 𝑛 (36) 

   

 
1

𝑔
 ∑∑[𝐴𝑚𝑛 cos 2𝑚𝜃]𝜔𝑚𝑛 cos(𝜔𝑚𝑛𝑡) {𝐽2𝑚 (

𝜉𝑚𝑛𝑟

𝑅
)}

∞

𝑛=1

∞

𝑚=0

 (37) 

 

 

 

Figure 15. Cylindrical Tank. (Ibrahim, 2006) 

 

2.4.2.2 Linear Forced Sloshing 

 

In the previous section, the fluid field equations were developed, and the natural frequencies were estimated 

from the free surface boundary conditions. The knowledge of natural frequencies with respect to sloshing 

is essential in the design of all liquid retaining structures subjected to seismic excitations. Ibrahim, (2006) 

mentioned that it is crucial to have the natural frequencies of sloshing away from all normal and nonlinear 

resonance conditions when designing these types of structures. The types of excitation that can be expected 

are impulsive, periodic, sinusoidal or random excitations and concerning geometry orientation, they can be 

lateral, parametric, pitching, roll or a combination. Ibrahim, (2006) also mentioned that under forced 
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excitation, it is vital to determine the hydrodynamic loads acting on the container, and their phase with 

respect to this excitation. The hydrodynamic shell forces and moments are computed by integrating the 

pressure distribution over the wetted area. The free-surface wave height which affects the location of the 

centre of mass should also be determined. For resonance, the liquid’s free surface experiences different 

types of nonlinear behaviour. 

Trembath, (1957) attained a solution for sloshing in cylindrical and rectangular geometry containers 

undergoing small horizontal oscillations and pitching. The solution contained integrals which are evaluated 

either algebraically or numerically depending on the problem. A general treatment of an arbitrary tank 

geometry undergoing forced motion was given in terms of the velocity potential function by Brooks, (1959). 

A Lagrangian formulation was developed by Budiansky (1958), to observe sloshing dynamics under 

horizontal excitation of spherical and circular horizontal tanks. This section deals with the liquid response 

to lateral and pitching excitations for an upright cylindrical and rectangular tank configuration. 

2.4.2.2.1 Upright Cylindrical Containers 

 

Widmayer and Reese (1953) studied the analytical problem of liquid forced oscillations in an upright 

circular cylindrical tank of uniform depth experiencing horizontal and pitching motion. This study aid in 

the estimation of the liquid’s effective mass moment of inertia, the forces and moments acting on the tank, 

and the sloshing wave height. In this section, the liquid hydrodynamic shell forces and moments acting on 

the container geometry are estimated under translational and pitching excitations. Ibrahim, (2006) states 

that under roll excitation, the fluid does not participate in the tank motion since it is assumed to be inviscid. 

However, if the fluid viscosity is considered, then the Navier–Stokes equations must be used to determine 

the thickness of the fluid contributing to sloshing. 

2.4.2.2.2 Lateral Excitation 

 

For an upright circular tank, as shown in Figure 16, under sinusoidal excitation along the x-axis, where Xo 

and Ω are the excitation amplitude and frequency, respectively. 
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Figure 16. Cylindrical tank under sinusoidal lateral excitation, (Ibrahim 2006) 

 

Under the assumption that the amplitudes of liquid excitation and the respective fluid responses are small, 

the linearised fluid field dynamic and kinematic equations for free surface conditions are given by Equations 

(38) and (39) respectfully. 

 0 = 𝑔𝜂 −
𝜕Φ

𝜕𝑡
+ 𝑋̈𝑟 cos 𝜃  ,        𝑎𝑡 𝑧 = 𝜂(𝑟, 𝜃, 𝑡) (38) 

 

 −
𝜕Φ

𝜕𝑡
=
𝜕η

𝜕𝑡
 ,       𝑎𝑡 𝑧 = 𝜂(𝑟, 𝜃, 𝑡) (39) 

 

where 

g – gravitational acceleration 

η – wave height 

𝑋̈ – second derivative of the excitation amplitude 

r – cylindrical tank of radius 
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t – time 

θ – angular coordinate 

∂Φ and ∂η – change in potential velocity and wave height respectively 

∂t – change of potential velocity and wave height with respect to the time taken for that change to 

occur 

 

The maximum wave height occurs, ηmax, at r = R, θ = 0 and Ωt = ℼ/2 and is given by Equation (40) 

 

 𝜂𝑚𝑎𝑥 = 
𝑋0Ω

2

𝑔
 {𝑅 +∑

2𝑅

(𝜉1𝑛
2 − 1)

∞

𝑛=1

Ω3

(𝜔1𝑛
2 − Ω2)

} (40) 

where 

R – radius of curvature of the free surface 

Xo and Ω – the excitation amplitude and frequency respectively 

g – gravitational acceleration 

ξ – sloshing amplitude 

ω – sloshing frequency 

 

The maximum pressure occurs on the wall at r = R, θ = 0 and Ωt = ℼ/2 and is given by Equation (41) 

 𝑝 = 𝜌 
𝜕Φ

𝜕𝑡
=  

𝑝𝑤

𝜌𝑔 𝑅 (
𝑋0
𝑅
)
 (41) 

      

Where 

g – Gravitational acceleration 
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R – Radius of curvature of the free surface 

∂Φ – change in potential velocity 

∂t – change of potential velocity with respect to the time taken for that change to occur 

Xo – the excitation amplitude 

ρ – Density of the fluid 

pw – pressure at the top of the wall  

pb – pressure at bottom of tank 

 

The pressure distribution on the bottom at z = -h, θ = 0 and Ωt = ℼ/2 and is given by Equation (42) 

 𝑝 = 𝜌 
𝜕Φ

𝜕𝑡
=  

𝑝𝑏

𝜌𝑔 𝑅 (
𝑋0
𝑅
)
 (42) 

 

According to Ibrahim (2006) and Abramson (1961), Figure 17 illustrates the wall pressure distribution for 

liquid depth ratio h/R = 2 and for different values of excitation frequency parameter. According to literature 

provided by Abramson (1961), the lower third of the fluid behaves as a rigid mass, while most of the 

sloshing effects occur near the surface. 
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Figure 17. Wall pressure distribution in a circular tank under lateral excitation for h/R = 2 (Ibrahim, 2006) 

Abramson (1961) directed a series of experimental tests to compare the analytical results given by 

Equations (41) and (42) mentioned above with those found experimentally. Note that the analytical results 

do not include any damping effects. 

 

Figure 18. Comparison between analytical and measured wall distribution for h/R = 2. (Ibrahim, 2006) 
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As seen in Figure 18, an interesting phenomenon occurs over the frequency range between the first mode 

natural frequency and the frequency at which the net force vanishes. The pressure distributions over the 

first and second modes indicate that the pressures near the surface are one hundred and eighty degrees 

(180o) out of phase with those adjacent to the bottom surface. 

 

2.4.3 Nonlinear and Parametric Sloshing Dynamics 

2.4.3.1 Weakly nonlinear lateral sloshing 

 

Ibrahim, R. (2006) mentioned that the linear theory for liquid sloshing is acceptable for determining the 

natural frequencies and wave height of the liquid’s free surface. Under translational excitation, the linear 

theory is useful for predicting the shell’s liquid hydrodynamic pressure, forces, and moments. This holds 

true only when the free surface maintains a planar shape with a nodal diameter that remains perpendicular 

to the line of excitation, and does not take into consideration the importance of vertical displacement with 

respect to the centre of gravity of the liquid for large amplitudes of sloshing. Ibrahim (2006) also mentioned 

that the linear theory fails to predict complex surface phenomena observed experimentally near resonance. 

These phenomena include the nonplanar unstable motion of the liquid’s free surface associated with chaotic 

sloshing and rotation of the nodal diameter also called rotary sloshing. 

According to an investigation done by Abramson and Garza (1965), concerning the nonlinear effects of 

lateral sloshing in compartmented containers, they concluded that the measured natural frequencies of the 

liquid’s free surface are dependent on the excitation amplitude. Under the hydrodynamic force amplitudes 

at each resonant peak, the liquid’s free surface shape is no longer planar and its upward displacement is 

larger than the downward displacement. Thus, for excitations near resonance, the nonlinear analysis is 

essential to determine the shell’s hydrodynamic forces. This phenomenon can be uncovered using the theory 

of weakly nonlinear oscillations for quantitative analysis and the modern theory of nonlinear dynamics for 
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stability analysis. The main source of nonlinearity in the fluid field equations is contributed by the free 

surface BCs. 

 

2.4.3.2 Rotary Sloshing 

 

Rotary sloshing for deep liquid retaining structures, Berlot (1960) states that under lateral harmonic 

excitation, the liquid’s free surface may exhibit two types of nonlinearities. The first is large amplitude 

response, and the second involves different forms of liquid behaviour resulted by instabilities of various 

sloshing modes. The most important of these is the rotary sloshing, which usually occurs at the lowest 

sloshing natural frequency. 

Weiss and Rogge (1965), reported three types of fluid motion in circular cylindrical tanks: 

i. Stable planar. 

ii. Stable nonplanar. 

iii. Unstable motion near resonance. 

Stable planar motion is associated with constant wave height and a stationary single nodal diameter 

perpendicular to the direction of excitation. Stable nonplanar motion is associated with a constant wave 

height connected with a single nodal diameter that rotates at a constant rate around the tank vertical axis 

and an unstable motion near resonance never attains a steady-state harmonic response. The liquid motion 

displays a softening restoring characteristic in the stable planar motion and a hardening effect in the 

nonplanar regime. 

For rotary sloshing in shallow liquid retaining structures, with low liquid depth, all the liquid takes part in 

the dynamic response to lateral excitation. There’s a critical liquid depth where the free liquid’s surface 

exhibits the ‘‘hard-soft’’ spring characteristics of a rotating wave. 
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2.4.3.3 Dynamics Sloshing Impact 

 

An impulsive acceleration to liquid influences a hydrodynamic pressure impact on the container shell walls. 

According to Stephens (1965), methods for estimating the liquid impact and its hydrodynamic pressure are 

not well developed and are only recognised by experimental studies. According to previous experimental 

studies provided by Stephens (1965) and Ibrahim (2006), they noticed that when hydraulic waves are 

present, extremely high impact pressures could occur on the container walls. A hydraulic wave occurs when 

the container undergoes an oscillatory motion when the liquid height is shallow, and the excitation 

frequency is close to the natural frequency of sloshing.  

According to Chester (1964), the hydraulic wave is a nonlinear phenomenon, similar to the shock waves 

that would be displayed in a one-dimensional gas flow under analogous resonance conditions. Also, the 

effect of dispersion is to introduce higher harmonics into the spectrum of liquid oscillations. The movement 

of hydraulic wave affects the stability of liquid retaining structures. Under these conditions, there is a strong 

coupling between the dynamics of the container and the movement of the hydraulic wave. In the case of 

deep liquid storage, the flow resonates and hits the top of the tank, which consequences in substantial impact 

pressure. Sloshing can be more severe longitudinally than laterally if no transverse baffles are introduced. 

The longitudinal acceleration peaks are more significant than the lateral ones. For some container geometry, 

the sloshing impact is probably more severe to the structure for longitudinal than for lateral sloshing. 

 

2.4.4 Sloshing Structure Interaction 

2.4.4.1 Introduction 

 

Ibrahim (2006) states that the linear theory cannot be used for dynamic analysis of shell elements 

undergoing elastic deformation that is analogous to its wall thickness and if the liquid’s free surface 

amplitude is large. Nonlinear resonance conditions that cause complex response characteristics will result 

in the occurrence of nonlinearities within FEA model. The core complications in nonlinear problems of 
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shell liquid systems is that the boundary conditions are nonlinear knowing that the strain state of an elastic 

shell and the shape of the liquid’s free surface are not known a priori. He also stated that the nonlinear 

interaction of a liquid shell interaction is a non-classical boundary-value problem and depends on the 

mechanics of deformable solids, fluid dynamics and nonlinear mechanics. 

Experimental work was done by researchers as explained by Ibrahim (2006) and concluded that, under 

external periodic excitation of cylindrical shells, it was observed that the specific steady conditions of 

dynamic deformation in which the lines of nodes representing the sloshing wave moves in the azimuthal 

direction with respect to time. Analytically, the dynamic deflection of the shell is usually represented as a 

single standing wave, considered in combination with an axisymmetric form with twice the number of 

harmonics along the shell surface generator. The presence of an axisymmetric form must be reflected by 

predominant inward deflection. 

 

2.4.4.2 General Equations of Motion 

 

Using Donnell’s nonlinear theory of shallow shells that is based on the assumptions of neglecting in-plane 

inertia, transverse shear deformation and rotary inertia, the governing equation for large deformation is 

shown in Equation (43). 

 

𝐷∇4𝑤 + 𝑐𝑡̂𝑤̇ + 𝜌𝑐 𝑡̂𝑤̈

=
1

𝑅

𝜕2𝐹

𝜕𝑧2
+
1

𝑅2
(
𝜕2𝐹 𝜕2𝑤

𝜕𝜃2 𝜕𝑧2
− 2

𝜕2𝐹 𝜕2𝑤

𝜕𝑧𝜕𝜃 𝜕𝑧𝜕𝜃
+
𝜕2𝐹 𝜕2𝑤

 𝜕𝑧2𝜕𝜃2
) + 𝑓(𝑡) − 𝑝

− 𝑁𝑧(𝑡)
𝜕2𝑤

𝜕𝑧2
 

(43) 

where; 

 𝐷 =
𝐸𝑡̂3

12(1 − 𝜈2)
   &   𝑁𝑧(𝑡) = 𝑁0 + 𝑁(𝑡) (44) 

 

where  
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ω– sloshing frequency 

z – axial dimension 

R – radius of curvature of the free surface 

θ – angular coordinate 

t – time 

E = Young’s modulus 

 

 Figure 19 illustrates a partially filled shell container (with reference coordinates z, r, θ) with an 

incompressible fluid to a depth h.  

 

Figure 19. Partially filled Cylindrical Container. (Ibrahim 2006) 

 

The origin, O placed at the centre of container base and the displacement of a point on the middle surface 

of the shell are denoted as u, v, w in the axial, z, circumferential, θ, and radial, r, directions, respectively. 

The radial displacement, w, is taken to be positive towards the shell centre. The applicability of Donnell’s 

theory is dependent on the following statement, shell thickness, t, must less than the shell radius, R. 
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where; 

 𝐷 =
𝐸𝑡̂3

12(1 − 𝜈2)
   &   𝑁𝑧(𝑡) = 𝑁0 + 𝑁(𝑡) (45) 

 

where; 

D = flexural rigidity 

E = Young’s modulus 

Υ = Poisson’s ratio 

ρc = shell density 

c = damping coefficient 

p = internal hydrodynamic pressure acting on the wetted wall 

f(t) = external excitation acting on the shell 

Nz (t) = dynamic excitation acting along the shell edges 

 

In Equation (43), the dot denotes differentiation with respect to time, and F is the in-plane stress function 

obtained by solving Equation (45). 

 
1

𝐸𝑡̂
∇4𝐹 =

1

𝑅

𝜕2𝜔

𝜕𝑧2
+
1

𝑅2
([
𝜕2𝜔

 𝜕𝑧𝜕𝜃
]

2

−
𝜕2𝜔 𝜕2𝜔

 𝜕𝑧2𝜕𝜃2
) (46) 

 

 

where  

 ∇4= (
𝜕2

𝜕𝑧2
+
1

𝑅2
𝜕2

𝜕𝜃2
)

2

 (47) 
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where  

ω– sloshing frequency 

z – axial dimension 

R – radius of curvature of the free surface 

θ – angular coordinate 

t – time 

E = Young’s modulus 

 

2.5.2.3 Parametric Excitation of a Shell-Liquid System 

 

As stated by Ibrahim (2006), the modal equations of motion can take the form of Equations (48) and (49) 

and used the averaging method to determine the steady-state response A and B as shown in Equations (50) 

and (51). 

 𝐴̈ + (𝜔1
2 −𝑁 cosΩ𝑡)𝐴 + 𝛾1(𝐴

2 + 𝐵2)𝐴 = 0 (48) 

 

 𝐵̈ + (𝜔1
2 − 𝑁 cosΩ𝑡)𝐵 + 𝛾1(𝐴

2 + 𝐵2)𝐵 = 0 (49) 

 

 𝐴(𝑡) = 𝑎(𝑡)cos (
Ω

2
𝑡 + 𝜗1(𝑡) (50) 

 

 𝐵(𝑡) = 𝑏(𝑡)cos (
Ω

2
𝑡 + 𝜗2(𝑡) (51) 

where  
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 𝑁 =
𝑁𝑧 (

𝑚𝜋
𝑙
)
2

𝜌𝑐(1 + 𝑚01)
 (52) 

 

and  

Nz – in-plane restraint stresses generated at the end of the shell 

ω – sloshing frequency 

Ω – the frequency of the tank motion 

h – upper level of liquid volume 

t – time 

m – sloshing mass 

ϑ – angular coordinate 

γ – surface tension 

ρ – density of the fluid 

 

This method results in two possible solutions. The unimodal response a and b are shown as Equations (53) 

and (54). 

 𝑎2 = −
4

3𝛾1
{𝜔1

2 −
Ω2

4
±
𝑁

2
} ,        𝑏 = 0 (53) 

 

 𝑏2 = −
4

3𝛾1
{𝜔1

2 −
Ω2

4
±
𝑁

2
} ,        𝑎 = 0 (54) 

The mixed mode response a and b are as Equations (55) and (55). 
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 𝑎2 = −
1

𝛾1
{
Ω2

4
− 𝜔1

2 ∓𝑁} (55) 

 

 𝑏2 = −
1

𝛾1
{
Ω2

4
− 𝜔1

2 ± 𝑁} (56) 

 

The domain of existence of this solution is bounded by the frequency band as shown in Equation (57). 

 Ω < Ω∗ = 2√𝜔1
2 − 𝑁 (57) 

 

2.4 Numerical Analysis 

2.4.1 Introduction 

Currently, numerical simulation is being utilised for solving complex Finite-difference methods (F-DM) 

and Finite Element Methods (FEM) complications in engineering and science by conducting experimental 

investigations and examining theories to provide knowledge on complex dynamic analysis and can even 

contribute to the discovery of a new theory. F-DM and FEM are numerical grid methods, which solve 

complex Computational Fluid Dynamics (CFD) and Computational Solid Mechanics (CSM) problems. The 

significant consequences of these grid-based methods are based on the time taken to create and regenerate 

the mesh which is a costly process especially when required to regenerate a quality mesh for accurate 

analysis with respect to problems with free surfaces, deformable boundary, moving interface (for FDM) 

and tremendously large deformation (for FEM). 

Liu and Liu (2009), mentioned that meshfree methods are being used to solve complex engineering 

problems and in time will be superior to conventional grid F-DM and FEM in many applications. One of 

the modelling techniques utilises a FEM software (ABAQUS) where the Smoothed Particle Hydrodynamics 

(SPH) method would be adopted. The reasons for this method are listed as follows: 
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i. SPH is capable of producing accurate results about problems with a free surface, deformable 

boundary, moving interface as well as large deformation. 

ii. Previous research and enhancements to the SPH method increased the accuracy of results and 

stability of model have reached a threshold level for investigating the complex complications, 

especially for the phenomena of sloshing. 

2.4.2 Meshing Methods for Numerical Fluid-Structure Analysis 

There are several techniques used to determine the complexity of fluid-structure interaction problems. As 

mentioned by Papadrakakis et al. (2011), the following non-linear finite element techniques, can cope with 

large deformations of the liquid’s free surface. The structure, hence generating precise results for the 

hydrodynamic pressures due to impulsive fluid motion effects and seismic impacts within the internal wall 

and roof. In some instances, some methods cannot cope with large deformations. 

2.4.2.1 Smooth Particle Hydrodynamics Method 

A finite element technique to analyse fluid-structure complications is called the Smooth Particle 

Hydrodynamics (SPH) method, which is a meshless Lagrangian procedure, used to model the liquid 

conditions under applied motion. In this method, the fluid region is represented by particles, which convey 

information about mass conservation, hydrodynamic and thermodynamic performance. Since this is a 

meshless technique, problems that involve large-amplitude fluid motion and complex geometries can be 

solved very easily producing more accurate results as opposed to the grid numerical methods mentioned in 

the previous section, without having the limitations of volumetric meshing. This method is computationally 

expensive for both memory and CPU time because analysis requires a large number of particles to simulate 

the actual phenomena of FSI problems. The more particles modelled the result accuracy will increase.  

Complications in CFD are commonly solved by the conventional grid numerical methods such as the FEM, 

F-DM and Finite Volume Method (FVM). Liu and Liu (2009) mentioned that the critical feature of these 

techniques is a grid that corresponds to the Eulerian Algorithm (for F-DM and FVM) or Lagrangian 

Algorithm (for FEM) that is essential for the computational structure to provide spatial discretisation for 

the governing equations. 
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The problems concerning significant mesh element distortion, moving material interfaces, deformable 

boundaries and free surfaces cannot be resolved by FEM and the Eulerian methods. As a result attempts 

have been made to combine features of the F-DM and FEM by using CEL and ALE which are two-grid 

systems. In these methods, the computational information is replaced by mapping or a distinct interface 

treatment among the two types of grids. These approaches are complicated but work well for numerous 

problems. However, they can cause a level of inaccuracy in numerical analysis for the mapping process. 

Brackbill et al. (1988) mentioned that the SPH method is used to simulate complex dynamic fluid flows. 

Liu and Liu (2009) explained that by discretising the Navier-Stokers equations spatially, the SPH 

formulation derived would contain several ordinary differential equations with respect to time, which can 

then be solved through time integration calculations. This method can, therefore, treat large deformation, 

tracking moving interfaces or free surfaces and obtaining the time history of the field variables due to its 

pure Lagrangian nature. 

In this chapter, the SPH approximations are given, which comprise the strategy of the SPH method, the 

kernel approximation and the discretised particle approximation. 

2.4.2.2 SPH Concept 

The SPH procedure can understand hydrodynamics intricacies whose arrangement appear as a Partial 

Differential Equations (PDE) for field factors such as the density, velocity and energy. Acquiring expository 

solutions for such an arrangement of PDEs is not frequently conceivable, aside from not very many 

straightforward cases. For numerical arrangements, one needs first to discretize the problem area where the 

PDEs are characterised so that the technique can give an estimate to the estimations of the field capacities 

and their derivatives at any point. 

The function approximation is then applied to the PDEs to create an arrangement of ODEs in a discretised 

form with respect only to time. This arrangement of discretised ODE can then be solved utilising one of the 

standard integration procedures of the conventional FDM. 

In the SPH strategy, the accompanying vital thoughts are utilised to accomplish the previously mentioned 

task. 
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i. Meshfree – The problem space is represented by an arrangement of subjectively 

appropriated particles if the area is not yet as particles. No connectivity for these particles 

is required. 

ii. Integral function representation – The integral representation procedure is used for field 

function estimations. In the SPH method, this is designated as the kernel approximation. 

iii. Compact support – The kernel approximation is then further approximated using 

particles. In the SPH method, this is designated as particle approximation. This process is 

carried out by replacing the integration in the integral representation of the field function 

and its derivatives with summations over all the comparing values at the neighbouring 

particles in a local domain called the support domain. 

iv. Adaptive – The particle estimation is completed at every time step, and consequently, the 

utilisation of the particles relies upon the present local appropriation of the particles. 

v. Lagrangian – The particle estimations are performed to all related field functions terms 

in the PDEs to produce a set of ODEs in a discretised form with respect to just time. 

vi. Dynamic – The ODEs are then solved using an explicit integration process to achieve fast 

time stepping to obtain the time history of all the field variables for all the particles. 

 

2.4.2.3 SPH Formulation 

2.4.2.3.1 Kernel Approximation of a Function 

The SPH formulation consists of two essential steps where the first step relating to the kernel approximation 

of field equations and the other relating to the particle approximation of the equation. During the first step 

of the SPH formulation in finite element analysis, integration of an arbitrary equation and smoothing kernel 

equation produces an integral representation of the kernel approximation of the SPH function. The integral 

representation of this function is computed based on nearby interacting particles, which then results in the 

particle approximation of the SPH function of a discrete particle within the model. 

As explained by Liu and Liu (2009), the kernel approximation of a function f(x) is illustrated as Equation 

(58). 
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 < 𝑓(𝑥) >= ∫ 𝑓(𝑥′)

𝛺

𝑊(𝑥 − 𝑥′, ℎ)𝑑𝑥 (58) 

where  

         < > – angled brackets represent the kernel approximation operator 

f – function of the three-dimensional position vector x 

Ω – volume of the integral that contains x 

W – smoothing kernel function. 

x – three-dimensional position vector 

 

In the smoothing kernel function, h, is the smoothing length defined by the influenced area of the smoothing 

kernel function, W. According to Monaghan (1992), a suitable kernel must have the following two 

properties illustrated in Equation 78 and Equation 79, where, W should be an even function and satisfy 

unity (Equation (59)), Delta function property (Equation (60)) and the compact condition (Equation (61)). 

 ∫ 𝑊(𝑥 − 𝑥′, ℎ)𝑑𝑥′ = 1

𝛺

 (59) 

 

where  

Ω – volume of the integral that contains x 

W – smoothing kernel function 

h – the smoothing length 

x – three-dimensional position vector 
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 lim
ℎ→0

𝑊(𝑥 − 𝑥′, ℎ) = 𝛿 (𝑥 − 𝑥′) (60) 

 

where  

δ – Dirac delta function = 𝛿(𝑥 − 𝑥′) = {0        𝑥≠𝑥′
1        𝑥=𝑥′    

 

 𝑊(𝑥 − 𝑥′, ℎ) = 0 𝑤ℎ𝑒𝑛  |𝑥 − 𝑥′| > 𝑘ℎ (61) 

 

where  

k – is the constant of the smoothing function for a point, x, and defines the effective area of the 

smoothing kernel function. 

 

2.4.3  Smoothing Kernel Function 

Liu and Liu (2009) mentioned that the smoothing function plays a significant role in the SPH estimations 

because this determines the accuracy of the kernel approximation and efficiency of the computation. 

2.4.3.1 Quadratic Smoothing Kernel Function 

Johnson et al. (1996) used the following quadratic smoothing kernel function as illustrated in Figure 20 and 

Equation (62) to simulate the high-velocity impact problem. 

 𝑊(𝑅, ℎ) = 𝛼𝑑 (
3

16
𝑅2 −

3

16
𝑅 +

3

4
)                   0 ≤ 𝑅 ≤ 2 (62) 

where  

R – the relative distance between two particles at points x and x’ = 𝑅 =
𝑟

ℎ
=
|𝑥−𝑥′|

ℎ
  

r – the distance between the two points 

αd – with respect to one, two and three-dimensional space. 
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𝛼𝑑 =
1

ℎ
   , 𝛼𝑑 =

2

𝜋ℎ2
   , 𝛼𝑑 =

5

4𝜋ℎ3
 

 

Figure 20. The quadratic smoothing function and its first derivatives. (Johnson et al. 1996) 

 

Johnson et al. (1996) mentioned that the difference with this smoothing function to the other smoothing 

functions proposed in the past is that the derivatives of the quadratic smoothing kernel function increases 

as the particles move closer, and decreases as the particles move apart hence resolving the problem of 

compressive instability and producing more accurate results with respect to numerical simulations. 

 

2.4.4 Particle Approximation 

Since the entire model of the problem, the domain is represented by a finite number of particles, the particle 

approximation, which is an essential operation to provide accurate information for mass, individual space 

occupied. The equivalent discretised process of summation of the particles is generally known as particle 

approximation in most SPH literature. 
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Figure 21.  Particle approximations using particles within the support domain of the smoothing function W for 

particle i. (Liu and Liu 2009) 

 

According to Liu and Liu (2009), understanding Figure 21, equation (63) states that the value of a function 

at the particle, i, is approximated using the average of those values of the function at all the particles in the 

support domain of particle, i, weighted by the smoothing kernel function. The particle approximation for a 

function at the particle, i, is written as: 

 < 𝑓(𝑥𝑖) >=∑
𝑚𝑗

𝜌𝑗

𝑁

𝑗=1

 𝑓(𝑥𝑗).𝑊(𝑥𝑖 − 𝑥𝑗 , ℎ) (63) 

 

where  

< > – angled brackets represent the kernel approximation operator 

f – function of the three-dimensional position vector x 

W – smoothing kernel function 

x – three-dimensional position vector 

j – the location of a particle 

ρj – density of the particle 

N – is the number of particles within the support domain of particle j 
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mj – mass of the particle 

 

2.4.5 Lagrangian Navier-Stokes Equations 

The governing equations of fluid dynamics are based on the subsequent three fundamental physical laws of 

conservation. 

i. Conservation of mass 

ii. Conservation of momentum 

iii. Conservation of energy 

The physical governing equations are described by two methods known as the Eulerian and Lagrangian 

algorithm where one is a spatial description, and the other is a material description respectfully. According 

to Liu and Liu (2009) study, the fundamental difference between these two descriptions is that the 

Lagrangian algorithm uses the total time derivative as the combination of local derivative and convective 

derivative. 

The SPH governing equations (64) to (66) for dynamic fluid flows are partial differential Navier-Stokes 

equations in the Lagrangian algorithm, which states the conservation of mass and momentum and energy. 

The superscripts α and β are used to denote the coordinate directions, the summation in the equations is 

taken over repeated indices, and the total time derivatives are taken in the moving Lagrangian frame. 

 

The Continuity Equation: 

 
Dρ

Dt
 = −ρ 

∂vβ

∂xβ
 (64) 

 

where 

σ – total stress = σαβ  = −pδαβ + ταβ 
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τ – viscous stress = ταβ  = μεαβ  

p – isotropic pressure  

α and β – used to denote the coordinate directions 

 

The Momentum Equation: 

 
Dρ

Dt
 = −ρ 

∂vβ

∂xβ
 (65) 

 

 

 

The Energy Equation: 

 
𝐷𝑒

𝐷𝑡
 =
𝜎𝛼𝛽

𝜌
 
𝜕𝑣𝛼

𝜕𝑥𝛽
 (66) 

 

For Newtonian fluids, the viscous shear stress is relative to the shear strain rate denoted by ε through the 

dynamic viscosity µ. 

Where 

 𝜀𝛼𝛽  =
𝜕𝑣𝛽

𝜕𝑥𝛼
+
𝜕𝑣𝛼

𝜕𝑥𝛽
−
2

3
 (
1

𝛿𝑉

𝐷(𝛿𝑉)

𝐷𝑡
) 𝛿𝛼𝛽 (67) 

 

And:  δV – the infinitesimal fluid cell control volume 
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2.4.5.1 SPH formulations for Navier-Stokes Equations 

2.4.5.1.1 Approximation of Particle Density 

The approximation of the particle density is essential with the SPH method since the density controls the 

particle distribution and smoothing length evolution. The approach of particle approximation for density is 

the continuity density, which approximates the density according to the continuity equation using the 

concepts of SPH approximations plus some transformations. Transformation of the right-hand side (RHS) 

of the continuity Equation (66) leads to the formulation of the conservation of mass Equation (68) as 

illustrated by Liu and Liu (2009). 

 
𝐷𝜌𝑖
𝐷𝑡
 = 𝜌𝑖∑

𝑚𝑗

𝜌𝑗

𝑁

𝑗=1

 𝑣𝑖𝑗
𝛽
 .
𝜕𝑊𝑖𝑗

𝜕𝑥𝑖𝑗
𝛽

 (68) 

where  

 𝑣𝑖𝑗
𝛽
= (𝑣𝑖

𝛽
− 𝑣𝑗

𝛽
) (69) 

 

and 

W – smoothing kernel function 

j – the location of a particle 

ρj – density of the particle 

N – is the number of particles within the support domain of particle j 

mj – mass of the particle 

α and β – used to denote the coordinate directions 

𝑣 – velocity 
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2.4.5.1.2 Approximation of Particle Momentum 

Liu and Liu (2009) derived the equation by directly applying the SPH particle approximation concepts to 

the gradient on the RHS of the momentum Equation (65) which results in the conservation of momentum 

Equation (70). The advantage of this equation is that it decreases errors arising from the problem of particle 

inconsistency. 

 
𝐷𝑣𝑖

𝛼

𝐷𝑡
=∑𝑚𝑗

𝑁

𝑗=1

𝜎𝑖
𝛼𝛽
+ 𝜎𝑗

𝛼𝛽

 𝜌𝑖𝜌𝑗

 𝜕𝑊𝑖𝑗

𝜕𝑥𝑖
𝛽

 (70) 

where 

σ – total stress = 𝜎𝛼𝛽  = −𝑝𝛿𝛼𝛽 + 𝜏𝛼𝛽 

τ – viscous stress = 𝜏𝛼𝛽  = 𝜇𝜀𝛼𝛽  

p – isotropic pressure  

α and β – used to denote the coordinate directions 

W – smoothing kernel function 

j – the location of a particle 

ρj – density of the particle 

N – is the number of particles within the support domain of particle j 

mj – mass of the particle 

𝑣 – velocity 

µ – dynamic viscosity 
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2.4.5.1.3 Approximation of Particle Energy 

The energy equation depends on the conservation of energy, which illustrates the first law of 

thermodynamics. The equation expresses that the change of time with respect to the change of the rate of 

energy inside a minuscule liquid particle should equal to; 

i. The sum of net heat flux into the fluid particle. 

ii. The time rate of work done by the body and surface forces acting on the particle. 

If neglecting the heat flux, and the body force, the time rate of change of the internal energy, e, of the 

minuscule liquid particle consists of the following two parts. 

i. The work done by the isotropic pressure multiplying the volumetric strain. 

ii. The energy dissipation due to the viscous shear forces. 

Therefore, the particle energy equation can be written as follows; 

 
𝐷𝑒𝑖
𝐷𝑡

=
1

2
∑𝑚𝑗

𝑁

𝑗=1

𝑝𝑖 + 𝑝𝑗

 𝜌𝑖𝜌𝑗
𝑣𝑖𝑗
𝛽  𝜕𝑊𝑖𝑗

𝜕𝑥𝑖
𝛽
+
𝜇𝑖
2𝜌𝑖
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where 

σ – total stress = 𝜎𝛼𝛽  = −𝑝𝛿𝛼𝛽 + 𝜏𝛼𝛽 

τ – viscous stress = 𝜏𝛼𝛽  = 𝜇𝜀𝛼𝛽  

p – isotropic pressure  

α and β – used to denote the coordinate directions 

W – smoothing kernel function 

j – the location of a particle 

ρj – density of the particle 

N – is the number of particles within the support domain of particle j 

mj – mass of the particle 
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𝑣 – velocity 

ε – strain rate 

µ – dynamic viscosity 

The method chosen to analyse fluid-structure complications of this investigation is the Smooth Particle 

Hydrodynamics (SPH) method. Since this is a meshless technique, problems that involve large-amplitude 

fluid motion and complex geometries can be solved very easily producing more accurate results as opposed 

to the grid numerical methods, without having the limitations of volumetric meshing. This method is 

computationally expensive with respect to both memory and CPU time because analysis requires a large 

number of particles to simulate the actual phenomena of FSI problems. The more particles modelled the 

result accuracy will increase. For this reason, this method will be adopted as the methods for the FEA 

analysis to investigate dynamic sloshing of the QSD. 

 

2.5 The Mechanical Properties of 3D Polymers 

2.5.1 Introduction 

The Mechanical properties investigated in this study are those commonly considered in structural 

members. These properties are strength, ductility, hardness, impact resistance and fracture 

toughness. Most structural materials show anisotropic properties; it was observed that the 

mechanical properties of a component would differ depending on the type of manufacturing 

process used to produce the component. This review focuses on the type of manufacturing process 

known as additive manufacturing (AM) or more commonly referred to as 3D-printing (3DP). AM 

is a process where the material is added to the desired location, building up the desired shape in 

layers rather than cutting from a larger piece of material. This type of manufacturing opens several 

design possibilities. FDM is a type of AM which allow for manufacturing of complicated 

geometries with ease, by simple means of developing a CAD drawing. The CAD file is converted 
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to a compatible file format, sliced and prepared to be printed on available platforms. 3D-printers 

based on fused deposition modelling principles are commonly available platforms that offer a user-

friendly interface and produce relatively accurate print jobs. FDM works by feeding polymer 

materials through an extrusion nozzle that heats the material to a semi-liquid form that is then 

deposited along the extrusion path. The word fused explains the bonding process that the polymer 

material undergoes as the newly deposited material is placed on previous layers (Berman, 2015). 

Most FDM platforms are limited to polymer materials, hence the interest in developing new polymer 

composites for use in structural applications. Polymers are modern materials developed from crude oil and 

natural gas, which are produced in large amounts. The raw materials used to make polymers are low-

molecular-weight substances (Kratochvil, 1989).  Making these materials worth considering for use in 

structural applications due to their strength to weight ratio. Polymers are also available as composite 

materials. These are materials that use a polymer base resin as its matrix and are reinforced by fibres or 

other additives. The result is the change of the mechanical properties as discussed in Torrado, (2015) and 

Gray IV, (1998). 

Prediction of material behaviours under different types of loading is of high importance in structural design. 

Structural engineers must be able to predict these behaviours to ensure that their designs meet the required 

design standards. An exact type of analysis used to achieve this is Finite Element Analysis method (FEA). 

FEA has been used by Henry, (1985) to study the performance of glass-reinforced bridge decks of different 

configurations. The study indicated that the design is almost always controlled by the deflection limit state 

rather than the strength limit state. This information proved to be accurate and is still used when designing 

fibre reinforced polymer systems to date. In this review, the use of FEA software gave some accurate 

approximations of strength, stiffness and stability behaviours of FDM manufactured components found in 

studies by Rodriguez, (2003). Tensile, compression and dynamic test have been simulated using FEA 

software utilising information obtains from experimental research by Sayre, (2014). This paper reviews the 

previous research done to analyse the applicability of 3DP polymers for structural engineering applications.  
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Figure 22.  Build parameters in FDM platforms adapted from Hossain et al. (2013) 

2.5.2 Fused deposition technology  

The concept of fused deposition printing originates in the way the technology constructs geometries. The 

process uses polymer-based materials which are fused to form one solid object. The word fused describes 

how the extruded layers bond to each other. There are two elevations in temperatures to consider when 

using this technology, the glass transition temperature (Tg) and the melting temperature (Tm). Tg is the 

temperature in which a polymer material cools and becomes hard. Tm is the temperature where the polymer 

material melts to become liquid. These temperatures differ among polymers and do show a relationship 

between their mechanical properties (Stansbury, 2015; Torrado, 2014).  However there are some defects 

discovered in parts printed using FDM technology as observed by Tekinalp, (2014), who found triangular 

void formation along the build direction of 3D-printed ABS material caused by the elliptical shape of the 

extruded filament. Tekinalp stated that the deformation occurred during the transition from the Tm to Tg, 

which caused the top of the filament to form round edges. This manufacturing flaw may contribute to the 

anisotropic properties of the 3D-printed polymer. 

Hossain et al. (2013), found that by modifying the build parameters of FDM technology leads to the 

reduction in the gaps formed like the ones in Tekinalp’s research. Their research focused on obtaining a 

method in which to modify build parameters to improve the mechanical properties of Polycarbonate (PC) 

specimens. This research showed that by modifying build parameters flaws in the 3DP-polymers can be 

reduced, which gives FDM technology potential in structural applications. The build parameters modified 

in this research were raster angle (RA), raster width (RW), contour width (CW), raster to raster air gap 

(RRAG) and layer height as seen in Figure 22.  
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Two methods for modifying build parameters which involved considering the tool path operations and 

examining low-magnified optical images were developed. These modifications were then named Insight 

revision method and Visual feedback method; the layer height was set at 0.254 throughout the experiment. 

The 3DP platform used was a Fortus 900 mc with a build chamber of 914mm ×610 mm × 914 mm. Table 

3 shows the parameters used in this study. 

 

Table 3. Modified build parameters (Hossain et al. 2013) 

Build  Raster 

Default Parameter 

(mm) 

Insight revision method 

(mm) 

Visual feedback method 

(mm) 

orientation  angle CW RW RRAG CW RW RRAG CW RW RRAG 

XYZ 0o/90o 0.508 0.508 0 0.432 0.432 0 0.432 0.432 -0.013 

  30/-60 0.508 0.508 0 0.432 0.432 0 0.432 0.432 -0.013 

  45/-45 0.508 0.508 0 0.432 0.432 0 0.432 0.432 -0.013 

 

The visual feedback method showed the most promising results with the introduction of negative raster to 

raster air gap (RRAG). The modification led to the removal of air gaps in the specimen tested. These 

parameters can be used when modelling geometries for structural application as they resulted in an overall 

increase in the ultimate tensile strength (UTS) of the samples. Negative RRAG were also proven to be 

successful in increasing the tensile strength of ABS material as conducted in previous studies by Ahn et al. 

2002, who used RRAG of -0.003 in with a raster angle (RA) of 0o/90o which showed an increase in UTS of 

about 30%. The author explained that negative RRAG led to the production of denser structures which 

increased UTS. However in a similar study conducted by Sood, (2010) revealed that a reduction in UTS of 

about 19% was observed when the RA was changed from 30o/-60o to 90o/0o. The reason for this reduction 

as stated by the author was that at 90o/0o RA the longest rasters were produced which developed an 

accumulation of stress along that direction resulting in distortion and weak bonding. This was reflected in 



 

68 

 

Hossain, (2013) study which showed relative increases in UTS using modified parameters that can be seen 

in Table 4. 

Table 4. Percentage of relative UTS increases from that of the default method (Hossain, 2013) 

  

 

 

The visual feedback method showed the highest increase in UTS when using RA of 30o/-60o. These results 

reflect the previous research done by Ahn (2002). However, not much comparison was made in this study 

that showed any difference in the mechanical properties when varying the layer thickness. This information 

is essential for structural application in that it determines the build time of components. Sood (2010) 

mentioned that by changing the layer thickness from 0.127 mm to 0.254 mm, no significant changes to the 

UTS were observed. However, this is not true when comparing the results of Sayre (2014) who tested 

Acrylonitrile Butadiene Styrene at 2 mm layer thickness and 4mm layer thickness and saw that there was a 

change in the tensile strength of 4,307 psi and 4,090 psi respectively. This was backed by Hossain, (2013) 

who stated that the lack of difference of UTS in Sood (2010) study was a result of changing RA’s in 

successive layer thickness, resulting in a delta angle being the change of RA’s between adjacent layers. 

Saying that “the directional effect of one layer might be nullified by the delta angle of the adjacent layer”.  

2.5.2.1 Fuse deposition polymer resins  

Most FDM printers are capable of reaching temperatures of up to 300o C; this results in a limit to 

the type of polymer materials compatible with FDM technology. The most common materials available are 

ABS and Poly-lactic Acid (PLA). Over the years, new materials have been advanced to exhibit dimensional 

stability, relatively low glass transition and melting temperatures that can be compatible with the FDM 

platform. Materials like Polycarbonate and Polyvinyl Alcohol (PVA) are some of these materials (Torrado, 

2014).  Table 5 shows the relative temperatures of these materials.  

 

Raster angle  Insight revision method  Visual feedback method  

0o/90o 4% 15% 

30o/-60o 6% 19% 

45o/-45o 5% 13% 
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Table 5. Tg and Tm for FDM compatible polymers. (Schimd, 2008) 

Material name Tg (oC) Tm (oC) 

ABS 110 - 

PLA 60 175 

PC 145 230-260 

PVA 85 170 

 

The effect that these temperatures have on polymer materials deserves some attention; the Tg affects how 

the parts shrink as the material solidifies. This effect may contribute to warp and warping may lead to the 

anisotropic behaviour of 3DP polymers. The Tm, on the other hand, contradicts the extrusion temperature 

(Te) of the FDM utilised platform. This determines the ease of extrusion, the difference between the Te and 

the Tg give us an idea of the time taken for the extruded material to solidify (alternatively affecting the 

print time). 

Among the polymers chosen, ABS and PC show the highest mechanical properties in terms of toughness 

and ductility. ABS has an Ultimate tensile strength (UTS) in the range of about 28-55Mpa and PC of about 

55-70Mpa (Schimd, 2008). When compared to that of traditional structural materials like grade 36 steel 

which UTS is about 200 GPa, It may seem challenging to characterise applications for these polymer 

materials. However, this characteristic alone does not fully define the usefulness of these materials. Among 

the advantages of polymer materials are their resistance to corrosion, strength to weight ratio and 

modification capabilities. All of which are desirable characteristics of structural materials. Due to these 

characteristics, polymers have some applications as structural materials such as armour in the defence 

industry where the need for lighter, stronger and more durable components are appropriate (Wu, 2006). 

However, these applications are for traditional manufacturing processes and not necessarily FDM 

technology which does show some strength limitations associated with 3DP polymers. One way to solve 

these limitations is the development of Polymer Matrix Composites (PMC).  PMC’s are polymer-based 

materials reinforced with particles or fibres such as iron particles or glass fibres. By using FDM compatible 

polymers as the matrix material and reinforcing with fibre or glass composites a change in the mechanical 

properties is obvious. Blends of ABS and PC can be used as the composite matrix due to their compatibility 

with FDM platforms and their relatively easy and cheap production process. It can be seen that 3DP polymer 
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composites are not only limited to improving material strength; it can also be modified to exhibit specific 

characteristics such as being flame-retardant.  

 To further improve the strength characteristics of 3DP components, the development of new materials 

designed to display high levels of isotropic properties may serve as a viable solution.  Research by Torrado, 

(2015), examined a total of six additives to ABS in an attempt to reduce the anisotropic mechanical 

properties found in FDM printed specimens. The best results in terms of anisotropic reduction were found 

in the blend of ABS with styrene ethylene butadiene styrene (SEBS) and ultra-high molecular weight 

polyethylene (UHMWP). However, even though the results showed a reduction in the anisotropic properties 

of the polymer blend of 75:25:10 by weight ratio of ABS: UHMWPE: SEBS. This came at the expense of 

the ultimate tensile strength UTS, which resulted as (14.7+/- 0.63 MPa) as opposed to (33.96 +/-1.74 MPa) 

for sample printed in ABS alone. The anisotropic reduction was determined by examining the samples 

which show that failure occurred within the printed raster and not at the raster to raster boundary. This 

discovery may prove useful for the development of polymer matrices that display low levels of anisotropy. 

These matrices can then be reinforced to increase the tensile properties hence generally producing FDM 

compatible material with desirable mechanical and physical properties. 

 

2.5.2.2 Reinforced polymer for fused deposition technology   

Reinforced polymers are commonly known as polymer composites. These composites are usually a 

combination of low cost, lightweight and environmentally resistant polymer matrices with high strength 

and high stiffness fibres (e.g. as glass, carbon or aramid fibres). These advanced engineering materials used 

in structural applications such as bridges, piers, and retaining walls exposed to salts and chemicals.  Their 

application has proven to be efficient due to their light-weight, corrosion resistance and high energy 

absorptions capabilities (which makes them suitable for seismic applications). They also hold an economic 

advantage based on load capability per unit weight which is said to eliminate transportation issues, high 

labour cost and energy consumption according to Head, (1996).  
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Tekinalp, (2014) and Zhong, (2001) Investigated the potential for using short fibre (0.2–0.4 mm) reinforced 

ABS composites for the production of load-bearing components using FDM technology. The samples 

produced using FDM technology was compared with the conventional technique, Compression Moulding 

Process (CMP). Their study aimed at revealing the improvements needed for both the FDM technology and 

compatible polymer material to produce high-quality structural components. Mixtures of ABS with 

Chopped Hexcel AS4 carbon fibres; 10, 20, 30, and 40% weight ratio (wt.) were tested using ASTM D638 

type-V dog-bone. The results acquired showed a dramatic increase in both modulus and tensile strength 

with the specific strength reaching (52.9 kN m/kg) higher than Aluminium 6061-0 which is (45.9 kN m/kg). 

This result shows that there is potential for FDM technology in structural applications. Voids within the 

FDM-printed beads increased relative to an increase in fibre content while voids between the beads 

decreased. These voids/gaps may lead to high concentration of stress formation at their location causing the 

component to fail at lower stresses. FDM-printed samples showed lower porosity and high fibre orientation 

in the printing direction "coming close to perfect orientation" as stated by Tekinalp, (2014).  However, the 

CM specimens showed higher results in comparison to the FDM samples, proving that porosity controls 

over fibre orientation. The same study showed that fibres had pulled out of the matrix, indicating a poor 

interfacial connection between the fibres and the matrix as seen in Figure 23. 

 

Figure 23. Fibres pulled out following failure. (Tekinalp, 2014) 
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This study revealed that the FDM process displays high fibre orientation and excellent dispersion 

capabilities. It also showed that by using fibre reinforcements with ABS has dramatically improved the 

tensile capabilities of the specimens and hence shows that the process has the potential for application in 

the production of structural members. 

 Tekinalp, (2014) made suggestions to further improve the FDM process by stating that, pore formation 

during printing and fibre breakage during compounding must be minimised, as well as improving bonding 

between fibres and matrix through surface modification. 

 

2.5.3 Experimental work  

The use of 3D-printed fused deposited ABS polymer for structural applications depends significantly on 

the strength of the polymer after extrusion. Rodríguez, (2001) conducted studies on these properties of 

fused deposited ABS polymer. Tensile and torsional tests were performed on specimens of ABS 

monofilament feedstock. The tensile tests were conducted on specimens with a length of 380mm using a 

screwdriven load frame at constant crosshead speeds ranging from 0.00381mm/s to 0.381 mm/s providing 

strain rates in the range of 10±5 to 10±3 l/s. Tensile modulus, E, strength, σys, and strain, εs, values were 

obtained from the stress-strain data. E corresponds to the slope of the stress-strain curve at zero strain, σys 

is taken as the maximum stress reached during the test (Brown, 1986), and εs the corresponding strain at 

maximum stress. Torsion tests were performed on specimens with lengths of 1,228mm using the device 

shown in Figure 24.  
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Figure 24. Torsion test apparatus, Rodríguez, (2001) 

 

Various weights were hung and the change in angle measured with a protractor at the free end of the 

specimen. Geometries were constructed using a Stratasys FDM1600 system with process parameters shown 

in Table 6. Three mesostructures were examined; an aligned and a skewed configuration with raster width 

25.4 μm and another skewed pattern with raster width 76.2μm as shown in Figure 25.  

 

Table 6. FDM process variable settings (Rodríguez, 2001) 

Extrusion temperature 270oC 

Envelope temperature 70oC 

Normalised flow rate 20 (mils) 

Extruded fibre height 0.254mm 

Extrusion nozzle diameter 0.305mm 

Nozzle transverse speed 12.7mm/s 

 



 

74 

 

 

(a)                              (b)                                       (c) 

 

Figure 25.  Photographs showing the three mesostructures examined 

 (a) Skewed with 76.2μm   (b) aligned -25.4 (c) Skewed with -25.4 μm. (Rodríguez, 2001) 

 

Rodríguez, (2001) tested the three mesostructures of 3D-printed ABS polymer with an MTS servo-

hydraulic test system at strain rates of 10-2, 10-3, 10-4, and 10-5. This was done to test the influence of strain 

rate on the strength as well as the microcracking. An off-axis tensile test was used at angles 10o, 30o, 45o 

and 60o  to determine the shear modulus. These specimens were then used to estimate the shear strengths. 

The orthotropic material symmetry assumption used by the authors assumes four elastic constants defined 

in equations (72) and (73) below.  

 

 𝐸1 =
1

𝜀𝑥
𝐿

𝑃

𝐴
, 𝐸2 =

1

𝜀𝑥
𝑇

𝑃

𝐴
, 𝑣12 = −
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𝐿
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𝐿
 (72) 
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 (73) 

 

 

Where: 

• P is the applied load in the (x) direction. 

• A is the cross-sectional area  

• 𝜀𝑥
𝐿  is the longitudinal strain  

• 𝜀𝑥
𝑇 is the transverse strain  

• The subscripts 1, 2 indicate the material direction while Ex is the tensile modulus in the 

direction of the loading. 

• ∅ is the angle between the rasters and loading. 

• 𝜈12 is the Poisson's ratio 

• G12 is the classical error propagation analysis equation. 
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To consider FDM 3D-printed ABS components suitable for structural applications  Table 7 and Table 8 

show the results of the FDM ABS material compared to that of ABS monofilament. The results show a 

decrease in the moduli and the strength of the ABS material after extrusion owing part to the formation of 

air voids at a mesostructural level. It shows that the skewed structure with 76.2 μm yields the lowest results.  

 

Table 7. ABS monofilament moduli value (Rodríguez, 2001) 

E, [MPa] 2,230 ± 15 

G, [MPa] 833± 7.6 

ν 0.34±0.02 

 

 

 

Table 8. Fused deposited ABS moduli value(Rodríguez, 2001) 

 Aligned Skewed Skewed 

Property -25.4μm -25.4μm 76.2μm 

E1, [MPa] 1972 ± 21 1986 ± 21 1807 ± 11 

E2, [MPa] 1762 ± 24 1701 ± 24 1400 ± 24 

ν12 0.376 ±0.013 0.386 ±0.012 0.357 ± 0.016 

G12 [MPa] 676 ± 99 675 ± 152 612 ± 57 

 

 

Table 9. Yield strength and strain of monofilament & printed ABS at strain rate (0.0005 s-1) (Rodríguez, 2001) 

    Longitudinal [MPa, 1] Transverse [MPa, 1] 

Mesostructure σys εys σys εys 

ABS Monofilament 31.2 0.0154 - 

Aligned, g = -25.4μm 24.4 0.0145 13.6 0.0104 

Skewed, g = -25.4μm 21.6 0.0146 13.4 0.0107 

Skewed, g = 76.2μm 17.9 0.014 13.4 0.0131 

 

2.5.4 Numerical modelling  

Numerical models of fused deposition 3DP ABS materials were developed by Rodriguez, (2003) who used 

these models to estimate the mechanical behaviour of the specimens through the method of finite element 

analysis, modelled in a finite element software. Materials with three different mesostructures were explored 

in this study and results showed a 10% difference in the relative moduli when compared to experimental 
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data. This may be an acceptable range for which the behaviour of structural material can be predicted. The 

authors modelled the elastic moduli of the material using the strength and elasticity based approach. FDM 

materials show isotropic properties as such these materials were modelled as 3 dimensional homogeneous 

linear elastic orthotropic continua (i.e. materials with continuous air voids). The method used by the authors 

to model the problem was to define the represented volumetric element (RVE) as explained by Nemat-

Nasser, (1993). After which a mathematical homogenisation theory was used to represent the constitutive 

characteristics of the ABS materials to display equivalent global behaviour.  

The mathematical modelling of the specimens were developed using the constitutive equation seen in Jones, 

(1999) where the effective moduli depend on the density of voids and moduli of the raw material. Where 

symmetry of compliance tensor is implied (Equation (73)), resulting in nine independent elastic moduli that 

can be determined to establish the elastic mathematical equation for the 3DP ABS material. These equations 

are as follows: 

 

 [e] = [S][σ] (74) 

 

where in full matrix form: 

 

 

(75) 
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ṽ𝑖𝑗

𝐸𝑖
=
ṽ𝑖𝑗

𝐸𝑗
, 𝑓𝑜𝑟 𝑖, 𝑗 = 1,2,3 (76) 

 

where  

• E1,E2,E3 are effective young moduli in the directions of 1,2,3 as shown in Figure 7b 

• ṽij are the effective Poisson’s ratio for the transverse strains in the jth direction when 

stressed in the ith direction.  

• G12, G23, G13 are the effective shear moduli in the 1-2,2-3and 1-3 planes  

 

 To obtain the useful properties of the FDM ABS material, the authors investigated two approaches. 

The mechanic of material approach assumes that the characteristic description of the voids present in 3D-

printed specimens can be defined. The void density is assumed to be uniform on each plane in the solid; 

this density is considered a tensor with a magnitude that is dependent on the plane associated with any given 

point. The following equations (77) to (83) were used to obtain the effective properties: 

 𝐸1 = (1 − 𝜌1)𝐸 (77) 

   

 𝐸2 = 𝐸3 = (1 − 𝜌1
1
2⁄ ) 𝐸 (78) 

   

 𝐺12 = 𝐺13 = 𝐺
(1 − 𝜌1)(1 − 𝜌1

1
2⁄ )

(1 − 𝜌1) + (1 − 𝜌1
1
2⁄ )

 (79) 

 𝐺23 = (1 − 𝜌1

1
2)𝐺 (80) 

   

 𝑣12 = 𝑣13 = (1 − 𝜌1)𝑣 (81) 

   

 𝑣23 = (1 − 𝜌1

1
2)𝑣 (82) 
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 𝑣21 = 𝑣31 = 𝑣32 = (1 − 𝜌1

1
2)𝑣 (83) 

 

 

Where, E, G, ν and ρ1 are the elastic properties and void density of the ABS material respectively.   

The second approach used to obtain the effective properties is the asymptotic theory of homogenisation; 

this is used for solids with periodic mesostructures as seen in Figure 25. This approach assumes that the 

periodicity characteristic of the material affects the displacement, stress and strain relatively. Figure 26 

shows a representation of this theory where x is the global scale of the material of where effective properties 

must be found. While y represents the micro-scale of the material accounting for the periodicity of the 

material.  

 

Figure 26. The periodic body considered in Rodriguez, (2003) 

 

To find the effective properties the following equation must be solved for u (1) (x, y) in the micro-scale for 

six microscopic strain states E (u (0) (x)) =𝛁u (0) which describes the pure elongation and shear.  

 

 
𝜕

𝜕𝑦𝑗
[𝐶𝑖𝑗𝑘𝑙 (

𝜕

𝜕𝑦𝑙
 𝑢𝑘
(0)(𝑥, 𝑦) +

𝜕

𝜕𝑥𝑙
𝑢𝑘
(0)(𝑥))] = 0 (84) 
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The authors found effective properties by solving equation (84) using the finite element method with 

triangular elements. The authors constrained the nodes on opposite sides of the voids so that displacement 

would be the same to account for the boundary conditions of the periodicity as stated in the code. The 

geometry chosen for the FEM simulation were taken from a sample of microimages which four voids were 

taken and digitised. In order to determine a suitable mesh, a study of FEM solutions was conducted where 

a mesh system of 900 nodes was chosen for the aligned configurations and 1900 nodes for skewed. The 

calculated results were then compared to experimental data conducted by Rodrıguez, (2001), which showed 

that both numerical methods displayed similar performances for predicting the effective elastic properties. 

See Table 10. 

 

Table 10.  Comparison of predicted elastic moduli to experimental data (Rodriguez, 2003) 

 

 

2.5.5 Structural geometries  

Structural geometry is the study of shapes, sizes, patterns and position in space concerning load transfer 

through structural members. It has assisted engineers in predictions of structural forms since early times 

through interpretations of the physical world.  Dealing with the configuration of geometric forms such as 

Table.8 Comparision of predicted elastic moduli to experimental data obtained from (Jose F. Rodriguez, 2003)

Property Experiment Percent Percent

E1(Mpa) 1972 5.1 5.3

E2(Mpa) 1762.7 -6.7 3.8

v12(1) 0.377 -16.9 -10

G12 (Mpa) 676.6 13.4 0.2

E1(Mpa) 1986.6 7.2 6.7

E2(Mpa) 1707.6 3.2 10.8

v12(1) 0.385 -16.1 -12.1

G12 (Mpa) 675.9 6.5 4.8

E1(Mpa) 1807.7 7 8.6

E2(Mpa) 1400.8 1.2 -1.9

v12(1) 0.357 -17.9 -5.4

G12 (Mpa) 659.5 -7.2 -4.6612

2119.1

1884.9

0.338

708.3

1963.9

1374.3

0.338

629.3

g: -25μm

Skewed

Skewed

g: 76.5μm

2129.2

1755.9

0.323

719.8

1934.3

1418

0.293

686.7

2075.8

1830.2

0.339

677.7

Mesostructure

Aligned

g: -25μm

2076.8

0.315

1645.5

Strength of materials Homogenization 
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points, lines and circles structural engineers can improve structural system utilising orienting shapes of 

desired structural properties. Structurally suitable geometries can be obtained using the shape optimisation 

method as studied by Allare, (2002). This method may be used to develop algorithms that can modify a 

particular geometry to obtain a minimum weight which can still adequately serve its function.  In a study 

conducted by Stava, (2012), that was aimed at developing a method to detect structural issues of 3D-printed 

geometries. The author utilises FEM analysis with quadratic tetrahedral elements found in Hughes, (1987) 

to calculate stresses in the 3D-printed geometry derived from a pinch grip.  

Using the equation:  

 Kd = F (85) 

 

where K is the stiffness matrix developed from the material properties and the tetrahedral mesh.  d is the 

deformation caused by F which is the forces both external and internal. The author considered the boundary 

condition to be fixed vertices of the mesh with a d equal to zero. The forces F are expressed as a sum of 

elemental contributions  

 F = ∑ fe (86) 

 

Where : 

 fe =∫Ωe NTb dΩ + ∫ᴦe NT t dr (87) 

 

Where Ωe is the tetrahedral element, ᴦe is one face of the tetrahedron, N is the matrix of quadratic functions, 

t is the surface load at the face of the element and b is the body force on the element. Using the calculated 

stress and displacements derived from the analysis the author was able to equate the need for thickness, 

hollowing or strut addition required along the medial axis of the geometry hence resolving structural issues 

found in 3D-printed geometries.  
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2.6 Large Scale Testing on QSDs 

Li et al., (2007), performed large scaled shaking table tests on prestressed concrete QSDs. The QSD tested 

was modelled from a prototype which was to be built in Xiamen, China. Based on similitude laws, the 1:8 

scaled test model had an equatorial diameter of 2.75 metres and a height of 4.9 metres with a shell thickess 

that varied between 0.06  and 0.08 metres (see Figure 27). The tests involve three stages including the 

empty model digester which subjected to accelerations of relatively small peak ground acceleration (0.1g) 

, the model digester filled with 50% water was subjected to accelerations of medium ground acceleration 

and the empty model digester with water taken out subjected to acceleration with accelerations up to a large 

value (0.8g). According to the site condition and seismic background, two scaled ground motion 

accelerations, the recorded El Centro acceleration and the artificial acceleration adopted in Guangzhou, are 

employed as the seismic excitations.  

 

Figure 27. Schematic of 1:8 Prestressed QSD model for shaking table test (Li et al., 2007) 
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The test measured various strain responses on the surface of the shell.

 

(a)                                                              (b) 

 

Figure 28. The resulting peak strain of the: (a) 50% filled tank and (b) Empty tank, both subjected to acceleration 

with PGA of0.4g. (Li et al., 2007) 

 

Figure 27Figure 28 Figure 27shows the peak strain of the 50% filled QSD model (labelled WMD) and the 

empty QSD model (labelled EMD) both subjected to El Centro acceleration (ELA) and the artificial 

acceleration (GZA) respectively. It is seen that for the WMD, the peak strains under the artificial 

acceleration are much larger than those under ELA, the maximal discrepancy reaching 70% in the midriff. 

For the EMD2, in general peak strains under GZA are also larger than those under ELA with the maximal 

discrepancy reaching 40% in the midriff.  

The study concluded that the model behaved in the linear-elastic range and the natural frequency has minor 

variations with the PGA. It was also found that when subjected to strong earthquake excitations, localised 

non-linearity appeared at various areas where discontinuities in the shell occurred. 
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2.7 Summary 

2.7.1 Quadric-surfaced Shells 

In this section, it can be seen that previous studies in the geometry of QSDs are very limited. The 

development of stress resultant equations (equation (18)), for the parabolic ogival shell, by Zingoni (2002), 

is a continuation of studies conducted by Gibsom (1965).  Axelrad also developed these equations from 

first principle as well however his work was based on scalar matrices. Doyle’s work was also based on a 

method utilising scalar matirces. The solutions for the rotationally symmetric Saint-Venant shell distortion 

problems that can occur in QSDs were also examined even though the literature available did not conclude 

of any actual case studies with this type of failure. However, the literature can prove valuable when 

developing design code parameters for QSD shell design. 

2.7.2 Sloshing Dynamics 

Sloshing is of significant importance and is one of the major concerns in the design of liquid retaining 

structures and fuel tankers for carriers. Abramson (1967) mentioned that for several years, this subject has 

been a major concern for scientists, engineers and mathematicians. According to Ibrahim (2006), the free 

liquid’s surface can experience different motions comprising of simple planar, non-planar, symmetric, 

asymmetric, rotational, irregular beating, quasi-periodic and chaotic, all depending on the type of 

disturbance, amplitude and frequency of seismic excitation, properties of the liquid, height of liquid and the 

geometry of the retaining liquid container. When the frequency of the motion and the natural frequencies 

of liquid sloshing are close to each other, the resulting amplitudes of the sloshing wave would be very large 

increasing the sloshing dynamic forces on the shell surfaces of the container. The high hydrodynamic forces 

produced by the sloshing waves on the inner surface of the container affects the overall response of the 

container and causes a complex FSI phenomenon between the two materials with respect to the liquid 

properties and retaining container properties. 

The linear theory of dynamic sloshing in liquid retaining structures is based on understanding the derivation 

of fluid field equations that are used to approximate the hydrodynamic shell forces and moments induced 

by sloshing waves. Ibrahim (2006) mentioned that the linear theory for liquid sloshing is acceptable for 
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determining the natural frequencies and wave height of the liquid’s free surface. Under translational 

excitation, the linear theory is useful for predicting the shell’s liquid hydrodynamic pressure, forces, and 

moments. Only applicable when the free surface maintains a planar shape with a nodal diameter that 

remains perpendicular to the line of excitation, and it does not take into consideration the importance of 

vertical displacement with respect to the centre of gravity of the liquid for large amplitudes of sloshing.  

Ibrahim, (2006) also mentioned that the linear theory fails to predict complex surface phenomena observed 

experimentally near resonance. These phenomena include the non-planar unstable motion of the liquid’s 

free surface associated with chaotic sloshing and rotation of the nodal diameter also called rotary sloshing. 

He also states that the linear theory cannot be used for dynamic analysis of shell elements undergoing elastic 

deformation that is analogous to its wall thickness and also if the liquid’s free surface amplitude is large. 

Nonlinear resonance conditions that cause complex response characteristics will result in the occurrence of 

nonlinearities within FEA model. 

The SPH procedure can understand hydrodynamics intricacies whose arrangement appear as a PDE for 

field factors such as the density, velocity and energy. Acquiring expository solutions for such an 

arrangement of PDEs is not frequently conceivable, aside from not very many straightforward cases. For 

numerical arrangements, one needs first to discretise the problem area where the PDEs are characterised so 

that the technique can give an estimate to the estimations of the field capacities and their derivatives at any 

point. 

2.7.3 The Mechanical Properties of 3D Polymers 

Studies has proven that the adaptation of FDM in its current development has shown some potential for 

structural applications as Ahn, (2002) and Berman, (2015) mentioned, displaying capabilities for the 

production of complex geometries. Stava, (2012) has added to discovering defects in 3D-printed geometries 

through FEM analysis with tetrahedral elements. However, the voids which are formed due to the 

deformation of beads caused by the cooling effect of printed rasters reduces the structural integrity of the 

printed components. Hossain’s, (2013) solution to reduce these voids by modifying built parameters seems 

to be a viable option when modelling geometries for experimental data. Rodriguez, (2003) has provided a 
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workable procedure in which results from experimental data can be modelled in FEM software to provide 

accurate analysis of structural geometries. The discovery of FDM compatible PMCs aids the development 

of a multi-material geometry suitable for a specified structural application where high strength and low 

weight is desired. For this application, the properties of Tekinalp, (2014)  test sample can be used due to 

the favourable increase in tensile strength observed. To improve the bond between the fibres and the 

associated matrix, surface modification seems to be the solution in addition to changing the geometry of 

the fibre. E.g. using a curved fibre may reduce the ability for fibres to pull out of the matrix.  

Based on previous research, the porosity of FDM specimens concerning CMP specimens appears lower 

which results in lower structural properties. A solution may be to reduce the raster height while printing 

which results in denser structures. ABS and PC show the most desired material and structural properties 

are considered as the material choice of geometries. Both glass and carbon fibres improved the mechanical 

properties of FDM printed components and will also be considered for investigation. Honeycomb structures 

of various densities are suitable geometries for high compression members as well as impact resistance as 

discussed in Mroszczyk, (2014). This seems to be logical for structural applications such as slabs and 

aircraft wings
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3.1 Introduction 

This chapter is divided into two main areas. The first provides the methodology for investigating the 

mechanical properties of the 3D printed polymer. This was further sub-divided into experimental studies 

and numerical simulations. 

3.2 Material Characterisation 

3.2.1 Introduction 

The research methodology is quantitative; it attempts to collect and convert data into a numerical form 

for finite element analysis. The purpose of this research is to determine the structural applicability of 

3D printed polymer. 

This research seeks to answer the following questions: 

• What are the structural material properties of the 3D printed polymer? 

• What is a suitable approach to modelling the material using FEA software? 

• How does 3D printed polymer material behaviour under tensile, bending and torsional forces? 

• What are some suitable structural applications?  

To determine suitable structural applications for 3D printed polymers, the structural properties of such 

polymers must be investigated. To do this Finite Element Analysis software, ABAQUS, was used to 

analyse the relationship between the stress in the material and the corresponding strain within the elastic 

limit. Both experimental and numerical modelling was chosen as the investigation tools that provided 

two sets of data for comparison. Experimental investigations determined the material properties needed 

to characterise the material for numerical modelling. The numerical results were compared to those of 

the experiments. After which the various geometries were modelled and analysed to test the 

applicability of the developed constitutive model.  
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Based on the nature of the application for the 3D printed polymers, cost of analysis and simulations 

become a significant factor for design. FEA software packages require the mesh size and aspect ratio 

have desirable densities and sizes so that satisfactory results are obtained. Hence it is essential to satisfy 

these conditions to obtain a reasonable mesh size. Therefore, reducing the time and computational 

power for simulating the part loading conditions is one of the goals of this study. It was achieved with 

the assumption that the 3D printed polymer is a material with material properties that are dependent on 

the 3D printed technology and other parameters. The 3D printed polymer material has properties similar 

to that of the bulk material, but with deviations from the bulk material. One deviation is that the 3D 

printed material will not remain isotropic, even if the parent material is isotropic. The material moduli 

were obtained from experiments that enabled use their basic equations.  

The approach starts by first investigating the characteristics of the material (obtaining the properties of 

the material by experimental tests). Samples were obtained from the 3D system’s cube pro which 

utilises fused deposition technology. A total of three tests were conducted tensile, bending and torsion; 

these tests represent some of the loadings structural elements usually undergo. These tests were used to 

determine the independent moduli for the numerical models. Then a study of the characteristic equations 

was conducted in order to determine the mechanical constants. These constants were used to estimate 

the stress, strain and deformation in the material when loaded. The constitutive mechanics of material 

approach was used to model the properties of the material.  This chosen approach allowed the 

assumption that the material is solid with aligned prismatic voids. It theoretically described the 3D 

printed polymer material and allowed the modification of the material properties by the implementation 

of the void density variable. Afterwards the results of the numerical analysis and the experimental work 

were compared to verify the correctness of the results. 

3.2.2 Material Description   

The 3D printed material was described using experimental methods to probe and measure the material 

structure and properties. The configuration of the layers is [0,90] respective to the perpendicular axis of 

the extruded tool path. Considering that the material is made up of layers of extruded fibres, it’s 

idealisation is a composite laminate. However, Mamadapur (2007) revealed that the layer to layer bound 
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properties differs from that of the raw material, whereas the laminate theory assumes perfect bonding. 

Another theory to the material description is by assuming that the material exhibits a particular case of 

orthotropy. It is due to the effect that the layer configuration has on the relative effective properties. 

According to Mamadapur (2007), Young’s moduli of the two perpendicular directions, and the 

corresponding Poisson’s ratios are the same on two of the materials plane. However, the corresponding 

shear modulus is still independent of Young’s modulus or the Poisson’s ratio. Hence the 3D printed 

material was described as being a transversely isotropic material using engineering constants. These 

constants were obtained using the Mechanics of materials approach to constitutive modelling. 

The rule of mixtures was used to predict the longitudinal modulus of FD-3D printed ABS polymer. 

Three constants (C, ζ, k) were included, which considered fibre contiguity, bonding strength and miss 

alignment of the voids formed after extrusion. Each constant was applied to the properties that were 

affected and were measured differently on its respective axis. 

The development of the effective properties was done based on a mixture model. Where every point of 

the material, is associated with the void density on that plane. Hence, using equations (77) to (82), the 

effective elastic properties were obtained. Where E, G, v are the elastic material properties of the raw 

material. 

 

3.2.3 Experimental Technique  

All test specimens were constructed using the 3Dsystems cube pro FDM type 3D-printer with 

parameters described in Table 6. Two types of low-cost polymer materials were examined in these 

experiments; acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA). It is important to note 

that any warping during the manufacturing process will affect the results. Hence, to prevent unwanted 

warp from accruing specimens were created in an environmentally controlled workspace. The 

temperature parameters were recommended by FOJO Design Company, based on their experience 

using the mentioned 3D printing platform.  
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The printer extrudes filament rasters in an [0,90] orientation, as shown in Figure 22.  Build parameters 

in FDM platforms adapted from Hossain et al. (2013) This is because of the algorithm the printer’s 

software uses to perform a 100% infill print job. Hence, the material properties obtained from these 

experimental test are only valid for geometries created using the 3Dsystem’s cube pro FDM type 3D-

printer with printed raters of [0,90] configuration. 

 

3.2.3.1 Printer settings 

The specimens were then examined to obtain the mesostructural properties for obtaining the effective 

material constants. The acquisition of these properties makes it possible to describe the material in the 

form of engineering constants. This was done by taking a sample of the FD-3D print and removing a 

cross-section using a diamond blade saw to obtain a smooth surface. The samples were then washed, 

cleaned and probed to be examined using the microscope. Photographs were then obtained from the 

apparatus, displaying the characteristic shape of the mesostructure shown in Figure 29.  

 

Figure 29. Photograph of mesostructure of 3D printed ABS  at a zoom of 200µm 

 

The specimens were printed at a scale of 200µm which required a microscope magnification of 200µm. 

The photographs were then exported and digitised into AutoCAD. Tensile, torsion and flexural tests 

were performed to examine the behaviour of the 3D printed material in an attempt to characterise the 
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structural properties. Upon investigation no tests were found explicitly tailored for 3D printed material. 

Hence, the ASTM tests were chosen based on the recommendation obtained from an overview by 

Forster, (2015). 

 𝜌𝑖 =
𝑉𝑜𝑖𝑑 𝐴𝑟𝑒𝑎 

𝐶𝑟𝑜𝑠𝑠 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝐴𝑟𝑒𝑎
 (88) 

 

Equation (88) was utilised to calculate two ρ values; 𝜌1 which is the ratio of the effective load carrying 

material, ρ2 which count’s the potential load-carrying dimension ( see Figure 30), i.e. ratio of bond 

length to overall dimension  Longmei (2001).  

 

Figure 30. Typical projection of load-carrying material for calculating void density 

ρ2 was introduced to obtain the effective elastic modulus for the transverse direction (E2, G12). Once the 

geometric properties of the mesostructure were obtained, equations (89) and (90) were used to calculate 

the void density (ρ1, ρ2). 

 𝜌1 = 1 −∑
𝐵𝑙
𝐿⁄

𝑙

 (89) 

 

 𝜌2 =
𝑋 − 𝐵

𝑋
 (90) 

 

The material constants [C, ζ, k] as explained by Longmei (2001) are obtained from the tensile 

experiments. The bond strength ζ is taken as the deference of yield strength of the bond and the extruded 

monofilament. It was observed that there is a difference in bond strength of bead to bead and layer to 
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layer bonds. This may be caused by the extrusion path and time taken for the material to be laid. The 

contiguity was applied between two extreme cases where C = 0 is if fibres are isolated and C = 1 when 

all sides incased.                                                                                                              

The molecular orientation phenomenon was examined through thermal shrinkage measurements. PLA 

and ABS samples for raw material and extruded material were cut into lengths of 100mm and placed in 

an oven for 6hrs at 110oC. After which the amount of shrinkage was measured using a digital calliper. 

A comparison of the raw material properties and the reduced properties are displayed in Table 11. The 

results clearly showed a difference in shrinkage and confirmed the need to reduce the stiffness and 

strength of the raw FD-3D polymers as suggested by Rodríguez, (2001). 

Table 11.  Property reduction percentages used in numerical calculations 

Property Reduction 

Stiffness 4% 

Strength 15% 

 

Table 12. Comparing the Original ABS properties with Modified ABS properties 

Property Original  Modified 

Young's modulus   ''E'' 2230 MPa 2140 MPa 

Shear modulus       "G" 833 MPa 708 MPa 

Poison’s ratio         "v" 0.34 0.19 

 

3.2.4 Tensile test 

A tensile test was performed on an MTS 100 Kip testing machine (Figure 31).  
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Figure 31. Tensiometer with  ASTM D638 type-V dog-bone Sample. University of the West Indies, 

Tested on 6/10/2016. 

Three sets of readings were obtainable from the tests apparatus; the load value, the axial strain and the 

transverse strain. 10 test specimens were fabricated as per ASTM D638 standard for tensile testing of 

rigid plastics (ASTM, 2002) (see Figure 32).  

 

Figure 32. ASTM D638 type-V dog-bone Sample used in test 

The test was performed by controlling the displacement where the axial and transverse strains were 

collected in mm/mm, and the corresponding loads were collected in kg. The loads were then converted 

to (engineering) stresses by dividing the load values by the original area of cross-section of the 

specimen. Stress vs axial strain curve was obtained for each specimen, and the corresponding elastic 

modulus was obtained as the slope of the linear elastic portion of the curve. The axial strain and the 
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transverse strain were plotted against the applied load, and the corresponding Poisson’s ratio was 

obtained as the ratio of the slopes of the two straight-line curves in accordance with the definition of 

Poisson’s ratio. The yield strengths of different specimens were also obtained from their stress vs. axial 

strain plots. 

 

3.2.5 Torsion 

Torsion tests were conducted using a Gunt WP500 torsional tester shown in Figure 33. The FD-3D 

polymer test bars are torqued until failure. The test torque and the angle of twist were obtained during 

this process. The test torque is applied manually using a hand wheel and a worm gear. Measurements 

were recorded with a strain gauge torsion shaft, the deformation of which is compensated. The 

measurement was taken in Nm from the digital display. The angle of twist was recorded by an 

incremental encoder and digitally displayed at the measuring amplifier.  

The FD-3Dpoymer specimens were fabricated in accordance with the ASTM E143 standard test method 

for shear modulus at room temperature (ASTM, 2002). 10 test specimens were fabricated with 

hexagonal ends to grip firmly in the torsion apparatus. The testing diameter was 10mm and the shaft 

length was 80 mm. A total of 10 samples were tested.  A graph of Torque/Polar moment of inertia (T/J) 

vs angle of twist (Փ) was plotted for all specimens. Its shear modulus was obtained as the linear portion 

of the curve and the resulting slope. 
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Figure 33. Gunt WP500 torsional tester at University of the West Indies.  

 

 

3.2.6 Flexure 

The three-point bending tests were executed using an Instron 4411 bending apparatus (Error! 

Reference source not found.4). This apparatus generated the loading in force units N.mm and the 

corresponding deflection data. A 1000 lb load cell was used which was built into the apparatus. The 

apparatus provided an adjustable support span which was set at 50.80 mm. Hence the specimen 

dimensions used. The rectangular specimen must be 6 times the depth of the sample recommended by 

the ASTM standard. 

Figure 34. Sample loaded in Instron 44113-point bending 

apparatus. University of the West Indies. 
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Figure 35. ASTM D790 type-V Sample used in test 

The radius of the loading nose was 6.35 mm, and the support radius was 6.35 mm (

 

Figure 35).  The FD-3D polymer specimens were fabricated in accordance with the ASTM D 790 

Standard Test Methods for Flexural Properties of plastics (ASTM, 2002). A deflection vs curve graph 

was plotted for all specimens. Its flexural modulus was obtained as the linear portion of the curve and 

the resulting slope. 

 

3.2.7 Numerical Modelling 

 

FEM analysis provides the prediction of displacements through three types of relationships; equilibrium 

equations, compatibility conditions, and constitutive relations. The geometries examined in this study 

were three-dimensional parts subjected to static loading. The equilibrium equation can be obtained from 

the summation of the forces and moment on the respective plane. The compatibility conditions relate to 

the deformed part ensuring the shape of the deformation is continuous. The constitutive relations 
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describe the relationships between the stresses and strains of the part in accordance with the stress-strain 

properties of the FD-3D polymer material. The constitutive relations is the link between the equilibrium 

equations and compatibility conditions that is necessary to predict the load-deformation relationships 

for the FD-3D polymer part. 

The geometries and properties were designed by determining the sufficient stiffness so that the model 

can be used to predict the structural behaviours of the parts. The loading direction and longitudinal 

direction of filaments were used to define the filament orientation. Models were constructed using the 

constitutive relations for the case of special orthotropic, where θ = 0 (or 90o), the constitutive relations 

are expressed in the form of material constants.. 

The stiffness matrix [K] describes the material through nine (9)  constants, which represents the 

effective Elastic modulus (Ei), effective Poisson’s ratio (vi) and Shear modulus (Gi). The Matrix [σij] 

represents the stress in the respective plane and [eij] is the strain in the corresponding plane. 

The parameters for the material tests (both experimental and numerical) were benchmarked by 

compairing the results obtainted from similar experimental and numerical studies done by Rodriguez, 

(2001). 

3.2.7.1 Tensile FEA Model 

The tensile geometry was constructed identically to the ones used in the experimental test. ABAQUS 

FEA software was used to conduct the analysis for a 3D-solid geometry. The experimental values were 

obtained from physical testing while the calculated values were obtained using expressions derived  by 

Rodriguez, (2003). 

  The calculated material constants used to represent the stiffness of the global FD-3D polymer material 

can be seen in Table 13.  

Table 13. Experimental material constants compared to calculated constants 

No Property Experimental Calculated 

1 E1 (MPA) 1636 1528 

2 E2 (MPA) 1636 1528 
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3 E3 (MPA) 1197 1129 

4 v21 0.39 0.37 

5 v32 0.37 0.33 

6 v31 0.39 0.37 

7 G13 (MPA) 645 532 

8 G23 (MPA) 645 529 

9 G12 (MPA) 676 669 

10 UTS1 (MPA) 18 17.8 

11 UTS2 (MPA) 18 17.8 

12 UTS3 (MPA) 15.2 15.8 

13 Yield Stress 1 16 17.2 

14 Yield Stress 2 15.8 16.2 

15 Yield Stress 3 13.1 13.2 

 

Equations 77 to 83 (pages 77-78) were used to calculate properties 1 to 9. Properties 10 to 15 (the 

ultimate and yield stresses) were benchmarked and adopted from Rodriguez, (2001). 

  

These material constants were oriented according to the local coordinate system (CSYS). Since the 

material was described as a particular case of orthotropic material, it can be considered as anisotropic 

with its respective material constants well known. Once the material orientation matches that of the 

experiments, it is assigned to the section, and BCs applied.  

The BCs for the tensile specimens describe the condition of the experimental work in numerical form. 

The base of the specimen was kept fixed in both displacement and rotation. This was achieved by 

making the degree of freedom equal to 0 at each node at the grip area. The other end needed to be 

displaced along the longitudinal axis. This was achieved by releasing the nodes at the area of the grip 

along the y-axis in the software. 
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Figure 36. Tensile specimen showing loading and boundary conditions 

The tensile force applied to the numerical model was obtained as the yield tensile force recorded from 

the experimental investigation. It was inputted as a negative value to describe the direction of action. 

The nodes at the area of the free section were constrained to a reference point at the face of the section 

and the force applied to that node to ensure uniform movement.   

 The element size and density are important in numerical modelling as it determines the time 

taken to complete the analysis and the accuracy of the results obtained. The aspect ratio for the mesh 

sizes was chosen based on five factors; the geometry of the part, element type, degree of accuracy, 

boundary conditions and type of loading. The size and type of mesh was derived from the characteristics 

of the RVE. The mesh was of adequate size to cover the cross-sectional area of four aligned filament 

rasters as shown in 

Figure 37 as such the hexahedron element type was chosen with an aspect ratio of 0.1 to 1 for the mesh. 

 

Figure 37.  RVE of the numerical geometries 
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3.2.7.2 Flexure FEA Model 

The bending geometry was constructed identically to the ones used in the experimental test. The 

ABAQUS modelling variables were identical to the tensile numerical model.  

The boundary conditions for the bending specimens describe the condition of the experimental work in 

numerical form. The support pins and the load pin were constructed using rigid shell part types. The 

rigid shell part type is used because there are no deformation calculations to consider hence less analysis 

time. One support pins was tied to the test specimen allowing rotation around the pin. This boundary 

condition is considered a roller constraint and has a degree of freedom equal to two. The other was fixed 

such that it simulated a pinned connection. The support pins were kept in-cased to restrict horizontal 

displacement. The loading pin, however, was assigned a degree of freedom 1 free to move along the y-

axis. A tie constraint was used between the load pin and the specimen to simulate contact (see Figure 

38).  

The mesh elements used were the Continuum solid element (8-node brick, C3D8). The mesh 

optimisation methods varied for the test sample and support/load pins. For the test sample, the structured 

meshing technique was used since this generates structured meshes using simple predefined mesh 

topologies. Abaqus/CAE transforms the mesh for the cuboid shaped region, into cube, onto the 

geometry of the region. For the pins, the algorithm used was the advancing front which generates 

quadrilateral elements at the boundary of the region and continues to generate quadrilateral elements as 

it moves systematically to the interior of the region. The failure criteria was added to the deformation 

plasticity in the properties section in Abaqus. This value was 18, 18 and 15.2 MPa (as stated in Table 

12) 

The bending force applied to the numerical model was obtained from the experimental investigation. 

The force that yielded the highest deflection values were used in the analysis. This force was applied to 

ta reference point at the centre of the face of the loading pin and that point tied to the nodes of the 

loading pin. This was done for the loading pin to distribute a uniform force equal to that of the 

concentrated load applied.  
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Figure 38. Showing the 3 points bending Flexure FEA Model with boundary conditions 

 

3.2.7.3 Torsional FEA Model 

 

The torsion geometry was constructed identically to the ones used in the experimental test. See Figure 

39. The ABAQUS modelling variables were identical to the two previous models.  

The BCs for the torsion specimens describe the condition of the experimental work in numerical form. 

Two sleeves were constructed 1mm larger than the torsion specimen itself and was constructed as a 

rigid shell element. The reason for this is that there are no deformation calculations to be considered for 

the analysis hence, less analysis time. The sleeve was connected to the gripping section of the geometry 

using a tie constraint that allowed rotation in the clockwise direction.  The base of the specimen was 

kept in-cased with a degree of freedom equal to 0. The rotational end was assigned boundary condition 

that allowed rotation about the XY plane. 
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The load was applied as the torsional force used in the experimental work conducted. The force used 

was a moment force and was assigned to the rotating sleeve at the rotating end of the specimen. Seeing 

that the sleeve was already tied to the specimen the nodes of the specimen covered by the sleeve will 

displace simultaneously with the sleeve. The rotation angle was set at 180 degrees and was assigned as 

the angle of freedom of the constraint.  

 

Figure 39.  Showing the Torsion FEA Model 

 

 

3.3 Numerical Modelling of the QSD 

3.3.1 Introduction 

Two types of numerical modelling were performed. The first was a group of 2-dimensional SPH models 

and the second was a 3-dimensional SPH model (see Figure 40). 
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Figure 40. Flowchart for numerical modelling structure. 

Note: Labels A to C are expanded below. 

The first principles models examined the QSDs under various loading parameters. A digester of 25m 

height and wall thickness of 500mm was modelled and analysed with varying fill levels of 10%, 25%, 

50%, 75% and 90% (see Figure 41). All models were each categorised based on varying fill levels, as 

shown in Figure 42. The second group of analyses are a series of 2D FEA models, and finally a 3D 

FEA model was analysed. 
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Figure 41. QSD dimensions and fill levels 

QSD Height:
 1m, 5m, 10m, 20m, 

25m

Wall Thickness 
100 mm

Wall Thickness 
200 mm

Wall Thickness 
300 mm

Wall Thickness 
400  mm

Wall Thickness 
500  mm

Fill Level:
10%, 25%, 
50%, 75%, 

90%

Fill Level:
10%, 25%, 
50%, 75%, 

90%

Fill Level:
10%, 25%, 
50%, 75%, 

90%

Fill Level:
10%, 25%, 
50%, 75%, 

90%

Fill Level:
10%, 25%, 
50%, 75%, 

90%

A

 

Figure 42. QSD modelling geometrical and loading parameters. This is a continuance from section A evolving 

from Figure 40. 

 

3.3.2 First Principles Modelling 

When a horizontal seismic displacement applied to the QSD, the hydrodynamic sloshing force that 

develops and interacts with the shell can decompose into two constituents. The first element is a 
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convective force directly related to the fluid sloshing movement. The second is an impulsive force 

where the motion of the fluid has zero relative acceleration relative to the QSD shell. Consequently, the 

total hydrodynamic pressure applied to the inside of the QSD shell also has a correlating impulsive and 

convective components. 

The sloshing motion is a superposition of few eigenmodes of the fluid motion. In general, each 

eigenmode generates a hydrodynamic wall pressure of different distribution, but not all of these modes 

contribute to the development of a nonzero horizontal force on the tank. The eigenmodes, responsible 

for the generation of a nonzero horizontal hydrodynamic force, influence the horizontal motion of the 

tank structure. These are few that exhibit free-surface antisymmetry to a plane parallel to the tank axis 

of symmetry. The convective masses, Mcn,  are related to the sloshing modes n=1,…,∞. This  and the 

impulsive mass, MI, are related via the principle of conservation of mass as:  

  (91) 

where M stands for the entire liquid mass. The total horizontal hydrodynamic force, F, applied on the 

tank due to the liquid motion is: 

  (92) 

where  is the acceleration of the tank structure and  is the response of an SDOF 

system, with frequency , which is computed using as forcing input the acceleration of the 

tank. 

The liquid in mas of the tank is modelled as an MDOF system since the liquid behaves as an MDOF 

oscillator.  Therefore, the convective mass MCn of each sloshing mode is equal to an effective modal 

mass computed,  

  (93) 
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  (94) 

 

is the generalised mass of eigenmode =8, and  

  (95) 

 

 with being the unit vector in the direction of the seismic excitation.  

For arbitrary tank geometries, the corresponding heights can be calculated via a straightforward 

numerical integration of the fluid pressure distribution and subsequent positioning of the resultant force 

using standard procedures.  Similarly, the total hydrodynamic pressure distribution on the tank 

wall can be decomposed, into impulsive and convective parts of the fluid, the total hydrodynamic 

force can also be divided into an axisymmetric part, associated with the axisymmetric eigenmodes of 

the fluid motion which do not contribute to the total horizontal force: 

  (96) 

where θ  and φ  are the azimuths and meridian angles, respectively (see Figure 43). 

 

Figure 43. The coordinate system for axisymmetric components 
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 pI is the impulsive pressure, pCn is the convective pressure due to sloshing mode n and pAm is the 

axisymmetric pressure due to axisymmetric mode m.  Hence the impulsive pressure is given by: 

  (97) 

and convective pressure: 

  (98) 

for each sloshing mode with Ci  and Cni  being dimensionless pressure profile functions which depend 

on the tank fill height. The computation of  Ci  and Cni  is based on a series of dynamic mode 

superposition analyses. Thus, for any fill height, the response of the fluid-structure concentrated mass 

model to an arbitrary seismic excitation is computed taking into consideration only the 8-th sloshing 

mode. The resulting hydrodynamic pressure distribution is equal to pcn therefore, the profile functions 

Cni can be computed using equation (98). Then, a time domain simulation is performed, based on the 

same seismic excitation as in the dynamic mode superposition analysis, and the total hydrodynamic 

pressure distribution p is obtained. Finally, the impulsive pressure distribution pi  results from equation 

(96) and the corresponding pressure profile function Ci  from equation (97). 
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Figure 44. The impulsive-convective idealisation of fluid motion. 

 

The QSD is divided into 10 sections where each section contains a representative mass. Based on the 

form of the parabolic ogival shell, each mass component is calculated by: 

  (99) 

where: 

  (100) 

   

Note: D and H are defined in Figure 3b 

The spring constants, Kcn, is calculated as follows utilising the form of the parabolic ogival shell: 
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Figure 45. A differential element from the parabolic ogival shell 

 

The stiffness component denoted as: 

From first principles: 

 
L

AE
K =  (102) 

Where: A is the crossectional area, E is the Young’s Modulus and L is the length of the element. Then 

for the differential element in Figure 45, 

 L
L

AE
K −=

2
 (103) 

 

Where,  txdA=  and dyxdL 21 +=  

Hence, 

  (101) CnnCn MK 2=
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The stiffness can now be calculated: 
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Where the coordinates: 
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and 
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By substituting (93)and (104) in (101) is calculated. 

Now the shell stress components can be calculated 

 

𝐹𝜃𝑗 = 𝑝 × sin(𝜑) 

 

(108) 

and 

 𝐹𝜑𝑗 = 𝑝 × cos(φ) (109) 

The stress components is calculated by dividing the respective forces by the shell thickness, Hence, 

i
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 𝜎𝜃𝑗 =
𝐹𝜃𝑗

𝑡𝑗
 (110) 

And 

 𝜎𝜑𝑗
=
𝐹𝜑𝑗
𝑡𝑗

 (111) 

 

 

3.3.3 Finite Element Modelling of the QSD 

3.3.3.1 Introduction 

Sloshing, the dynamic behaviour of the liquid’s free surface in its retaining structure is of significant 

importance and is one of the major concerns in the design of liquid retaining structures. As noted by 

Abramson, H. (1967), for several years, this subject has been a significant concern for scientists, 

engineers and mathematicians. Any disturbance initiates sloshing to a partially filled liquid container. 

According to Ibrahim (2006), the free liquid surface can experience different varieties of motion 

comprising of simple planar, nonplanar, symmetric, asymmetric, rotational, irregular beating, quasi-

periodic and chaotic all depending on the type of disturbance and the geometry of the container. When 

the free liquid surface motion interacts with the elastic support structural dynamics of internal resonance 

conditions, the free surface modulates. For this investigation, sloshing would be investigated only under 

seismic excitation. 

The difficulty of sloshing involves the assessment and estimation of the hydrodynamic pressure 

distribution on the container’s surface, moments, forces and the natural frequencies of the free liquid 

surface. Sloshing dynamics has an infinite number of natural frequencies, and the lowest mode is most 

likely to be excited by concentrated seismic action, which directly affects the dynamic stability and 

performance of liquid retaining structures. According to Ibrahim (2006), for this reason, previous 

studies focused on investigating forced harmonic oscillations near the lowest natural frequencies, which 

are predicted by the fluid field linear equations. 
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Previous research of sloshing has a long history and presently continues to grasp the importance because 

of its significance in the application in structural and aerospace engineering. After several decades of 

research, several practical approaches for researching has been proposed. However, because of its 

extreme nonlinear effects, solving the dynamics of sloshing is still a great challenge, and a vast amount 

of work is still essential to develop and confirm theories and fully grasp the understanding sloshing 

dynamics. Typically, there are three main approaches to analyse the sloshing phenomenon, which are 

theoretical analytic technique, numerical technique, and experimental technique.  

In this section, the research method and methodology is outlined to show how project objectives were 

accomplished. The section will discuss the collection and interpretation of data, the modelling approach 

used, and type of analysis. The research aims to provide a QSD design under the sloshing phenomena 

in the Caribbean under seismic excitations  

Examining the effects of the sloshing forces are being investigated based on previous theories developed 

by other researchers. These theories were utilised to investigate sloshing dynamics within the Caribbean 

region. Statistical time history acceleration data was obtained to run the dynamic analysis, where the 

results were used to describe the sloshing phenomena in the different geometry of QSDs, explain the 

different sloshing modes observed and predict the sloshing phenomena under similitude condition. 

 

3.3.3.2 Data Collection 

For this investigation, two types of data were used, namely, seismic maps of the Caribbean and 

electronic numerical time history acceleration records. 

Seismic maps were used to determine the global seismicity of the Caribbean to acquire appropriate time 

history records. This was done by identifying the earthquake zones, fault type, seismic depth and Peak 

Ground Acceleration (PGA). The University of the West Indies-Seismic Research Centre (U.W.I. – 

S.R.C.) and the United States Geologic Survey (U.S.G.S.) were the trusted source used to acquire this 

information. 
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Time history acceleration records were the primary type of data utilised to carry out dynamic explicit 

analysis. These records were used to simulate ground motion of an actual earthquake, which has 

occurred in the past. By consultation, it was concluded that three were limited records available for the 

Caribbean. For such, records from another country of similar seismicity to the Caribbean were adopted. 

These records were obtained from the Pacific Earthquake Engineering Research Center (PEER) website 

and the United States Geological Survey’s Earthquake Hazard Program. 

3.3.3.3 Caribbean Tectonics 

The Caribbean is an example of an arc system formed at a convergent plate boundary (more specifically, 

at a subduction zone. This is the leading cause of the volcanic and seismic activity in the Caribbean. 

When plates move as accumulated energy is released, tectonic earthquakes are generated. 

3.3.3.3.1 Seismicity of the Caribbean Region 

Extensive diversity of tectonic regimes characterises the perimeter of the Caribbean plate, involving no 

fewer than four major adjacent plates (North American, South American, Nazca, and Cocos). Inclined 

zones of deep earthquakes, deep ocean trenches, and arcs of volcanoes clearly indicate subduction of 

oceanic lithosphere along the Central American and Atlantic Ocean boundaries of the Caribbean plate, 

while shallow seismicity and focal mechanisms of significant shocks in Guatemala, northern Venezuela, 

and the Cayman Ridge and Cayman Trench indicate a transform fault and divergent basin tectonics. 

The depth profile panels portray earthquakes that extend from the Middle America Trench axis in the 

west to depths as much as 300 km beneath Guatemala and from the Lesser Antilles Trench axis in the 

East to depths close to 200 km beneath Guadeloupe and the northeast Caribbean. In contrast, seismicity 

along the portions of the Caribbean plate margins from Guatemala to Hispaniola and from Trinidad to 

western Venezuela is suggestive of transform fault tectonics. 

Along the northern margin of the Caribbean Plate, the North America plate moves west, relative to the 

Caribbean plate, at approximately 20 mm/year, resulting in major trans-current faults and troughs. 

Further east, the North America plate subducts the Caribbean plate which results in surface expression 

of the deep Puerto Rico Trench. Hence, a zone of intermediate focus earthquakes develops in the 

subducted slab. 
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The plate boundary curves around Puerto Rico and the northern portion of the Lesser Antilles where 

the plate motion vector of the Caribbean plate relative to the North and South American plates is less 

oblique, resulting in active island-arc tectonics. The North and South America plates subduct the 

Caribbean plate along the Lesser Antilles Trench at rates of about 20 mm/year; consequently, there are 

both intermediate focus earthquakes within the subducted South America plate and an array of active 

volcanoes along the archipelago. The southern Caribbean plate boundary along with the South America 

plate strikes in an east-west direction across the island of Trinidad and western Venezuela and is 

characterised by significant strike-slip faults and shallow seismicity, resulting from relative plate 

movement of about 20 mm/year. Further to the west, a broad zone of convergence move southwest to 

western Venezuela and central Columbia. Plate boundaries transition from Caribbean/South America 

convergence in the east to Nazca/South America convergence in the west. The Nazca-Caribbean plate 

boundary offshore of Columbia is differentiated by convergence at about 65 mm/year. The Cocos plate, 

along the western coast of Central America, subducts the Caribbean plate at rates of 72–81 mm/year, 

resulting in a relatively high seismic hazard and a chain of numerous active volcanoes; here 

intermediate-focus earthquakes occur within the subducted zone of the Cocos plate to depths of nearly 

300 km.  

3.3.3.4 Time History Acceleration Data 

3.3.3.4.1 Time History Acceleration Data Collection 

The time history acceleration records used for this research are from Japan. Japan was chosen because 

it shares seismic similarities with the Caribbean. These include; 

• Located within a subduction zone  

• Characterised predominantly by shallow seismicity  

The primary mechanism for earthquakes in both countries are the reverse fault due to the convergent 

plate boundary at the subduction zone; and the strike-slip which occurs parallel to the direction of 

subduction (plate motion). 
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The time history records were retrieved from PEER-NGA-West2 database. The NGA-West2 consists 

of an extensive, comprehensive set of time history recorded worldwide in active tectonic regimes. The 

earthquake used for this investigation is: Kobe;RSN 1120;Takatori 1995. 

 

Ground motion information: 

i. NGA Record Sequence Number 1120 

ii. Magnitude = 6.9 

iii. Closest Distance = 1.5 km 

iv. Hypocentral Distance = 22.19 km 

v. Velocity = 256 m/s 

vi. Mechanism = Strike slip 

vii. Tp = 1.55 s 

PGV = 153.2 cm/s 

Figure 46 Figure 47 and Figure 48 shows the time-history acceleration plots used for the study. 

 

 

 

Figure 46. Horizontal (X-Axis) Time-History Acceleration Plot for Kobe; RSN 1120; Takatori 1995 
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Figure 47. Horizontal (Y-Axis) Time-History Acceleration Plot for Kobe; RSN 1120; Takatori 1995 

 

 

 

Figure 48. Vertical (Z-Axis) Time-History Acceleration Plot for Kobe; RSN 1120; Takatori 1995 

3.3.3.5 Structural Dynamics 

Several factors influence the FEA modelling technique. The complexity of the system and the number 

of influencing parameters need to be determined. This section covers the assumed-modes method, the 

finite element method, complex analysis using the Fourier transform, as well as the commercial finite 

element analysis software ABAQUS. 

3.3.3.1 Single Degree of Freedom Systems 

The fundamental equation in structural dynamics and linear vibration theory a second-order differential 

equation that relates force to displacement, velocity, and acceleration. 

A
cc

el
er

at
io

n
 

[c
m

/s
2
] 

A
cc

el
er

at
io

n
 

[c
m

/s
2
] 



 

117 

 

 𝑚𝑥 ̈ + 𝑐𝑥̇ + 𝑘𝑥 = 𝑝(𝑡) (112) 

 

This equation of motion represents a single lumped-parameter model and is derived using Newton’s 

laws, see  Figure 49. 

 

Figure 49. Single-Degree-of-Freedom Lumped Parameter Model 

 

The elements which comprise this model include the mass, the spring, and the damping component. 

According to the model, an object is placed into motion through the displacement of its mass at a 

specified distance from a reference. The spring element then goes into tension due to being stretched, 

and it has the desire to compress and restore the system to equilibrium. The damping component, which 

occurs when impacted by the spring’s restoring motion, dissipates system energy, decreasing the time 

required to reach equilibrium. 

 

3.3.3.2 Newton’s Laws to Lumped-Parameter Models 

By connecting several lumped-parameter models, a simple single degree of freedom (SDOF) model can 

be constructed into a more complex multiple degrees of freedom (MDOF) model. Depending on the 

complexity of this model, the correct mathematical models can then be developed through the 

application of Newton's laws and/or the assumed modes method. Newton's laws are best used on simpler 

models comprised of a few lumped parameter models described by a mass, spring, and damping values. 

For more complex systems, the assumed modes method is preferred due to the influence of additional 

parameters on the system. 



 

118 

 

3.3.3.3 Assumed Modes Method 

The assumed modes method, developed by Goodell, (2016) incorporates an extension of the virtual 

displacement method to produce a generalised parameter model of a continuous system to approximate 

the deformation of that system. To create the generalised-parameter single-degree-of-freedom model of 

a continuous system, a single assumed mode is used; 

 𝑣(𝑥; 𝑡) = (𝑥)𝑞𝑣(𝑡) (113) 

 

The shape function should represent a single deformation experienced by the structure. The generalised 

displacement coordinate is defined as qv(t) with the subscript v denoting the generalised coordinate 

concerning the physical displacement v(x; t). The shape function 𝜓(x) can be represented by any 

function. However, a shape representing the deforming structure should be chosen. To generate an 

MDOF model of a continuous system, equation (113) is expanded to include N shape functions, thus 

allowing the continuous displacement to be approximated through a finite sum. 

 𝑣(𝑥, 𝑡) =∑𝜓𝑖

𝑁

𝑖=1

(𝑥)𝑞𝑣𝑖(𝑡) (114) 

 

The assumed-modes method consists of substituting this equation into the expressions for kinetic 

energy, τ, and strain energy, ν, through a representation of the material by its density, ρ, area A, length 

L, and modulus of elasticity E, as shown below; 

 𝜏 =
1

2
∫ 𝜌𝐴 (𝑢̇)2
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0

 𝑑𝑥 (115) 
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 𝜈 =
1

2
∫ 𝐸𝐴 (𝑣′)2
𝐿

0

 𝑑𝑥 (117) 
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The analyst defines the Nth DOF assumed modes through the selection of the shape function. The shape 

functions must form a linearly independent set and must possess derivatives up to the order appearing 

in the strain energy, ν. The shape function must also satisfy all the prescribed BCs. 

 

3.4 Chapter Summary 

 

This chapter outlined the procedures adopted for conducting both numerical and experimental work in 

the material characterisation of the 3D printed polymers as well as numerical work in examining the 

behaviour of the QSD. The research methods and methodologies outlined show how project objectives 

were accomplished. The chapter encompasses discussions of the collection and interpretation of data, 

the modelling approach used and type of analysis.  

The research objectives of the proposed study were to assess and estimate the material characteristics 

of the 3d Printed polymer as well the hydrodynamic pressure distribution on the QSD shell. The 

procedures for the solution of the shell forces and natural frequencies of the free liquid surface 

impacting on the QSDs in the Caribbean seismic zones shows how these factors have a direct 

consequence on the dynamic stability and performance of stationary liquid in QSDs. 

Examining the research problem and the research objectives, the effects of the sloshing forces are being 

investigated on the basis of previous theories developed. These theories were utilised to investigate 

sloshing dynamics within the Caribbean region. Statistical time history acceleration data was obtained 

to run the dynamic analysis, where the results were used to describe the sloshing phenomena in the 

different geometry of tanks. This research was both qualitative and quantitative in nature. 

Seismic maps were used to determine the global seismicity of the Caribbean to acquire appropriate time 

history records. This was done by identifying the earthquake zones, fault type, seismic depth and Peak 

Ground Acceleration (PGA). The University of the West Indies-Seismic Research Centre (U.W.I. – 
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S.R.C.) and the United States Geologic Survey (U.S.G.S.) were the trusted source used to acquire this 

information. 

Time history acceleration records were the primary type of data utilised to carry out dynamic explicit 

analysis. These records were used to simulate ground motion of an actual earthquake, which has 

occurred in the past. By consultation, it was concluded that three were limited records available for the 

Caribbean. For such, records from another country of similar seismicity to the Caribbean were adopted. 

These records were obtained from the Pacific Earthquake Engineering Research Center (PEER) website 

and the United States Geological Survey’s Earthquake Hazard Program 

The next chapter discusses the results obtained from the studies.
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4.0 Results  
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4.1 Introduction 

This chapter describes the results from the experimental and numerical studies performed on 3D 

printed polymers. Results from the first principles analyses are then described followed by those 

of the finite element analyses.  

4.2 3D printed polymer characterisation 

4.2.1 Tensile tests and simulations 

Figure 50 presents the stress-strain plot comparing experimental tests and numerical simulation results 

of ABS samples. Average stress and strain values that were plotted to display the stress-strain plot of 

the specimens printed at (0, 90o) orientations along the longitudinal and transverse directions. The 

curves for Orientation 1 and 2 (experimental) show similar characteristics to each other confirming 

Rodríguez (2001) statements of special orthotropic conditions where E1= E2. The transverse direction 

E3 yields at lower stress compared to longitudinal showing the effect of lower bond strength.  

 

Figure 50. Stress-strain plot comparing experimental tests and numerical simulation results of ABS 

samples with print orientations 1,2 and 3. 
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4.2.2 Flexural tests and simulations 

Figure 51 presents the load vs deflection curves for specimens constructed longitudinal to the (x, y, z)/ 

(1, 2, 3) directions. A total of ten (10) specimens per orientation were tested, and the average deflections 

values at a load of 200N were recorded. For specimens printed longitudinal to the x/1 direction and 

loaded perpendicularly to that axis showed the highest yielding load compared to the other orientations.   

 

Figure 51. Load-deflection plot comparing experimental tests and numerical simulation results of ABS samples 

with print orientations 1,2 and 3. 

 

The results from the numerical analysis for the bending test were in close agreement with that from the 

experimental tests. The load vs deflection graph was obtained from the analysis and shown in figure 53. 

The data however was only extracted from the deformed section of the geometry and not the entire 

specimen due to previous mentioned errors. Error! Reference source not found. shows some 

similarities to the experimental and the deflection at 200N were fairly close showing a 4.12% difference 

in results. The ideal difference desired should fall below 10% as noted in previous studies. Overall, the 

material properties were predicted accurately. 
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4.2.3 Torsional property 

Figure 52 shows the torsional force against the distance of rotation for the specimens of the three 

orientation and strain values that were plotted to display the torsional stress vs strain graph of the 

specimens printed at (0, 90o) orientations along the longitudinal and transverse directions. These graphs 

were used to obtain the effective shear modulus values used in the construction of the stiffness matrix 

for the numerical modelling.  Orientation 3 was printed along the same axis the shaft rotated about and 

displayed higher torsional stresses at lower strains than the other orientations. The results from the 

experiment were taken manually and pre-set intervals. This step provided a lot of room for errors and 

was compensated according to the instructions given by the manual of the apparatus. As such, the data 

was first recorded as the torsional force vs the angular displacement. The data was then converted in to 

torsional stress and strain relations to compare with numerical results. 

 

Figure 52. Torsion plot comparing experimental tests and numerical simulation results of ABS samples with 

print orientations 1,2 and 3. 
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4.3 First Principles QSD Analyses 

The first principles analyses examined a QSD under two (2) conditions. In the first condition, the base 

is rigidly fixed to the ground, and the second, the QSD is base isolated. The parameters for both 

simulations of the tank are given in Table 14: 

Table 14. Parameters for first principles QSD analyses. 

Parameter Value 

Height 25 m 

Diameter 12.5m 

Minimum Shell Thickness 1 m 

Maximum Shell Thickness 2 m 

Ground excitation (harmonic) 5 Hz 

Fill Level 50% 

 

Since the second simulation is base isolated, a plot of the bearing displacement was developed as seen 

in Figure 53. 

 

Figure 53. A plot of bearing displacement for base-isolated QSD (5Hz) 
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The plot shows that the initial seismic impulse has created an initial displacement of 247 mm, which is 

transient and eventually tapers off to normalised harmonic behaviour. The displacement is dependent 

on the type of base isolator. A friction-pendulum isolator’s range of motion is directly proportional to 

the mass of its superstructure. Very little is dependent on the friction between the bearing parts (which 

are usually Teflon coated). Lead- core rubber bearing isolators depend on the stiffness of the rubber 

layers as well as the lead core. In both cases, Figure 53 displays the typical behaviour of the isolator. 

Figure 60 and 61 are to be read in accordance with the legend presented in Figure 54. 

 

Figure 54. Legend for QSD circumferential section division for the succeeding plots. 

4.3.1 Shell Forces 

The forces developed in the shell are the hoop or circumferential force, Nθ and the meridional force, Nφ 

(recall equations (17) and (15) respectively).  Upon comparing figures Figure 55a and Figure 56a, 

 

(a) 
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(b) 

Figure 55. Circumferential hoop force Nθ in QSD shell, for various sections at 5Hz for (a) Fixed base QSD and 

(b) Base-isolated QSD 

 

it can be seen that the general shape of the change in the forces follows the overall shape of the input 

frequency. Although the circumferential shell forces are almost similar, highest circumferential shell 

forces occur towards the lowest sections of the QSD (sections 7 and 8) while the highest meridional 

forces also occur in these sections. The highest Nφ values are attributed to the hydrostatic forces that 

occur in that region. The angular surface movement provides for an increase in meridional force at 

higher sections. Since the fluid becomes uneven at this section, the circumferential force is translated 

throughout the region; accordingly, the forces are analogous to those of the lower midsection. Overall, 

the   Nφ is higher than the Nθ by 48.2%. 

 



 

128 

 

 

(a) 

 

(b) 

Figure 56. Meridional force Nφ in QSD shell, for various sections at 5Hz for (a) Fixed base QSD and (b) Base-

isolated QSD 
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The Nθ and Nφ developed due to oscillations from the base isolated model, follow the same mechanical 

principles as those discussed for the fixed system. The difference is that the period for the frequency is 

only about 0.2 seconds and follows the general shape of the displacement-bearing plot. The stresses, 

which were developed by (18), take into account the mechanical properties of the material as well as 

the cross-sectional thickness at the section where the stress is measured. In  

 and 57 the maximum σθ and σφ  both occur at the base (section 8). It is noticed that section 2 displays 

some increase in hoop stress. 

 Figure 58 Figure 57. Circumferential hoop stress σθ in QSD shell, for various sections at 5Hz for (a) Fixed base 

QSD and (b) Base-isolated QSD 

 

This corresponds to the angular displacement occurring at the free surface of the liquid during the 

excitation. The base isolated model shows a 10.2% reduction in circumferential stress after the transient 

behaviour has normalised. The meridional stresses are highest only in the base section of the QSD. This 

attributed to both the hydrostatic pressure at the base as well as the axial shell loads due to gravity.  

 

(a) 
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(b) 

 

Figure 58. Meridional hoop stress σφ in QSD shell, for various sections at 5Hz for (a) Fixed base QSD and (b) 

Base-isolated QSD 

 

4.3.2 Comparison of QSD under different fill conditions 

Simulations were conducted simultaneously on the QSD outlined in Table 14 above. Each simulation 

had the same parameters except for the fill levels. Fill levels of 10%, 25%, 50%, 75%, and 90% were 

each assigned to a separate model.  

The peak impulsive displacements varied between each model. The highest impulsive displacement 

occurred in the QSD with the lowest fill level (10% fill) (see Figure 59). This occurred for both the 

rigid base and isolated base models because of the smaller volumetric mass coupled with a lighter 

convective mass. By contrast, the lowest impulsive displacement is at 90% fill. Both plots show that at 

3.1 metres from the base of the QSD is where the maximum peak displacement occurs. The base and at 

heights between 10 and 20 metres have low displacements. The base is rigidly fixed hence the 

displacement will be small.  
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(a) 

 

(b) 

Figure 59. Comparison of peak impulsive displacement of fluid in QSD, for various fill levels at 5Hz for (a) 

Fixed base QSD and (b) Base-isolated QSD 
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Figure 60 and Figure 61 shows comparative relationships for the Nθ and Nφ d among the 5 fill levels. 

The peak Nθ for the rigid model shows the maximum force in the shell to occur at the 10% fill level 

while the lowest is at the 90% fill level. This is accurate as the convective mass interacts directly with 

the internal surface of the shell at that level. The 10% fill level has the lowest value, a reduction of  20% 

for the same area. The overall Nθ for the base isolate QSD is 50.1% lower than the rigid-base model.  

 

(a) 
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(b) 

Figure 60. Comparison of peak circumferential hoop force Nθ in QSD shell, for various fill levels at 5Hz for (a) 

Fixed base QSD and (b) Base-isolated QSD 

 

The meridional forces along the height of the QSD increase almost linearly towards the base. The base 

isolated model shows that the 10% fill level impacts the most due to convection of the angular 

momentum of the free surface to the shell. This is a reduction of 52% of the maximum meridional forces 

(located at 3.1m from the base). There is an overall reduction of 25% of meridional forces from the 10m 

height to the apex. This shows that the hydrostatic force governs the sloshing forces. 
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(a) 

 

 (b) 

 

Figure 61 Comparison of Peak Meridional hoop force Nφ in QSD shell, for various fill levels at 5Hz for (a) 

Fixed base QSD and (b) Base-isolated QSD 
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On comparing the peak hoop stresses for the different fill levels, it was found that for the rigid-base 

model the stress variation was almost negligible. The base isolated QSD displayed a reduction of 36.3%.   

 

(a)  
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(b) 

Figure 62. Comparison of peak circumferential hoop stress σθ in QSD shell, for various fill levels at 5Hz for (a) 

Fixed base QSD and (b) Base-isolated QSD 

 

The peak meridional displayed a similar relationship; however, the maximum stress was at the base. 
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(a) 

  

(b) 

Figure 63. Comparison of peak meridional hoop stress σφ in QSD shell, for various fill levels at 5Hz for (a) 

Fixed base QSD and (b) Base-isolated QSD 

This is due to the hydrostatic force that translates vertically. 
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4.3.3 Kobe;RSN 1120;Takatori 1995 Time-History Analyses 

The first-principles study of the QSD is now extended to include time-history analyses. The models for 

the QSD were analysed for 10%, 25%, 50%, 75% and 90% fill levels for both fixed base and base 

isolated models. The parameters for both simulations of the tank are given in Table 15: 

 

Table 15.  Parameters for first principles QSD time-history analyses. 

Parameter Value 

Height 25 m 

Diameter 12.5m 

Minimum Shell Thickness 1 m 

Maximum Shell Thickness 2 m 

Ground excitation  Kobe 1995 

Fill Level 50% 

 

On examining the results of the analyses, it was evident that the internal stresses in each orthogonal 

direction were generally in the same range as those of the previous study in section 4.3.3 (see Figure 64 

and Figure 65). 

 

(a) 
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(b) 

Figure 64. Comparison of peak meridional hoop stress σφ in QSD shell, for various fill levels analysed with 

Kobe;RSN 1120;Takatori 1995 time-history data for (a) Fixed base QSD and (b) Base-isolated QSD 

 

 

(a) 
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 (b) 

Figure 65. Comparison of peak meridional hoop stress σφ in QSD shell, for various fill levels analysed with 

Kobe;RSN 1120;Takatori 1995 time-history data for (a) Fixed base QSD and (b) Base-isolated QSD 

 

4.4 Finite Element QSD Analyses 

4.4.1 2D FEA Analysis 

The 2-dimensional analyses were grouped into two categories, the first was hydrostatically loaded and 

the second was dynamically loaded. 25 simulations were conducted for each load case (150 simulations 

total). The hydrostatic cases proved that the orthogonal stresses increased as the fill level increased (see 

Figure 66a and Appendix). This stress was reduced as the shell thickness increased. Comparing this 

with the dynamic cases, the hydrostatic levels produced the most internal stresses in the shell.  
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Figure 66. Surface plot results for  meridional hoop stress  for analyses with varying wall thicknesses for  

25m tall QSD for: (a) 90% fill - hydrostatic case, (b) 10% - fill dynamic case (c) 25% fill - dynamic case,  

(d) 50% fill - dynamic case, (e) 75% fill -dynamic case. (f) 90% fill - dynamic case 

(a)                     (b) 

(c)                     (d) 

(e)                     (f) 
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The results produced by the 2D FEA analyses were in close agreement with those from the first principle 

analyses. There was a sharp increase in internal stresses at the 3.1-metre height. This confirms that the 

impulsive forces coupled with the hydrostatic forces produce an increase in this area. It’s also quite 

noticeable that the lower fill levels have higher stresses at this level. This is due to the convective force 

produced by the sloshing of the surface in this area the inverted frustum shape at this level, encourages 

the hydrodynamic movement of the surface to produce a significant sloshing mode. As the fill level 

increases after the equator, the frustum is inverted and the shape dampens the sloshing at the higher 

levels. The plan area of the liquid level also decreases which reduces the impulsive force. It was also 

noted that the impulsive force was gradually replaced with the hydrostatic pressure at the 3.1 m height.  

4.4.2 3D FEA Analysis 

 The 3D FEA SPH simulation was conducted for the 25-metre model. These 6 degree-of-freedom 

models utilised the Kobe, Takatori 1995 time-history data as the ground motion. 50% fill level was 

selected since this produced the most significant convective force at the surface.  The analysis utilised 

parallelisation with 16 CPU cores (total of 32 threads). The run time was 419 hours. 

The results from the were in good agreement with those from the first principles model as well as the 

2D FEA models. Figure 67 and Figure 68 show the hoop stresses and the meridional stresses 

respectively. The principal stresses (in the S11 direction) range from 0.171 MPa to 4.231 MPa.  
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Figure 67. 3D SPH -FE Model output showing S11 stresses 

 

 The results show that hydrostatic pressure coupled with the convective surface pressure impacted 

mainly on the lower third of the shell. The stresses decreased from the middle third section to the apex. 

This would indicate that the sloshing forces did not have a significant impact on the upper portions of 

the QSD. The principal stresses (in the S22 direction) range from 0.162 MPa to 5.457 MPa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 68. 3D SPH -FE Model output showing S22 stresses  

 

Failure can occur if the Von Mises stress computed is more than the material stress limit. In high 

magnitude events, high particle velocity would induce high pressures with would interact with the 

retaining surface and induce high stress which would create small or large displacements and may be 

in areas that local stress exceeds the material stress and failure occurs. The Von Mises stresses (see 
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Figure 69) show that the 3D printed FDM ABS can be a viable option for the shell of the QSD since its 

within range of the material property. The Von Mises stresses range from 2.64 MPa to 22.73  MPa. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 69. 3D SPH -FE Model output showing Von Mises stresses 

 

4.4.2.1 3D FEA Benchmark  

As a benchmark, a concrete version of the 3D printed QSD (using 55 MPa strength) was modelled 

subjected to the same fill and seismic parameters as the 3D printed version. Smooth particle 

hydrodynamic analysis was modelled as before, to develop the liquid sloshing within the QSD. The 

principal stresses in the S11 and S22 directions, as well as the Von Mises stresses were checked. Figure 

82 shows the principal stresses (S11) as the tank is subjected to the Takatori 1995 earthquake. As shown 

in the figure, the maximum principal stress is 3.12 MPa which occurs at the base of the QSD. The 

minimum stress of 0.142 MPa was concentrated towards the apex. These values were 26% lower than 

those of the 3D printed version. 
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Figure 70. Concrete 3D SPH -FE Model output showing S11 stresses 

  

 

Figure 70 shows the, the maximum principal stresses in the S22 direction. The maximum is 4.62 MPa 

which also occurs at the base of the QSD. The minimum stress of 0.132 MPa was barely visible at the 

apex. These values were 42% lower than those of the 3D printed version.  
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Figure 71. Concrete 3D SPH -FE Model output showing S22 stresses 

  

 

Figure 72 shows the, Von Mises stresses in the benchmark model. The maximum stress is is 18.71 MPa 

which occurred at various portions at the base and the apex of the QSD. The minimum stress of 0.121 

MPa which dominated the equatorial regions of the model. These values were 17.6% lower than those 

of the 3D printed version.  
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Figure 72. Concrete 3D SPH -FE Model output showing Von Mises stresses 
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5.0 Discussion  
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5.0 Discussion 

5.1 Introduction 

This chapter discusses the results from the experimental and numerical studies performed on 3D 

printed polymers. Results from the first principles analyses are then discussed followed by those 

of the finite element analyses. A discussion on the failure criteria is then presented at the end of 

the chapter. 

5.2 3D printed polymer characterisation 

5.2.1 Tensile property 

The degree of accuracy obtained in the numerical results showed the importance of including the 

reduction factors for stiffness and strength due to molecular orientation. Overall, the material properties 

were predicted with similar accuracy to previous studies. The introduction of the ρ2 value for transverse 

air void density proved to be a reliable approach to count the potential load-carrying material. However, 

the bond strength needs to be examined further to determine the true effect on the numerical results.  

The assumption of anisotropic properties and inputting the data as material constants consider the 

imperfect bonding which also leads to more accurate results. The assumptions made for the boundary 

conditions and constraints are applicable for modelling using the FEA software which reduced the 

computation time of analysis. 

Table 16 shows the material properties comparing the experimental results with the numerical results. 

The modulus of elasticity for orientations E1 and E2 were consistent with a percentage variance of 7.07. 

Table 16. Comparison of results of experimental and numerical tests 

Property Experimental  Calculated  % Variance 

E1 (MPA) 1636 1528 7.07 

E2 (MPA) 1636 1528 7.07 

E3 (MPA) 1197 1129 6.02 

ν21 0.39 0.37 5.41 

ν 31 0.37 0.33 12.12 

ν 23 0.39 0.37 5.41 
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This is attributed due to the transition melting temperature (270oC) of the 3D printer’s extrusion nozzle. 

As the nozzle temperature increases so too do the glass transition temperature. The cross-sectional 

geometrical shape of the extruded ABS polymer would become more elliptical; hence, there is a larger 

contact surface created between layers and thus a stronger bond. As discussed previously, E3 displays 

lower moduli of elasticities for the tests conducted to that of the first two orientations. This further 

demonstrated the anisotropicity of the material. The possion’s ratios for the two longitudinal 

orientations (ν21 and ν23) showed consistency with a 5.41% variance. The cross-sectional orientation 

displayed a higher percentage variance of 12.12%. This is also a direct result of the glass transition 

temperature change coupled with a reduced cross-sectional layer-to-layer bond. Based on figure 52, the 

average yield stress for the 3D printed ABS in orientations 1 and 2 is 15 MPa. For orientation 3, it is 

12.2 MPa.  

5.2.2 Flexural property 

Error! Reference source not found. presents the load vs deflection curves for specimens constructed 

longitudinal to the (x, y, z)/ (1, 2, 3) directions. A total of ten (10) specimens per orientation were tested, 

and the average deflections values at a load of 200N were recorded. For specimens printed longitudinal 

to the x/1 direction and loaded perpendicularly to that axis showed the highest yielding load compared 

to the other orientations.  This behaviour was expected due the fact that stresses developed within the 

solid filament rather than the weaker bonds. However, orientation 2 displayed a similar curve that may 

be due to the similarities in the mesostructure. This curve yielding at a lower loading can be explained 

by the bond material being weaker causes such failure. It may seem that the reduction factors considered 

by Rodríguez (2001) should be examined in the numerical analysis for the effective modulus 

calculations. The shape of the air voids seems to be the most significant factor to take into account when 

studying the failure of orientation 3. The sharp corners in its air void geometry may initiate cracking 

that will lead to failure of that type (see Figure 29).  

The slack deflection was not taken into account when performing the experimental test due to limited 

resources. As a result, the numerical results for the bending test may stray from the ones of the 
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experimental. The deflections of the longitudinal x-axis and the longitudinal z-axis again show similar 

values with a difference of 6.3%. This could be due to similar mesostructured properties of the two 

specimens. 

Table 17. Deflection at 200N for specimens with orthogonal print orientations. 

       Specimen Orientation 1 2 3 

      0.5002 0.5151 0.3887 

      0.5126 0.4988 0.4651 

      0.4987 0.5132 0.3981 

    

 

0.512 0.5012 0.4251 

Deflection @ 200N (mm) 0.4681 0.4235 0.3999 

  

 

  0.521 0.4251 0.4513 

      0.4664 0.4845 0.3848 

      0.4743 0.4728 0.3669 

      0.4661 0.5103 0.3463 

      0.4983 0.4356 0.5001 

Average deflection (mm) 0.4918 0.4780 0.4126 

 

The introduction of the ρ2 value for transvers air void density proved to be a reliable approach to count 

the potential load carrying material. However, the bonds strength needs to be examined further to 

determine the true effect on the numerical results.  The assumption of anisotropic properties and 

inputting the data as material constants considers the imperfect bonding which also lead to more 

accurate results. The assumptions made for the boundary conditions and constraints were not practical 

for modelling using the FEA software. 

On comparing the results from the experimental and numerical studies, Table 18 shows the variance 

percentage for orientations 1 and 2 are almost identical for deflection at 200N.  
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Table 18. Comparison of results for flexural tests for ABS for specimens with orientations 1,2 and 3. 

Deflection at 200N 

Orientation  Experimental (mm)  Numerical (mm)  % Variance 

1 0.4918 0.4987 1.40 

2 0.478 0.4709 1.51 

3 0.4126 0.457 10.76 

 

The percentage variance for orientation 3 is significantly higher. This is due to the air void geometry, 

as explained previously in this section.  

The modulus of rupture for each orientation was calculated based on the results of the experimental 

tests conducted (see Table 19).  

 

Table 19. Modulus of rupture calculated from the experimental tests. 

Modulus of Rupture Experimental  

G12 (MPA) 645 

G23 (MPA) 645 

G31 (MPA) 676 

 

The horizontal orientation (G3), the modulus of rupture is significantly higher. This is attributed to the 

high bond strength between adjacent layers and hence greater internal shear resistance, hence enabling 

the sample to fail at a higher load. 

4.2.3 Torsional property 

The results from the torsion test displayed fair enough results which differ by 7.2% (standard deviation). 

The data is displayed in the form of torsional stress and strain values. This level of accuracy was not 

expected due to the manual data collecting process in the experimental stage. As such, the shear 

modulus prediction versus the experiment was lower than expected.  The assumption for the boundary 

condition seemed practical in duplicating the condition of the experiment. Even though the results fell 

within the desired range, the location of the deformation was not in the same location. This is due to the 

fixed conditions applied to one end of the specimen. The results agreed with the anisotropic behaviour 

of the specimen. The results had to be interpolating from four point of the graph and then log to obtain 
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the coordinates for the torsional stress and strain. Overall, the material properties were predicted more 

accurately than other attempts by previous researchers. The introduction of the ρ2 value for transverse 

air void density proved to be a reliable approach to count the potential load-carrying material. However, 

the bond-strength needs to be examined further to determine the actual effect on the numerical results.  

The assumption of anisotropic properties and inputting the data as material constants consider the 

imperfect bonding which also leads to more accurate results. The assumptions made for the boundary 

conditions and constraints are applicable for modelling using ABAQUS which reduced the computation 

time of analysis. 

Table 20. Comparison of results for torsional tests for ABS for specimens with orientations 1,2 and 3. 

Torsional strain values at 10MPa 

Orientation  
Experimental  Numerical % 

Variance (mm/mm) (mm/mm)  

1 0.0053 0.0049 7 

2 0.01 0.0103 3 

3 0.0105 0.0113 8 

 

The variance percentage difference between the experimental and numerical torsional tests were less 

than 10% which indicate good agreement considering the range of environmental temperature 

conditions that affect the 3D printing process.  The air void geometries, which are responsible for the 

difference, suggest that by increasing the transition glass temperature, the overall cross-sectional area 

of the void reduces, hence increasing the material torsional property. 

4.3 First Principles QSD Analyses 

4.3.1 Fluid Behaviour 

When the tank is subjected to ground excitation, the inertia properties of the fluid containing within, 

causes the mass movement of the fluid in the direction of the force. Since a harmonic frequency of 5 

Hz was applied to both models (fixed base and base isolated), the convective liquid displacement also 

followed this sinusoidal pattern (see  

Figure 73a).  

Figure 73b follows a similar pattern however since the convective mass replicates the motion of the 
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containing structure, the fluid in the base isolated QSD follows a similar pattern to that of the bearing 

displacement shown in Figure 53. Due to the isolation of the base, the maximum resultant displacement 

is reduced by 41%.  For both models each mass(Mn) component, respective to each section along the 

QSD height, holds a steady adherence to the general shape of the plot. It can be seen for the middle 

50% of the Mn components; the displacement increases linearly. This occurs due to the increase of 

kinetic energy of the increased lumped mass due to the larger volume (refer to equation (121)) at that 

section. 

 

(a) 

 

(b) 
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Figure 73. Convective displacement of fluid in QSD for various sections at 5Hz for (a) Fixed base 

QSD and (b) Base-isolated QSD 

Analogous to the convective displacement of fluid, the fluid mass also develops an impulsive 

component. 

Figure 74a shows an impulsive mass displacement for each section of the tank.  
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(a) 

 

(b) 

Figure 74. Impulsive displacement of fluid in QSD for various sections at 5Hz for (a) Fixed base QSD 

and (b) Base-isolated QSD 
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The displacement pattern follows a similar sinusoidal pattern as the convective displacement, however 

due to the increase in velocity of the fluid particles in this section, the fluid shifts alternatingly from the 

front to the back of the section. This motion transposes throughout the general wave shape for the 

frequency. The base isolated tank has a unique phenomenon that occurs when excited. The liquid 

oscillates at same frequency as seen in the convective counterpart. The transient decay becomes a 

minimum at around 13 seconds, which corresponds to one cycle of the frequency. Here the liquid 

reverses direction and the impulsive frequency increases for half the cycle. This continues until the 

overall decay of the harmonic motion ends. The maximum impulsive displacement decreased by 45% 

when compared to the fixed-based model. 

5.4 First Principles QSD Analyses 

5.4.1 Shell Forces 

The plots in section 4.3.1 shows the variance of shell forces within each section of the QSD during a 

20 second period for both fixed based models and base isolated models that were subjected to a 

frequency of 5Hz. It was noticed that the base isolated models developed a characteristic transient 

frequency which allowed the shell forces and stresses (both Nφ , Nθ  and σθ and σφ  ) to progressively 

decay over time. The lowest section (section 8) displayed the largest forces with the highest frequencies 

both for the fixed base and the base isolated models. This occurred because of the cumulative convective 

forces coupled with the hydrostatic forces that impact the shell in that area. The corollary is noticed at 

the apex of the plots (section 1) where the frequency is almost flatlined. This occurs because the liquid 

inside the QSD does not impact this region. The only factor is the self-weight of the shell which reacts 

dynamically with the movement from the seismic excitation. 

The peak stresses were plotted for each fill level at each section (Figure 61andFigure 62). It was 

noticeable that the maximum stresses occurred at the lower third of the tank. This is mainly due to the 

impulsive force coupled with the hydrostatic force being impacted in that region.  

The time-history analyses yielded favourable results when compared with the harmonic analyses. This 

is due to the transient decay of the frequency. The analyses did show an increase in the orthogonal 
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stresses towards the apex of the tank. This is due to leading forces developed in the tank due to the mass 

component of the tank at that section and not the liquid fill levels. This can be attributed to the 

introduction of the vertical component of the time-history data since the base isolation does not consider 

the vertical damping of the system. 

5.5 Finite Element QSD Analyses 

5.5.1 2D FEA Analysis 

To properly assess the data generated by the 125 dynamic cases, a multiple analysis of variance 

(ANOVA) was carried out using a software package, Statistical Package for the Social Sciences (SPSS), 

by only considering the main effects, two way and 3-way interactions of the variables vertical distance, 

shell thickness, maximum QSD height, and fill levels on the variable stress. The Estimated Marginal 

Means in SPSS tells the mean response for each factor, adjusted for any other variables in the model. 

The results show that model was significant (p-value < 0.05) in determining the stress. On examination 

of the separate effects on the dependent variable stress, it was observed that the main effects of height, 

fill, vertical distance and shell thickness were also seen to be significant factors (p-value < 0.05) for 

stress. On examination of the two – way interactions, it can be deduced that two-way interactions 

between distance and thickness, distance and height, distance and fill, thickness and fill and height and 

fill were also significant factors in assessing the stress. However, the interaction between thickness and 

height was found to be insignificant (p-value=0.706).  

The 3-way interaction between distance, thickness and fill were also found to have a significant effect 

on the variable stress (p-value <0.05). When the calculated Partial Eta-Squared is greater than 0.5, then 

the interaction between the variables become significant. The plots for the above analysis can be further 

supported by the following plots (Figure 75 to Figure 79): 
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Figure 75. Estimated marginal means of stress for fill levels and thickness 

 

 

It can be deduced from Figure 75 that thickness did have a significant effect on the stress across the 

different fill levels. As the thickness increased, the stress decreased. There was no significant effect of 

fill at higher thicknesses on the stress variable.  The interaction effect of thickness and fill was 

significant and was a medium effect (Partial Eta-Squared =0.617). 
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Figure 76. Estimated marginal means of stress for shell thickness and distance 

 

The vertical distance can be seen to have a significant effect on stress at lower values of the thickness 

(see Figure 76). Both the main effect and interaction effect of distance and thickness was significant 

with the interaction effect being a strong effect (Partial Eta-Squared = 0.988). 
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Figure 77. Estimated marginal means of stress for fill levels and QSD height 

 

 

The analysis revealed that the main effect for height was significant (see Figure 77). There was a drastic 

increase in stress at the 75% fill level after a height of 20. However, at smaller heights, there was no 

significant effect on stress due to the fill level. The interaction effect between height and fill was shown 

to be weak (Partial Eta-squared = 0.268). The main effect on stress was also observed to be a weak 

effect (Partial Eta-Squared = 0.196). 
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Figure 78. Estimated marginal means of stress for fill levels and distance 

 

 

Distance was seen to have a significant effect on stress especially at higher values (p-value <0.05). 

There was a large increase in stress at the greater distances for the fill value of 75%. The interaction 

effect between distance and fill was observed to be a strong effect (Partial Eta-Squared = 0.951). 
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Figure 79. Estimated marginal means of stress for height and distance 

 

 

Although the interaction effect of distance and height was shown to be significant (p-value <0.05), the 

effect was a weak one (Partial Eta-Squared = 0.295). There was no significant increase in stress at 

different distances for the varying heights of 1, 5 and 10m. However, a sharp increase was observed for 

larger distances at heights of 20 and 25 m. 
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4.4.2 3D FEA Analysis 

The results from 3D finite element analyses conducted on the 25-metre QSD model shows similarity to 

those from the 2D analyses. The overall principal stresses ranged from 0.162 MPa to 5.457 MPa with 

the Von Mises stresses ranging from 2.64 MPa to 22.73 MPa. The dynamic excitation from the Kobe, 

Takatori 1995 earthquake, resulted in sloshing effects developing. The fluid-structure interaction 

between the resultant impacting sloshing force and QSD shell, resulted in a significant increase in the 

Von Mises stress. This stress was found to occur just beneath the mid-height equator of the QSD. As 

the liquid’s surface level tends towards the mid-height equator, the surface area increases. This free 

surface generates impulsive waves during seismic excitation. As a result, the impact forces are 

increased. When comparing the 2D analyses with the 3D FE analyses, levels that are filled more than 

60% of the tank, do not contribute significantly towards the sloshing forces. Hence, it can now be noted 

that for the worst-case fill level for dynamic analysis, the 50% fill level should be utilised. For the 

hydrodynamic analysis case, the 90% fill level should be used. 

 

4.4.2 Failure Criteria 

 In developing the design criteria, the failure criteria must be determined. Figure 80 shows limiting 

envelopes for the Von Mises stress state as well as the Saint Venant stress state. For the QSD to be safe, 

the maximum stress must fall within specific boundaries in the diagram.  

Considering the material (3D Printed ABS), the yield stress and ultimate tensile stress is now utilised 

to develop the criteria. Noting that for any FDM 3D printed material, the print orientation is of 

paramount importance. Orientation 1, provides the best option in terms of strength. It should be noted 

that the placement of this orientation must be parallel to the most significant in-plane force. For this 

Orientation, the yield stress was found to be 15 MPa and the maximum tensile stress was 24.4 MPa. 

Upon comparing these stresses with those from the QSD analyses, it can be seen that for the 

Serviceability Limit State (SLS) the yield stress of 15MPa can be used. Also, for the Ultimate Limit  
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State (ULS) the maximum tensile stress can be utilised. The relationship between the material property 

and the QSD stresses can be written as: 

∅𝜎𝑦 > 𝜎1, 𝜎2  → 𝑓𝑜𝑟 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑎𝑏𝑙𝑖𝑡𝑦 𝐿𝑖𝑚𝑖𝑡 𝑆𝑡𝑎𝑡𝑒 

And, 

∅𝜎𝑢𝑙𝑡 > 𝜎𝑉𝑜𝑛𝑀𝑖𝑠𝑒𝑠  → 𝑓𝑜𝑟 𝑈𝑙𝑡𝑖𝑚𝑎𝑡𝑒 𝐿𝑖𝑚𝑖𝑡 𝑆𝑡𝑎𝑡𝑒 

Where ∅ is a factor of safety. 

 

 

σy 
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Figure 80. Plot of failure envelopes for various failure modes 
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6.0 Conclusions and Future Work 

6.1 Introduction 

This study defined three research objectives and investigated them to successful completion. The first 

objective examined the mechanical properties of 3D printed ABS polymer.  The second 

investigated the global behaviour of the QSD under hydrostatic and dynamic loads while utilising 

3D printed ABS as the main structural material. This finally, determined the behaviour of a 3D 

printed polymer QSD under seismic conditions for use within the wastewater sector in the 

Caribbean. These three facets of investigation have employed experimental and numerical 

research methods to achieve the goals. 

6.2 D Printed ABS Polymer 

Several simulations and experiments were conducted using ABAQUS to test numerically; tension, 

flexure and torsion of the 3D printed ABS polymer. The material properties were determined 

experimentally and compared to the results of the mechanics of material equations as described by 

Fritch, (1980).  These results were in agreement with each other, proving the need to include the factors 

of stiffness and strength as well as the introduction of ρ2 void ratio, which counted the potential load-

carrying material for the transverse effective properties. However, this was only valid for two 

orientations (1 & 2) the third orientation of the numerical work was not in close approximation with the 

experiment. The 8.3% difference observed with the shear modulus prediction in that orientation has 

been explained as the reason for this occurrence.  The deflection predictions for orientation (1 & 2) 

were in excellent agreement (4.5% & 3.4%) this concludes that the goal of developing numerical models 

for structural analysis was accomplished. 

The examination of the FD-3D polymer material can be classified as moderately ductile when 

comparing the force with deflection. This type of deflection resembles the characteristics of a steel 

deflection curve. The goal is to find materials that can be compatible with the FDM platform but display 

a higher strength to weight ratio than that of steel. However, the behaviour of failure criterion is a 

significant factor to consider. As the technology is today in its development stage the accuracy of some 



 

168 

 

industrial platforms makes it possible to print organic scaffolds for cell growth. Hence, the technology 

can reduce the need for costly construction techniques. As for the material behaviour, it can be applied 

to QSD shell structures where environmental loads and self-weight are to be considered when 

conducting structural analyses.  

6.3  QSD Analyses 

Three groups of analyses were conducted to determine the orthogonal stresses in the shell of the QSD. 

The first-principles numerical models ran reasonably quickly and many iterations were made during the 

study. The results showed that they were in within the range 5.34% to 7.2% to 2D FEA simulations. 

The 3D FEA simulations were within the range of 8.3% to 9.2% to the MATLAB time-history models. 

This is a good indicator that the first principles numerical models are an excellent timesaving method 

to predict the behaviour of the QSD under seismic excitation. Upon examining the criteria for the 

design, analysing the results for the 2D FEA simulations showed that the fill height is not a significant 

variable with sloshing however, the 3D FEA showed that the hydrostatic pressure is a significant 

variable. With the maximum tensile stress of the 3D-printed ABS being 24.4 MPa, the overall maximum 

Von Mises stress of 22.73 MPa, the material can be a viable option for the use of QSD construction.  

The failure criteria was found after determining performance of the QSD during static and dynamic 

loading. For typical service loads, the the maximum principal stresses were found to be 5.457 MPa. 

Under seismic excitation (either harmonic or dynamic) this range falls well below the yield stress of the 

3D printed ABS polymer. Hence, it can be concluded that the yield stress can be the limiting criterion 

for failure in the serviceability limit state. Similarly, the Von Mises stress was can be used as the limiting 

criterion for the Ultimate Limit State when designing the QSD. 

6.4 Summary of conclusions 

The following is summary of conclusions for this study: 

1. The orientations 1 and 2 for the 3D printed ABS polymer have been found to be suitable for 

use as a construction material, particularly in the case of shells. 
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2. The 3D printed ABS polymer with Orientation 1 (parallel to the axial force) has an ultimate 

tensile strength of 24.4 MPa and a yield strength of 15 MPa. 

3. The numerical simulations in ABAQUS have proven to be a good indicator for determining the 

mechanical properties. 

4. The results from 2D FEA SPH models are close to 3D 6DOF FEA models. However, they 

reduce the computation time significantly. 

5. The parabolic ogival shell form with a height to diameter ratio of 2.5 is excellent for adoption 

for the 3D printed ABS QSD. 

6. The fill level does not dictate the design criteria when compared to sloshing produced from 

external dynamic loading.   

7. The criteria for failure is defined as: 

∅𝜎𝑦 > 𝜎1, 𝜎2  → 𝑓𝑜𝑟 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑎𝑏𝑙𝑖𝑡𝑦 𝐿𝑖𝑚𝑖𝑡 𝑆𝑡𝑎𝑡𝑒 

And, 

∅𝜎𝑢𝑙𝑡 > 𝜎𝑉𝑜𝑛𝑀𝑖𝑠𝑒𝑠  → 𝑓𝑜𝑟 𝑈𝑙𝑡𝑖𝑚𝑎𝑡𝑒 𝐿𝑖𝑚𝑖𝑡 𝑆𝑡𝑎𝑡𝑒 

Where ∅ is a factor of safety. 

 

6.5 Future Work 

This study has provided insight into the novel concept of utilising 3D printed FDM ABS polymers for 

use in QSD construction. As FDM techniques and 3D printing technologies are rapidly advancing, new 

methods and materials for construction can be explored. For example the use of composite FDM 

polymers. Composite FDM polymers are reinforced within the air voids created during the extrusion 

process. Material strengths can be increased significantly, thus allowing for more elegant design shell 

thicknesses.  

An experimental study can be conducted whereby scaled models are constructed and tested using a 6 

DOF setup. Accelerometers and strain gauges are positioned at several elevations around the 
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circumference of the QSD, and hydraulic actuators cycle a scaled pre-defined time history. This 

experimental setup can further validate the numerical simulations presented in this study. 

For ease of manufacturing and construction, the QSD can now be designed as modular elements that 

would be fabricated offsite in a factory setting. These modular parts would have to be added to the 

numerical simulations and further tested via an experimental setup as described above. Parametric 

optimisation can then carried out to refine the QSD into a final product.  

Financial studies for manufacturing, erecting, and maintenance can be done to ensure the product is 

marketable.  Integration studies into existing wastewater treatment plants and maintenance schemes are 

other avenues in which this study can be furthered. 
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APPENDIX I 

QUADRIC SURFACE SLUDGE DIGESTER DESIGN GUIDE 

1. Given the volume of sludge to be treated, the dimensions can be deduced from the following: 

𝐷 = √
15𝑉

2𝜋𝐻
   or 𝐻 =

15𝑉

2𝜋𝐷2
 

Where V = internal volume of the QSD x 10% of volume of sludge to be treated. 

2. Using Figure A1, deduce overall dimensions of the QSD. 

 

Figure A1. General design dimensions of the QSD  

3. Choose an arbitrary thickness, t > 400mm. 

4. Use 3D FDM material ensuring tool extrusion path is always parallel to the tangent of the 

circumference of the shell. 

5. Analyse the QSD using appropriate FEA software to determine the stresses 

6. Ensure that: 

∅𝜎𝑦 > 𝜎1, 𝜎2  → 𝑓𝑜𝑟 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑎𝑏𝑙𝑖𝑡𝑦 𝐿𝑖𝑚𝑖𝑡 𝑆𝑡𝑎𝑡𝑒 

And, 
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∅𝜎𝑢𝑙𝑡 > 𝜎𝑉𝑜𝑛𝑀𝑖𝑠𝑒𝑠  → 𝑓𝑜𝑟 𝑈𝑙𝑡𝑖𝑚𝑎𝑡𝑒 𝐿𝑖𝑚𝑖𝑡 𝑆𝑡𝑎𝑡𝑒 

Where ∅ =0.60 

 𝜎𝑦 is the yield stress of 3D Printed ABS 

𝜎1, 𝜎2 are the principal stresses in the longitudinal and cross-sections respectively.  

𝜎𝑢𝑙𝑡 is the ultimate tensile stress 

 𝜎𝑉𝑜𝑛𝑀𝑖𝑠𝑒𝑠 is the Von Mises stress 

7. If  ∅𝜎𝑦 < 𝜎1, 𝜎2 then revise thickness t. 

8. If  ∅𝜎𝑢𝑙𝑡 > 𝜎𝑉𝑜𝑛𝑀𝑖𝑠𝑒𝑠 then revise thickness t. 
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APPENDIX II 

FIRST PRINCIPLES MATLAB CODE 

 

%%%%%%%%%%%%%%%%%%% 
% QSD MATLAB CODE % 

%%%%%%%%%%%%%%%%%%% 

 

 
clc 
global ugdd n time 
%GUI Inputs: 
%----------- 
sel1 = questdlg('What is the required input type?', ... 
                         'Input Type Selection', ... 
                         'Frquency Input','History Data','Frquency Input'); 
switch sel1 
    case 'Frquency Input'                
        prompt={'Tank Height(m):','Tank Diameter(m):','Tank Min 

Thickness(m):','Tank Max Thickness(m):','Tank Modulus of 

Elasticity(GPa):',... 
            'Tank Wall Density(Kg/m3):','Ground Frequency(Hz):'}; 
        name='Inputs:'; 
        numlines=1; 
        defaultanswer={'25','10','0.5','2','1.636','1052','5'}; 
        answer=inputdlg(prompt,name,numlines,defaultanswer); 
        fg=str2double(answer{7});                         %Ground motion 

frequency 
        %Ground Motion calculations: 
        %--------------------------- 
        A=1;                                               %Amplitude 
        dt=0.1;                                            %Time step 
        t=0:dt:20;                                         %simulation time 
        ug=A.*sin(2.*pi.*pi.*fg.*t./180);                  %ground 

displacement 
        dugdt=diff(ug)./diff(t);                           %Ground velocity 
        d2ugdt2=diff(dugdt)./diff(t(1:end-1));             %Ground 

acceleration 
        ugdd=mean(d2ugdt2);                                %Mean ground 

acceleration 
    case 'History Data' 
        prompt={'Tank Height(m):','Tank Diameter(m):','Tank Min 

Thickness(m):','Tank Max Thickness(m):','Tank Modulus of 

Elasticity(GPa):',... 
            'Tank Wall Density(Kg/m3):'}; 
        name='Inputs:'; 
        numlines=1; 
        defaultanswer={'25','12.5','0.5','2.5','1.636','1052','5'}; 
        answer=inputdlg(prompt,name,numlines,defaultanswer);         
        %Ground Motion calculations: 
        %--------------------------- 
        DATA=xlsread('ADJUSTED-Kobe;RSN 1120;Takatori 1995 Time History 

Data.xlsx'); 
        t=DATA(:,1);                                       %Time data 
        [t, order]=sort(t);                                %Sorting time 

vector in ascending order 
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        ugdd=DATA(:,2);                                    %ground 

acceleration data 
        ugdd=ugdd(order);                                  %sorting 

acceleration with respect to time 
        ug=ugdd./(2*(pi^2)*(50^2));                        %ground 

displacement 
        ug=transp(ug); 
        ugdd=mean(ugdd);                                   %Mean ground 

acceleration 

         
end 
time=t;         

  
H=str2double(answer{1});                             %Tank Height 
D=str2double(answer{2});                             %Tank Center Diameter 
tmin=str2double(answer{3});                          %Tank minimum 

thickness 
tmax=str2double(answer{4});                          %Tank maximum 

thickness 
E=str2double(answer{5})*(10^9);                      %Tank modulus of 

elasticity 
rhos=str2double(answer{6});                          %Tank material density 
n=8;                                                 %Number of sections 

  

  

  
prompt={'Fill Level 1:','Fill Level 2:','Fill Level 3:','Fill Level 

4:','Fill Level 5:'}; 
name='Fill Levels Comparison Inputs (%):'; 
numlines=1; 
defaultanswer={'10','25','50','75','90'}; 
answer=inputdlg(prompt,name,numlines,defaultanswer); 

  
%Tank type selection: 
%-------------------- 
sel = questdlg('What is the required tank type?', ... 
                         'Tank Type Selection', ... 
                         'Base Isolated','Fixed','Base Isolated'); 

  
FL=zeros(5,1); Ub=zeros(length(t),5); 
Uc=zeros(n+1,length(t),5); Uc_m=zeros(n+1,5); 
Fn=zeros(n+1,length(t),5); Fn_m=zeros(n+1,5); 
Ft=zeros(n+1,length(t),5); Ft_m=zeros(n+1,5); 
Segn=zeros(n+1,length(t),5); Segn_m=zeros(n+1,5); 
Segt=zeros(n+1,length(t),5); Segt_m=zeros(n+1,5); 
for i=1:5 
    switch answer{i} 
        case 'N/A' 
            FL(i)=0; 
        otherwise 
            FL(i)=str2double(answer{i})/200; 
            

[Uc(:,:,i),Uc_m(:,i),Ub(:,i),Fn(:,:,i),Ft(:,:,i),Fn_m(:,i),Ft_m(:,i),Segn(:

,:,i),Segt(:,:,i),Segn_m(:,i),Segt_m(:,i)]=... 
                LSTSolFun(H,D,tmin,tmax,E,rhos,FL(i),sel,n,t,ug,ugdd); 
    end 
end 
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%Plotting: 
%----------- 
for j=1:n+1 
    figure(1) 
    plot(t,Uc(j,:,1),'LineWidth',1.5), xlabel('Time(s)'), 

ylabel('Displacement(m)'), title('Section Displacement'), grid on, hold on 
    figure(2) 
    plot(t,Fn(j,:,1).*(10^-6),'LineWidth',1.5), xlabel('Time(s)'), 

ylabel('Force, N_{\theta}(MN)'), title('N_{\theta} Vs T'), grid on, hold on     
    figure(3) 
    plot(t,Ft(j,:,1).*(10^-6),'LineWidth',1.5), xlabel('Time(s)'), 

ylabel('Force, N_{\phi}(MN)'), title('N_{\phi} Vs T'), grid on, hold on     
    figure(4) 
    plot(t,Segn(j,:,1).*(10^-6),'LineWidth',1.5), xlabel('Time(s)'), 

ylabel('Stress, \sigma_{\theta}(MPa)'), title('\sigma_{\theta} Vs T'), grid 

on, hold on     
    figure(5) 
    plot(t,Segt(j,:,1).*(10^-6),'LineWidth',1.5), xlabel('Time(s)'), 

ylabel('Stress, \sigma_{\phi}(MPa)'), title('\sigma_{\phi} Vs T'), grid on, 

hold on     

  
end 
switch sel 
    case 'Base Isolated' 
        figure(6) 
        plot(t,Ub(:,1),'LineWidth',1.5), xlabel('Time(s)'), 

ylabel('Displacement(m)'), title('Base Displacement'), grid on 
end 
figure(1) 
legend('Section 1','Section 2','Section 3','Section 4','Section 5','Section 

6','Section 7','Section 8','Location','NorthEast') 
figure(2) 
legend('Section 1','Section 2','Section 3','Section 4','Section 5','Section 

6','Section 7','Section 8','Location','NorthEast') 
figure(3) 
legend('Section 1','Section 2','Section 3','Section 4','Section 5','Section 

6','Section 7','Section 8','Location','NorthEast') 
figure(4) 
legend('Section 1','Section 2','Section 3','Section 4','Section 5','Section 

6','Section 7','Section 8','Location','NorthEast') 
figure(5) 
legend('Section 1','Section 2','Section 3','Section 4','Section 5','Section 

6','Section 7','Section 8','Location','NorthEast') 

  
TH=zeros(n+1,1); 
for j=0:n 
    TH(j+1)=(j/n)*H; 
end 
TH=flip(TH); 
for i=1:5 
    figure(8) 
    plot(TH,Uc_m(:,i),'LineWidth',1.5), xlabel('Tank Height(m)'), 

ylabel('Peak Section Displacement(m)'), title('Peak Displacement For Each 

Section'), hold on, grid on 
    figure(9) 
    plot(TH,Fn_m(:,i),'LineWidth',1.5), xlabel('Tank Height(m)'), 

ylabel('Peak N_{\theta}(Pa)'), title('Peak N_{\theta} For Each Section'), 

hold on, grid on 
    figure(10) 
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    plot(TH,Ft_m(:,i),'LineWidth',1.5), xlabel('Tank Height(m)'), 

ylabel('Peak N_{\phi}(Pa)'), title('Peak N_{\phi} For Each Section'), hold 

on, grid on     
    figure(11) 
    plot(TH,Segn_m(:,i),'LineWidth',1.5), xlabel('Tank Height(m)'), 

ylabel('Peak \sigma_{\theta}(Pa)'), title('Peak \sigma_{\theta} For Each 

Section'), hold on, grid on 
    figure(12) 
    plot(TH,flip(Segt_m(:,i)),'LineWidth',1.5), xlabel('Tank Height(m)'), 

ylabel('Peak \sigma_{\phi}(Pa)'), title('Peak \sigma_{\phi} For Each 

Section'), hold on, grid on 
end 
hold off all 
figure(8) 
legend('Fill Level 1','Fill Level 2','Fill Level 3','Fill Level 4','Fill 

Level 5') 
figure(9) 
legend('Fill Level 1','Fill Level 2','Fill Level 3','Fill Level 4','Fill 

Level 5') 
figure(10) 
legend('Fill Level 1','Fill Level 2','Fill Level 3','Fill Level 4','Fill 

Level 5') 
figure(11) 
legend('Fill Level 1','Fill Level 2','Fill Level 3','Fill Level 4','Fill 

Level 5') 
figure(12) 
legend('Fill Level 1','Fill Level 2','Fill Level 3','Fill Level 4','Fill 

Level 5') 

  

function 

[Uc,Uc_m,Ub,Fn,Ft,Fn_m,Ft_m,Segn,Segt,Segn_m,Segt_m]=LSTSolFun(H,D,tmin,tma

x,E,rhos,HL,sel,n,t,ug,ugdd) 
global Mt g mew  
%Other Inputs: 
%------------- 
rhow=1000;                          %Liquid density 
zetac=0.5/100;                      %Convective damping ratio 
zetai=2/100;                        %Impulsive damping ratio 
zetab=10/100;                       %Bearing damping ratio 
Tb=2;                               %Bearing period of isolation 
Tt=20;                              %Total time of simulation 
Mt=2*pi*(D^2)*H*rhow/15;            %Total mass 
g=9.81;                             %Gravitational acceleration 
mew=0.01;                           %Coeff. of friction 

  
%Output to command window: 
%--------------------------- 
fprintf('H/D ratio = %g\n',H/D) 
fprintf('NOTE: Section (1) is top of the tank and section (n) is bottom of 

the tank\n\n') 

  
%Tank Geometrical Calculations: 
%------------------------------ 
global R j 
R=zeros(ceil((n+1)/2),1);                           %Radius vector 

initialization 
for j=1:ceil((n+1)/2)                               %For loop 
    R(j)=(D/2)-((2*D/(H^2))*((j*H/n)-H/n)^2);     %Radius calculation for 

each section in lower half 
end 
R(end)=0.2; 
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R2=flip(R);                                       %Mirroring radius for 

upper half 
R=[R2(1:end-1);R];                                 %Vector assembly 
phai=linspace(0,30,n+1).*pi/180; 

  
th=zeros(n+1,1);                                %Thickess 
Hd=round(n+1/4);                                %Decision height 
for j=1:Hd 
    th(j)=tmax-(((tmax-tmin)/0.25)*(j/n));      %Variable thickness 
end 
for j=Hd+1:n+1 
    th(j)=tmin;                                 %Constant thickness 
end 

     
%Mass, Stiffness, and Damper calculations: 
%----------------------------------------- 
global Mcc Kcc Ccc Kb Cb Mr Mtot 
Mc=zeros(n,1); Mi=zeros(n,1);                                                                               

%Mass Initialization 
Kc=zeros(n,1); Ki=zeros(n,1);                                                                               

%Stiffness Initialization 
Cc=zeros(n,1); Ci=zeros(n,1);                                                                               

%Damper Initialization 
P=zeros(n,1);  wi=zeros(n,1); wc=zeros(n,1);                                                                

%Natural frequency 
Mr=Mt*(-0.01599+(0.86356*HL/R(1))-

(0.30941*(HL/R(1))^2)+(0.04083*(HL/R(1))^3));                             

%Rigid mass calculation 
for j=1:n 
    Mc(j)=Mt*(1.01327-(0.87578*HL/R(j))+(0.35708*(HL/R(j))^2)-

(0.06692*(HL/R(j))^3+(0.00439*(HL/R(j))^4))); %Convective mass for each 

section 
    Mi(j)=Mt*(-0.15467+(1.21716*HL/R(j))-

(0.62839*(HL/R(j))^2)+(0.14434*(HL/R(j))^3-(0.0125*(HL/R(j))^4))); 

%Impulsivemass for each section 
    P(j)=0.07726+(0.17563*HL/R(j))-

(0.106*(HL/R(j))^2)+(0.02609*(HL/R(j))^3)-(0.0025*(HL/R(j))^4);          

%Dimensionless parameter 
    wc(j)=sqrt(1.84*(g/R(j))*tanh(H/R(j)));                                                                 

%Convective natural frequency 
    wi(j)=(P(j)/H)*sqrt(E/rhos);                                                                            

%Impulsive natural frequency 
    Kc(j)=Mc(j)*(wc(j))^2;                                                                                  

%Convective stiffness 
    Ki(j)=Mi(j)*(wi(j))^2;                                                                                  

%Impulsive stiffness 
    Cc(j)=2*zetac*Mc(j)*wc(j);                                                                              

%Convective damping 
    Ci(j)=2*zetai*Mi(j)*wi(j);                                                                              

%Impulsive damping 
end 
Mcc=Mc+Mi; 
Ccc=Cc+Ci; 
Kcc=Kc+Ki; 
Mcct=sum(Mcc); 
Mtot=Mr+Mcct; 
Mct=sum(Mc);                                                                                                

%Total convective mass 
Mit=sum(Mi);                                                                                                

%Total impulsive mass 
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wb=2*pi/Tb;                                                                                                 

%Base natural frequency 
Kb=(Mct+Mit+Mr)/((Tb/(2*pi))^2);                                                                            

%Base stiffness 
Cb=zetab*2*wb*(Mct+Mit+Mr);                                                                                 

%Base damper 

  

  
%Displacement calculation: 
%------------------------------ 
Uc=zeros(n,length(t));  
Ucd=zeros(n,length(t));                                        

%Acceleration Initialization 
Uc_m=zeros(n+1,1); 
y0=zeros(n+1,1); 
dy0=0.1.*ones(n+1,1); 
yini=[y0;dy0]; 
[~,y] = ode45(@ODEsolver,t,yini);                                %Ode 

Solver 
for j=1:n 
    Uc(j,:)=transp(y(:,j));                                      %Section 

Displacement 
end 
Ub=transp(y(:,n+1));                                             %Bearing 

Displacement 
jj=1; 
for j=n+2:2*n+1 
    Ucd(jj,:)=transp(y(:,j));                                    %Section 

Acceleration 
end 

  
for j=1:n 
    switch sel 
        case 'Fixed' 
            Uc(j,:)=Uc(j,:)-ug;                                     %Fixed 

Tank case 
        case 'Base Isolated' 
            Uc(j,:)=Uc(j,:)-Ub;                                     %Base 

Isolated Tank case 
    end 
end 

  
Uc=[Uc;Ub]; 
size(Uc) 
for j=1:n+1 
    Uc_m(j)=max(Uc(j,:)); 
end 

  

  
%Force Calculation: 
%------------------ 
Fs=zeros(n+1,length(t)); 
Fn=zeros(n+1,length(t)); 
Ft=zeros(n+1,length(t)); 
Fn_m=zeros(n+1,1); 
Ft_m=zeros(n+1,1); 
Pr=(10^5).*((2.*H.*D.*sin(phai))-((H^2).*cos(phai)))./(4.*D.*sin(phai)); 

  
for j=1:n 
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    Fs(j,:)=-(Mcc(j).*(Uc(j,:)+ugdd));                                                   

%Sloshing Force Calculation 
    Fn(j,:)=Fs(j,:).*sin(phai(j));                                                       

%Normal Force 
    Ft(j,:)=Fs(j,:).*cos(phai(j));                                                       

%Tangential Force 
    Fn_m(j)=max(Fn(j,:)); 
    Ft_m(j)=max(Ft(j,:)); 
end 
Fs(n+1,:)=-(Mr.*(Uc(n+1,:)+ugdd));                                                       

%Sloshing Force Calculation 
Fn(n+1,:)=Fs(n+1,:).*sin(phai(n));                                                       

%Normal Force 
Ft(n+1,:)=Fs(n+1,:).*cos(phai(n));                                                       

%Tangential Force 
Fn_m(n+1)=max(Fn(n+1,:)); 
Ft_m(n+1)=max(Ft(n+1,:)); 

  
%Stress Calculation: 
%------------------- 
Segn=zeros(n+1,length(t)); 
Segt=zeros(n+1,length(t)); 
Segn_m=zeros(n+1,1); 
Segt_m=zeros(n+1,1); 
for j=1:n 
    Segn(j,:)=Fn(j,:)./(R(j))*(th(j));                                             

%Normal Stresses Calculation 
    Segt(j,:)=Ft(j,:)./(R(j)*th(j));                                               

%Tangential Stresses Calculation 
    Segn_m(j)=max(Segn(j,:)); 
    Segt_m(j)=max(Segt(j,:)); 
end 
Segn(n+1,:)=Fn(n+1,:)./(R(n+1))*(th(n));                                             

%Normal Stresses Calculation 
Segt(n+1,:)=Ft(n+1,:)./(R(n+1)*th(n));                                               

%Tangential Stresses Calculation 
Segn_m(n+1)=max(Segn(n+1,:)); 
Segt_m(n+1)=max(Segt(n+1,:)); 

  
end 

  

  
function dydt=ODEsolver(t,y)                                                  

%Function called to solve ODE Equations  
global ugdd Cb Kb Ccc Mcc Kcc Mtot  
s1=-ugdd-(Ccc(8)*y(1)/Mcc(8))-(Kcc(8)*y(10)/Mcc(8)); 
s2=-ugdd-(Ccc(7)*y(2)/Mcc(7))-(Kcc(7)*y(11)/Mcc(7)); 
s3=-ugdd-(Ccc(6)*y(3)/Mcc(6))-(Kcc(6)*y(12)/Mcc(6)); 
s4=-ugdd-(Ccc(5)*y(4)/Mcc(5))-(Kcc(5)*y(13)/Mcc(5)); 
s5=-ugdd-(Ccc(4)*y(5)/Mcc(4))-(Kcc(4)*y(14)/Mcc(4)); 
s6=-ugdd-(Ccc(3)*y(6)/Mcc(3))-(Kcc(3)*y(15)/Mcc(3)); 
s7=-ugdd-(Ccc(2)*y(7)/Mcc(2))-(Kcc(2)*y(16)/Mcc(2)); 
s8=-ugdd-(Ccc(1)*y(8)/Mcc(1))-(Kcc(1)*y(17)/Mcc(1)); 
s9=-ugdd-(Mcc(8)*y(1)/Mtot)-(Mcc(7)*y(2)/Mtot)-(Mcc(6)*y(3)/Mtot)-

(Mcc(5)*y(4)/Mtot)-(Mcc(4)*y(5)/Mtot)-(Mcc(3)*y(6)/Mtot)-

(Mcc(2)*y(7)/Mtot)-(Mcc(1)*y(8)/Mtot)-(Cb*y(9)/Mtot)-(Kb*y(18)/Mtot); 
dydt=[s1;s2;s3;s4;s5;s6;s7;s8;s9;y(1);y(2);y(3);y(4);y(5);y(6);y(7);y(8);y(

9)]; 

  
end 
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%%%%%%%%%%%%%%% 
% END OF CODE % 

%%%%%%%%%%%%%%% 
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APPENDIX III 

 

MATLAB CODE TO GENERATE SURFACE PLOTS 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% MATLAB CODE TO GENERATE SURFACE PLOT% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

plot3(x,y,z,'.-') 
tri = delaunay(x,y); 
plot(x,y,'.') 
%% 
 [r,c] = size(tri); 
disp(r) 
%% Plot it with TRISURF 
h = trisurf(tri, x, y, z); 
axis vis3d 

 
%l = light('Position',[-140 25 10]) 
%set(gca,'CameraPosition',[40 -1.5 5]) 
view ([30 18]) 
%p perspective 
lighting phong 
shading interp 
%colorbar EastOutside 
colormap('jet'); 
set(gca, 'projection', 'perspective', 'box', 'on') 
 

%AXIS OPTIONS 
axis on 
axis tight 
xlabel('Height of QSD (m)', 'fontsize', 10, 'fontweight', 'bold', 'color', 

[0 0 0],'HorizontalAlignment','right') 
ylabel('Shell thickness (m)', 'fontsize', 10, 'fontweight', 'bold', 

'color', [0 0 0],'HorizontalAlignment','left') 
zlabel('Hoop Stress \sigma_{\theta} (kPa)', 'fontsize', 10, 'fontweight', 

'bold', 'color', [0 0 0],'HorizontalAlignment','center') 

  
xh = get(gca,'xLabel'); % Handle of the x label 
set(xh, 'Units', 'Normalized') 
pos = get(xh, 'Position'); 
set(xh, 'Position',pos.*[1.1,2,1],'Rotation',-14) 

  
xh = get(gca,'yLabel'); % Handle of the y label 
set(xh, 'Units', 'Normalized') 
pos = get(xh, 'Position'); 
set(xh, 'Position',pos.*[.85,6,1],'Rotation',40) 

  
 

%%%%%%%%%%%%%%% 
% END OF CODE % 

%%%%%%%%%%%%%%% 
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APPENDIX IV 

FIRST PRINCIPLES TIME-HISTORY PEAK FORCE VALUES FOR 25M QSD 
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APPENDIX V 

MULTUPLE ANOVA TAKE OF DEPENDENT VARIABLES 

Tests of Between-Subjects Effects 

Dependent Variable:   stress   

Source 

Type III Sum of 

Squares df Mean Square F Sig. Partial Eta Squared 

Corrected Model 1376059256617.017a 605 2274478110.111 387.849 .000 .999 

Intercept 232951078714.270 1 232951078714.270 39723.290 .000 .996 

distance 586221646990.637 16 36638852936.915 6247.731 .000 .999 

thickness 100069074523.248 4 25017268630.812 4265.995 .000 .992 

height 730919580.095 4 182729895.024 31.159 .000 .464 

fill 15090267631.675 4 3772566907.919 643.306 .000 .947 

distance * thickness 251772514347.423 64 3933945536.678 670.824 .000 .997 

distance * height 1252575562.454 9 139175062.495 23.732 .000 .597 

distance * fill 57851088633.782 64 903923259.903 154.139 .000 .986 

thickness * height 207636308.127 16 12977269.258 2.213 .007 .197 

thickness * fill 4820718701.193 16 301294918.825 51.377 .000 .851 

height * fill 1093784338.991 16 68361521.187 11.657 .000 .564 

distance * thickness * height 616951848.016 36 17137551.334 2.922 .000 .422 

thickness * height * fill 370860971.181 64 5794702.675 .988 .511 .305 

distance * thickness * fill 26411821419.023 256 103171177.418 17.593 .000 .969 

distance * height * fill 2146651118.759 36 59629197.743 10.168 .000 .718 

Error 844465684.477 144 5864345.031    

Total 1552219946362.578 750     

Corrected Total 1376903722301.494 749     

a. R Squared = .999 (Adjusted R Squared = .997) 
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APPENDIX VI 

SURFACE PLOTS FOR HYDROSTATIC CASE 
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SURFACE PLOTS FOR DYNAMIC CASE -10% FILL LEVEL  
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SURFACE PLOTS FOR DYNAMIC CASE -25% FILL LEVEL  
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SURFACE PLOTS FOR DYNAMIC CASE -50% FILL LEVEL  
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SURFACE PLOTS FOR DYNAMIC CASE -75% FILL LEVEL  
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SURFACE PLOTS FOR DYNAMIC CASE -90% FILL LEVEL  
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APPENDIX VII 

 

MODELLING INFORMATION ABOUT ABAQUS 

ABAQUS 

ABAQUS is a commercial finite element analysis software application from Dassault Systemes. It 

provides product simulation to engineers to vary and simulate various design attributes. The ABAQUS 

Unified FEA product suite offers robust and complete solutions for both routine and sophisticated 

engineering problems covering a vast range of industrial applications. The user can gain access to these 

analysis tools through ABAQUS/CAE. CAE stands for Complete ABAQUS Environment and provides 

the modelling, managing, and monitoring for performing analysis and visualisation of results. The CAE 

user interface allows for the creation of application-specific systems through a graphical user interface 

and dialogue boxes. ABAQUS utilises three steps to develop, perform, and present the results for each 

finite element model. The first step is the pre-processing or modelling stage. It involves the creation of 

an input file which contains the design of the system, the system parameters, and the analysis to be 

performed. The second step is the processing of the model. The final step is post-processing where 

analysis results are generated in the form of an output file. ABAQUS CAE provides the capability for 

pre-processing, post-processing, and monitoring of the processing stage. 

ABAQUS Procedure 

ABAQUS defines an analysis history by: 

i. Dividing the problem history into steps; 

ii. Specifying an analysis procedure for each step 

iii. Prescribing loads, BCs, base motions, and output requests for each step. 

The essential idea in ABAQUS can isolate the issue history into steps. A step is any appropriate period 

of the analysis. In its most straightforward way, a step can be the case with a static analysis in 
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ABAQUS/Standard of a load adjustment starting with one magnitude then onto the next. ABAQUS 

enables clarification of each progression that shows the information (.dat) record. 

For each step created, this decision characterises the sort of analysis to be performed during the step: 

static stress investigation, dynamic stress investigation, eigenvalue buckling, transient heat exchange 

analysis. A single methodology is permitted per step. Concerning ABAQUS/Standard or 

ABAQUS/Explicit, any mix of accessible methodology can be utilised from step to step. 

General Analysis Steps vs Linear Perturbation (LP) Steps 

ABAQUS defines two types of steps: general analysis steps, which analyses the linear or nonlinear 

responses, and linear perturbation steps, which analyses linear problems. General analysis steps are 

incorporated in an ABAQUS/Standard or ABAQUS/Explicit analysis; LP analysis steps are accessible 

only in ABAQUS/Standard. ABAQUS/Standard linear analysis considered to be LP analysis about the 

state at the time when the linear analysis practice is introduced. This LP methodology permits general 

submission of linear analysis methods in cases where the linear response depends on preloading or on 

the nonlinearity of the response history of the model. In general analysis steps ABAQUS/Standard 

computes the result for a single set of applied loads. This is also the default for the LP steps. However, 

for static, direct steady-state dynamic and SIM-based steady-state dynamic LP steps, it is possible to 

find solutions for various load cases. 

General Analysis Steps 

A general analysis step is used where the effects of any nonlinearities existing in the model are included. 

Steps occur in linear succession where the starting condition for a particular step forms from the end 

condition of the step preceding it as the model evolves throughout the history of the general analysis 

steps, as it responds to its respective loading history. If the initial step of the analysis is general, the 

initial conditions for the step can be quantified directly. 

ABAQUS takes into consideration the total time to increase throughout a general analysis. Each step 

also has its own time, which begins at zero for each step. If the analysis procedure for the step property 

has the order of a real-time scale, as in a dynamic analysis, the step time must be consistent to that real-
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time. Otherwise, step time is any convenient time-scale. The step times of all the general steps 

accumulate into the total computational time. Any steps that do not have a physical time-scale would, 

therefore, be of an insignificantly small step time, which would be associated with the steps in which a 

real time scale does exist. 

Sources of nonlinearity 

Nonlinear stress analysis complications can encompass up to three sources of nonlinearity. 

i. Material nonlinearity 

ii. Geometric nonlinearity 

iii. Boundary nonlinearity. 

Material Nonlinearity 

Many of the materials are history-dependent meaning that the material's response at any time depends 

on what has occurred at previous times. Thus, the solution must be acquired by following the actual 

loading arrangement. 

Geometric Nonlinearity 

In ABAQUS, a problem is defined as “small-displacement” analysis, which means that geometric 

nonlinearity is ignored in the element calculations. The kinematic relationships are linearised. By 

default, large displacements and rotations, in contact constraints, are accounted for even if the small-

displacement element formulations are used for the analysis. In the reference (original) arrangement, 

the elements in a small-displacement analysis are formulated, using original nodal coordinates. The 

errors in such an estimate are of the order of the strains and rotations compared to unity. The estimate 

also eliminates any possibility of capturing bifurcation buckling, which is sometimes a critical aspect 

of a structure's response. 

The substitute to a “small-displacement” analysis in ABAQUS is to include large-displacement effects. 

In this case, most elements are formulated using existing nodal positions. Elements, therefore, distort 

their shapes as the deformation increases. With satisfactorily large deformations, the elements may 

become so distorted that they are no longer appropriate for use. In this situation, ABAQUS issues a 



 

206 

 

warning message indicating the problem. In addition, ABAQUS/Standard reduces the time increment 

before making further attempts to continue the solution.  

Almost all of the elements in ABAQUS utilises fully, nonlinear formulation. The exceptions are the 

cubic beam elements and the small-strain shell elements (those shell elements other than S3/S3R, S4, 

S4R, and the axisymmetric shells) where the cross-sectional thickness change is ignored. Hence, these 

elements are appropriate only, for large rotations and small strains. 

Linear Perturbation Analysis Steps 

Linear perturbation analysis steps are accessible only in ABAQUS/Standard. The response in a linear 

analysis step is the LP response about the base state. The base state is the existing state of the model at 

the end of the last general analysis step before the LP step. The base state is established from the initial 

conditions provided that the perturbation step is the initial step of an analysis. 

LP analyses can be executed from time to time during a nonlinear analysis by including the LP steps 

between the general response steps. The LP response does not affect as the general analysis is continued. 

The step time of LP steps, which is taken arbitrarily to be a minimal number, is never accumulated into 

the total time. After each of these steps, the frequencies can then be obtained in an LP analysis step. 

If geometric nonlinearity is included in the general analysis upon which an LP investigation is based, 

stress stiffening or softening effects and load stiffness effects are included in the LP analysis. 

 ABAQUS Explicit Analysis 

The explicit dynamics analysis procedure in ABAQUS/Explicit is established upon the implementation 

of an explicit integration rule together with the use of diagonal or “lumped” element mass matrices. The 

equations of motion for the body are integrated using the explicit Central Difference Time Integration 

(CDTI) rule. 

 𝑢̇
(𝑖+

1
2
)
= 𝑢̇

(𝑖−
1
2
)
+
Δ𝑡(𝑖+1) + Δ𝑡(𝑖)

2
𝑢̈(𝑖) (118) 
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 𝑢(𝑖+1) = 𝑢(𝑖)+ Δ𝑡(𝑖+1)u̇
(𝑖+

1
2
)
 (119) 

where 

𝑢̇ – Velocity 

𝑢̈ – Acceleration The superscript (i) refers to the increment number and 𝑖 −
1

2
 and 𝑖 +

1

2
  refer 

to mid-increment values.  

The CDTI operator is explicit in that the kinematic state can be advanced using known values of 𝑢̇
(𝑖−

1

2
)
 

and 𝑢̈(𝑖) from the previous increment. The explicit integration rule is quite simple but by itself does 

not provide the computational efficiency associated with the explicit dynamics method. 

Stability 

The explicit method integrates through time by using several minor time increments. The CDTI operator 

is conditionally stable and the stability limit for the operator (with no damping) is given in terms of the 

highest eigenvalue in the system as shown in Equation 130. 

 ∆𝑡 ≤  
2

𝜔𝑚𝑎𝑥
 (120) 

 

The time incrementation arrangement in ABAQUS/Explicit is fully automatic and requires no user 

interference. An adaptive algorithm is used that resolves the conservative bounds for the highest 

element frequency. An approximation of the highest eigenvalue in the system can be acquired by 

determining the maximum element dilatational mode of the mesh. The stability limit is based upon this 

highest element frequency is conservative in that it gives a smaller stable time increment than the actual 

stability limit that is based upon the maximum frequency of the entire model. In general, constraints 

such as BCs and contact have the result of compressing the eigenvalue spectrum, which the element-

by-element approximations do not take into account. ABAQUS/Explicit contains a global estimation 

procedure, which governs the maximum frequency of the entire model. This procedure continuously 

updates the estimate for the maximum frequency. 
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ABAQUS/Explicit initially uses the element-by-element approximations. As the step proceeds, the 

stability limit will be established from the global estimator once the procedure determines that the 

accuracy of the global estimation is acceptable. A trial stable time increment is calculated for each 

element in the mesh using Equation (121). 

 ∆𝑡 =
2

𝜔𝑚𝑎𝑥
𝑒𝑙𝑒𝑚𝑒𝑛𝑡

 (121) 

 

where 𝜔𝑚𝑎𝑥
𝑒𝑙𝑒𝑚𝑒𝑛𝑡  is the element maximum eigenvalue. A conservative estimate of the stable time 

increment is given by the minimum taken over all the elements. The above stability limit can be re-

written as Equation (122).  

 ∆𝑡 = min (
𝐿𝑒
𝑐𝑑
) (122) 

 

 

where Le is the characteristic element dimension and cd is the current effective, dilatational wave speed 

of the material. The characteristic element dimension is derived from an analytic upper bound 

expression for the maximum element eigenvalue. 

The explicit procedure requires no iterations and no tangent stiffness matrix. Based on these 

fundamentals, an explicit model was created. The fluid mesh element is taken from the explicit element 

library, and it is named the C3D8R element and the tank mesh element named S4R. Three 

“dynamic/explicit” steps are defined to correspond to the x,y,z acceleration respectively. 

Natural Frequency and Mode Shape Extraction 

The frequency extraction procedure: 

i. Performs eigenvalue extraction to calculate the natural frequencies and the corresponding mode 

shapes of a system; 
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ii. Will include initial stress and load stiffness effects due to preloads and initial conditions if 

geometric nonlinearity is accounted for in the base state so that small vibrations of a preloaded 

structure can be modelled; 

iii. Will compute residual modes if requested; 

iv. It is a LP procedure; 

v. Can be performed using the traditional Abaqus software architecture or if appropriate, the high-

performance SIM architecture; 

vi. Solves the Eigen frequency problem only for symmetric mass and stiffness matrices; the 

complex Eigen frequency solver must be used if unsymmetrical contributions, such as the load 

stiffness, are needed. 

Eigenvalue Extraction 

The eigenvalue problem for the natural frequencies of an un-damped finite element model is presented 

in equation (123) 

 (−𝜔2𝑀𝑀𝑁 + 𝐾𝑀𝑁)∅𝑁 = 0 (123) 

 

where 

• MMN – is the mass matrix (which is symmetric and positive definite); 

• KMN – is the stiffness matrix (which includes initial stiffness effects if the base state 

included the effects of nonlinear geometry); 

• ∅N – is the eigenvector (the mode of vibration); 

• M and N are degrees of freedom. 

When KMN is positive definite, all eigenvalues are positive. Rigid body modes and instabilities cause 

KMN to be indefinite. Rigid body modes produce zero eigenvalues. Instabilities produce negative 

eigenvalues and occur when you include initial stress effects. ABAQUS/Standard solves the Eigen 

frequency problem only for symmetric matrices. 
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Structural-Acoustic Coupling 

Structural-acoustic coupling affects the natural frequency response of systems. In ABAQUS only the 

Lanczos Eigen solver fully includes this effect. In ABAQUS/AMS and the subspace Eigen solver, the 

effect of coupling is neglected for the purpose of computing the modes and frequencies; these are 

computed using natural BCs at the structural-acoustic coupling surface. An intermediate degree of 

consideration of the structural-acoustic coupling operator is the default in ABAQUS/AMS and the 

Lanczos Eigen solver. The coupling is projected onto the modal space and stored for later use.  

Structural-Acoustic Coupling using the Lanczos Eigen solver without the SIM architecture. 

If structural-acoustic coupling is present in the model and the Lanczos method not based on the SIM 

architecture is used, ABAQUS/Standard extracts the coupled modes by default. Because these modes 

fully account for coupling, they represent the mathematically optimal basis for subsequent modal 

procedures. The effect is most noticeable in strongly coupled systems such as steel shells and water. 

However, coupled structural-acoustic modes cannot be used in subsequent random response or response 

spectrum analyses. Coupling can be defined using either acoustic-structural interaction elements or the 

surface-based tie constraint. It is possible to ignore coupling when extracting acoustic and structural 

modes; in this case the coupling boundary is treated as traction-free on the structural side and rigid on 

the acoustic side. 

Acoustic interface elements 

Acoustic interface elements: 

i. Can be used to couple a model of an acoustic fluid to a structural model containing continuum 

or structural elements; 

ii. Couple the accelerations of the surface of the structural model to the pressure in the acoustic 

medium; 

iii. Can be used in dynamic and steady-state dynamic procedures; 

iv. Must be defined with the nodes shared by the acoustic elements and the structural (or solid) 

elements; 
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v. Can be used only in small-displacement simulations and are not intended for use in nonlinear 

or hydrostatic fluid-structure interactions; 

vi. Are ignored in Eigen frequency extraction analyses if the subspace iteration Eigen solver is 

used; and 

vii. If necessary, can be degenerated into triangular elements. 

For most problems, the surface-based, structural-acoustic capabilities provide a more general and easy 

to use methods for modelling the interaction between an acoustic fluid and a structure. User-specified 

acoustic interface elements give increased control over the coupling specification, at the expense of the 

convenience of the surface-based procedures. 

 Appropriate Element 

The order of the underlying acoustic and structural elements usually dictates which acoustic interface 

element should be used. The general acoustic interface element, ASI1, can be used in any coupled 

acoustic-structural simulation; however, normally it is used only with the acoustic link elements 

(AC1D2 and AC1D3). 

The Normal Direction of the Acoustic-Structural Interface 

The connectivity of the acoustic interface elements and the right-hand rule define the normal direction 

of the acoustic-structural interface. It is essential that this normal point into the acoustic fluid, as shown 

in Figure 81.Normal directions for two-dimensional and axisymmetric acoustic-structural interface 

elements. and Figure 82.  

 

Figure 81.Normal directions for two-dimensional and axisymmetric acoustic-structural interface elements. 
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Figure 82. Normal directions for three-dimensional acoustic-structural interface elements. 

 

Mesh Elements 

Characterising Elements 

Five aspects of an element characterise its behaviour: 

i. Family 

ii. Degrees of freedom 

iii. Number of nodes 

iv. Formulation 

v. Integration 

Each element in ABAQUS has a unique name, e.g. T2D2, S4R, C3D8I, or C3D8R etc. The element 

name identifies each of the five characteristics of an element. 
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Family 

One of the significant distinctions between different element families is the geometry that each family 

assumes. The first letter or letters of an element's name indicate to which family the element belongs. 

For example, S4R is a shell element, CINPE4 is an infinite element, and C3D8I is a continuum element. 

 

Degrees of Freedom (DOF) 

The DOF is the fundamental variables calculated during the analysis. For a stress/displacement 

simulation the DOF are the translations and, for shell, pipe, and beam elements, the rotations at each 

node.  

Number of Nodes and Order of Interpolation 

Displacements or other DOFs are calculated at the nodes of the element. At any other point in the 

element, the displacements are obtained by interpolating from the nodal displacements. Usually, the 

number of nodes used in the element determines the interpolation order. 

Elements that have nodes only at their corners, such as the 8-node brick shown in Figure 83(a), use 

linear interpolation in each direction and are often called linear elements or first-order elements. 

In ABAQUS/Standard elements with mid-side nodes, such as the 20-node brick shown in Figure 83(b), 

use quadratic interpolation and are often called quadratic elements or second-order elements. 

Modified triangular or tetrahedral elements with mid-side nodes, such as the 10-node tetrahedron shown 

in Figure 83(c), use a modified second-order interpolation and are often called modified or modified 

second-order elements. 

 

Figure 83. Brick elements used in ABAQUS 
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Typically, the number of nodes in an element is clearly identified in its name. The 8-node brick element 

is called C3D8, and the 4-node shell element is called S4R. 

Formulation 

An element's formulation denotes the mathematical theory used to define the element's behaviour. In 

the Lagrangian (also known as material) description of behaviour, the element distorts with the material. 

In the alternative Eulerian (also known as spatial) description elements are fixed in space as the material 

flows through them. Eulerian methods are used commonly in fluid mechanics simulations. 

ABAQUS/Explicit offers multi-material Eulerian elements for use in stress/displacement analyses. 

Adaptive meshing in ABAQUS/Explicit combines the features of pure Lagrangian and Eulerian 

analyses and allows the motion of the element to be independent of the material. All other 

stress/displacement elements in ABAQUS are based on the Lagrangian formulation. In 

ABAQUS/Explicit the Eulerian elements can interact with Lagrangian elements through general 

contact. 

To accommodate different types of behaviour, some element families in ABAQUS include elements 

with several different formulations. In addition, ABAQUS also offers continuum shell elements, which 

have nodal connectivity’s like continuum elements but are formulated to model shell behaviour with as 

few as one element through the shell thickness. 

Some ABAQUS/Standard element families have a standard formulation as well as some alternative 

formulations. An additional character at the end of the element name identifies elements with alternative 

formulations. For example, the continuum, beam, and truss element families include members with a 

hybrid formulation (to deal with incompressible or inextensible behaviour); these elements are 

identified by the letter H at the end of the name (C3D8H or B31H). 

ABAQUS/Standard uses the lumped mass formulation for low-order elements; ABAQUS/Explicit uses 

the lumped mass formulation for all elements. Consequently, the second mass moments of inertia can 

deviate from the theoretical values, especially for coarse meshes. 
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ABAQUS/CFD uses hybrid elements to circumvent well-known div-stability issues for incompressible 

flow. ABAQUS/CFD also permits the addition of degrees of freedom based on procedure settings such 

as the optional energy equation and turbulence models. 

Integration 

ABAQUS uses numerical techniques to integrate various quantities over the volume of each element, 

thus allowing complete generality in material behaviour. Using Gaussian quadrature for most elements, 

ABAQUS evaluates the material response at each integration point in each element. Some continuum 

elements in ABAQUS can use full or reduced integration, a choice that can have a significant effect on 

the accuracy of the element for a given problem. 

ABAQUS uses the letter R at the end of the element name to label reduced-integration elements. For 

example, CAX4R is the 4-node, reduced-integration, axisymmetric, solid element. 

Modelling Approach 

A complete ABAQUS analysis usually consists of three distinct stages: pre-processing, simulation, and 

post-processing. These three (3) stages are linked together by files as illustrated in Error! Reference 

source not found.. 
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Pre-processing

Abaqus/CAE

Input File
Job.inp

Simulation
Abaqus/Standard or

Abaqus/Explicit

Output File
Job.odb, job.dat

Job.res, job.fil

Post-processing
Abaqus/CAE

 

ABAQUS Basic Analysis Process 

Pre-processing (ABAQUS/CAE) 

In this stage, the model of the physical problem is defined, and an ABAQUS input file is created. The 

model is created graphically using ABAQUS/CAE, although the ABAQUS input file for a simple 

analysis is created directly using the text editor. 

Simulation (ABAQUS/Standard or ABAQUS/Explicit) 

The simulation is the stage in which ABAQUS/Standard or ABAQUS/Explicit solves the numerical 

problem defined in the model. Depending on the complexity of the problem being analysed and the 

processing speed of the computer CPU being used, it may take anywhere from seconds to days to 

complete a single analysis run. 

3.3.3.8.1.6.3 Post-processing (ABAQUS/CAE) 

From the results obtained, the simulation will display the fundamental variables that were requested to 

be calculated. The evaluation is done interactively using the Visualisation module of ABAQUS/CAE. 

The Visualisation module reads the neutral binary output database file and has a variety of options for 

displaying the results, including colour contour plots, animations, deformed shape plots, and X–Y plots. 
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ABAQUS Modelling Solution 

ABAQUS Units 

Before starting to define any model, the system of units that is being utilised must be certain. ABAQUS 

has no built-in system of units. All input data must be specified in consistent units. Some common 

systems of consistent units are shown in Table 21. The SI system of measurements was utilised 

throughout this project. 

Table 21.  ABAQUS Basic Analysis Process 

Quantity SI Unit 

Length m 

Force N 

Mass kg 

Time s  

Stress Pa (N/m2) 

Energy J 

Density kg/m3 
 

QSD Tank Simulation (ABAQUS/Explicit Analysis) 

Modelling of the QSD 

To accurately model the seismic excitation, an independent dynamic explicit step for each direction of 

displacement was created. This method of modelling approach was done and the results were analysed. 

The three dynamic explicit steps allowed the gravity load to be added simultaneously applying a 

directional acceleration and propagated it to the other two steps with a change in the direction of 

acceleration. When applying the BCs, the respective degree of freedom was suggested and applied with 

respect to the acceleration data for that direction. The same was done for the two following two steps 

under the one boundary condition. By propagating the steps with respect to the boundary condition, this 

allowed the x,y,z direction to be run simultaneously to simulate the seismic behaviour of the tank. 

The ABAQUS/Explicit method was adopted to analyse tanks with fill levels of 10%, 25%, 50%, 75% 

and 90%. The sloshing loads were examined and modelled in 2 categories; 5 Hz harmonic excitation 

and the Kobe 1995-time history seismic excitation. The SPH method was used to convert the solid 
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homogenous part to particles; the only type of analysis that ABAQUS allowed to carry out this task was 

the dynamic explicit.  

 


