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Abstract

Accurately identifying cloud types in images has multiple uses from meteorological

science to computer graphics, especially as clouds are a major factor influencing at-

mospheric radiative transport. Understanding which cloud types are present in an

image is typically performed on a coarse scale, where cloud types are identified per

image, but do not permit a finer, per-pixel granularity of labelling cloud types. This

paper presents a novel approach which solves this problem via a per-pixel classifi-

cation method for identifying cloud types based on High Dynamic Range imagery

of skies. The proposed method requires minimal labelling of the training data, and

utilises a hierarchical patch-based feature extraction technique which describes the

statistical and structural features about regions of the image. This enables the ex-

traction of representative feature vectors which are used for subsequent labelling.

This approach is the first to produce a per-pixel classification of cloud types from

a single image, with an accuracy of 84%. Additionally, when applied to whole sky

cloud classification, our results produce a 98.3% accuracy, which is competitive with

the state-of-the-art.
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1. Introduction

Clouds play a significant role in the radiation of energy from the atmosphere to

the surface of the earth, and studying their properties is important across a diverse

range of fields ranging from hydrological studies and meteorological science to com-

puter graphics and imaging. A common requirement in these fields is to acquire,5

classify and process images of clouds in order to understand their structure and

composition. This work focuses on the classification stage which labels cloud types

in an image. Due to the enormous variety in cloud shapes combined with a limited

range of color values, the classification problem for clouds is non-trivial.

Existing approaches for cloud classification summarise images of the whole sky with10

a single label for instance “Cumulus”, “Cirrus”, or “Mixed”, see Cheng and Yu [1], Li

et al. [2]. This does not provide information about the common situation of multi-

ple cloud types present in an image, or the spatial distribution of clouds in an image.

This is insufficient for detailed studies on clouds, where ideally a label is assigned per

pixel. Per-pixel classification presents a challenge for initial labelling of the training15

dataset; different cloud types may appear similar in an image leading to human clas-

sification errors, and significant effort would be required to assign a label per pixel

for the entire dataset.

Images used in cloud classification are typically gathered from two sources; satellite

and ground based measurement systems. While satellite images capture a large re-20

gion of clouds, the resultant images typically have low resolution which precludes

investigation of finer cloud details. Ground based measurements are therefore typ-

ically investigated in the meteorological literature, e.g. Tapakis and Charalambides

[3]. These measurements consist of views of the sky captured with either special-

ized equipment, see Tapakis and Charalambides [3], Jarraud [4], or with a conven-25

tional DSLR camera equipped with a fisheye lens. Our work uses High Dynamic

Range (HDR) imagery which stores real-world lighting as floating point values at

higher precision than conventional images, see Chalmers and Debattista [5]. This

increased precision permits more accurate classification, but is incompatible with

existing approaches for cloud classification such as Heinle et al. [6], Kazantzidis et30
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al. [7], Liu et al. [8], Cheng and Yu [1] further motivating the proposed novel ap-

proach.

This work solves the above challenges, and presents a weakly supervised method for

per-pixel classification of clouds from HDR images. We propose a method where

down-sampling of the input HDR images in the training set produces a hierarchy35

which is able to represent cloud features at a variety of scales. At each level of the

hierarchy, Feature Vectors (FVs) corresponding to patches in the image are extracted

and clustered into Representative Feature Vectors (RFVs). Based on an initial coarse

labelling of the input HDR images, a histogram of cloud types is associated with each

cluster. At run-time, features are extracted from patches in each level of an input40

image hierarchy, and are compared to the clustered feature vectors. Labelling per

pixel is then assigned from merging the histograms associated with the pixel from

each level of the hierarchy. The main contributions of the presented method are as

follows:

• A method to compute per-pixel labelling of cloud types from input HDR im-45

ages. This is based on minimal user input, and uses a novel hierarchical his-

togram merging method to efficiently compute per-pixel labels.

• Results showing a high classification accuracy for per-pixel cloud classifica-

tion, and state-of-the-art results for whole sky cloud classification.

2. Background and Related Work50

There has been a wide range of research on image classification, object detection,

object segmentation etc. (Gehler and Nowozin [9], Wang et al. [10], Woźniak and

Połap [11], Li et al. [12]). However, direct application of this research to cloud

type classification would be impractical because of the unpredictable structure of

clouds. Therefore, specific methods have been proposed in literature to classify and55

detect clouds in images. These methods mainly depend on colour channels (Red

(R), Green (G) and Blue (B)), statistical and structural information obtained from

ground level or satellite images. Mean, Standard Deviation, Skewness, Smoothness
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and Contrast are commonly used statistical methods to extract features from images

(Heinle et al. [6], Cheng and Yu [1], Li et al. [2], Calbo and Sabburg [13], Gan et al.60

[14] etc.). For the structural/textural features, the ratio between the colour channels,

Fourier Transform, Discrete Cosine Transform (DCT), Grey Level Co-occurence Ma-

trix (GLC M) and Local Binary Patterns are often used (Heinle et al. [6], Liu et al. [8],

Calbo and Sabburg [13]).

It is common to use the R/B channel ratio to find the clear sky pixels, since blue65

light is scattered more in the atmosphere leading to the blue appearance of the sky.

For a clear sky pixel, the R/B ratio will be small compared to a cloud’s pixel. Clas-

sification of sky images based on this ratio was first implemented by Johnson and

Hering [15] and commonly used in the literature (e.g. Koehler et al. [16], Pfister et

al. [17]). Heinle et al. [6], Li et al. [18], Yang et al. [19], Chauvin et al. [20] used70

variants of this ratio such as R −B or normalized B/R which they found to improve

classification accuracy. However, thresholding based on this ratio is not guaranteed

to succeed as the colour of the atmosphere can change significantly based on at-

mospheric haze (also known as turbidity), ground reflectance, and solar position,

see Hosek et al [21]. Therefore, additional classification techniques have been in-75

vestigated in the literature. In recent papers by Yang et al. [22] and Dev et al. [23]

cloud pixels are identified in images of the sky. The former makes use of differences

between the green channels of clear and cloudy-sky images, and the latter uses a

supervised method based on Partial Least Squares regression. Hsu-Yung and Chih-

Lung [24] merged the results of several classification methods by a voting scheme to80

detect cloud pixels. They used also different patch sizes to exploit image informa-

tion at multiple scales. These recent approaches segment cloud pixels from the sky

by labelling a pixel as cloud or non-cloud, whereas in our method, it is labelled as

being a specific cloud type.

Calbo and Sabburg [13] used thresholding for clear sky pixels, statistical features85

(standard deviation, smoothness, third moment, uniformity) extracted from the im-

age and features obtained from the Fourier Transform of the image to classify clouds.

They achieved classification results of 62% when 8 sky conditions were investigated
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and up to 76% for 5 sky conditions, including clear skies from a total 395 images.

Heinle et al. [6] classified whole sky images with a k-NN method into seven classes90

with an accuracy of 75% using a training set of 200 and test set of 275 images in-

cluding: Cumulus, Cirrus & Cirrostratus, Cirrocumulus & Altocumulus, clear sky,

Stratocumulus, Stratus & Altostratus, Cumulominbus & Nimbostratus. They calcu-

lated the spectral features in RGB colour space (mean, standard deviation, skewness,

difference of colour components), the structural features from the GLC M of the im-95

age and the cloud cover percentage of the image. Kazantzidis et al. [7] improved

the method of Heinle et al. [6] by updating the feature vector used in their method

and using subclasses of each cloud class. This obtained an accuracy of 79% from a

training set of 1050 and test set of 1500 images including 6 cloud types and clear sky.

Liu et al. [8] used the Local Binary Pattern (LBP) method to classify clouds and was100

found to give high accuracy results of 90% from a dataset of 1500 images. Wang et

al. [25] also used LBPs for feature extraction based on a histogram approach to get

more stable features.

Cheng and Yu [1] used a block based technique to classify an all-sky image according

to its cloud type. For each block, statistical features such as mean, standard devia-105

tion, skewness, differences of colour components and LBP texture features were ex-

tracted. The technique starts by dividing the image into equally sized blocks which

helps to classify mixed-cloud type images. To assess the impact of the classifier on

the results three techniques were used and compared: k-NN classifier, Bayesian

classifier and Support Vector Machines (SVMs). The cloud type of an input whole110

sky image was found by using the block based classification and a voting scheme

based on counting the blocks in the image of similar type.

Hussain and Sayed [26] used a bag of words and minimum distance classification

technique to classify sky images as clear, cloudy and sunset sky images. They did

not deal with the cloud type in the image. Li et al. [2] also classified a whole sky115

ground image by using the bag of features technique which gave 90.9% accuracy us-

ing a dataset of 5000 images. The images in the dataset were divided into patches

and then features of each patch, called micro-structures in this case, were found.
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Mean, standard deviation, skewness and contrast were used to extract statistical fea-

tures. Each image was represented by a feature vector which was generated by cal-120

culating weighted frequencies of micro-structures observed in that image. An input

image was classified according to its representative feature vector by using SVMs,

a one-against-all technique. Zhang et al. [27] proposed a cross-domain classifica-

tion method where the features of an image were obtained by integrating different

feature extraction methods considering the maximum response on different sized125

regions of the image. Gan et al. [14] also worked on different sized regions of the

image where they used a method based on sparse coding, which is efficient in terms

of both locality and computation. As in the work by Li et al. [2] they also used mean,

standard deviation, skewness and contrast to extract statistical features.

Other approaches have used additional hardware to improve the classification re-130

sults. Liu and Li [28] used multimodal information obtained from weather sta-

tion networks and Huertas-Tato et al. [29] used the information collected from a

ceilometer. Roman et al. [30] used HDR images combined with a ceilometer to

estimate cloud cover from HDR images. HDR imagery was used to estimate a set

of ratios, largely based on the commonly used red-blue ratio, and these were then135

combined with a metric based on sky symmetry around the solar principle plane

and information from a ceilometer. Finally, this information was used to classify

pixels as cloud or sky based on thresholds.

There is a wide variety of methods which can be used to learn labels for pixels in

the literature e.g. Guzella and Caminhas [31], Zhang et al. [32], Boiman et al. [33],140

Bosch et al. [34]. Supervised methods such as Convolutional Neural Networks have

been used to classify objects with high accuracy Krizhevsky et al. [35], Kim et al.

[36], however these typically require very large amounts of labelled data, which as

discussed in Section 1 is infeasible for images of clouds.

There are also methods proposed to achieve pixel level classification by using weakly145

supervised learning such as Verbeek and Triggs [37], Vezhnevets et al. [38], Vezhn-

evets et al. [39], Pathak et al. [40], Pinheiro and Collobert [41] and Papandreou et

al. [42]. In these papers, weakly supervised learning is used to learn labels based
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on a coarse initial labelling, potentially one label for a whole region or several labels

for an image. In these methods training is implemented on pixel-wise labelled data150

whereas our method infers the output automatically. Also, our work is different as it

is robust to incorrect coarse labelling, requires one label for whole image and is de-

signed to infer more labels than were initially assigned to an image. While weakly-

supervised deep learning methods exist [43], these also require a large volume of

training data. Our method requires a small number of coarsely labelled images and155

is robust to small changes in cloud appearance. Unsupervised methods learn infor-

mation from the input data, and can cope with smaller amounts of training data, but

the results may not clearly correspond to labels as required in this work. Therefore,

we develop a weakly supervised approach which combines the labelling accuracy of

supervised methods with the learning style of unsupervised methods.160

3. Overview of the Classification Method

The classification method proposed in this work consists of two stages: building

a classifier using weak-supervision and run-time classification. The first stage in-

volves creation of coarsely labelled training data and then training the hierarchical

classifier. The second step is the classification of an input whole-sky HDR image165

per-pixel. See Figure 1 for an overview of this process, and Table 1 for a list of sym-

bols used in the following sections.

Table 1: Symbols used in this work

℘n
p Patch of pixel p with length n

H Histogram
Np Neighbourhood of pixel p
V Feature vector (FV)
Ṽ Representative feature vector (RFV)
L Down-sampling level
ζL Cluster in level L
KL Number of clusters in level L

Creation of coarsely labelled training data (visualized in Figure 1, top row, left col-

umn) involves manually labelling training images with only the dominant cloud
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Figure 1: An overview of the two stage method.
Top row: FVs are extracted (a) from images in the dataset, and are clustered (b) ignoring their labels.
Since the clusters can include FVs with different labels, an RFV without a label and a histogram of
potential labels is generated (c) for each cluster.
Bottom Row: When classification is required for a new input image, the FVs are extracted (d) for each
pixel and are matched (e) with the closest RFV and corresponding histogram to find the cloud type
associated with the pixel (f).

type observed in the image, which is then used in the learning stage to more pre-170

cisely classify cloud pixels. This approach of defining the dominant cloud type

rather than individually labelling pixels has two advantages. Firstly, it is more robust

to mistakes made by subjective per-pixel labelling by users, and secondly it would

require an infeasible amount of time to manually label millions of pixels individu-

ally in the entire training set. The dominant cloud type is used because typically175

skies include multiple cloud types, and capturing only one type is highly dependent
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on weather conditions. However, in this case, labelling all the cloud pixels with the

dominant cloud type causes mislabelling of pixels which belong to a different cloud

type. This paper overcomes this problem by using a histogram based approach (de-

scribed in more detail in Section 4.3) which links the extracted features of a patch to180

the correct per-pixel cloud type.

Specifically, in the training phase (Figure 1, top row), a down-sampled hierarchy of

images is created for each input image. At each level of the hierarchy, patch-based

features augmented with the initial labelling are extracted (Figure 1.a, Section 4.1)

and then clustered (Figure 1.b) by using K-Means Clustering to generated RFVs (Sec-185

tion 4.2). Rather than assigning one label to each RFV, we propose to use a histogram

where each bin corresponds to a label associated with the FVs used to create the

RFV (Figure 1.c) which considers the distribution of features over the dataset (Sec-

tion 4.3). This hierarchical approach allows the method to exploit both local and

global structures of the clouds, which has a significant impact on classification per-190

formance.

During the classification phase (Figure 1, bottom), downsampling is used to create

the hierarchy of patch based features for an input HDR image (Figure 1.d). Then

the closest RFV for each pixel at each level in the hierarchy is located (Figure 1.e).

Finally, the histogram associated with each RFV is used to assign a cloud type to195

each pixel by using a histogram merging technique (Figure 1.f) to determine the

dominant label in the set of hierarchical FVs forming the cluster (Section 4.3).

4. Weakly-supervised cloud classifier

This stage of the method involves extraction of feature vectors based on statistical

and textural methods and then clustering these vectors into RFVs and histograms.200

The following sections present a detailed explanation of these steps.

4.1. Feature Vector Extraction

This work uses patch-based features due to their ability to exploit a wider range of

local image information such as structure which enables a richer set of features to
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be extracted. A patch is defined as a square subset of an image and denoted as ℘n
205

where n is the edge size in pixels, and is always odd. A patch℘n is assigned centered

at each pixel p in each level of the hierarchy.

Figure 2: This figure shows a Cumulus image from the dataset. The most common cloud type is
Cumulus (green box), therefore all the features extracted from this image are labelled with Cumulus
other than the masked clear sky pixels (masked black for visualisation purposes) which are kept with the
label of clear sky. However, this image still includes clear sky pixels because of imperfect masking and
also Cirrus cloud (red box). Unmasked Clear sky and Cirrus pixels in this image are initially purposefully
incorrectly labelled as Cumulus due to the weak labelling. This is subsequently resolved using RFVs and
the histogram approach described in Section 4.2.

The features in each patch are described with a d-dimensional FV using information

extracted from the patch ℘n
p . If the pixel is associated with a label of clear sky, then

clear sky is assigned to the FV, otherwise the label of the dominant cloud type in the210

image is used, see Figure 2. These labels are used to decide the cloud type of the

clusters, described in Section 4.2.

The statistical and structural features were chosen by considering the common fea-

tures used in literature. Features generated using only one of the colour channels

{R, G , B} reduces the learning efficiency, since the dynamic range of the skies cause215

the sky and different cloud types to have similar colour properties depending on the

sky condition. An example of this is desaturation around the horizon due to inscat-

tering of light from the sky, leading to larger R and G values which makes it difficult

to distinguish clear sky from clouds with only one colour channel. Therefore, lu-
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minance (l ) and the R/B (r ) colour ratio of the pixels are used in the calculation220

of features. Luminance obtained from HDR images can provide more information

about the image compared with previous methods and is calculated by weighting

the colour channels: l = 0.2126∗R+0.7152∗G +0.0722∗B , and the ratio between R

and B is a standard feature in the cloud classification literature (Johnson and Hering

[15], Koehler et al. [16], Pfister et al. [17], Heinle et al. [6], Li et al. [18], Yang et al.225

[19], Chauvin et al. [20]).

When considering structural features, methods such as GLC M , Fourier Transform,

Discrete Cosine Transform can be used. However, structural features such as the

ones based on GLC M and the Fourier Transform were not used in this method since

GLC M is only applicable to integer values, and therefore cannot work with HDR im-230

ages, and the Fourier Transform was found to give low classification accuracy, by

Calbo and Sabburg [13]. It should be noted that the GLC M could be modified to use

quantized HDR values, but this would require further apriori choices of parameters

such as number of bins, which would make the method impractical due to signifi-

cant manual adjustments to account for the range of values from HDR captures of235

skies. Therefore, this work uses the Discrete Cosine Transform due to the compact

description of frequency content and computational speed.

The following equations are used to define the statistical and structural features in

the classification:

•Mean : Mc = 1

n2

n−1∑
i=0

n−1∑
j=0

p i j
c240

•Standard Deviation : S Dc = 1

n

√√√√n−1∑
i=0

n−1∑
j=0

(p i j
c −Mc )2

•Skewness : S K c = 1

n2

n−1∑
i=0

n−1∑
j=0

(
p i j

c −Mc

S Dc
)3

•Contrast : CRB = MB −MR

MB +MR
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•Discrete Cosine Transform :

D
q1q2
c =αq1αq2

n−1∑
i=0

n−1∑
j=0

p i j
c cos

(π(2i +1)q1

2n

)
cos

(π(2 j +1)q2

2n

)

αq =


1/
p

n, q = 0

p
2/n, 1 ≤ q ≤ n −1

where q1 and q2 denotes the basis functions with values in {0, ..,n −1}.

Due to the typically low frequency nature of clouds, the higher frequency coeffi-245

cients of D contain very small values, so we do not use these for classification. Our

initial experiments showed that the patches are sparse in the D domain, and most of

the energy is contained in the lower frequency components. Therefore, in this work,

the basis functions {00,01,10} which correspond to the first horizontal and vertical

frequency components, and the DC component of the discrete cosine transform,250

are used. As the basis (00), Dc is equal to Mc , we do not include this term. When

implementing this method, there is no need to perform a full DCT per patch as only

the horizontal and vertical gradients are required, but the features used are moti-

vated by our analysis from the DCT. Hence the following FV is used in this work (the

r subscript corresponds to the ratio of red and blue color channels, and luminance255

is denoted l ):

V = {
r,S Dr ,S K r ,CRB ,D00

r ,D10
r ,D01

r ,D00
l ,D10

l ,D01
l

}

The extraction of the FVs is implemented for the same patch size at each level of

the down-sampled image hierarchy and the features belonging to the same down-

sampling level are clustered together.

To summarise, the features chosen to construct the FVs were designed based on a260

balance of features identified from prior work (see Section 2), and computational

performance. We have used a combination of color based statistics, designed to
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separate clear sky from clouds, and separate different cloud types where color based

statistics are effective, and structural information which is useful where color statis-

tics provide insufficient information. While this FV is sufficient for our work, a more265

comprehensive search for FVs could be performed to identify if there is a set of fea-

tures which can provide higher classification accuracy.

4.2. Representative Feature Vector
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Figure 3: An illustration of labelling of the RFVs for down-sampled level L. As the dataset includes
images from several cloud types (labelled CT in the diagram), FVs are labelled with the predominant
cloud type of the image they are extracted from, and during clustering their labels are not considered.
Therefore, the clusters include FVs with different labels. For each cluster a RFV and a histogram based
on the number of labels of FVs are calculated for use when classifying new images.

The features extracted in Section 4.1 produce a large amount of weakly labelled

training data with labels assigned as the dominant cloud type in the original im-270

age, see Figure 2. This leads to some pixels being mislabelled if multiple cloud types

are present in the sky (see Figure 2) To resolve this, these features are clustered at

each down-sampling level L and the overall features corresponding to each cluster

are represented by a RFV.

During clustering, the initial labels are not considered. Instead, since the clusters275

include weakly labelled data, a histogram of labels is assigned to each RFV. These la-

bels correspond to the FVs used to create the cluster, see Figure 3. These histograms

and associated RFVs will later be used to label the input images. As this clustering
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process operates at each level of the down-sampled image, this generates multiple

levels of RFVs and associated histograms of labels. These are used in the classifica-280

tion stage as outlined in Section 5.

In this work, the extracted FVs are clustered using k-Means Clustering. While there

are several other options for clustering, such as Expectation-Maximization [44] and

DBSCAN [45], we use k-means as it is fast, robust, and produces results which work

well for construction of the RFVs.285

Prior to clustering, the same number of initial FVs are sampled from each image in

the dataset using stratified sampling. Then these FVs are clustered into KL clusters

using k-Means Clustering, where each cluster has an associated RFV (Ṽ ). These vec-

tors are the mean of all the features in each cluster and represent the FVs showing

similar properties.290

4.3. Histogram of Labels

Due to the unsupervised clustering process explained at Section 4.2, the RFVs have

no knowledge of the labels associated with the individual FVs used to create the

cluster. As it is likely that these FVs were associated with different labels, and in

order to use the RFVs for classification, labels need to be re-associated with each295

RFV at each level of the hierarchy.

We achieve this by computing a normalized histogram of labels with the RFV. This is

constructed by storing all the labels associated with the FVs used to build the cluster,

creating a histogram with the number of bins equal to the number of unique labels,

and finally creating the histogram. However, the number of FVs used to create each300

cluster can vary, and is also dependent on the number of input images. Therefore,

we normalize the histogram with the total number of FVs observed of that cloud

type to prevent one cloud type from dominating the others during classification.

We also cluster clear sky pixels from the coarse labelling (see Figure 2), but ensure

that these are not clustered with the other cloud types which helps to disambiguate305

clear sky and clouds during classification. The histogram associated with these clus-

ters contains one bin with the label of clear sky.
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At level L of the hierarchy, the total number of FVs labelled with a cloud type (t ) is

defined as Nt and the number of features labelled with t in the i ′th cluster as N i
t .

The histogram is calculated as:310

HL[i ][t ] = N i
t

Nt
, ∀i ∈ {1, ...,KL}. (1)

This computes the histogram of ratios of cloud types of features within a cluster

given the total number of features with corresponding cloud types in the dataset.

5. Runtime Classification

L=1
L=2

L=D

L=1
L=2

L=D

L=1
L=2

L=D

Feature 
Vectors

L = 1

L = 2

L = 3

L=1

L=2

L=D-1

L=D

L = 1

Histogram
Merging

Clear Sky
Pixels

RFV of 
each pixelInput

Neighborhood
of each pixel p

Labels of
Cloud Pixels

p
1
 labelled with

p2 labelled with

p3 labelled with

Notation for feature vectors:

(p1)

(p2)

(p3)

Figure 4: An illustration of labelling the pixels. The input image is downsampled D times and a FV of
each pixel at each level of downsampling is calculated. The closest matching RFV of the FV associated
with the input is found. If the labelling of a RFV of a pixel (p) is clear sky at the highest level L = 1, then
the pixel is labelled as clear sky and not investigated further. For the other pixels a histogram is
calculated considering its neighborhood at each level and it is labelled according to the label
corresponding to the largest value in the histogram.

Classifying pixels at runtime is implemented in two steps. Firstly, at each level of the

hierarchy the FV of each pixel is generated from the corresponding patch, see Figure315

4. For each FV (V ), a RFV (Ṽ i ) is found which minimizes the Euclidean distance to

the FV:

‖V − Ṽ i‖2 ≤ ‖V − Ṽ j ‖2, ∀ j ∈ {1, ..,KL}. (2)
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The label of a pixel is found by merging the histograms of RFVs found at each down-

sampling level. This provides increased accuracy in labelling as labels lower in the

hierarchy are able to accurately represent larger regions of the image, while higher320

levels provide finer, but potentially less accurate labelling at the pixel level. This

motivates our weighting scheme that gives a higher weight to histograms lower in

the hierarchy, and a smaller weight to those higher in the hierarchy.

This leads to a set of possible labels and associated weights for each pixel. In our

method, we assign the label with the highest weight in the merged histogram. Ini-325

tially, for each pixel q at level L the matching RFV (see Equation 2) and the associated

histogram HL[iq ] is found (see Figure 3). Then the merging is implemented by sum-

ming the weighted histograms corresponding to the pixel p under consideration.

Hmer g e [p][t ] =∑
L

wL
∑

q∈Np̂

HL[iq ][t ] (3)

where wL = 2L∑i=D
i=0 2i is the weight of level L for a total of D down-sampling levels.

We use a factor of two in the weights as this leads to a good balance between his-330

tograms at lower and higher levels. Larger values cause the histograms at lower lev-

els to have too much influence leading to mis-classifications with mixed cloud types,

and smaller values result in noise in the labelling. Np̂ corresponds to a patch around

the pixel at the associated level of the hierarchy p̂ =
⌊

p
2L

⌋
.

The size of the patch is computed as bn∆Lc, where ∆ < 1 is a user defined value335

which controls the number of pixels to be considered around p̂, and b·c is the floor

function. As the number of pixels decreases at each level of the down-sampling hi-

erarchy, the size of the neighbourhood is likewise decreased. In this work n and

∆= 0.85 were chosen to get bn∆Lc = 1 at level L = D .

Because of the down-sampling, images with low resolution are typically dominated340

by cloud pixels and clear sky pixels can be lost. Therefore, labelling of clear sky pixels

is implemented on the full resolution image where they still have distinctive features

compared to the cloud pixels. If in a histogram, the clearsky cloud type has the high-
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est value, then its RFV is labelled with clearsky (CS). An overview of the method is

given in Algorithm 1.345

Algorithm 1 Classification of an image I

1: for L ← 1 to D do
2: Calculate down-sampled image Id s

3: for f or each pixel p ∈ Id s do
4: Find Ṽ ip

5: if L == 1 and Ṽ ip labelled with Cs then
6: label Cs
7: end if
8: Calculate HL[ip ]
9: end for

10: end for
11: for each pixel p ∈ I do
12: if not labelled Cs then
13: Calculate Hmer g e [p]
14: return label associated with largest value in Hmer g e [p]
15: end if
16: end for

6. Results

6.1. Dataset

The training set used in this work is composed of whole sky HDR images captured

with a Canon EOS 5D Mark 3 with a Sigma 8mm EX DG Fisheye Lens, an aperture

of f3.5 and 7 bracketed exposures equally spaced from -8 to 8. The HDR images350

included surrounding buildings which were eliminated with a fixed size circular

mask. However, the tops of some incongruent objects were still visible, these were

masked manually during the generation of outputs. All the images had a resolution

of 3,840×3,840 pixels. Images were captured in the United Kingdom at various times

of the year.355

The dataset consisted of three types of cloud fisheye images: 21 Cirrus (Ci ), 29 Cu-

mulus (Cu) and 15 stratocumulus (Sc) images. These clouds are local clouds fre-

quently observed in the data collection area. The training images are tagged with

the dominant cloud type in the image. The dataset does not include clear sky (C s)
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images because the features extracted from clear sky images and clear sky pixels in360

a cloudy image show different characteristics and can contain different color infor-

mation. Therefore, the clear sky pixels in cloudy images are pre-labelled manually

and used as clear sky data during the extraction of features. It is not necessary to

have 100% correct labelling since the histogram technique used in clustering im-

proves the classification of mislabelled pixels. For each high resolution image in the365

dataset, approximately 98,000 patches are sampled.

The images used in the results were masked into a square shape of 3,840 × 3,840 pix-

els and the whole sky image has a radius of 1,766 pixels. An initial experiment with

different patch sizes showed that using larger patch sizes lowers the accuracy in clas-

sification. We chose 0.15% of the total image size to be used as the smallest patch370

size, which corresponded to n = 5. From initial experiments, this was found to pro-

vide a good balance between the calculation time and accuracy, and is the smallest

patch size from which enough structural information was able to be extracted.

We also found that increasing the number of clusters to more than 750 adds only

0.2% more accuracy, therefore by considering the computational efficiency K1 = 750375

is used in the experiments. Since the total number of features extracted at each level

decreases, the total number of clusters should likewise decrease. We empirically

determined the values 750, 745, 740, 735, 730, 725, 720, 250 for L ∈ [1..8]. However,

our approach is not sensitive to these values. Additionally, we determined that L

should be capped at 8, corresponding to a resolution of 15×15 pixels at which further380

decreases in resolution did not improve performance.

6.2. Classification Performance

The performance of the method was validated using Cross Validation. From the

dataset, 50 subsets were generated by randomly skipping one image from each

cloud type. The proposed method was trained on images from each subset, and385

the skipped image associated with the subset was classified per pixel. When cal-

culating results, a total 3,071,297 pixels were sampled from the labelled pixels by

using concentric sampling over the disk, see Figure 5. The overall accuracy of the
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Figure 5: This figure shows how the accuracy of a classification is computed. The image on the left is the
input image with the sun and non-cloud structures masked, the center left is the manually labelled
image, the center right is the classified image with our method and the one on the right is concentric
sampling on the image. Only the pixels where there are specific cloud types exist are tagged. Since it is
hard to classify pixels manually on the edges, they are not tagged. The accuracy of classification is
checked between the tagged image and the classified image.

method in classifying pixels with the correct cloud type was 84.050%, see Table 2.

For each expected cloud type the percentages were calculated as N Pt
N Ptot al

where N Pt390

is the number of pixels classified as cloud type t and N Ptot al is the total number of

expected pixels. Our un-optimised method takes on average 203 seconds to label all

pixels on an Intel i7-3612QM, 8 GB RAM, using multithreading with 8 threads.

Table 2: Interpretation of the cross validation results with a Confusion Matrix. Expected values are the
input cloud type of the pixels. Predicted values are classification results of the inputs. Numbers in the
parenthesis indicate the number of pixels.

PREDICTED

Cu Ci Sc Cs
Overall
Accuracy

Cu 0.80635 (903393) 0.00324 (3634) 0.17718 (198504) 0.01322 (14811)
Ci 0.02636 (92099) 0.88292 (3084850) 0.00001 (29) 0.09071 (316942)
Sc 0.12725 (228286) 0.00044 (782) 0.87065 (1561982) 0.00166 (2983)

E
X

P
E

C
T

E
D

Cs 0.01354 (38807) 0.15790 (452434) 0.02649 (75911) 0.80206 (2298080) 0.84050

A visualisation of the per-pixel classification of clouds can be seen in Figure 6 and

mixed cloud types in Figure 7, which also includes a comparison to manually as-395

signed labels. This shows that most pixels are labelled correctly by our method, and

the error in the classification is like due to strong similarities in appearance between

Cumulus and Stratocumulus cloud types. The sun, lens flare and other world objects

such as lamps and buildings are masked in the images.

In previous methods, the results are reported based on the dominant cloud type400

in the image. Our method can also classify the dominant cloud type from the per-
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Clearsky

Figure 6: Classification result for Cu (top), Sc (middle) and Ci (bottom) cloud image.

pixel labelling that our method produces by returning the label associated with the

largest number of pixels. A 98% accuracy, including results for clear sky images,

was obtained by the aforementioned cross validation technique when using this

method. Table 3 shows a comparison between our method and the average results405

reported by related work on cloud type classification of whole sky images. We com-
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Cumulus

Stratocumulus
Cirrus

Clearsky

Figure 7: Results for the classification when the input includes different cloud types. The image on top
was taken when Stratocumulus clouds have started to form below Cirrus clouds, and the bottom image
includes a mixture of Stratocumulus, Cumulus and Cirrus clouds. Left: Input image, Middle: Classified
image with our method, Right: Manual labelling of the input image. Most of the pixels have been labeled
correctly, and the remaining error in these images is likely due to the similarity in appearance between
Cumulus and Stratocumulus clouds.

pare with the following methods: Heinle et al. [6] which classifies the clouds into

7 cloud types using a training set of 200 images. The method by Cheng and Yu [1]

uses 3,000 images for training and classifies images into 6 cloud types using block

based classification. Li et al. [2] and Gan et al. [14] used 5,000 and 1,000 images410

respectively and classified the clouds into cirriform, cumuliform, stratiform, clear-

sky and mixed cloudiness. For a more detailed discussion of these methods, please

see Section 2. The results from our work show a competitive performance with the

state-of-the-art. However, these results are focused on whole sky cloud type classifi-

cation, whereas our approach also performs per-pixel cloud type classification. We415

additionally show further results in Figure 8.
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Table 3: A comparison of whole image classification results based on authors reported results.

Heinle et al. [6] Li et al. [2] Cheng and Yu [1] Gan et al. [14] Our Method
75% 90.9% 90% 97% 98%

Cumulus

Stratocumulus
Cirrus

Clearsky

Figure 8: Additional classification results for a variety of cloud types.
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Cumulus

Stratocumulus
Cirrus

Clearsky

Figure 9: A failure case for the classification. In this case, the dominant cloud type should be Cumulus,
however the classifier has labelled regions as being Stratocumulus (middle image). Manual labelling
shown on the right illustrates that the error in classification is mostly distributed towards the center the
clouds. This is partially due to Cumulus and Stratocumulus clouds having similar appearance, especially
when they subtend large regions of the image.

We investigated the performance of our method when using pre-labelled clear sky

pixels versus automatically extracting features from predominately clear sky images.

The results of this show a significantly lower accuracy of 0.67 for classification when

using features extracted from clear sky images, compared to 0.84 with our method.420

This is due to the features in predominately clear sky images being significantly dif-

ferent to the features in regions of clear sky in a cloudy image.

Figure 9 shows an example of a failure case of our method. In this image, the clouds

are largely Cumulus, whereas the classifier has assigned a mixture of the labels of

Cumulus and Stratocumulus to this image, as can be seen when compared to the425

manually labelled image on the right. This is because of the similarity of appear-

ance of Cumulus and Stratocumulus, especially when these cloud types subtend a

large region. This leads to similarities in the RFVs, and although this is captured

in the histogram, there is not enough information to disambiguate the cloud types.

However, the classifier does produce correct labels in regions of this image where430

there is a clearer match between the features captured and the RFVs. This issue will

be resolved in future work through capturing larger datasets, and fine tuning cluster

sizes during clustering. However, this is a rare occurrence in our dataset, and as can

be seen in Figure 6 and Table 2, our method produces the correct result in the vast

majority of cases.435
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7. Conclusion and Future Work

This paper presents the first per-pixel classification of cloud types from HDR images.

We propose a weakly supervised approach, requiring a minimal amount of user in-

put to train the system. Our method extracts statistical and structural features from

a hierarchy of patches, and clusters them into RFVs which are linked to the cloud440

types from the initial labelling. When classifying images, our approach efficiently

uses the hierarchy of RFVs to label pixels with high accuracy for both per-pixel la-

belling (84%) and also achieves state-of-the-art accuracy for whole sky cloud cover

classification.

In future, we intend to expand the number of cloud types used for training to cover a445

wider range of cloud formations. We also intend to collect a larger database of HDR

whole sky images, and investigate other machine learning approaches for classifica-

tion. With a larger HDR sky image database, it could be possible to bootstrap a CNN

classifier based on our initial classification.
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