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Segmenting travellers based on day-to-
day variability in work-related travel 
behaviour 
 

Travel needs for commute and business trips are complex and choices are not made based on the 

characteristics of individual trips, but instead based on the needs over weeks and months.  For 

example, the cost per trip of commuting by bus varies depending upon the frequency of travel, and 

the cost of a monthly subway pass depends upon the number of zones visited during that period.  

Intrapersonal variability, namely the variation in an individual’s travel behaviour from day to day, 

therefore shapes our transport choices and should influence service provision.  Changes in working 

patterns such as increases in part time working, self-employment and tele-commuting challenge the 

traditionally held assumptions that work activities are fixed in time and space, thus making 

intrapersonal variability increasingly relevant.  This research uses a data-driven approach to segment 

workers based on their work-related travel behaviour, including frequency of travel and both spatial 

and time of day intrapersonal variability.  The analysis uses survey and seven day travel diary data 

for over 110,000 people collected over a 19 year period in England.  Four groups of workers were 

identified: infrequent, spatially variable, temporally variable and regular travellers.  These groups do 

not align closely with self-reported working arrangements such as self-employment or part time 

working.  The group of regular travellers has decreased in size between 1998 and 2016 but remains 

the largest group, containing just under 60% of workers in 2016.  Both the infrequent and spatially 

variable groups have grown over the same period.  For a small but growing group of workers, a 

seven day diary is insufficient to understand their work-related transport needs as little or no work 

travel is recorded.  These findings have implications for the design of public transport ticketing, the 

design of mobility as a service packages and the appraisal of congestion charging schemes. 

 

Keywords: intrapersonal variability; commuting; working patterns; flexible working; multiday travel 

behaviour; business travel  

 

1 Introduction 
Over a quarter of the distance people travel in England is for commuting or is in the course of work 

(Department for Transport, 2018a).  These trips occur disproportionately during the peak periods 

and contribute 56% of the trips between 7am and 8am on weekdays (Department for Transport, 

2018b).  It is crucial, therefore, to understand the needs underlying these trips when managing 

transportation networks and planning for the future.  Whilst most research and practice 

characterises commuters and commuting trips based on average behaviour or a 'typical' day, this 

paper argues that measuring the frequency and day to day variability in an individual’s behaviour is 

just as important when developing new policies and services. 

The need to examine multiday travel behaviour has long been acknowledged (Pas and Koppelman, 

1986; Huff and Hanson, 1986; Jones and Clarke, 1988).  As well as just providing more information, 

collecting data over multiple days can also provide information about trips undertaken infrequently 
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and can provide important insights into intrapersonal variability, which is the variability in an 

individual’s behaviour from day to day.  Perhaps due to the increasing availability of multiday data, 

more researchers have focused on this area in recent years (Heinen and Chatterjee, 2015; Streit et 

al., 2015; McLeod et al., 2017; Kim et al., 2017; Heinen and Mattioli, 2017; Crawford et al., 2018).  

The majority of research into intrapersonal variability focuses on all trip types (or activity types) 

undertaken by an individual.  In contrast, this research focuses on intrapersonal variability in 

commuting and business travel only.   

Work is often assumed to be a fixed activity (Shen et al., 2013, p.2) which is “the base upon which 

much of a travel model system is built” (Miller, 2017, p.2).  It is often assumed to be fixed in both 

time and space from day to day.  This assumption has an impact on the design of services, for 

example people who need to visit clients during the working day may require integrated ticketing 

over a city or region.  Estimated costs per trip by public transportation depend on both the cost of 

tickets and passes as well as the frequency of travel.  Predicting traveller responses to planned or 

unexpected network disruptions also requires information about familiarity with the local network. 

The assumption that individual commuters have highly predictable behaviour from day to day is 

increasingly questionable given that the nature of work is changing.  In the UK, the employment rate 

for women is at the highest level since records began (Office for National Statistics, 2019a), the 

number of self-employed people increased by 15% between 1998 and 2016, and the service sector 

continues to grow (Office for National Statistics, 2019b).  Flexible working has increased since the 

right to request flexible working was introduced in 2002 (Pyper, 2018), particularly part time and 

remote working.  Technological developments have increased the “spatial fluidity” of work 

(Felstead, 2012, p.32), allowing some people to work at home or at other remote locations, including 

whilst travelling (Vilhelmson and Thulin, 2001).  There has also been an increase in tele- and video-

conferencing, although it is unclear the extent to which this has replaced travel (Vilhelmson and 

Thulin, 2001, p.1025).  Regular or occasionally telecommuting is observed in many countries around 

the world (Eurofound and the International Labour Office, 2017, p.15).  

As the nature of work has changed, so has the nature of commuting.  Recent research in England 

identified a decrease in the total number of commuting trips, an increase in commuting distances 

and changes in the times of day at which people are commuting over the past two decades 

(Department for Transport, 2017).  Whilst these changes aren’t all necessarily due to changes in 

working arrangements, it is likely that such changes are a contributory factor.  There is a substantial 

body of literature examining the impact of different types of working patterns on travel behaviour, 

including telecommuting (Mokhtarian et al., 2004; Choo et al., 2005; Haddad et al., 2009; Kim, 2017; 

Melo and de Abreu e Silva, 2017), self-employment (Gimenez-Nadal et al., 2018; Shin, 2019) and 

flexitime (He, 2013).  Focusing on a specific working pattern can be problematic, however, as many 

terms do not have a universally agreed definition, such as ‘teleworking’ (Sullivan, 2003; Helminen 

and Ristimäki, 2007) and standard terms for working arrangements don’t necessarily identify a 

homogeneous group of people.  People working in the gig economy (Friedman, 2014) and remote 

workers (Sullivan, 2003) are two such ‘groups’ which contain subsets with very different 

characteristics in terms of job type and salary.  Perhaps more importantly for this research, people 

within the same category may have very different work-related travel behaviour.  As an example, 

Figure 1-1 shows three hypothetical working patterns for a part time employee working 21 hours per 

week.  The number of days worked and the predictability in the timing of the travel varies across the 

three scenarios.  This is not just the case for part-time workers, but also applies to people who 

occasionally work from home as this could be for full or part days (Haddad et al., 2009).  In terms of 

transport planning for commuting and business trips, it would be more useful to identify people with 
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similar travel behaviour, irrespective of their working pattern, for example travel needs are the same 

for someone who does not work on Fridays as for someone who works at home all day on a Friday. 

 

 

Figure 1-1: Hypothetical examples of working patterns consisting of 21 hours per week 

 

Segmenting travellers based on multiple aspects of their travel behaviour can identify different 

groups of travellers with different needs which can inform policy and practice (Kieu et al., 2015; 

Goulet-Langlois et al., 2016; Crawford et al., 2018).  Although other researchers have looked at 

segmenting travellers based on all trips, only Shen et al. (2013), to the author’s knowledge, have 

segmented travellers based on their commuting behaviour only.  Shen et al. (2013) used GPS and 

travel diary data from 96 participants in Beijing for a seven day period to examine commuting 

intrapersonal variability based on time, space (measured in terms of the OD pair and also the route 

taken) and mode.  Each of these characteristics were converted to a binary variable using pre-

defined classifications of fixed and flexible behaviour.  Each commuter was then assigned to one of 

seven commuter types based on whether they had fixed or flexible behaviour for each of the 

characteristic.  They identified a substantial amount of variability, with only six respondents 

recording commuting trips which were ‘fixed’ in terms of all four repeated trip characteristics.  They 

report that their findings “call into question the common presupposition that the commute trip is 

stable and fixed” (Shen et al., 2013, p.1). 

This research builds on the work of Shen et al. (2013) by segmenting a much larger group of workers 

(over 118,000 people rather than 96) based on the frequency and intrapersonal variability in 
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commuting and business trips.  The data was collected consistency over a 19 year period and 

therefore changes over time can be examined.  The much larger dataset is as a result of using data 

from a nationwide survey, thus providing behavioural insights for transport providers across 

England.  The scope of the current research is broader than previous research as it considers all trips 

to, from or during work as opposed to just commuting trips (between home and work only). This 

broader definition enables the segmentation process to consider all work-related trips which could 

impact upon mode choice and which could be affected by changes in working patterns and job 

types.  Another difference in scope is that the current research focuses on the work-related aspects 

of variability from day to day so that the impacts of changes in working arrangements on travel can 

be observed and can be predicted given different policy options or expected trends.  Variability in 

the places and times at which work is conducted (either by choice or necessity) are, therefore, 

considered but variability in route and mode choice are not.   

The aim of the research is to identify different segments of the working population based on their 

multiday work-related behaviour to provide insights into travel needs.  The approach is data-driven 

and no a priori assumptions about what constitutes ‘fixed’ or ‘flexible’ behaviour are made.  The four 

research questions underpinning this paper are as follows: 

1) Can different groups of workers be identified based on the frequency and intrapersonal 

variability in commuting and business trips? 

2) To what extent can group membership be predicted based on data about work type from 

the National Travel Survey? 

3) To what extent do other variables in the National Travel Survey, such as gender and age, 

influence the group a worker will belong to? 

4) Are changes in the relative sizes of the groups observed over time?  If so, what patterns 

emerge? 

As described by Anable (2005, pp.66–67): 

“Once groups are identified, it is possible to make predictions about their responses to 

various situations, marketing strategies and types of policy, to allow more creative and 

better-targeted policies to emerge.”  

The segmentation of workers based on the variability in their work-related travel is therefore 

intended to provide a focus for policy makers and practitioners when considering the impact of 

policies on workers and when designing services (which may be transport related or not).  The 

groups identified also provide an easy to explain framework which can be used in discussions with 

employers and with travellers.  This new segmentation of travellers based on their day-to-day work-

related travel behaviour seeks to provide inspiration for innovative solutions which do not 

necessarily just target traditional full time employees but which focus on current needs, perhaps 

through offering new transport services or incentivising different ways of working.  The 

segmentation could also define user classes for day-to-day dynamical models or discrete choice 

modelling and could also provide inputs for activity-based models.  

For the groups to be useful, it is important to be able to identify members without needing a seven 

day travel diary.  This research, therefore, seeks to explore the characteristics of the groups of 

workers identified, in terms of working patterns and/or socio-demographic variables and the extent 

to which existing survey questions can identify the different work traveller types. 

The paper is structured as follows.  Section 2 describes the data used and the analytical techniques 

applied.  In Section 3, the four groups of work travellers are described.  The work and socio-
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demographic characteristics of each group are described and logistic regression is used to estimate 

the impact of different characteristics on the likelihood of belonging to each cluster.  Changes in the 

relative sizes of the groups over time are also shown.  Section 4 discusses the results in terms of the 

research questions listed above.  Section 5 concludes the paper. 

 

2 Data and methodology 

2.1 Data 
An increasingly broad range of data sources can provide insights into travel behaviour.  Multiday 

travel behaviour has been analysed using mobile phone data (Järv et al., 2014; Masso et al., 2019), 

Bluetooth data (Crawford et al., 2018), smartcard data (Kieu et al., 2015; Kim et al., 2017; Goulet-

Langlois et al., 2018) and social media data (Zhang et al., 2017).  Passively collected data has a 

disadvantage for the current research, however, as it does not provide the context required to 

separate out work travel (Pajević and Shearmur, 2017).  Some researchers have proposed estimating 

trip purpose using a rule-based approach (Gong et al., 2014; Zou et al., 2018) or land use or point of 

interest data (Ermagun et al., 2017), but this risks further entrenching stereotypes about ‘typical’ 

working patterns and traditional workplaces.     

This research instead uses travel diary data, where the respondent records the activity undertaken 

at each location.  Due to the large amount of data collected consistently over a 19 year period, data 

from the National Travel Survey (NTS) in England was used.  This large cross-sectional survey 

undertaken annually in England includes household and individual level surveys.  Each household 

member also completes a seven day travel diary, including purpose, departure and arrival time, 

origin, destination, mode and distance travelled for each trip.  The sample selection and data 

collection processes are described in detail in NatCen (2017).   

Data from 1998 to 2016 was used (Department for Transport, 2015, no date) as prior to this 

employed people could not be easily identified in the data.  Respondents were included in the 

analysis if they were at least 16 years old, employed, and if they completed the travel diary on two 

or more days.  After restricting the sample based on these criteria, data from 118,194 people 

remained.  The sample includes a slightly higher percentage of men than women (52% and 48% 

respectively) and 70% of the respondents were aged between 30 and 59.  Overall, three quarters of 

respondents reported working full time and 13% reported being self-employed.   

In collecting the data, the NTS uses the concept of a ‘usual place of work’.  This is the location where 

the respondent works on at least two consecutive days per week (NatCen, 2017, p.93).  Respondents 

can only have one usual workplace and therefore if they work in multiple offices or have multiple 

jobs, the location used most frequently is recorded as their usual workplace.  The percentage of 

people with a usual workplace in the sample decreased between 1998 and 2016, from 88% to 78%.  

The NTS also has ‘in course of work’ locations, which include secondary workplaces and locations 

visited for the purpose of meeting a client or providing a service to a customer.  Commuting is 

defined in the NTS as “trips to a usual place of work from home, or from work to home“ 

(Department for Transport, no date, p.11).  Commuting trips therefore do not include travel to or 

from work involving non-trivial stops, for example to drop off a child at school or to buy groceries 

(Department for Transport, 2017).  The NTS also records ‘business trips’, as shown in Figure 2-1.  

These trips involve an ‘in course of work’ location.   
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2.2 Method of analysis 

2.2.1 Clustering workers 
Despite the multi-dimensional nature of travel behaviour (Shen et al., 2013, p.2), the majority of the 

literature focuses on a single aspect of intrapersonal variability.  Some research aims to measure 

intrapersonal variability, for example in mode choice (Crawford, 2019) or route choice (Arifin and 

Axhausen, 2012).  Doherty (2006) measured both the temporal and spatial flexibility in activities 

undertaken and used these measures, amongst others, to classify different activities.  Other research 

seeks to identify the factors which have a statistically significant impact on the type of variability 

under consideration, such as mode choice (Chatterjee et al., 2016), route choice (Li et al., 2005; 

Vacca and Meloni, 2015), or commute frequency (Helminen and Ristimäki, 2007).  Research 

examining time of day variability for commuting trips has focused on identifying different 

components of the variation (Kitamura et al., 2006; Chikaraishi et al., 2009).   

Cluster analysis has proved to be a suitable approach for examining multiple aspects of intrapersonal 

variability in previous research (Kieu et al., 2015; Crawford et al., 2018).  Selecting the measures to 

use for clustering is key to identifying a meaningful segmentation.  The three aspects of day-to-day 

variability explored in this research are trip frequency, spatial variability and temporal variability.  As 

discussed in Section 1, these cover the day to day variability in where and when a person works 

which could be influenced by working patterns or arrangements.  As it is the intrapersonal variability 

in the work behaviour which is of interest, day to day variability in transport mode and route are not 

considered as they are unlikely to be influenced by working arrangements.  

Two types of measures are used to represent trip frequency: the number of days on which an 

individual visits a place of work and the number of work-related trips made on each of those days1.  

The distinction is important as the former shows the spread of work-related travel through the 

week, whereas the latter provides a measure of the intensity of travel on those days.   

Spatial analysis of this NTS data is limited by a lack of detailed origin and destination information due 

to privacy concerns.  This research therefore considers spatial variability by separating trips to a 

usual workplace from trips to other work locations (which are not so fixed in space).  A distinction is 

also made between commuting trips, which are between a fixed home location and a fixed usual 

workplace, and business trips, which are more varied.  Figure 2-1 provides a summary of how work-

related trip purposes are assigned based on the activities undertaken at the origin and the 

destination.  The two types of trip frequency measures, namely days at work and number of trips per 

day, are therefore considered separately depending upon whether they relate to fixed locations 

(represented by the ‘usual workplace’ and commuting trips) or more variable ones (represented by 

‘in course of work’ locations and business trips).   

 

                                                           
1 Trips identified as ‘a series of calls’ were excluded as these do not involve spending a significant amount of 
time at any of the interim locations and thus they are more similar to a delivery schedule than travel for work.  
No weighting was required to account for ‘drop off’ during the diary week as the measure was trips per day. 
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Figure 2-1: NTS trip purposes based on origin and destination activity purposes 

 

Temporal, or time of day, variability is inextricably linked to the choice of origin and destination, as 

discussed in Shen et al. (2013, p.3).  Using the NTS data, the only work-related trips which have 

consistent origins and destinations are commuting trips.  In order to have a consistent basis for 

comparison, therefore, the departure times for commuting trips were used to calculate time of day 

variability.  As commuting time variability can differ between the outbound and the inbound legs, 

both were considered as measures in the cluster analysis. 

The six clustering variables used to identify workers with similar multiday work-related travel 

behaviour are listed in Table 2-1.  These six measures were calculated for each respondent.  The 

measures were then normalised before k-means clustering was applied using the statistical software 

R (R Core Team, 2019).  The Elbow Method, which considers the number of clusters relative to the 

proportion of variability explained, was used to determine the number of clusters in the data. 

  
Table 2-1: Clustering variables 

Percentage of diary days the usual workplace is visited 

Percentage of diary days an in course of work location is visited, but the usual 
workplace is not 

Average number of commuting trips per day in their usual workplace 

Average number of business trips per day in any workplace 

Standard deviation of departure times from home to work (in minutes) 

Standard deviation of departure times from work to home (in minutes) 

 

Cluster analysis is sensitive to the data and the clustering variables used as inputs as well as the 

clustering algorithm used.  To consider the impact of the choices made, sensitivity testing was 

undertaken, including repeating the cluster analysis using only data from people who completed all 
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seven days in the travel diary.  Sensitivity testing using clustering methods other than k-means was 

also explored.  Due to the size of the dataset, neither hierarchical clustering nor density based 

clustering methods were feasible.  As an alternative, a two stage process including k-means 

clustering then hierarchical clustering was undertaken.  This involved using k-means with a large 

number of clusters (in this case 1,000) and then using the centres of these clusters as an input for 

hierarchical clustering.  By doing so, a small enough sample of observations is selected for 

hierarchical clustering to be feasible, whilst ensuring all of the data is represented.  Results of the 

sensitivity analyses are discussed in Section 3.1.   

 

2.2.2 Analysis of cluster characteristics 
After clustering the workers based on the frequency and variability of their travel to, from and 

during work, the attributes of the different clusters were examined using profiling attributes 

(variables which were not involved in the clustering process) which link back to the research 

questions.  The profiling attributes fell into two categories: those relating to working patterns and 

those relating to socio-demographic attributes.   

In theory, multinomial regression could be used to examine the relationship between cluster 

membership and the various profiling attributes considered.  A multinomial logit model can not be 

used, however, as the outcome variable describes cluster membership and therefore independence 

of irrelevant alternatives cannot be assumed.  Multinomial probit regression could be used, in 

theory, but due to the large size of the dataset it was not possible to perform this analysis using a 

desktop computer2.  Instead, a separate logistic regression model was developed for each cluster, 

using the glm function in R (R Core Team, 2019), by estimating the parameters in the following 

equation:   

𝑙𝑜𝑔𝑒 (
𝑝𝑗

1 − 𝑝𝑗
) = 𝛽0,𝑗 +∑𝛽𝑖,𝑗𝑥𝑖

𝑚

𝑖=1

 

Where 𝑝𝑗  is the probability that a randomly selected individual is in cluster j, 𝛽0,𝑗 is the intercept for 

the model for cluster j,  𝛽𝑖,𝑗 is the coefficient for attribute i in the model considering membership of 

cluster j, and 𝑥𝑖 is the ith attribute.  Each model considers only membership of cluster j.  Different 

specifications of the model (including different profiling attributes) were considered and then 

compared using the Akaike information criterion (AIC), with a lower AIC representing a better model.  

The same profiling attributes were included when modelling membership of each cluster so that the 

results would be comparable.  This was somewhat limiting as only attributes which were available or 

which could be calculated across all clusters could be included in the models. 

In order to apply logistic regression, all observations must be independent of one another.  This 

assumption does not hold for the full dataset as each person within the sampled households 

completed a survey and travel diary and the working pattern of one person may be influenced by 

the working pattern of another person living in the same household, for example to satisfy childcare 

requirements.  As in Heinen and Chatterjee (2015), this research randomly sampled one person from 

                                                           
2 Initially the ‘mlogit’ package (Croissant, 2020) was used, but this was unable to obtain a solution on a desktop 
computer even for a sample of 10% of the data.  The package ‘MNP’ (Imai and van Dyk, 2017) was also tried 
and this package was able to identify a solution on the full dataset, but there was insufficient memory on a 
desktop computer to run the procedure for determining the convergence diagnostics and therefore the results 
could not be used. 
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each household to reduce the risk of having individuals with dependent working patterns in the 

data.  Another assumption of logistic regression is that there is little or no multicollinearity between 

the attributes included in the model.  This was tested by calculating Variance Inflation Factor (VIF) 

values.  None of the values were above 1.4 and therefore multicollinearity was not a concern for the 

models. 

In this research, logistic regression has been used as a classification algorithm for the cluster 

membership and therefore, following the machine learning literature, performance measures arising 

from the confusion matrix have been used.  After identifying the final logistic regression models, the 

data was randomly split into two components: a training set, containing 80% of the observations, 

and a test set, containing the remaining 20% of observations.  Logistic regression models were 

estimated using the training data and then applied to the test data to predict whether or not an 

observation would belong to each cluster, using a 0.5 probability as the threshold for membership.  

The following performance metrics were then calculated for the model for each cluster, j, using the 

test data: 

- accuracy (the proportion of observations which were correctly classified as either belonging 

to or not belonging to cluster j), 

- recall (the proportion of observations in cluster j which were correctly classified as belonging 

to cluster j), 

- precision (the proportion of observations predicted to be in cluster j which did actually 

belonging to cluster j), and  

- the area under the receiver operating characteristic (ROC) curve, known as the AUC, which 

provides an overall measure of model performance. 

As the performance metrics will vary depending on the choice of training and testing sets, the 

process of randomly partitioning the data and then calculating the metrics was repeated 250 times.  

The standard deviations for all of the metrics were low (accuracy < 0.4%; precision < 4%; recall < 

1.5%; AUC < 0.01) so only the average values across all 250 runs are reported.   

3 Results 

3.1 Overall 
An analysis of data from 1998 to 2016 identified four clusters of workers.  Table 3-1 contains the 

mean value for each of the six cluster variables for each group.  The infrequent and the spatially 

variable work travellers, on average, travel to their usual workplace less than one day per week.  

These two clusters differ in terms of the travel undertaken to other locations for work.  The spatially 

variable group visit other places of work on four days per week, on average, whereas the infrequent 

group have very little work-related travel to any location.   

The temporally variable and the regular work travellers visit their usual workplace approximately five 

days per week on average.  The temporally variable group show greater variability in the departure 

times of their commuting trips both to and from work.  They also have 2.0 commuting trips, on 

average, per day at the usual workplace compared with 1.6 for regular commuters.  This means that 

the temporally variable group are more likely to travel directly between home and work.  The lower 

number of commuting trips for the regular group could be as a result of undertaking other activities 

directly before or after work, or staying overnight in a different location such as a second home as 

was observed in Helminen and Ristimäki (2007) and Shen et al. (2013). 
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Table 3-1: Average multiday work-related cluster characteristics (n=118,194) 

Work travel group 

Days per 

week at 

usual 

workplace 

Additional 

days per 

week at 

any other 

workplace 

Commuting 

trips per 

day at usual 

workplace 

Business 

trips per 

day at any 

workplace 

Variability 

in 

departure 

time 

(home to 

work) 

(mins) 

Variability 

in 

departure 

time 

(work to 

home) 

(mins) 

% of 

workers 

Infrequent 0.6 0.1 0.1 0.1 0.1 0.1 20% 

Spatially variable 0.6 3.9 0.3 2.1 3.4 3.6 8% 

Temporally variable 5.0 0.1 2.0 0.1 225.6 226.5 12% 

Regular 4.7 0.1 1.6 0.1 15.3 33.0 60% 

 

By far the largest group is the ‘regular’ work travellers.  This group does not necessarily consist of 

only ‘typical’ 9am to 5pm workers, however.  Although they work consistent hours across the week, 

this analysis does not consider the length of the working day and so people who always work the 

same hours, whether that is a two hour or a twelve hour shift, are likely to appear in the same 

cluster.  Also, the time of day analysis does not differentiate between day shifts and night shifts, 

provided that the departure times are consistent between days.  The values in Table 3-1 are 

averages, so not all of the regular work travellers visited their usual workplace on five out of seven 

diary days.  Of the people in this group who completed all seven days of the travel diary, 48% visited 

their usual place of work on exactly five days. 

Sensitivity testing was undertaken by repeating the cluster analysis using only data from people who 

completed all seven days in the travel diary.  This analysis resulted in four clusters, each with similar 

characteristics to the clusters in the original analysis.  There were small differences in the percentage 

of workers assigned to each group, with fewer infrequent and more regular work travellers, but as 

there could be systematic differences between people who complete all seven days of the diary 

compared with people completing fewer days, the analysis including all people with at least two 

diary days was retained. 

The other type of sensitivity analysis undertaken related to the type of clustering algorithm used.  A 

two stage process including k-means clustering then hierarchical clustering resulted in three clusters 

which broadly consisted of the spatially variable workers, the temporally variable workers and then 

the regular and the infrequent commuters combined.  The alternative method therefore produced 

some consistent findings but the original k-means clustering was deemed to be superior as it gave 

greater insights into travel behaviour by separating the regular from the infrequent work travellers. 

 

3.2 Cluster characteristics 
As described in Section 2.2.2, one person was randomly selected from each household and then 

logistic regression models were estimated for each of the four clusters.  The list of independent 

variables included in the final model are shown in Table 3-3.  Alternative models were developed to 

inform the final choice, including one containing the work-related independent variables only and 
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another where the binary variable representing living in London (or not) was replaced by a 

categorical variable representing all home regions.  A consistent dataset was required for 

comparison and therefore people without region data were removed from the dataset, leaving a 

sample of 63,804 people for the regression analysis.  As shown in Table 3-2, the models including 

age, sex and some kind of location variable have lower AIC values and therefore the models with 

only work variables were rejected.  There is very little difference, in terms of the AIC, between the 

models including a binary indicator for people living in London and the models including all regions.  

The former was selected based on the principle of parsimony as it has fewer parameters. 

 

Table 3-2: AIC for different model runs (n=63,804) 

 Cluster 
Models with work-
related variables only  

Models with work-related 
variables plus age, sex 
and London indicator 

Models with work-
related variables plus 
age, sex and region 

Infrequent            58,946                58,707             58,714  

Spatially variable            29,479                29,464             29,462  

Temporally 
variable 

           43,319                43,110             43,114  

Regular            77,318                77,168             77,165  

 

Table 3-3 includes the coefficients for the four final models (one for membership of each cluster).  

The figures in bold indicate coefficients which were statistically significant.  Of the work-related 

attributes, five were significant for all four clusters: full/part time, home worker, work from home 

frequency, having a usual workplace, and working in professional or managerial occupations.  Even 

after controlling for these, however, sex and age were statistically significant in all four models.   
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Table 3-3: Estimated coefficients within the logistic regression models (n=63,804) 

 
Infrequent Spatially 

variable 
Temporally 

variable 
Regular 

Number of observations in cluster 13,095 5,379 7,094 38,236 

Intercept -1.87*** -4.00*** -1.31*** 0.71*** 

Full time ref ref ref ref 

Part time 0.76*** -0.11* -0.08* -0.55*** 

Employee ref ref ref ref 

Self employed 0.30*** 0.33*** 0.00 -0.38*** 

Not a home worker ref ref ref ref 

Home worker 2.17*** 1.92*** -1.85*** -2.83*** 

Works from home less than once per 
week (or never) 

ref ref ref ref 

Works from home at least once per week 0.47*** 0.65*** -0.45*** -0.65*** 

Works in the same place on at least 2 
consecutive days per week (has a ‘usual’ 

workplace) 

ref ref ref ref 

Doesn't work in the same place on at 
least 2 consecutive days per week 

0.71*** 2.35*** -1.02*** -1.27*** 

Individual income less than £25,000 ref ref ref ref 

Individual income between £25,000 and 
£49,999 

0.01 0.11** -0.03 -0.02 

Individual income of at least £50,000 -0.02 0.29*** -0.38*** 0.06 

Does not work in managerial or 
professional occupations 

ref ref ref ref 

Works in managerial or professional 
occupations 

-0.20*** 0.47*** -0.32*** 0.13*** 

Aged 20 or under ref ref ref ref 

Age 21-59 -0.14** 0.42** -0.24*** 0.17*** 

Aged 60+ -0.05 0.39** -0.33*** 0.15** 

Male ref ref ref ref 

Female 0.34*** -0.11** -0.31*** -0.06** 

Lives outside London ref ref ref ref 

Lives in London -0.19*** -0.06 -0.33*** 0.30*** 

Values in bold are statistically significant 

* represents p < 0.05,  ** represents p < 0.01 and *** represents p < 0.001 

ref represents the reference group 

 

In Table 3-4, the coefficients have been transformed into odds ratios which show how much more or 

less likely a person is to belong to the specified cluster if they have the characteristic in the first 

column compared with people in the reference group (in column two).  For example, part time 

workers are 2.14 times as likely to be in cluster 1 as full time workers, in other words the odds of 

part time workers being in cluster 1 is 114% higher than for full time workers. 
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Table 3-4: Odds ratios from each of the four cluster logistic regression models 

 Reference group Infrequent Spatially 
variable 

Temporally 
variable 

Regular 

Part time Full time 2.14*** 0.90* 0.92* 0.58*** 

Self employed Employee 1.35*** 1.40*** 1.00 0.69*** 

Home worker Not a home worker 8.72*** 6.82*** 0.16*** 0.06*** 

Works from home at 
least once per week 

Works from home 
less than once per 
week (or never) 

1.59*** 1.92*** 0.64*** 0.52*** 

Doesn't work in the 
same place on at least 2 

consecutive days per 
week 

Works in the same 
place on at least 2 
consecutive days 
per week 

2.04*** 10.53*** 0.36*** 0.28*** 

Individual income 
between £25,000 and 

£49,999 

Individual income 
less than £25,000 1.01 1.12** 0.97 0.98 

Individual income of at 
least £50,000 

Individual income 
less than £25,000 

0.98 1.33*** 0.68*** 1.06 

Works in managerial or 
professional occupations 

Does not work in 
managerial or 
professional 
occupations 

0.82*** 1.60*** 0.73*** 1.13*** 

Age 21-59 Aged 20 or under 0.87** 1.53** 0.79*** 1.19*** 

Aged 60+ Aged 20 or under  0.95 1.48** 0.72*** 1.16** 

Female Male 1.40*** 0.90** 0.73*** 0.94** 

Lives in London 
Lives outside 
London 

0.83*** 0.94 0.72*** 1.34*** 

Values in bold are statistically significant 

* represents p < 0.05,  ** represents p < 0.01 and *** represents p < 0.001 

 

 

All other things being equal, females are 40% more likely to be in the infrequent cluster than males.  

Table 3-5 shows the percentage of workers from the full sample used in Section 3.1 that belong to 

each of the four clusters.  The table indicates that the increased likelihood resulted in the infrequent 

work travellers being the only group with a higher proportion of females than males.  As might be 

expected from the low proportion of days in a workplace, part time workers are twice as likely to 

belong to the infrequent cluster as full time workers.  Whilst this resulted in the infrequent cluster 

containing the highest percentage of part-time workers amongst the four clusters, the majority of 

people in the cluster (59%) report working full time.  Similarly, self-employed workers were 35% 

more likely to belong to this cluster, but as there are far fewer self-employed people in the data, 

they only account for 23% of the workers in the infrequent cluster.  Home workers3 are 772% more 

likely to belong to the infrequent cluster than people whose usual workplace is not at their home, 

although again due to a small number of homeworkers they are in the minority in this cluster as two 

                                                           
3 Home workers are defined as people who state that their home is their usual workplace. 
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thirds report having a usual workplace away from their home.  Workers have higher odds of being in 

the infrequent or the temporally variable cluster if they are aged 20 or younger, all other things 

being equal.   

 

Table 3-5: Characteristics of workers assigned to each of the four clusters 

 Infrequent          
(n = 23,680) 

Spatially 
variable          

(n = 9,580) 

Temporally 
variable               

(n = 13,699) 

Regular               
(n = 71,235) 

Female 57% 35% 44% 47% 

Part time 41% 21% 25% 21% 

Self-employed 23% 34% 8% 7% 

Home worker 14% 12% 1% 1% 

Works from home at least once per 
week 

9% 19% 3% 4% 

In professional or managerial 
occupations 

41% 58% 34% 44% 

Earns under £25k per year 71% 53% 71% 65% 

Lives in London 12% 14% 10% 15% 

Lives in an urban area4 77% 75% 81% 83% 

Aged 20 or under 6% 2% 8% 5% 

Aged 60 or over 12% 12% 8% 8% 

 

The spatially variable cluster contained the smallest percentage of workers in the original sample.  

All other things being equal, workers with salaries above £25,000 are more likely to be in this cluster 

than those with lower incomes.  People working in professional or managerial roles were 60% more 

likely to be in this cluster than people working in other types of jobs, all else being equal.  Part time 

workers had a lower likelihood of belonging to this cluster than full time workers whereas self-

employed workers were 40% more likely to be in the spatially variable cluster than employees.  

Females have a lower likelihood of being in this cluster than males, all else being equal, resulting in 

the group being dominated by males (65% of the workers assigned to the spatially variable cluster).  

Home workers are 582% more likely to belong to the spatially variable clusters than people whose 

usual workplace is not at their home.  The other very large impact comes from not having a ‘usual 

workplace’ as the likelihood of being in the spatially variable cluster is over 10 times that of people 

who do have a ‘usual workplace’.  It was not possible to include the urban/rural indicator in the 

regression models as the data is only available for surveys undertaken since 2002, but Table 3-5 

shows that this  cluster has the lowest percentage of workers who live in urban areas, although 75% 

do live in urban areas.     

The vast majority of people in the temporally variable and the regular work-travel groups are 

employees who have a usual workplace and rarely work from home Workers with salaries of at least 

£50,000 are less likely to be in the temporally variable cluster than those with incomes below 

£25,000 and, similarly, people working in professional or managerial roles are less likely to belong to 

this cluster which is defined by frequent but temporally variable commuting.  Females are less likely 

than males to belong to the temporally variable cluster, all other things being equal.  Whilst the odds 

ratio for females versus males is lowest for the temporally variable cluster, the spatially variable 

                                                           
4 This classification is not available for data prior to 2002  
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cluster has the lowest percentage of females assigned to it in total, perhaps because other factors 

such as self-employment and home working are not evenly distributed between genders.  

The regular cluster contains many workers with stereotypically ‘traditional’ working patterns.  

Membership of this cluster is less likely for part time workers (relative to full time workers), self-

employed people (relative to employees), home workers (relative to those who do not use their 

home as their usual workplace), people without a usual workplace (relative to those who do) and 

people who work from home at least once per week (relative to those who do not).  The odds ratio 

for part time relative to full time working is lower than for the temporally variable cluster, perhaps 

suggesting that some workers in the temporally variable cluster may work some partial days.   

Workers living in London have 34% higher likelihood of belonging to the regular cluster than those 

who live outside of London.    

The performance metrics for the final model are shown in Table 3-6.  The AUC and accuracy values 

suggest that the models are performing relatively well.  To put this in context, however, if the 

models for the infrequent, spatially variable and temporally variable clusters assigned no workers to 

these clusters and the model for the regular cluster assigned all workers to this cluster, the accuracy 

for the models would be 80%, 92%, 88% and 60%, respectively.  The model for the temporally 

variable group in fact appears to work in this way, as typically no workers from test sets were 

predicted to belong to the group.  The values for recall, which represents the percentage of people 

in this cluster who were correctly predicted to be in the cluster, show that for the models for the 

infrequent, spatially variable and temporally variable groups the accuracy is based on correctly 

predicting that certain workers are not in the group, whereas for the regular group much of the 

accuracy comes from correctly predicting which workers are in this cluster.  The performance 

metrics suggest that while the profiling attributes can be helpful in predicting cluster membership in 

some cases, there are factors influencing the work-related travel types which are not currently being 

collected either in the working pattern or the socio-demographic data in the NTS. 

Table 3-6: Average performance metrics for the final model specification over 250 runs (80% training data; 20% test data) 

  
Average 
accuracy 

Average 
precision 

Average 
recall 

Average AUC 

Infrequent 81% 64% 15% 0.70 

Spatially variable 91% 46% 7% 0.81 

Temporally variable 89% N/A 0% 0.63 

Regular 69% 68% 90% 0.69 

 

3.3 Changes over time 
In the results presented above, data from 1998 to 2016 was combined.  Figure 3-1 shows how the 

relative sizes of the four clusters have changed over that period.  The infrequent and the spatially 

variable clusters have both grown, with their combined size rising from 21% in 1998 to 32% in 2016.  

The temporally variable cluster has decreased in size from 16% of working respondents in 1998 to 

9% in 2016.  The regular commuting cluster remains by far the largest cluster, although its relative 

size has decreased from 63% to 59%. 
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Figure 3-1: Work travel clusters over time 

 

3.4 Travel behaviour 
It could be hypothesised that there is a relationship between the working patterns of an individual 

and the distance between their home and their usual workplace.  In the publicly available NTS data, 

information on distance to workplace is not given directly.  The distance can be estimated from the 

diary data, but only for workers who record a commute trip (directly between home and the usual 

workplace) during the week.  As expected, based on the low number of commute trips recorded, the 

commute distance is only available for 17% of infrequent travellers and 24% of spatially variable 

work travellers.  Commute distance is available for over 99% of temporally variable and regular 

commuters, however.  On average, regular commuters have slightly longer commutes than the 

temporally variable group (median one-way distance 6 miles and 4 miles, respectively).     

The mode choice for work trips can be examined in two ways using the NTS data.  Firstly, each 

person is asked within the survey how they usually travel to work.  Secondly, the actual mode choice 

for commuting and other business trips made during the surveyed week are recorded in the travel 

diaries.  When examining the usual commuting mode in the survey data, car, either as a driver or a 

passenger, is the most common mode used in all groups (Table 3-7).  Car use was highest (80%) in 

the spatially variable cluster and 14% of the people in this group report being the main driver of a 

company car, compared with 3-4% for the other three groups.  Public transport usage is slightly 

higher for the regular work travellers and the infrequent group report the highest levels of walking 

to work.  The composition of public transport users is not the same across groups, as the spatially 

variable travellers were more likely to travel by train, underground, metro or tram, whereas the 

temporally variable commuters were more likely to be bus users.   
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Table 3-7: Reported usual means of travel to work (NTS individual survey) 

Usual mode of 
travel to work 

Infrequent Spatially variable Temporally 
variable 

Regular 

Car 64% 80% 73% 69% 

Public transport 12% 11% 10% 18% 

Walk 19% 5% 8% 8% 

Cycle 2% 2% 5% 4% 

Other 3% 2% 3% 2% 

 

In the travel diary data, 75% of the temporally variable commuters use the same main mode for all 

commuting trips in the given week.  The equivalent figure for the regular commuters is 84%. 

 

4 Discussion 
The four research questions presented in Section 1 will now be discussed in order. 

 

4.1 Can different groups of workers be identified based on the frequency and 

intrapersonal variability in commuting and business trips? 
Whilst Section 3.1 demonstrated that four clusters or groups of workers can be identified, these 

groups are only useful if they identify different transport needs.  For the infrequent group, the seven 

day travel diaries provide insufficient information to inform the design of services to meet their 

needs.  These people stated that they are employed but did not record any work-related travel in 

the given week and there are a number of reasons why this might have been the case.  It could be 

because the person works from or very near to their home, was on holiday during the survey week 

or the person was not scheduled to work that week, for example due to a ‘zero hour’ contract, 

working arrangements such as term-time working or other types of leave such as maternity leave.  

Indeed, a higher percentage of people who completed the travel diary during school holiday periods 

reported no work-related travel compared with people who completed the diaries during term time 

(23% and 13% respectively).  Another possible explanation is that participants only record personal 

travel in the NTS.  Personal travel is defined as “travel for private purposes or for work or 

education, provided the main reason for the trip is for the traveller himself or herself to reach 

the destination” (Department for Transport, no date, p.9).  Trips which are undertaken for the 

purpose of transporting goods or people are therefore excluded.  This cluster may, therefore, 

contain a very heterogeneous group in terms of their work-related transport needs and 

therefore further research is required to explore their requirements. 

The spatially variable work travellers do not have a usual workplace which provides an anchor point 

in their lives and therefore they need a flexible means of transport.  This may partially explain the 

high proportion of work trips made by car.  The high percentage of self-employed people in this 

group may also play a role, as this group may be more likely to take products or equipment with 

them when they travel or there may be a perceived need to demonstrate the status associated with 

arriving by car.  Another potential explanation is that the car use is related to the higher individual 

incomes of people in this group.  Whilst demand responsive transport services could provide a more 

flexible shared transport solution for some of these workers, such services are not typically designed 

to carry equipment or stock so the types of services offered may need to be reconsidered.  Similarly, 
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some of these workers may require their vehicle to remain close by so that they can access 

equipment which is stored inside.    

The temporally variable group tend to travel directly between their home and a fixed work location 

many times per week.  This group would therefore be good candidates for public transport use, 

although only 10% usually travel to work by public transport.  They have high time of day variability 

but it is unclear whether the departure times on each day are known in advance.  This research has 

deliberately used the term ‘variability’ in terms of commuting behaviour in contrast to the term 

‘flexibility’ used by some other researchers, for example Streit et al. (2015) and Shen et al. (2013) 

(following Doherty (2006)).  Variability in the commute does not necessarily mean that the 

commuter has the power to choose where and when they work (Felstead, 2012).  These temporally 

variable workers may be free to leave work whenever they please, for example to fit with a 

scheduled public transport service, or they may have to stay as long as work needs dictate 

(potentially until late at night).  In terms of Hägerstrand’s (1970) space-time geography, the 

variability observed in space and/or time could mean that these activities are fairly flexible (as was 

assumed in Doherty (2006)) or it could mean that the work activity is fixed but that the constraints 

differ from day to day.  These two possible explanations suggest very different transport needs so 

further research is required to understand the degree of spatial and temporal flexibility of activities, 

for example using the method demonstrated in Shen et al. (2015).  The frequency of services and the 

availability of reliable real time travel information may be influential in the travel choices of this 

group or on-demand services may be more suitable. 

The regular work travellers have the highest percentage of public transport use at 18%, but the 

majority use a car to get to work.  Also, the higher rate of public transport use may be influenced by 

the higher likelihood of people living in London belonging to this cluster as opposed to the 

perception that public transport better meets their needs.  This group travels to the same location at 

approximately the same time each day, so the travel diaries provide valuable data about the services 

they require.  Two further aspects need to be considered, however.  Firstly, not all members of this 

group travel to work on five days per week.  In total, 29% travelled to their usual workplace on three 

or four days during the diary week and therefore they would have had a higher cost per trip than 

people working five days per week if purchasing weekly or monthly travel passes.  Also, fewer 

people in this group travel directly between home and work than in the temporally variable group.  

The types of locations visited before or after work and the requirements of such travel, including 

carrying shopping or escorting a family member, requires further investigation to determine 

whether it is the chained trips rather than the trips to and from work which are less attractive by 

public transport.   

 

4.2 To what extent can group membership be predicted based on data about work 

type from the National Travel Survey? 
In Section 3.2, we observed that many of the attributes relating to working patterns, such as part 

time working, were related to cluster membership.  The models containing only the working pattern 

attributes, however, were rejected in favour of models which also included age, sex and location 

attributes, suggesting that the working pattern attributes were useful but not sufficient to explain 

cluster membership.    

Previous research has highlighted the heterogeneity in workers classified as self-employed 

(Gimenez-Nadal et al., 2018), mobile workers (Pajević and Shearmur, 2017), occasional home 

workers (Haddad et al., 2009) and people working in the ‘gig economy’ (Friedman, 2014).  In the 
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current research we have highlighted the heterogeneity in the weekly work travel behaviour of part 

time and self-employed workers particularly.  Part time workers constitute a high percentage of the 

infrequent commuters (41%), but due to differences in the sizes of the clusters, only a third of the 

part time workers in the sample are allocated to this cluster.  Half of the part time workers in the 

sample are, in fact, assigned to the regular commuter cluster.  Similarly, there are much higher rates 

of self-employment within the infrequent and spatially variable clusters, although these two clusters 

account for only 57% of the self-employed people in the sample.  Therefore, whilst certain working 

patterns can increase the odds of belonging to a specific cluster, knowing working patterns alone is 

not sufficient to predict frequency and intrapersonal variability in work-related travel behaviour.  

This raises the question of how useful standard questions, about full or part time working for 

example, are when collecting data about travel and transport needs.   

 

4.3 To what extent do other variables in the National Travel Survey, such as gender 

and age, influence the group a worker will belong to? 
There were statistically significant coefficients relating to age group in the models for all four 

clusters.  Even after accounting for part time working and all of the other attributes, workers aged 

20 or under were more likely to be in the infrequent and the temporally variable clusters.   

Females are 40% more likely to be in the infrequent cluster than males, all other things being equal.  

This highlights the need to understand the workers in this cluster.  If it is the case that many of these 

women were not working during that particular week but they do undertake work-related travel in 

other weeks, then their needs are being under-represented in the data currently collected and the 

services designed based on that data. 

Whilst age, gender and living in London were selected for inclusion in the final model, it is clear from 

Table 3-6 that the data currently collected in the survey part of the NTS is insufficient to be able to 

determine the work-related travel needs of individuals.  The additional information required could 

relate to working patterns or job type, but could also be socio-demographic or geographic data that 

is not currently available. 

 

4.4 Are changes in the relative sizes of the groups observed over time?  If so, what 

patterns emerge? 
Figure 3-1 demonstrated that the relative cluster sizes have been changing over time.  The two work 

traveller clusters which are growing in size have a higher proportion of workers aged 60 or over than 

the groups which are shrinking.  Given that the working population in England is ageing (Ross, 2010), 

these trends may well continue.  This issue is not limited to England as many countries have 

increased or are increasing the state pension age or have reduced the value of state pensions 

(Cebulla et al., 2007, p.850).  The growth in the infrequent cluster may also be due to an increase in 

women entering the labour market as they are more likely to belong to this cluster than men, all else 

being equal.  Of the two groups which have been increasing, we have very little information about 

the work-related travel behaviour for one and the other is heavily car dominated.  The two groups 

which are shrinking over time are the temporally variable and the regular clusters.  These are the 

workers with the most predictable behaviour and for whom many traditional public transport 

services were designed.  This strongly implies that collecting the right data and developing suitable 

policies now are crucial if we are to meet future work-related transport needs. 
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5 Conclusions 
In this paper, data from seven day travel diaries in England collected between 1998 and 2016 were 

used to identify different types of workers based on the predictability of their travel behaviour over 

multiple days.  The results indicate that there are four distinct groups with different spatial and/or 

temporal working patterns, and thus different transport needs.  The two groups travelling most 

often to a ‘usual workplace’ have been decreasing over time.        

The National Travel Survey provides a wealth of information about work travel but, as with any 

source of data, it has limitations.  The NTS data which is publicly available does not include detailed 

geographical data and as discussed in Section 2.2, it was not possible to break down work activities 

undertaken in ‘in course of work’ locations.  These could involve repeated trips to the same location 

or to vastly different geographic areas.  These different scenarios impact upon the transport options 

available.  Further work could therefore involve the augmentation of travel diary data with GPS 

tracker data (as in Shen et al. (2013)), although there would be cost and privacy implications.  

This research highlights four distinct groups of workers in England with different transport needs 

relating to their work.  All of the groups are sufficiently large to warrant consideration when 

designing services or policies which will have, or aim to have, an impact on commuting or business 

travel.  Any intervention designed solely based on the ‘traditional’ regular worker is targeted at 59% 

of workers in 2016 at most.  The other three groups combined are more likely to contain females, 

part time workers, self employed people and those who either always or occasionally work from 

home.  It is essential that these other types of workers are explicitly considered when transportation 

or work policies are being developed so that they are not disadvantaged. 

Questions are raised about the suitability of data collected about work and travel.   The increasing 

proportion of people recording very little or no work-related travel in the diary indicates that 

something is missing.  This could be an issue with the NTS question asking people whether they 

work, or it could be a limitation of collecting just one week of data.  Either way, additional research 

is required to understand this group of people who are currently not represented in the work travel 

data.  The NTS also does not collect information about work undertaken whilst at home or whilst 

travelling and therefore cannot be used to examine how work is spread across the week.  The 

usefulness of standard terms such as ‘full time’, ‘part time’ and ‘self-employed’ in travel surveys is 

also brought into question as the groups are highly heterogeneous in terms of travel behaviour.     

Previous work has highlighted that the nature of work and the nature of commuting at an aggregate 

level are changing.  This research has identified that the predictability of travel to, from and in the 

course of work is also changing.  As the multiday transport needs of workers change, so must the 

transport networks and services.  Changes in traveller needs influence all aspects of transportation, 

including fare structures and real time information as well as the development of new services and 

infrastructure. 
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