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Abstract

A frequently asked question in quantitative research is how to compare two
samples that include some combination of paired observations and unpaired
observations. This scenario is referred to as ‘partially overlapping samples’.
Most frequently the desired comparison is that of central location. Depend-
ing on the context, the research question could be a comparison of means,
distributions, proportions or variances. Approaches that discard either the
paired observations or the independent observations are customary. Existing
approaches evoke much criticism. Approaches that make use of all of the
available data are becoming more prominent. Traditional and modern ap-
proaches for the analyses for each of these research questions are reviewed.
Novel solutions for each of the research questions are developed and explored
using simulation. Results show that proposed tests which report a direct
measurable difference between two groups provide the best solutions. These
solutions advance traditional methods in this area that have remained largely
unchanged for over 80 years. An R package is detailed to assist users to per-
form these new tests in the presence of partially overlapping samples.
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Chapter 1

Introduction

Partially overlapping samples are defined as samples that contain both paired
observations and independent observations. Research into the framework
surrounding two partially overlapping samples is motivated in this chapter.
Extant solutions to the partially overlapping samples problem are reviewed.
Aims and objectives are articulated regarding the provision of solutions to the
two partially overlapping samples framework.

1.1 Motivation

A question that is often asked in research is how to compare the means of
two samples that include some combination of paired observations and un-
paired observations. These scenarios are referred to as ‘partially overlapping
samples’ (Martinez-Camblor, Corral, and De La Hera, 2013, p.78). Various
other terminology used in the literature to refer to this scenario include; ‘cor-
related variates with missing observations’ (Bhoj, 1978), ‘combined samples
of correlated and uncorrelated data’ (Looney and Jones, 2003), ‘partially
paired data’ (Samawi and Vogel, 2011), ‘partially observed data’ (Ramosaj,
Amro, and Pauly, 2018), a ‘mixed design’ (Mantilla and Terpstra, 2018), and
‘partly depending data’ (Stigler et al., 2018).

Consider Figure 1.1 which depicts scenarios where there are two sam-
ples, each with a different number of paired observations and independent
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observations.

Figure 1.1: Examples of partially overlapping samples. In each scenario
each of two samples are represented by a circle. The paired observations are
represented by the overlap and shaded black. From left to right the graphic
shows a decreasing number of paired observations. The relative sample sizes
are represented by the size of the circle.

It is not well established how to proceed for the scenarios represented in
Figure 1.1 where there is partial overlap. If the number of pairs is large,
a ‘standard’ approach is to perform the paired samples t-test on only the
paired observations (Looney and Jones, 2003). Conversely, if the number of
independent samples is large, a ‘standard’ approach is to perform the inde-
pendent samples t-test on only the independent observations (Looney and
Jones, 2003). The exclusion of data can lead to information loss (Ramosaj
and Pauly, 2017). These approaches have adverse consequences on the power
of the test. Approaches that discard data are likely to maintain adequate
power if the number of discarded observations is relatively ‘small’ and the
sample sizes are relatively ‘large’. Approaches that discard observations to
perform a basic traditional test are referred to as naive approaches (Mantilla
and Terpstra, 2018; Guo and Yuan, 2017).

An alternative approach that is commonly applied, is to perform the inde-
pendent samples t-test on all of the available data (Samawi and Vogel, 2014a).
However, this is less powerful than a paired samples approach and ignores the
fact that there are pairs. A further alternative approach is to impute data,
but this can lead to incorrect and inconsistent conclusions (Ramosaj, Amro,
and Pauly, 2018; Zhu, Xu, and Ahn, 2019). Basic imputation approaches
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are biased solutions (Schafer, 1997). Mean imputation reduces the varia-
tion in the data set. Regression imputation inflates the correlation between
variables. Some of the more sophisticated techniques, expected maximisa-
tion and multiple imputation, minimise the bias of the parameter estimates
(Musil et al., 2002; Dong and Peng, 2013). However, these methods do not
fully control the Type I error rates of the resulting paired samples t-test
(Ramosaj, Amro, and Pauly, 2018). In addition, imputation techniques as-
sume that data is missing and does not take into account that samples may
be partially overlapping by design.

To demonstrate the breadth of the problem, the following list illustrates
some situations where partially overlapping samples can occur:

1. A matched pairs design where some participants have no similar at-
tributes. In a matched pairs design, pairs are determined based on
similar attributes, but it may not be possible to find an appropriate
match for all observations (Cochran, 1953).

2. An independent samples design, which inadvertently contains paired
observations. In an example by Looney and Jones (2003), participants
were randomly allocated to either placebo or active treatment and were
each to provide one measurement on the response variable, however
some participants allocated to the active treatment group received the
placebo by mistake. For the participants where the error was made the
response variable was recorded following the placebo, these participants
were then given the active treatment and the response variable again
recorded. The appropriateness of this may not be without question, but
the researchers decided to treat the participants providing response for
both treatments as paired observations.

3. Two groups with some common element between both groups. Paired
observations and independent observations may be acquired by design.
For example, when comparing a treatment for myopia with a treatment
for hyperopia, where some individuals require treatment for both. An-
other example would be the comparison between prices on Amazon and
eBay, where not all products are sold by both.
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4. A design which includes both paired observations and unpaired ob-
servations, due to limited resource of paired observations. When a
resource is scarce, researchers may only be able to obtain a limited
number of paired observations, but would want to avoid wastage and
also make use of the independent observations. For example, in a clini-
cal trial assessing the performance of kidneys following transplantation,
one group incorporates a new technique that reconditions the kidney
prior to the transplant, and one group is the control group of standard
cold storage (Hosgood et al., 2017). When the kidneys arrive at the
transplanting centre in pairs, one is randomly allocated to each of the
two groups. When a single kidney arrives at the transplanting centre,
this is randomly allocated to one of the two groups in a 1:1 ratio. An-
other example is given in cancer genomic experiments where either the
normal tissue or tumour tissue for an individual is not large enough
for extraction (Qi, Yan, and Tian, 2018). Further examples are given
by Stigler et al. (2018) where the femurs and mandibles between young
and old mice are compared, and where samples are taken from a human
cadaver.

5. The observations of a paired samples design and a separate independent
samples design are combined. In empirical research, paired samples
and independent samples may be obtained in separate tranches of a
study. This could arise in a situation where practices are different,
for example a clinic taking measurements at baseline and followup, a
clinic only taking measurements at baseline and a clinic only taking
measurements at follow up.

6. Observations taken at two points in time, where the population mem-
bership changes over time but retains some common members. When
observations are taken on the same study unit at two points in time, it is
anticipated that the dependent variable is recorded on both occasions,
thus forming paired observations. However, where there is a natural
turnover of membership of a group there may be study units that are
only available to provide a response on one of the two occasions, thus
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forming independent observations. For example, in a study by Banks
et al. (2014) to assess dementia care, a questionnaire was conducted on
two occasions. Due to the turn-out of participants changing at each
session, 83 responses were obtained at Time 1, and 89 responses were
obtained at Time 2. The approach taken by Banks et al. (2014) was
to perform the independent samples t-test on all of the data. This
approach ignored the fact that some observations are paired.

7. A paired samples design, where some observations are untraceable. Sce-
narios may occur when it may not be able to identify the natural pair-
ing, for example if the pair includes the biological mother and biological
father of a child where the latter is ‘unknown’. In a medical context,
the status for a response variable in some participants may be difficult
to detect (Tian, Zhang, and Jiang, 2018).

8. A paired samples design, which inadvertently contains independent ob-
servations. Perhaps the most frequent occurrence of partially over-
lapping samples is a paired samples design with missing observations
(Martinez-Camblor, Corral, and De La Hera, 2013; Ramosaj, Amro,
and Pauly, 2018). In a medical context where data is missing due to
participant drop-out, this can often lead to independent observations
in one sample only.

The consequence of poor study design can be the presence of partially
overlapping samples, as exhibited in Scenario (2). The need for good research
design cannot be over-stressed.

If partially overlapping samples do not occur by design, for example in
Scenario (8), it is necessary to consider why the paired samples are incomplete
(Kang, 2013). When data are Missing Completely At Random (MCAR), the
reason for missing data is not related to the value of the observation itself,
or other variables recorded. The assumption of MCAR is often unlikely to
be valid, nevertheless it is often assumed (Leon et al., 2006). One approach
to verify this assumptions is to compare the Sample 1 paired observations
against the Sample 1 observations where the corresponding Sample 2 ob-
servations are not present (Leon et al., 2006). Examples of data that are

5



MCAR include; a question in a survey that is accidentally missed, or data in
a laboratory experiment that is accidentally lost or damaged. If incomplete
observations are MCAR, it is reasonable to discard the corresponding paired
observations without causing bias (Donders et al., 2006).

If data are Missing At Random (MAR), they are missing based on charac-
teristics not directly associated with the missing observation itself. However,
the missing data is related to another variable in the dataset. The discarding
of information that are MAR is likely to cause bias, therefore the standard
approach of pairwise deletion is not recommended (Schafer, 1997; Donders
et al., 2006). If data are Missing Not At Random (MNAR), the probability
that an observation is missing, directly depends on the value of the observa-
tion being recorded. When data are MNAR, there is no statistical procedure
that can eliminate potential bias (Musil et al., 2002). This is particularly of
concern for analyses with missing data because it is difficult to distinguish
between data that is MAR and data that is MNAR. Nevertheless, if the
amount of missing data is small, the bias is likely to be inconsequential. The
literature suggests that up to 5% of observations missing is acceptable (Gra-
ham, 2009; Schafer, 1997). There are some that take a more liberal stance
suggesting that up to 20% of data missing may be acceptable (Schlomer,
Bauman, and Card, 2010).

Standard statistical software often perform the paired samples t-test dis-
carding unpaired observations (Zhu, Xu, and Ahn, 2019). This is often done
without any warning to the user. Examples of this include SPSS, SAS and
Unistat. Caution should be exercised when employing these software because
users may be tempted to analyse only the complete pairs when readily pre-
sented with the opportunity, and not realise the consequences of not using
all of the data. The ‘scipy.stats’ module within Python will not perform a
related samples t-test with unequal length arrays. Minitab and the default
‘t.test’ in R present similar error messages when a paired samples t-test is
selected for unequal sample sizes. Python, Minitab and R at the very least
make users aware there are considerations to take into account with the anal-
ysis they are trying to perform.

As an aside, Bedeian and Feild (2002) propose three ways that the paired
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samples t-test could be used, if anonymity means that the pairings are not
known; i) arranging observations from one group in ascending order, and from
the other group in descending order, ii) arranging observations in both groups
in such a way that the correlation between them is zero, iii) using previously
known estimates for the correlation. These methods do not solve the problem
of using all of the available data if the number of observations in both groups
differ. There are also issues how to order the data if there are tied scores.
Although the authors state that ρ = 0 is achieved by randomly sorting,
algorithms may be required to find the arrangement for this, and it may not
always be possible to achieve the required correlation by these methods of re-
ordering. A random pairing will have a zero correlation structure on average,
but the genuine paired data would most likely have a non-zero correlation
structure. Furthermore, Bedeian and Feild (2002) cite Zimmerman (1997)
so they should be aware of the perils of negatively correlated data and the
fact that the paired samples t-test is less powerful when ρ = 0. Bedeian and
Feild (2002) are concerned with a special case where the pairings are not
known, but this highlights the issues with ad-hoc approaches that may also
be performed by some researchers in the scenarios above. These methods do
not represent justification for forcing the use of the paired samples t-test, but
due to the power of the paired samples t-test, a solution that can encompass
the paired t-test when the design warrants, would be desirable.

The pitfalls of these existing approaches emphasise the need to form sta-
tistically valid tests in the partially overlapping samples case, and to build a
consensus regarding best practice.

1.2 Previous research into the comparison of
central location for partially overlapping
samples

The partially overlapping samples framework is misunderstood (Martinez-
Camblor, Corral, and De La Hera, 2013). As part of the partially overlapping
samples framework, the research question could be a comparison of means,
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but could also be a comparison of distributions or variances. This is an
overview of the literature regarding the comparison of central location, which
has received the bulk of previous attention within the partially overlapping
samples framework.

The approach within recent literature is to explore ‘robustness’ of pro-
posed solutions via simulation. This term usually refers to Type I error
robustness. The ‘Type I error rate’ of a statistical test is the proportion of
times a true null hypothesis is rejected. Thus ‘Type I error robustness’ is
defined as a statistical test that rejects a true null hypothesis at the same
rate as the nominal significance level. For example, for 10,000 iterations of
sample generation where the null hypothesis is true, a Type I error robust
solution would reject the null hypothesis approximately 500 times at the 5%
significance level, indicating a Type I error rate of approximately 5%. An
illustration of this is given in Section 2.4.

Amro and Pauly (2017) define three categories of solution to the partially
overlapping samples problem that use all available data and do not rely on
resampling methods or Bayesian inference. The categories are; tests based on
maximum likelihood estimators (Section 1.2.1), weighted combination tests
(Section 1.2.2), and tests based on a simple mean difference (Section 1.2.3).
Bayesian techniques could be explored, but this research focuses on frequen-
tist methods because they are commonly applied in many disciplines.

1.2.1 Maximum likelihood estimators

Early literature on partially overlapping samples focused on maximum likeli-
hood estimates for Normal distributions, when data are missing by accident
rather than by design. Lin (1973) use maximum likelihood estimates for the
specific case where data is missing from one of the two groups. Lin and
Stivers (1974) apply this to a more general case, but find no single solution
is applicable. For normally distributed data, Ekbohm (1976) compared Lin
and Stivers (1974) solutions with similar proposals based on maximum like-
lihood estimators. He used simulation methods to compare these methods
to the standard approaches of using the independent samples t-test using all
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of the data, and the paired samples t-test discarding incomplete pairs. The
results reveal that the most powerful test of those that maintain nominal 5%
Type I error rates when ρ = 0 is the independent samples t-test. For ρ ≥ 0.5
the paired samples t-test has greater power than the other tests considered.

Guo and Yuan (2017) reviewed parametric solutions under the condition
of normality, and recommend the Lin and Stivers (1974) maximum likelihood
approach when the normality assumption is met. However, Amro and Pauly
(2017) demonstrate that this maximum likelihood estimator approach has an
inflated Type I error rate under normality and non-normality.

Maximum likelihood proposals are complex mathematical procedures,
which would be a barrier to some analysts in a practical setting. A re-
lated but more practical solution available in most standard software is to fit
a mixed model using all of the available data. In a mixed model, effects are
assessed using Restricted Maximum Likelihood estimators ‘REML’. Within
the mixed model the group is declared as a repeated measures fixed effect
and the observation units are declared as a random effect. Mehrotra (2004)
indicates that for positive group correlation, this REML approach is a Type
I error robust and more powerful approach than competing approaches.

1.2.2 Weighted combination tests

Weighted combination tests are where test statistics for independent sam-
ples and paired samples are combined, often weighted using complex meth-
ods. These tests do not answer the fundamental question of the difference
between the two groups on the numerator. Neither do these proposals have
a denominator that represents the standard error of the parameter differ-
ence. It would be difficult to obtain confidence intervals for the difference
between means using these weighted approaches. Further issues arise with
the creation of a non-parametric test based on these approaches.

A method by Bhoj (1978) demonstrates reasonable Type I error robust-
ness, although they did not consider situations that violate the normality
assumption (Derrick, White, and Toher, in press). Uddin and Hasan (2017)
optimised the weighting constants used by Bhoj (1978) so that the combined
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variance of the two elements is minimised. Yu et al. (2012) reveal that a sim-
ilar technique proposed by Kim et al. (2005) does not always satisfy liberal
robustness criteria.

Samawi and Vogel (2014b) and Martinez-Camblor, Corral, and De La
Hera (2013) proposals are in principle adding two t-tests together, paired
samples and independent samples, and treating the combination as a t-
statistic. It is not statistically correct for small sample sizes that two t-
distributions can be added together to form a t-distribution. The weights
Samawi and Vogel (2014b) use of √γ and

√
1− γ are not ideal, when taking

a square root of the weighting function, γ, the weights will not accurately
reflect the sample size ratio of the observations in the two samples.

A familiar weighted combination based approach from meta-analysis is
to obtain the p-value for a paired samples test (discarding unpaired obser-
vations) and the p-value for an independent samples test (discarding paired
observations). These are then combined using a weighted z-test (Stouffer et
al., 1949). Under Stouffer’s method, Zcombined, the p-values are transformed
to Normal scores. Let φ be the standard Normal cumulative distribution,
then the sum of two independent normally distributed variables is a nor-
mally distributed variable as follows:

Zcombined =
∑
γiZi√
γ2
i

where Zi = φ−1(1− pi).

In general it is usual that the weights γi are determined by the sample
size (Chen, 2011). Alternatively these weights could be calculated so as
to maximise power, but there is no one way of trying to decide optimal
weights and this would be calculation intensive. Zcombined would be a method
that practitioners would be more likely to buy in to if weights are based on
sample sizes. Key advantages for this technique are that; it can be performed
without the requirement of bootstrapping, it can be more easily extended to
the situation where there are more than two groups to be compared, and it
can be more easily extended to the non-parametric situation.

There are other methods for combining p-values of independent tests,
and there is no uniformly most powerful test (Whitlock, 2005). A noteworthy
alternative is the generalised Fisher test proposed by Lancaster (1961). When
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used to combine p-values from independent tests, the latter method is similar
but more powerful (Chen, 2011). The key disadvantage of these techniques
is that confidence intervals for the mean difference are not easy to obtain.
Also of note is that multiple separate tests are required before applying this
test.

1.2.3 Tests based on a simple mean difference

These test statistics have a form where the numerator is the difference be-
tween two means with a denominator representing the standard error of the
difference, thus easing interpretation of the results.

Looney and Jones (2003) proposed a test statistic construction formu-
lated as a linear interpolation between the paired samples z-test and the
independent samples z-test. This uses the standard Normal distribution to
calculate p-values. This is known as the corrected z-test, Zcorrected, and is
given as:

Zcorrected = X̄1 − X̄2√
S2

1
na+nc + S2

2
nb+nc

− 2ncSx
(na+nc)(nb+nc)

As per Table 1 on page xi, X̄1 is the mean of Sample 1, X̄2 is the mean
of Sample 2, S2

1 is the variance of Sample 1, S2
2 is the variance of Sample

1, na is the number of observations in Sample 1 only, nb is the number of
observations in Sample 2 only, nc is the number of pairs. Sx is a measure of
the covariance between the paired observations only i.e. Sx = ρ× S1c × S2c.

In extreme scenarios where there are no paired observations or alter-
natively no independent observations, this test defaults to the independent
samples z-test or alternatively the paired samples z-test. For example, for
a value of nc = 0 this would result in the test statistic defaulting to the
independent samples z-test as below:

Zcorrected = X̄1 − X̄2√
S2

1
na+0 + S2

2
nb+0 −

0
(na+0)(nb+0)

= X̄1 − X̄2√
S2

1
n1

+ S2
2
n2
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The authors demonstrate that when only 10% of the sample is paired, the
naive independent samples t-test performs equally as well as Zcorrected. When
the paired sample is 50% or 90%, Zcorrected to a better extent maintains the
Type I error rate relative to the independent samples t-test on all of the data.
However, the simulation design considered equal variances only.

Looney and Jones (2003) do not give guidance to how ‘large’ the samples
should be for their z-test, but the paired sample size must be ≥ 3 so that
covariance can be calculated. The covariance is calculated based only on the
paired observations. Uddin and Hasan (2017) offer a minor adjustment to the
calculation of the covariance, however the issue for small sample sizes remain.
The test constructed by Looney and Jones (2003) gives credence to the theory
that a t-statistic constructed in a similar manner could be used in a greater
number of conditions for smaller sample sizes. The method by Looney and
Jones (2003) continues to be promoted as one of the best solutions to the
partially overlapping samples problem (Looney and McCracken, 2018).

1.3 Aims and Objectives

The principle aim is to develop a complete framework of recommendations
for the problem of two groups with partially overlapping samples. To achieve
this goal, preliminary investigation into the robustness of extant solutions is
performed [see Chapter 2], which informs the derivation of proposed solutions
[see Chapter 3]. The experimental design for assessing the proposed solutions
is then defined [see Chapter 4].

Within this framework, the aims are to facilitate statisticians and prac-
titioners in the analyses of partially overlapping samples for:

I a comparison of means between two groups, assuming normality [see
Chapter 5].

II a comparison of means and/or distributions between two groups, for
continuous data, not assuming normality [see Chapter 6].

III a comparison of means and/or distributions between two groups, in the
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presence of a single or multiple outliers [see Chapter 7].

IV a comparison of means and/or distributions between two groups, for
ordinal data [see Chapter 8].

V a comparison of proportions between two groups [see Chapter 9].

VI a comparison of variances between two groups [see Chapter 10].

1.4 Declaration

This thesis, and the publications cited in the coming chapters where I am
the lead author, are my own work.
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Chapter 2

Literature review and
preliminary investigation

The literature on the assumptions of the paired samples t-test and the inde-
pendent samples t-test are discussed. This leads to the consideration of al-
ternative approaches when the assumptions of these tests are violated. Tests
reviewed in this chapter inform solutions given in Chapter 3. Given the
concern for violations to assumptions, and the alternative tests available,
common practice is to perform preliminary tests of the assumptions before
deciding on an appropriate test. This chapter concludes with a review of the
preliminary testing process.

2.1 History of the t-test

The t-test is a long established statistical inference technique. In its incep-
tion, it was used to test if the mean of a sample is equal to a hypothesised
population mean. The t-statistic and t-distribution were developed by the
British statistician William Gosset, published alias ‘Student’ (1908). The
context was studying the yields of varieties of barley at the Guinness brew-
ery in Ireland for whom he worked. This original paper has received relatively
few citations compared to its frequent use1. If more papers making use of

1Citations = 1,202. Google Scholar [Feb 2020].
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the t-test were to cite its origins it would be among the most cited of all
time. The most cited statistics papers are not necessarily the papers that
statisticians would deem to be the most important (Van Noorden, Maher,
and Nuzzo, 2014).

Before his death in 1937 aged 61, William Gosset went on to produce sev-
eral works under his pseudonym. His criticism of a famous milk experiment
documents the importance of random allocation in a study design to protect
internal validity (‘Student’, 1931).

It was Fisher (1925) and in subsequent editions of his book, who was
able to show that the t-test could be used in many circumstances, including
where there is more than one sample to be compared. The t-test in its various
forms is believed to be the most commonly performed statistical test (Creech,
2018).

There is some colloquial belief that the ‘t’ in ‘t-distribution’ and ‘t-
statistic’ is an acronym for the word ‘test’, however this has the bizarre
connotation that the ‘t-test’ would be correctly known as the ‘test-test’. The
first known reference to Gosset’s test as the ‘t-test’ was Fisher (1925). He
does not explain his reason for the choice of name for the t-statistic, a likely
argument given by some historians is that ‘t’ was simply an available letter.

The t-test has been developed into many forms, for which there are ex-
tensive comparisons in the literature. The paired samples t-test and the
independent samples t-test are parametric tests of central location, the pa-
rameter being the mean.

2.2 Assumptions of the t-test

For an experimental design consisting of randomly selected naturally occur-
ring pairs of observations, a paired samples t-test is typically used to take
the pairing into account. Examples include; a split plot design, randomised
block design or a repeated measures design. A paired samples t-test may
also be referred to as a ‘dependent samples’ t-test or a ‘correlated samples’
t-test. A paired samples design can also occur where observations are not
naturally paired, but are matched based on similar characteristics, thus the
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terminology ‘matched pairs’ t-test is also appropriate. Fradette et al. (2003)
show that the paired samples t-test, T1, can be written as:

T1 = X̄1 − X̄2√
S2

1
nc

+ S2
2
nc
− 2ρS1S2

nc

(2.1)

The paired samples t-test follows Student’s t-distribution with degrees
of freedom equal to v1 = nc − 1. A simplified, identical form of the paired

samples t-test can be written as: T1 = d̄

Sd/
√
nc

where d̄ is the mean of the differences i.e. X̄1 − X̄2, and Sd is the one
sample standard deviation of the differences. Given two normally distributed
populations with means µ1 and µ2, and variances σ2

1 and σ2
2, the sampling

distribution of the differences, are normally distributed with mean µ1 − µ2,
and variance σ2

1/n1 + σ2
2/n2. In other words, independently and identically

distributed N(µ,σ2) differences can be analysed using the paired samples
t-test (British Standards Institution, 1975).

The concept of normality requires observations to form a continuous bell
shape curve around the mean to ±∞. In reality such a distribution does
not exist, so when the assumption applies it requires an approximation to
normality. The assumption stated in textbooks that observations have to
be normally distributed is not strictly correct for two sample tests (Totton
and White, 2011). If sample observations are approximately normally dis-
tributed, then the difference in the sample means are approximately normally
distributed. Thus the question is how closely approximated to the Normal
distribution the differences need to be in order for the t-test to be valid, and
the extent of the impact to violations. Under the law of the Central Limit
Theorem, the distribution of sample means can be approximated by the Nor-
mal distribution regardless of the shape of the population distribution. Thus
as sample size increases, the differences in means approximate to the Nor-
mal distribution. Sawilowsky and Blair (1992) suggest that sample sizes of
30 (or more) are adequate if the data is not highly skewed or contaminated
by outliers. The t-distribution asymptotically approximates to the Normal
distribution. The t-test is exact under normality, and asymptotically exact
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when the assumption of normality is relaxed (Ramosaj, Amro, and Pauly,
2018).

Inherent within the normality assumption is the condition that observa-
tions are from a continuous metric distribution. Data should not be subjected
to excessive rounding which would lead to the data being on a discrete scale,
typically the rounding interval should not exceed σ/4 (Eisenhart, 1947).

Another assumption of the t-test is that observations are independently
and identically distributed. This means that observations must be mutually
exclusive to other observations.

Laerd (2018) list an additional assumption as the presence of ‘no signif-
icant outliers’. However, they do not suggest a formal test for outliers, this
assumption is subject to further investigation in Chapter 7.

The design of an experiment using the independent samples t-test should
have observations sampled from the population or distribution in two mutu-
ally exclusive groups. There should be no reason to believe observations from
one sample are correlated to observations from the other sample (Zimmer-
man, 1997). The independent samples t-test, T2, is devised as the differences
in the sample means divided by the standard error of the differences so that:

T2 = X̄1 − X̄2

Sp
√

1
n1

+ 1
n2

(2.2)

where Sp is the pooled standard deviation

√√√√(n1 − 1)S2
1 + (n2 − 1)S2

2
(n1 − 1) + (n2 − 1)

Note that Bessel’s correction factor is used, i.e. (N −1)/N , as per the re-
lationship between the population variance and the sample variance (Kenney
and Keeping, 1951, p.161).

The independent samples t-test follows Student’s t-distribution with de-
grees of freedom equal to v2 = n1 + n2 − 2.

An additional assumption when performing the independent samples t-
test is that the variances are equal between the two groups. The population
variances are assumed to be equal and thus the pooled standard error is
appropriate. If subjects are randomly assigned to groups this assumption
should hold, but it may not hold in naturally occurring samples.
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When the assumptions of the test are true, the independent samples t-
test is the ‘most powerful unbiased test’ for detecting differences in means
(Sawilowsky and Blair, 1992). For this to be true a further implicit assump-
tion of the independent samples t-test is that there is no correlation between
the two groups.

Repeated measures designs can have compromised internal validity, e.g.
learning or memory effects. Likewise a matched design could have compro-
mised internal validity through poor matching. However, if a dependent
design can avoid extraneous systematic bias, then paired designs can be ad-
vantageous when contrasted with between subjects or independent designs.
These advantages arise by each pair acting as its own control helping to have
a fair comparison. This allows differences or changes between the two sam-
ples to be directly examined, i.e. focusing directly on the phenomenon of
interest. This has the result of removing systematic between pairs differ-
ences, leading to increased power or a reduction in the sample size to retain
power compared with the alternative independent design. A paired design is
usually more efficient because less subjects are required to collect the same
amount of observations. In a paired design the degrees of freedom are less
than in an independent design with the same number of observations, poten-
tially resulting in a wider confidence interval. However, with effective pairing
the reduction in the standard error more than compensates for this and the
result is narrower confidence intervals (Johnson and Bhattacharyya, 1996).

The power of the paired samples t-test relative to the independent samples
t-test can be observed by considering relative effect sizes. Cohens’s d effect
size index is calculated as µ1 − µ2

σ
. Cohen (1992) shows that to identify

a difference in means for a small effect size of 0.2 with 80% power, the
number of observations required in each sample is 383 (v2 = 784), whereas
under the same conditions in a paired design 199 pairs are required (v1 =
198). Similarly for medium and large effect sizes the number of observations
required for a paired samples design is lower.

The impact of performing the independent samples t-test ignoring any
pairing, T all2 , was considered by Zimmerman (1997). His findings were that
for T all2 , the Type I error rate decreases as ρ increases through -0.5 to 0.5,
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being around the nominal 5% significance level when ρ = 0, whereas for
the paired samples t-test the Type I error rate remains close to the nominal
significance level for the entire range of correlations considered. The power
of the paired samples t-test increases as ρ increases through -0.5 to 0.5.
Zimmerman (1997) found that when ρ = 0 and for increasingly negative ρ,
T all2 is more powerful than the paired t-test for all sample sizes considered.
However, for negative values of ρ this is not a fair comparison due to the
different Type I error rates.

Even if there was a preconceived assumption that observations form pairs,
if the correlation is very small, Fradette et al. (2003) states that the inde-
pendent samples t-test should be used instead of the paired samples t-test.
However, Vonesh (1983) demonstrate that the paired samples t-test is more
powerful than the independent samples test when ρ = 0.25. In addition
Zimmerman (1997) demonstrates that small between group correlations can
distort the Type I error rate when using the independent samples t-test.

An alternative to the t-test, the point biserial correlation coefficient could
be calculated, this is Pearson’s product moment correlation coefficient with
one dichotomous variable and one continuous variable. The point biserial
correlation coefficient is a useful measure of effect size, and the p-value form
an independent samples t-test is equivalent to that from an assessment of the
point biserial correlation (Kornbrot, 2005).

As it forms part of the the expanded formula for the paired samples t-test
in Equation 2.1, the assumptions of Pearson’s correlation coefficient apply.
The sample value r is the maximum likelihood estimate of the population
correlation coefficient for bivariate normal data (Binder, 1984). However
the assumption that data are from a bivariate Normal distribution is not
crucial, ‘the correlation coefficient is informative about the degree of linear
association between the two random quantities regardless of whether their
joint distribution is Normal’ (Puth, Neuhäuser, and Ruxton, 2014, p.185).

It is known that Pearson’s correlation coefficient is only suitable for linear
correlation. This would suggest that designs that do not result in linear
correlations may not effectively be analysed using the paired samples t-test.

For negative correlation, the Type I error rate of the independent sam-
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ples t-test is distorted, and the power is lower for the paired samples t-test.
Negative correlation should be avoided where possible in the design of an
experiment.

Pearson’s correlation coefficient is Type I error robust to non-normality
when testing for correlation (Duncan and Layard, 1973). This includes cor-
relation on interval and ordinal measurement scales (Havlicek and Peterson,
1977). Exception to this Type I error robustness is when the sample size is
very small or the data are extremely non-normal (Zimmerman and Zumbo,
1993). Bishara and Hittner (2012) also found that Pearson’s correlation co-
efficient is Type I error robust, except in extreme scenarios when the number
of pairs is small (nc = 5) and both distributions are long tailed. Neverthe-
less for non-normal data, textbooks frequently give Spearman’s rank order
correlation as an alternative (Bishara and Hittner, 2012). Fowler (1987)
and Zimmerman and Zumbo (1993) found that for non-normal distributions,
Spearman’s rank correlation coefficient is more powerful than Pearson’s cor-
relation coefficient. However, Bishara and Hittner (2012) found that with
small sample sizes Spearman’s rank correlation coefficient is not Type I error
robust.

2.3 Violations of the assumptions

When assumptions of parametric tests are violated, Graybill (1976) identi-
fied four potential responses: i) Ignore the violation and proceed with the
planned statistical test. ii) Modify the test to account for the violation. iii)
Design a new model to satisfy the assumptions. iv) Use a non-parametric or
distribution free procedure. These four potential responses are considered in
turn.

i) In Section 2.3 the robustness of the independent samples t-test and the
paired samples t-test to violations of their assumptions is discussed alongside
the consequences of disregarding the assumptions.

ii) A well-known modification to a test statistic, applied when equal vari-
ances are not assumed, is considered in Section 2.4.

iii) Examples of designing a new model to satisfy assumptions include,
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taking trimmed means or transforming the data. These are considered in
Section 2.5.

iv) Non-parametric methods are summarised in Section 2.6.

2.3.1 Normality assumption

Zumbo and Jennings (2002) identify two types of non-normality: (i) samples
from non-normal distributions, and (ii) samples from inherently Normal dis-
tributions, but with outliers. Robustness of the t-tests for these two types of
non-normality are considered in turn.

Samples from non-normal distributions

The title of the article by Micceri (1989), ‘The Unicorn, The Normal Curve,
and Other Improbable Creatures’, sums up their assertion that normality is a
myth. Totton and White (2011) exhibit the serpentine nature of the normal-
ity assumption by referring to normality as ‘ubiquitous’ but also ‘mythical’.

Scenarios where distributions may not be normally distributed are iden-
tified by Nunnally (1994, p.160) as ‘(a) the existence of undefined subpopu-
lations within a target population having different abilities or attitudes, (b)
ceiling or floor effects, (c) variability in the difficulty of items within a mea-
sure, and (d) treatment effects that change not only the location parameter
and variability but also the shape of a distribution’.

To provide evidence that normality is a theoretical construct invented
by statisticians, Micceri (1989) obtained distributions from 440 real world
scenarios. It was found that only 28.4% were relatively symmetric, and
about 15.2% had tails that were approximately Normal. Micceri (1989, p.161)
concluded that ‘No distributions among those investigated passed all tests of
normality, and very few seem to be even reasonably close approximations’.

Whilst Micceri (1989) states that the implications of non-normality are
unclear, he does concede that the independent samples t-test could be Type
I error robust to departures from normality, even for extreme exponential
asymmetry seen in psychometric measures. Micceri (1989) also concedes
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that the independent samples t-test maintains reasonable power under these
conditions.

Sawilowsky and Blair (1992) performed simulation studies using vari-
ous sample sizes on eight non-normal distributions characterised by Micceri
(1989), and conclude that t-tests are robust with respect to Type I error rates
and power when sample sizes are equal or nearly equal, or samples sizes are
‘fairly large’. Boneau (1960) suggest sample sizes of 25-30 suffice. A common
non-normal distribution identified by Micceri (1989) is where there is a dis-
crete mass at zero with a gap between the distribution with the rest of the
observations, known as an L-shaped distribution. Sawilowsky and Hillman
(1992) investigated this distribution and concluded that except for the small-
est extreme unequal sample size they considered (5, 15), Type I error rates
are similar as observed for normally distributed data. Power curves in all
cases were a good match of those expected under normality. Sawilowsky and
Hillman (1992, p.242) conclude that the independent samples t-test is robust
to non-normality. ‘Although the power to find a treatment is diminished
with small samples, at least researchers can be assured that the power of the
t-statistic will be similar to that in Cohen’s tables for dependent variables
with this radically non-normal population shape’. This finding is consoli-
dated by Sullivan and D’Agostino (1992) who found that the independent
samples t-test is Type I error robust for small samples, even for a distribution
where as many as 50% of observations were zero.

Chaffin and Rhiel (1993) found no impact of kurtosis on the Type I error
rate of the one sample t-test. Wilcox (1990) also found that kurtosis has
little impact on the independent samples t-test. However for extreme levels
of skewness, Wilcox (1990) demonstrated that a two tailed test is not as
robust for smaller sample sizes.

When sample sizes are equal, the independent samples t-test is robust for
two samples from the Lognormal distribution or the Exponential distribution
(Zimmerman, 2004). Wilcox (1990) also show that the independent samples
t-test is robust if sample sizes are approximately equal, skew approximately
equal and sample sizes not too small.

Delaney and Vargha (2000) found that the independent samples t-test is
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not robust under moderate to high skew and/or kurtosis when sample size
<20, or when the groups have different levels of skewness. In addition, Saw-
ilowsky and Blair (1992) and Delaney and Vargha (2000) found that one
tailed tests are more sensitive to violations of non-normality. Bradley (1982)
found that the independent samples t-test is not robust for the L-shaped
distribution, even when applied to very large sample sizes. The L-shaped
distribution is highly positively skewed, this suggests that the robustness
of validity argument may be reasonable to some degree of the violation of
non-normality. Fagerland and Sandvik (2009a) recommend the independent
samples t-test for unequal sample sizes, only when the skewness is approxi-
mately equal in both samples.

Fradette et al. (2003) consider two groups of observations generated from
the Exponential distributed and then two groups of observations generated
from the Chi-squared distribution. Both the paired samples t-test and the in-
dependent samples t-test are robust when ρ = 0. For both distributions, the
independent samples t-test does not maintain the nominal Type I error rate
when ρ deviates from 0. For the paired samples t-test, there are some failures
to maintain Type I error rate within Bradley’s liberal criteria, particularly
for the Chi-squared distribution, as ρ→ −1. Discussion of the power proper-
ties reveals negligible difference between the independent samples t-test and
paired samples t-test when ρ = 0. For these non-normal distributions, the
paired samples t-test performs slightly better than the independent samples
t-test when ρ = 0.1, and the superiority of the paired samples t-test gradually
increases as ρ→ 1.

The literature reveals that conclusions with respect to comparisons of
the independent samples t-test against the paired samples t-test tests are the
same under non-normality as under normality. The adverse effects on both
tests are increased with severe non-normality.

Samples from inherently normal distributions but with outliers

Jennings, Zumbo, and Joula (2002) apply varying degrees of outlier contam-
ination to simulated normally distributed data, and conclude that generally
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the paired samples t-test retains robustness when outlier contamination is
symmetric. They note that the Type I error rate is quite stable for most
degrees of symmetric contamination considered. However, an inflation in
the Type I error rate is observed when extreme asymmetric contamination
is applied. If Type I error robustness is maintained, then power values are
maintained for medium and large effect sizes. Asymmetric contamination
results in a power loss for small effect sizes. However, the authors noticed a
paradox for low levels of symmetric contamination which increases the power.
This power advantage is exacerbated when sample size is small.

If there is some reason to believe outliers occur due to inaccurate data, or
that some observations come from separate populations, a proposed solution
to the violation is for the rejection of the offending observations, prior to
running statistical tests (Preece, 1982). Techniques are available for the
detection and removal of outliers. The removal of outliers can increase power.
However, it may not always be acceptable to remove outliers as this may bias
the result.

Simulations showing the relevance of this assumption are the subject of
Chapter 7.

2.3.2 Within sample independence assumption

Although subjects may be allocated randomly to a group, subjects within
that group may influence each other and thus the observations lose their
independence. This independence of observations within a group assumption
is considered in less detail in the literature. Typically this assumption is
taken as being true without the performance of preliminary tests to check
this. However, the implications of violations to this assumption are grave
(Zimmerman, 1997).

Type I error rates increase with positive within group correlations, and
Type I error rates decrease with negative within group correlation (Wieder-
mann and von Eye, 2013; Keller, 2014; Lissitz and Chardos, 1975). This
is true for the independent samples t-test and also for non-parametric tests
(Wiedermann and von Eye, 2013).
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The independent samples t-test is so non-robust to violations of the inde-
pendence within groups assumption that Keller (2014) suggests that regular
critical values from the t-distribution should not be used when this assump-
tion is violated. Keller (2014) performed 95 million t-tests to produce alter-
native tables of critical values. The discrepancy in Type I error rates from
the nominal significance level depends not only on the extent and direction
of the correlation but also sample size. It is likely that in the case of non-
independence it is the wrong choice to be testing based on the number of
subjects within a group, instead the group itself should be one observation
unit.

The implications of violations to the independence assumption are so fatal
that it is taken as given that should there be a violation of this assumption
in the partially overlapping samples case, statistical techniques cannot be
easily applied.

2.3.3 Equal variances assumption

Even if random allocation ensures baseline equality of variances, the treat-
ment may increase the variance for the experimental condition compared to
the control condition (Delacre, Lakens, and Leys, 2017).

It is well known that a violation to the equal variances assumption impacts
the validity of the independent samples t-test. Complications arise for the
independent samples t-test when variances are unequal, particularly when
the sample sizes are unequal. When the smaller sample size has the greater
variance, the probability of rejecting the null hypothesis when it is true is
higher than the nominal Type I error rate, the opposite is true when the larger
sample size has the greater variance. This is particularly problematic when
the smaller sample size has the greater variance (Zimmerman and Zumbo,
1993; Coombs, Algina, and Oltman, 1996).

This gives rise to the dilemma how to compare means in the presence of
unequal variances (heteroscedasticity). This question, applied to two inde-
pendent samples from Normal populations is known as the Behrens-Fisher
problem. Behrens (1928) provided a solution for this problem, which was
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validated using Fishers fiducial inference (Fisher, 1935; Fisher, 1941). How-
ever these solutions, namely the fiducial inference, were disputed by Welch
(1938), Welch (1947), and Welch (1951).

2.4 Modifying the test to overcome the equal
variances assumption

Derrick, Toher, and White (2016) explored the properties of Welch’s test
to confirm and identify the properties that make Welch’s test robust under
normality. The themes within that paper are explored in this section.

The form of the t-test not constrained to equal variances is:

T3 = X̄1 − X̄2√
S2

1
n1

+ S2
2
n2

(2.3)

As an alternative solution to the Behrens-Fisher problem, Welch (1938)
derived an asymptotic test that is highly accurate but not exact. The com-
plexity of this asymptotic test limits its practical use (Grimes and Federer,
1982). Welch (1938) also developed an approximation using degrees of free-
dom v3, which are an independent random variable equivalent to:

v3 = (n1 − 1)(n2 − 1)
(n2 − 1)c2 + (n1 − 1)(1− c)2 where c =

S2
1
n1

S2
1
n1

+ S2
2
n2

In a practical environment, Welch’s approximation can be used with little
loss of accuracy (Wang, 1971; Scheffé, 1970). Additionally, Welch’s test main-
tains better Type I error robustness and has better power properties than the
Behrens-Fisher solution (Lee and Gurland, 1975). Fay and Proschan (2010,
p.14) confirm that Welch’s test ‘is approximately valid for the Behrens-Fisher
perspective’. Furthermore ‘in the case of comparing two sample means, the
consensus in the literature seems to be the approval of Welch’s approximate
solution’ (Grimes and Federer, 1982, p.10). Thus the most commonly used
solution to the Behrens-Fisher problem is the separate variances t-test with
Welch’s approximate degrees of freedom, and is referred to henceforth as
Welch’s test.
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Derrick, Toher, and White (2016) show that the minimum value of v3 is
min {n1, n2} − 1.

The maximum value of v3 is derived as follows:

Let y2 = (n2 − 1)c2 + (n1 − 1)(1− c)2, then max v3 → min y2.

The turning point where dy2

dc
= [2(n2 − 1)c]− [2(n1 − 1)(1− c)] = 0 is:

(n2 − 1)c = (n1 − 1)(1− c)
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2
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The outcome of this property is that the degrees of freedom used in
Welch’s test are always less than or equal to the degrees of freedom used
in the independent samples t-test.

Preliminary simulations are performed to satisfy the use of Welch’s ap-
proximate degrees of freedom as a basis of a solution to the Behrens (1928)
problem. To demonstrate the impact of the degrees of freedom, the indepen-
dent samples test statistic T2 but with v3 degrees of freedom is considered.
Likewise, the test statistic T3 but with v2 degrees of freedom is considered.
These are compared against the standard approaches for the independent
samples t-test and Welch’s test. Two samples are generated from the Stan-
dard Normal distribution N(0, 1), and tested for equal means at the α = 0.05
significance level, two sided. This is repeated for 10,000 iterations. This is
applied to eight sample size and variance combinations. Table 2.1 summarises
the proportions of iterations where H0 is rejected, i.e. the Type I error rates.
Liberal robustness criteria by Bradley (1978) states that the Type I error rate
when the nominal α = 0.05 should be in the interval [0.025, 0.075]. Values
within this interval are highlighted in bold. More details on the simulation
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Table 2.1: Type I error robustness of independent samples t-tests, various
t-statistic and degrees of freedom (df) combinations.

na, nb σ1, σ2 T2, v2 T2, v3 T3, v2 T3, v3
5,5 1,1 0.050 0.045 0.050 0.045
5,5 1,2 0.056 0.047 0.056 0.047
5,100 1,1 0.053 0.012 0.110 0.056
5,100 1,2 0.001 0.000 0.093 0.060
100,5 1,1 0.050 0.011 0.108 0.055
100,5 1,2 0.295 0.153 0.118 0.052

100,100 1,1 0.049 0.049 0.049 0.049
100,100 1,2 0.050 0.049 0.050 0.049

Tests performed at α=5% significance level
T2, v2 : independent samples t-test
T2, v3 : equal variances t-statistic, Welch’s df
T3, v2 : unequal variances t-statistic, independent samples t-test df
T3, v3 : Welch’s test

mechanics used throughout can be found in Chapter 4.
Table 2.1 shows that Welch’s test, i.e. test statistic T3 with degrees of

freedom v3, is Type I error robust across all eight scenarios considered. For
unequal sample sizes and unequal variances, T2 used in conjunction with v2

or v3, and T3 used in conjunction with v2, do not satisfy Bradley’s liberal
Type I error robustness criteria. Welch’s degrees of freedom therefore repre-
sent an important property for controlling Type I error rates. However, the
composition of the test statistic, which takes into account the two separate
sample variances, is also important.

When sample sizes are equal or variances are equal, for any given data
set the test statistics for the independent samples t-test and Welch’s test
are equivalent. Therefore, the difference in p-values is a direct result of the
degrees of freedom used to calculate the critical value.

When variances are not equal, Welch’s estimated standard error impacts
the critical value, but this effect is smaller than the impact on the test statis-
tic. When the smaller sample size is associated with the larger variance, the
effect on the value of the test statistic is exacerbated.

When sample sizes are equal and variances are equal, both the inde-
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pendent samples t-test and Welch’s test perform similarly (Zimmerman and
Zumbo, 1993; Moser, Stevens, and Watts, 1989). Welch’s test maintains
nominal Type I error rates for comparing groups of discrete numerical data,
i.e. where the frequency of a number of events is recorded (Fagerland, Sand-
vik, and Mowinckel, 2011).

Welch’s test is Type I error robust for normally distributed data, in sce-
narios when the independent samples t-test is not. Additionally, in situations
where the independent samples t-test is Type I error robust, Welch’s test is
also. For the comparisons of two means from assumed Normal populations,
a general rule to preserve Type I error robustness is to use Welch’s test if in
doubt about the equality of variances.

When reporting the results of Welch’s test, historical convention is to
round the degrees of freedom down to the nearest integer (Ruxton, 2006).
This convention arises from the historical process of checking against statis-
tical tables. This convention ensures that the degrees of freedom estimate
is conservative. This practice remains current when reporting results from
statistical software (Weir, 2018). In addition, v3 ≤ v2 as shown earlier and
stated by Howell (2012). This property also ensures that the degrees of free-
dom estimate v3 is a conservative estimate of the true degrees of freedom.

2.5 Designing a new model

Potential solutions regarding remodelling the data include taking trimmed
means or transformations.

2.5.1 Trimmed means

A trimmed mean is the mean of an ordered data set, after a percentage of
observations have been removed from each tail.

The median is a consistent, unbiased estimator of the population mean,
but is less efficient than the sample mean or trimmed mean, but is more
sufficient than the trimmed mean. Trimmed means can be described as a
compromise between the mean and the median (Bunner and Sawilowsky,
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2002).
The removal of data in the calculation of a trimmed mean, warrants

the requirement for winsorizing variances in a test statistic making use of
trimmed means.

Due to its resistance and efficiency properties, trimming a data set and
then winsorizing the variances is often performed to remove extreme values
or skew from each tail of the distribution, and reducing the variability. Yuen
(1974) first proposed a test statistic such that Welch’s test is performed on the
trimmed means and winsorized variances. This is known as the as the Yuen-
Welch test, sometimes referred to simply as Yuen’s test. It is regarded as a
potential solution when the assumptions of normality and/or equal variances
are violated.

An important consideration when performing the Yuen-Welch test is what
the form of the null hypothesis being assessed is. Possible null hypotheses
include; the means are equal, the trimmed means are equal, the distribu-
tions are equal, or the medians are equal. Depending which null hypothesis
is considered, the robustness of the Yuen-Welch test differs (Fagerland and
Sandvik, 2009a). Although it is unlikely that a practitioner will be partic-
ularly interested in testing whether the trimmed means of two samples are
equal, Keselman et al. (2004) state that this is a reasonable null hypothesis
because it provides an estimate for typical or the majority of observations.
Keselman et al. (2002) and Lix and Keselman (1998) found that when the
null hypothesis is that trimmed means are equal, the Yuen-Welch test is Type
I error robust for the Normal distribution and the Lognormal distribution,
and has greater power than Welch’s test for the latter.

The recommended amount of trimming in the literature varies from 10%-
25% (Keselman et al., 2004). 10% or 15% trimming from each tail should
suffice to tightly control Type I error (Keselman et al., 2004). In the books
and articles reviewed, the typical default trimming applied is 10% or 20% per
tail. Alternative trimming procedures for the Yuen-Welch test are available.
However, when the trimming is less than 20% per tail, there is no conclusive
evidence of a practical advantage of replacing Yuen-Welch based approaches
with some other method (Wilcox, 2012). It should be noted that a confidence
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intervals for a trimmed mean are based on winsorized variances and so are
computationally complex and further detract from interpretation.

Fagerland and Sandvik (2009a) suggest that that under a null hypothesis
of equal means, Welch’s test is superior to the Yuen-Welch’s test. Under a
null hypothesis of equal distributions, Welch’s test again performs well, In
the case of unequal sample sizes when both sample distributions are highly
skewed with a small difference in variance between the groups, the Yuen-
Welch test is preferred over Welch’s test. If the null hypothesis is equal
medians, the Yuen-Welch test performs well.

Wiedermann and Alexandrowicz (2007) found when variances are un-
equal or the samples are from Lognormal distributions, test statistics using
trimmed means are not Type I error robust for assessing equality of means.

2.5.2 Transformations

Skovlund and Fenstad (2001) recommend that transformations are considered
to obtain normally distributed data in each sample, so that Welch’s test
can be performed. Scenarios where transformations may be appropriate are
heavily skewed distributions or for two sample distributions that do not have
the same shape.

Transforming data, for example using the Box-Cox transformation, often
overcomes violations of the normality assumption, so that traditional para-
metric tests can be applied. However, the Box-Cox transformation is not
robust with respect to unequal variances (Zarembka, 1990). Although pop-
ular, the Box-Cox transformation rarely results in both normality and equal
variances at the same time (Sakia, 1992).

Cohen and Arthur (1991) found that the independent samples t-test per-
formed on log transformed or squared transformed data exhibits satisfactory
Type I error robustness.

Even if practitioners are comfortable with the hypothesis of comparing
means of transformed data, a suitable transformation may not always be
found. However one transformation, that should always give the appearance
of normally distributed data is Normal scores transformations (McSweeney
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and Penfield, 1969). An example test is the Bell and Doksum (1965) test.
This involves ranking the data against an ascending random sample of ran-
dom Normal deviates. However, because a random sample is used, a different
result occurs each time the analysis is run.

Inverse Normal Transformations (INTs) based on Fisher and Yates (1938)
approximate Normal scores are the most powerful (Beasley, Erickson, and
Allison, 2009). The INT by Blom (1958) is the most commonly used. How-
ever it makes little difference which method is used because most are linear
transformations of one-another (Tukey, 1962).

Beasley, Erickson, and Allison (2009) apply INTs to multiple test statis-
tics and conclude that the use of transformed and rank data maintains the
Type I error rate, if the data prior to transformation would likewise. How-
ever, Beasley, Erickson, and Allison (2009) show that if the assumptions of
Welch’s test are violated, the INT procedure does not maintain the Type I
error rate, and it is often close to 100%. Looking more closely at the results
it is apparent that they are using groups with differing variances. When ap-
plying the different variances to data from the Chi-squared distribution for
example, the means are also be different, so what is actually being reflected
is very high power. This reiterates the importance of being clear what the
null hypothesis being tested is.

2.6 Non-parametric tests

When the normality assumption is violated, statisticians often turn to non-
parametric or distribution free methods, which make no assumptions about
the underlying distribution.

When there are three or more groups containing both paired observations
and independent observations, one non-parametric approach is the Skillings-
Mack test. This test is equivalent to the Freidman test when data are bal-
anced (Chatfield and Mander, 2009). For an unbalanced design the Skillings-
Mack test requires that any block with only one observation is removed. The
Skillings-Mack test therefore cannot be used in the two group situation. This
gives motivation for the development of appropriate tests for the two sample
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scenario.
The best known non-parametric test for two independent samples is

the Mann-Whitney-Wilcoxon U test, referred to henceforth as the Mann-
Whitney test. In textbooks by Mendenhall, Beaver, and Beaver (2012) and
Howell (2012), the null hypothesis of the Mann-Whitney test is reported as
‘the distributions are equal’. Fagerland and Sandvik (2009b) assert that the
null hypothesis is more correctly reported as probability (X > Y ) = 0.5. For
a comparison of two distributions, it is possible that the latter null hypoth-
esis is true, but for the samples to be from distributions of different shape.
When the distributions are equal other than in central location, the Mann-
Whitney test is a comparison of central location (Skovlund and Fenstad,
2001). However, the Mann-Whitney test is not recommended as a test for
a location shift when variances are not equal (Zimmerman, 1987; Penfield,
1994; Moser, Stevens, and Watts, 1989). Ultimately, the Mann-Whitney test
can detect differences in the shape of the two sample distributions, or their
medians, or their means (Hart, 2001).

The best known non-parametric test for paired samples is the Wilcoxon
rank sum test, referred to henceforth as the Wilcoxon test. A variation to
this for discrete data known as the Pratt test is introduced in Chapter 8.

Non-parametric tests typically involve ranking the data from the smallest
to largest and performing a test on the ranks. These methods are not without
criticism because they do not give an indication of the extent of the differ-
ence between any two consecutive ranks (Derrick and Toher, 2016). When
the central location is the same for each group, non-parametric tests can have
have poor power for detecting seemingly obvious distributional differences.
For example, Derrick and Toher (2016) compared the points given to coun-
tries in the 2016 Eurovision song contest by the jury and by the televote.
In this example the observations are paired by country. The mean and me-
dian number of points awarded by both the jury and the televote is fixed by
design. A Wilcoxon test comparing the distribution of the points awarded
by the televote against the points awarded by the juries, gives no evidence
that the distributions differ (Z = -0.546, p = 0.585). These conclusions are
counter-intuitive to the widely held belief that the jury and televote opinions
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show a wide disparity, countries with high diaspora perform better in the
televote. Similarly, Derrick and Toher (2016) contrast a new scoring system
that was used in this edition of the contest against the previous method.
The results of a test on the distribution of the ranks for the old method
compared to the distribution of the ranks for the new system, suggests that
the distributions for the two methods do not differ (Z = -1.500, p = 0.134).
However, in reality the positions of the countries in each scoring system are
quite different, including crucially the winner.

Fagerland and Sandvik (2009a) compared the independent samples t-test,
Welch’s test, Mann-Whitney test, Brunner-Munzel test, and the Yuen-Welch
test. Fagerland and Sandvik (2009a) conclude that there is not one test that
fits all conditions. The authors chart 16 tables of scenarios with varying
sample sizes, skewness and variance in two samples. For each scenario they
recommend the most appropriate test, with Welch’s test occurring most fre-
quently. When comparing two equally skewed distributions with equal vari-
ances, the Brunner-Munzel test and Mann-Whitney test are both identified as
appropriate tests. Seldom are either the Mann-Whitney test or the Brunner-
Munzel test the best test when the two sample variances are unequal, because
they are constantly outperformed by Welch’s test.

The Mann-Whitney test should only be used when variances are assumed
to be equal (Penfield, 1994; Moser, Stevens, and Watts, 1989). An alternative
to the Mann-Whitney test is the Fligner-Policello test. It is an adaption of
the Mann-Whitney test for tied values and unequal variances. Mickelson
(2013) confirms that this test also fails to control Type I error rates under
unequal variances, even for large sample sizes.

The minimum sample size that is required for the independent samples t-
test is two in each group, whereas for the Mann-Whitney test four per group
are required to allow for any possibility of rejecting the null hypothesis (Fay
and Proschan, 2010). The independent samples t-test is more efficient than
the Mann-Whitney test (McSweeney and Penfield, 1969). In addition, Cohen
and Arthur (1991) found that the independent samples t-test on transformed
data has greater power than the Mann-Whitney test.

Non-parametric tests are not necessarily the optimum choice even under
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non-normality (Murphy, 1976). Rasch and Guiard (2004, p.175) state that
‘generally the results are such that in most practical cases the parametric ap-
proach for inferences about means is so robust that it can be recommended
in nearly all applications’. Concurrent violation of both the normality as-
sumption and equal variance assumption can distort the Type I error rate of
non-parametric tests to a greater extent than parametric tests (Zimmerman,
1998).

Whereas non-parametric tests make inferences regarding the distribu-
tions, distribution free tests allow for the population parameter to be directly
compared, without specifying the underlying distribution. Tests following an
INT fulfill this property. Penfield (1994) found that the Van der Wearden
(1952) INT test, performs similarly to the Mann-Whitney test with respect to
maintaining Type I error rates. The power properties are also similar, how-
ever the Mann-Whitney test is more powerful for moderate levels of skew.
When comparing means, Welch’s test may be superior to an INT test (Zim-
merman, 2011).

In the presence of non-normality, Hogg (1977) suggest that a parametric
test should be carried out, as well as a non-parametric equivalent. If the
results are similar, the authors would report the results of the parametric
test. If results are not similar they recommend that the results of the non-
parametric alternative are reported. This is a contentious viewpoint and
could bias the choice of test based on the conclusion required. Instead, the
appropriate test should be selected based on the underlying properties of the
data and the robustness of the tests. Under non-normality, the comparisons
of means may not be of interest, differences between medians may well be
more relevant (Wilcox and Charlin, 1986).

2.7 Confidence intervals

Confidence intervals allow insight into the estimation of a difference and the
precision of the estimate. A confidence interval can be useful when reported
alongside statistical tests (Levine et al., 2008a). There is frequently too much
focus on hypothesis testing, confidence intervals may be of more practical
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interest (Gardner and Altman, 1986).
An alternative to comparing the differences in means (or medians or

trimmed means) between two groups, is to compare the confidence interval
of the parameter for one sample with the confidence interval of the param-
eter for the other sample (Peró-Cebollero and Guàrdia-Olmos, 2013). This
approach requires the null hypothesis to be defined in terms of the confidence
interval overlap. The authors define ‘non-strict’ criteria as the parameter of
either group is not within the confidence interval of the other group. ‘Strict’
criteria is defined as when the confidence intervals of the two groups do not
overlap.

‘Non-strict’ criteria offers a novel extension to statistical research, tradi-
tionally the null hypothesis is the strict criteria. However, the authors results
show that non-strict criteria gives particularly poor Type I error rates.

There are many different ways of calculating a confidence interval for a
median. For large sample sizes of equal length, the strict criteria is Type I er-
ror robust only if using the ‘Binomial’ method (Peró-Cebollero and Guàrdia-
Olmos, 2013). For unequal skew, the Type I error robustness is particularly
violated, this may indicate that this procedure has good power properties for
detecting if the distributions are not the same. However, given that this pro-
cedure is not Type I error robust for equal distributions, these procedures are
not considered any further as potential solutions to the partially overlapping
samples problem.

A further novel extension that could be considered is ‘moderate’ criteria,
when the parameter of Group 1 is within the confidence interval of Group 2,
but the parameter of Group 2 is not within the confidence interval of Group
1, or vice-versa. However, given the poor results obtained for the ‘strict’ and
‘non-strict’ criteria, it is unlikely that this alternative would add value.

2.8 Preliminary testing

The themes in this section were presented and discussed at the Research
Students Conference in Probability and Statistics (Derrick, 2018b).

Despite the consequences of violations to the assumptions of statistical
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tests as outlined in Section 2.3, there is often neglect in published work
to report on the assumptions of the tests being performed. The American
Psychological Association for example does not instruct researchers to check
for violations of assumptions or report the checks performed (APA, 2018).

Some researchers religiously perform a parametric test for central loca-
tion, some researchers perform both a parametric test and a non-parametric
test and then report the one that gives a significant result. These are both
misguided approaches (Sawilowsky, 2005).

Some researchers perform preliminary hypothesis tests of assumptions to
determine whether a parametric or non-parametric test is appropriate. When
a preliminary test informs the user which comparison of central location test
to perform, the resulting test is referred to as a conditional test. Some re-
searchers choose to do a formal preliminary test of the assumptions, others
will do a more informal approach looking at graphics. Advocates of a formal
preliminary testing approach for the comparison of two independent samples
include Gurland and McCullough (1962) and Gebski and Keech (2003). How-
ever, the approach also has its critics (Zimmerman, 2004; Delacre, Lakens,
and Leys, 2017).

As an illustration, in the case of choosing a one sample test for central
location, Weir, Gwynllyw, and Henderson (2015) advocate performing a for-
mal hypothesis test for normality when samples sizes are small (preliminary
test), to determine whether the one sample t-test or the one sample Wilcoxon
test is performed (conditional test).

When performing a preliminary test, the null hypothesis is rejected as
dictated by the significance level of the preliminary test. The conditional
test also has a Type I error rate. This double testing increases the chances of
Type I errors and thus can be detrimental (Moser and Stevens, 1992; Rasch,
Kubinger, and Moder, 2011). A further limitation of preliminary testing
identified by Hoekstra, Kiers, and Johnson (2012) is that assumptions are
never strictly true, and those assumptions are made about the population,
not the sample.

Although this current work is concerned with a frequentist approach, it
is reported that Bayesian approaches are no better than frequentist decisions

37



with respect to Type I errors, and is also subject to bias and lack of precision
(Alcala-Quintana and Garcia-Perez, 2004).

Figure 2.1 shows a frequently performed test procedure for two indepen-
dent samples (Weir, 2018).

Figure 2.1: A typical two independent samples test procedure

There are numerous ways in which the assumptions in Figure 2.1 could
be evaluated. Some two sample test procedures incorporate arbitrary cut-off
values for skewness and kurtosis for informing the appropriate conditional
test (Kim, 2013).

Fagerland (2012) disagree with the premise of assessing skewness. Fager-
land (2012) also suggest that for large sample sizes the parametric test should
always be applied. Other methods for determining which two sample test to
perform are available throughout the Internet. Examples include Anderson
(2014) or Mayfield (2013), which rarely have supporting references, and have
the common theme of being relatively vague on how to assess the assump-
tions.

For the comparison of two independent samples, Ruxton and Neuhauser
(2018, p.3) advise that for continuous data Welch’s test ‘can always be ap-
plied, with preliminary ranking of the data, if a strong deviation from nor-
mality is expected or is suggested by visual inspection of the data’. Although
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this statement is intended to simplify the process, it gives rise to a prelimi-
nary check for normality.

Viewing graphical representation instead of formal preliminary testing
does not eliminate the problem because the decision on the analysis is condi-
tioned on the results of preliminary analysis (Garcia-Perez, 2012). Further-
more graphical assessment gives rise to subjective interpretation.

Hoekstra, Kiers, and Johnson (2012) investigated the approach by 30
psychology PhD students in the Netherlands when faced with a research
question comparing two independent samples. Approximately 1 in 4 checked
the assumption of normality (in these cases no formal preliminary test was
performed), and approximately 1 in 3 checked the assumption of equal vari-
ances (in these cases a formal preliminary test was common). Of those that
did not check the assumptions, approximately 2 in 3 were unfamiliar how to
check the assumption, and less than 1 in 3 said they regarded the test as
robust to violations of the assumption and therefore did not need to check.

Performing preliminary testing based on a pre-defined set of rules can
lead to inertness and apathy with regards to the conditional test used. Con-
versely, some researchers may perform preliminary testing on an ad-hoc basis,
and reverse engineer the preliminary tests performed to achieve their desired
conclusions.

Publication bias, where only statistically significant findings are pub-
lished, leads to a temptation by some researchers to adopt practices such
as data dredging or data fishing. Publication bias also leads to a temptation
by some researchers to report the findings of the statistical test that offers
the most significant effect. Inconsistent advice regarding preliminary testing
offers researchers opportunity to exploit this practice. This has contributed
to the reproducibility crisis in the sciences (Baker, 2016). This adds weight
to those that recommend against preliminary testing.

2.8.1 Preliminary tests for normality

Given the t-test assumption that two samples arise from the same normally
distributed population and the debated robustness of statistical tests, stan-
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dard practice is to first test the samples for normality (Mahdizadeh, 2018). It
should be noted that it is more appropriate to test normality of the residuals
rather than the data itself (Totton and White, 2011).

There are numerous tests for normality (Razali and Wah, 2011). Example
tests for normality include the Shapiro-Wilk test and the Epps-Pulley test.
These two tests are the recommended tests for normality, and in a practical
sense there is little to choose between them (British Standards Institution,
1997).

The Shapiro-Wilk test is Type I error robust regardless of sample size
(Mendes and Pala, 2003). However, for small sample sizes, the Shapiro-Wilk
test lacks power to detect deviations from normality (Rochon, Gondan, and
Kieser, 2012; Razali and Wah, 2011).

The most commonly applied normality test is the Kolmogorov-Smirnov
test (Ghasemi and Zahediasl, 2012). This is likely because it is readily avail-
able in most statistical software, and can be used to test a data set against
any distribution. When testing for normality, the Kolmogorov-Smirnov test
is more conservative, and therefore less sensitive than the Shapiro-Wilk test
(Shapiro, Wilk, and Chen, 1968). The Shapiro-Wilk test has good power and
has therefore become the most widely advocated test for normality (Razali
and Wah, 2011; Mendes and Pala, 2003; Ghasemi and Zahediasl, 2012).
Tests for normality are widely researched, with authors striving for and con-
tinuing to develop more powerful tests for normality (Mahdizadeh, 2018).
However, for preliminary testing of assumptions, the insensitive nature of
the Komologorov-Smirnov test to minor deviations from normality could be
advantageous in a practical environment, due to the robustness of parametric
tests.

Lumley et al. (2002) suggest that for large samples in public health data
there is no requirement for a normalilty assumption. With smaller sample
sizes, Lumley et al. (2002) conclude that tests for non-normality are undesir-
able because they have low power and they detract from the real analyses.

Rochon, Gondan, and Kieser (2012) investigated the Type I error rates of
conditional tests for two samples of equal size, performing the Shapiro-Wilk
test for normality followed by the independent samples t-test or the Mann-
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Whitney test as determined from the result of the normality test. Rochon,
Gondan, and Kieser (2012) inform that performing a preliminary Shapiro-
Wilk test maintains the nominal significance level of the conditional test for
two samples of normally or uniformly distributed data. However, for expo-
nentially distributed populations, this preliminary testing process increases
the probability of making Type I error. Therefore preliminary tests for nor-
mality may be reasonable if the data are symmetric. Rochon, Gondan, and
Kieser (2012) conclude that the t-test is robust in many situations, so pre-
liminary testing does little harm but is a waste of time. Given their assertion
that normality is a myth, Micceri (1989) also dismiss the preliminary testing
process as futile.

2.8.2 Preliminary tests for equal variances

For unequal sample sizes, statisticians debate the conditions for which the
independent samples t-test is robust when the assumption of equal variances
is violated (Nguyen et al., 2012). As a result of this uncertainty, common
practice is to test for equality of variances prior to performing a test of equal
means.

The ‘proc ttest’ in SAS provides results from the independent samples
t-test, Welch’s test (referred to as Satterthwaite’s test) and a conditional
test based on the result of an F-test for equal variances. When sample sizes
are unequal, if the F-test reports a significant difference in the variances at
α = 0.05, Welch’s test is used, otherwise the independent samples t-test is
used. This approach was investigated by Nguyen et al. (2012) for normally
distributed data. They found that when sample sizes are equal, the indepen-
dent samples t-test is the most Type I error robust. In addition, when sample
sizes are unequal, Welch’s test and the conditional test procedure perform
best against Bradley’s liberal robustness criteria. They also found that as
the sample size imbalance between the two groups increases, Welch’s tests
maintains the nominal Type I error rate slightly better than the conditional
test procedure, likely due to the double testing applied under conditional
testing. Larger sample sizes do not improve the Type I error rate for the
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independent samples t-test, but do for the conditional and Welch’s test. The
conditional test procedure showed a very slight power advantage. By adding
skewness and kurtosis, Kellermann et al. (2013) reasonably replicate the con-
clusions by Nguyen et al. (2012) for all nominal significance levels. Under
non-normality their results suggests that the independent samples t-test is
generally robust. However, in these scenarios the sample size required is
greater for the conditional method and Welch’s test to stay within Bradley’s
liberal criteria. The α value for the preliminary test was also investigated and
found to be optimal at 0.20 by Nguyen et al. (2012) and 0.25 by Kellermann
et al. (2013).

A widely used test for equality of variances is Levene’s test, which in the
two group case is equivalent to the independent samples t-test on absolute
deviations from the mean. Brown and Forsythe (1974) proposed alternatives
to Levene’s test for when data are not normally distributed. They found that
absolute deviations from trimmed means, maintains Type I errors far bet-
ter for symmetric distributions with long tails (10% trimming was arbitrarily
chosen). They also found that absolute deviations from the median maintains
nominal Type I error far better than Levene’s test, particularly for asymmet-
ric distributions. The modified Levene’s test using absolute deviations from
the median, known as the Brown-Forsythe method is computationally more
complex, but is more widely recognised for its robustness (Nordstokke and
Zumbo, 2007; Zimmerman, 2004). Zimmerman (2004) found that when per-
forming Levene’s test as a preliminary test, the overall Type I error rate
is less than the nominal significance level when the higher sample size was
associated with the higher variance, but more than the nominal significance
level when the reverse is true.

Generally it is not a good idea to test for homogeneity of variances, and
this approach in its present form is no longer widely recommended (Zim-
merman, 2004). The decision to either use the independent samples t-test or
Welch’s test should be made at the design stage of an experiment (Zumbo and
Coulombe, 1997). Under normality, the independent samples t-test is clearly
inadequate for increasingly unequal variances (Zimmerman and Zumbo, 2009;
Kellermann et al., 2013), and Welch’s test should be used in these situations
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instead. Zimmerman and Zumbo (2009) and Zimmerman (2004) both recom-
mend performing Welch’s test whenever sample sizes are unequal. Based on
results similar to this, Ruxton (2006) suggest the routine use of Welch’s test
under normality. This approach results in a loss of power when the variances
are equal, but a power gain when they are not. However, Fairfield-Smith
(1936) state that there is no uniformly most powerful and unbiased test.

Another issue of performing a preliminary test is that different prelim-
inary tests can give different conclusions, thus informing to use different
conditional tests. For example, SPSS and Minitab both report values for
‘Levene’s test’ but the results are not the same. SPSS uses Levene’s test
based on the absolute deviations from the mean, whereas Minitab uses the
Brown-Forsythe modification which is based on the absolute deviations from
the median. The choice of which test of variances to use therefore requires
judgments about the distribution of the data. In fact there are dozens of
proposed tests for equal variances (Conover, Johnson, and Johnson, 1981).
In their preliminary testing procedure, Anderson (2014) cite three such tests
without stating which to perform when. Given the vast array of potential pre-
liminary tests, as an extreme approach, preliminary preliminary tests could
be performed in order to select which preliminary tests to perform.

A judgment is required, so it could be argued that a practitioner could
simply make a judgment on which form of the t-test to use from prior knowl-
edge. For example, for a completely randomised design it is fair to assume
equal variances given that both groups are being filled at random from the
same population. For naturally occurring groups, for example if groups are
split between male and female, a judgment is needed whether equal variances
can be assumed, but it is likely that it is not reasonable in this instance
(Zumbo and Coulombe, 1997).

2.8.3 Significance level for preliminary tests

A further consideration for preliminary testing is the optimum significance
level to work at for the preliminary tests. The 5% significance level is usually
used but this could be altered.
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In the following simulation investigation, the significance level for the
preliminary tests is considered for competing tests for assessing equality of
variances, and competing tests for assessing normality, while performing the
conditional test of interest each time at the 5% significance level. In a two
independent samples design, each of the Mann-Whitney test, the indepen-
dent samples t-test and Welch’s test are performed to compare two generated
samples. The preliminary tests for normality performed are the Shapiro-Wilk
test (SW) and the Kolmogorov-Smirnov test (KS). The tests for equality of
variances are Levene’s test (L) and the Brown-Forsythe test (BF). Each pre-
liminary test is performed on each conditional test. The preliminary tests
are performed at the 0% to the 10% significance level in increments of 1%.
The conditional test is calculated based on the results of each of the prelimi-
nary test combinations. The sample sizes varied within a factorial design are
{5, 10, 20, 30}. For each sample size, preliminary test and significance level
combination, the process is repeated for 10,000 iterations. The Type I error
rate of the overall test procedure in Figure 2.1 is calculated as the weighted
average Type I error rate across each of the conditional tests. The first set of
simulations is performed where both samples are taken from a N(0, 1). The
process is repeated where one sample is taken form N(0, 1) and the other
is taken from N(0, 4). The process is further repeated where both samples
are taken form the Exponential distribution and then when both samples are
taken from the Lognormal distribution. An overview of the results is given
in Table 2.2.

Even for the most skewed distribution considered, Table 2.2 indicates that
the procedure identified in Figure 2.1 is Type I error robust, because none
of the Type I error rates greatly deviate from 5%.

When samples are drawn from the Normal distribution with equal vari-
ances, each of the decision rules applied are all approximately equally Type
I error robust. This is because all of the tests are Type I error robust un-
der normality and equal variances, therefore the choice of preliminary test
is irrelevant. When the two samples come from Normal distributions with
unequal variances, the Type I error rate is inflated by performing preliminary
tests, however this inflation is within a liberal tolerable region as defined by
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Table 2.2: Robustness of preliminary testing procedure in Figure 2.1.

Preliminary tests Normal Normal Exponential Lognormal
σ2

1 = σ2
1 σ2

1 6= σ2
1

SW 1%, L 1% 0.050 0.058 0.042 0.038
SW 5%, L 5% 0.051 0.057 0.052 0.046
SW 10%, L 10% 0.052 0.057 0.058 0.049
SW 1%, L 10% 0.053 0.058 0.056 0.050
SW 10%, L 1% 0.049 0.058 0.047 0.043
KS 1%, L 1% 0.051 0.060 0.050 0.046
KS 5%, L 5% 0.053 0.061 0.050 0.046
KS 10%, L 10% 0.054 0.061 0.049 0.046
KS 1%, L 10% 0.054 0.059 0.053 0.047
KS 10%, L 1% 0.051 0.061 0.049 0.046
KS 1%, BF 1% 0.051 0.062 0.051 0.048
KS 5%, BF 5% 0.053 0.063 0.050 0.047
KS 10%, BF 10% 0.055 0.063 0.050 0.046
KS 1%, BF 10% 0.054 0.062 0.053 0.047
KS 10%, BF 1% 0.051 0.063 0.050 0.047
KS 1%, BF 1% 0.050 0.060 0.044 0.045
KS 5%, BF 5% 0.051 0.060 0.047 0.043
KS 10%, BF 10% 0.052 0.059 0.053 0.045
KS 1%, BF 10% 0.054 0.060 0.048 0.041
KS 10%, BF 1% 0.049 0.060 0.049 0.047

Type I error rates for the independent samples t-test (α=5%) following
Shapiro-Wilk (SW) or Kolmogorov-Smirnov (KS) test for normality
and Brown-Forsythe (BF) or Levene’s (L) test for equal variances

Bradley (1978).
Across all of the distributions, the robustness of the overall test procedure

is not greatly impacted by altering the significance level of the preliminary
test within the simulated range. Furthermore, the robustness is not greatly
impacted by the combination of preliminary tests.

The results in Table 2.2 suggest that the procedure as per Weir (2018),
who suggests routine use of the Shapiro-Wilk test at the 5% significance level
and Levene’s test at the 5% significance level, is Type I error robust. Using
the same simulation methodology but for a slightly different decision tree
which incorporates the Yuen-Welch test when variances are unequal and the
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normality assumption is unreasonable, Pearce and Derrick (2019) recommend
a two-stage preliminary testing procedure with a Kolmogorov-Smirnov nor-
mality test and Levene’s test for equal variances, both at the 5% significance
level. Akin with the strategy in Figure 2.1, Pearce and Derrick (2019) note
that for this slightly different strategy there is not much to choose between
different preliminary tests and significance levels. The recommendation of a
specific approach within the procedure by Pearce and Derrick (2019) was for
the purposes of encouraging a consistent approach only.

The range of different strategies for preliminary testing used are not neces-
sarily poor strategies, so the problem becomes the potential for manipulation
and the selection of a strategy for the wrong reasons. Some disciplines re-
quest that protocols and analysis plans are pre-registered, examples include
the British Medical Journal, Trials, the Journal of Development Economics
and the Center for Open Science. This is recommended as an appropriate
course of action. When preparing the plan, the assumptions should be as-
sessed based on prior knowledge or preliminary testing of test data (Wells
and Hintze, 2007).

2.9 Summary

There are many approaches that could be followed in the comparison of
central location for two samples, they each have merit in different scenarios
depending on the underlying distributional properties of the data. Welch’s
test is most frequently the test of choice in Fagerland and Sandvik (2009a). A
limitation of parametric and non-parametric tests is that in some scenarios
none of the traditional tests are valid, particularly when the two sample
distributions have unequal sample sizes and unequal variances (Fagerland
and Sandvik, 2009a).

It is more desirable to report the result of a parametric test when nor-
mality exists (Huber, 2011). It is wrong to say that parametric tests are
always more powerful than non-parametric tests, but is correct when the
underpinning assumptions of the parametric test are true (Sawilowsky and
Blair, 1992).
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Solutions for the partially overlapping samples problem would be useful
in parametric and non-parametric form. Then the choice of test can be
based on sound underlying logic and assumptions regarding the context being
analysed.

Allowing the sample to determine the analysis approach can lead to poor
practices. Where methods for analysis are considered approximately equally
robust, the analysis strategy should be determined in advance.
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Chapter 3

Proposed solutions for the
comparison of means with
partially overlapping samples

Newly proposed solutions to the partially overlapping samples problem are
defined. These new solutions are within the category of a test based on a
simple mean difference as defined by Amro and Pauly (2017). The chapter
concludes with example uses of these solutions for illustrative purposes.

3.1 Derivation of solutions

In accordance with Chapter 2, a method of comparing two partially over-
lapping samples that takes into account a paired design but does not lose the
unpaired information is proposed.

Collectively, the tests in Section 3.1.1 and Section 3.1.2 are the newly
proposed ‘partially overlapping samples t-tests’. They are derived from the
result for the difference between two random variables. E.g. for means X̄1

and X̄2 the standardised difference is given as:

X̄1 − X̄2√
V ar(X̄1) + V ar(X̄2)− 2Cov(X̄1, X̄2)
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For both forms of the partially overlapping samples t-test, following calcu-
lation of the degrees of freedom, the percentage points of the t-distribution
available in any set of statistical tables can be used to obtain the critical
value.

For calculating effect size, Cohen’s d can be written as 2t/
√
v (Rosenthal

and Rosnow, 1991). Thus effect sizes can be readily calculated from the
elements of the partially overlapping samples t-test in the same manner.

For two samples of size n1 and n2, in the following na represents the
number of observations in Sample 1 only, nb represents the number of ob-
servations in Sample 2 only, and nc represents the number of pairs. Other
notation is as per convention for the comparison of two samples, see Table 1
on page xi.

3.1.1 Partially overlapping samples t-test, equal vari-
ances

The partially overlapping samples t-test assuming equal variances, Tnew1, is
as follows:

Tnew1 = X̄1 − X̄2

Sp
√

1
n1

+ 1
n2
− 2ρ nc

n1n2

where Sp =

√√√√(n1 − 1)S2
1 + (n2 − 1)S2

2
(n1 − 1) + (n2 − 1) (3.1)

The test statistic Tnew1 is referenced against the t-distribution with de-
grees of freedom, vnew1, derived by linear interpolation between v1 and v2:

vnew1 = (nc − 1) +
(
na + nb + nc − 1
na + nb + 2nc

)
(na + nb) (3.2)

Proof: let X = na + nb, and let Y = vnew1 . If na = 0 and nb = 0, then
vnew1 = nc − 1. The maximum number of observations, na + nb + 2nc, has
vnew1 = na + nb + 2nc − 2.

The gradient m = na + nb + 2nc − 2− (nc − 1)
na + nb + 2nc

.
Substituting into the equation for a straight line Y = a+mX gives vnew1 as
per Equation 3.2.
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In the extremes of nc = 0 or na = 0 and nb = 0, Tnew1 defaults to the
independent samples t-test or the paired samples t-test. To demonstrate this,
if the samples were independent then na = n1, nb = n2 and nc = 0. Thus
Tnew1 defaults to the independent samples t-test as follows:

Tnew1 = X̄1 − X̄2

Sp
√

1
n1

+ 1
n2
− 2ρ 0

n1n2

= X̄1 − X̄2

Sp
√

1
n1

+ 1
n2

= T2

vnew1 = (0− 1) +
(
n1 + n2 + 0− 1
n1 + n2 + 0

)
(n1 + n2) = n1 + n2 − 2 = v2

Alternatively, if there are completely matched pairs then na = 0, nb = 0
and nc = n1 = n2 = n. Thus Tnew1 defaults to the paired samples t-test as
follows:

Sp =

√√√√(n− 1)S2
1 + (n− 1)S2

2
(n− 1) + (n− 1) =

√
S2

1 + S2
2

2

Tnew1 = X̄1 − X̄2√
S2

1
n1

+ S2
2
n2
− 2ρS1S2

n

= T1

vnew1 = (n− 1) +
(0 + 0 + n− 1

0 + 0 + 2n

)
(0 + 0) = n− 1 = v1

It is observed that the contribution towards the degrees of freedom from
the independent observations can be attributed to the total number of inde-
pendent observations, na + nb. Figure 3.1 indicates the relationship between
the number of observations, paired and independent, and the degrees of free-
dom.

3.1.2 Partially overlapping samples t-test, not constrained
to equal variances

The partially overlapping samples t-test not constrained to equal variances,
Tnew2, is given as follows:

50



Figure 3.1: Degrees of freedom for Tnew1.

Tnew2 = X̄1 − X̄2√
S2

1
n1

+ S2
2
n2
− 2ρS1S2nc

n1n2

(3.3)

The test statistic Tnew2 is referenced against the t-distribution with de-
grees of freedom derived as a linear interpolation between v1 and v3 so that:

vnew2 = (nc − 1) +
(

γ − nc + 1
na + nb + 2nc

)
(na + nb) (3.4)

where γ =

(
S2

1
n1

+ S2
2
n2

)2

(
S2

1
n1

)2
/n1 − 1 +

(
S2

2
n2

)2
/n2 − 1

Akin with Welch’s test, the degrees of freedom are a random variable,
varying from sample to sample, dependent on the sample variance.
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In the extremes of no paired observations or no independent observations,
Tnew2 defaults to Welch’s test or the paired samples t-test respectively.

3.1.3 Partially overlapping samples t-test applied to
rank data

For the two sample situation, the relative means, variances, skewness and
kurtosis maintain similar characteristics for a distribution transformed to
ranks, as are observed in the original distribution (Zimmerman, 2011).

For proposed non-parametric solutions, all observations are pooled into
one vector and assigned rank values in ascending order. This is equivalent to
an RT-1 (Conover and Iman, 1981) ranking procedure. The rank values are
substituted into the calculation of Tnew1 and Tnew2 in place of the observed
values. Tied ranks are each given the median of the tied ranks. This gives the
test statistics TRNK1 and TRNK2 respectively. The degrees of freedom are vnew1

and vnew2 respectively, with γ calculated using the pooled rank values. The
calculation of r uses an RT-2 (Conover and Iman, 1981) ranking procedure, so
that r represents Spearman’s rank correlation coefficient between the paired
observations.

3.1.4 Partially overlapping samples t-test applied to
data following Inverse Normal Transformation

Using the Fisher and Yates INT procedure, the observations are pooled,
sorted into ascending order and ranked so that Xi = Φ−1

(
yi − c

N − 2c+ 1

)
where Xi is the ordinary rank of observation i, yi is the total pooled sample
size, Φ−1 is the standard Normal quantile function and c is a constant.

Calculating the Van der Wearden (1952) scores, i.e. c = 0, and using
these scores within the calculation of Tnew1 and Tnew2, gives distribution free
test statistics TINT1 and TINT2 respectively. The degrees of freedom vnew1 and
vnew2 respectively, are calculated using the pooled transformed values. The
calculation of r is Pearson’s correlation coefficient between the transformed
paired observations.

52



3.2 Examples of application

Some practical examples based on existing problems, and some of the earliest
known applications of the newly proposed solutions are given.

Example 1: Derrick et al. (2017a)

This is a plausible hypothetical example given in Derrick, Toher, and White
(2017), acting as a tutorial on how to proceed when faced with two partially
overlapping samples.

The sleep fragmentation index measures the quality of sleep for an indi-
vidual over one night. A lower sleep fragmentation score represents less dis-
rupted sleep. The research question is whether the genre of a movie watched
before bedtime impacts the quality of sleep. Study participants are randomly
allocated to either a between subjects design (stage 1) or a repeated mea-
sures design (stage 2). The two stages are then combined for analyses. In
the first stage of the study, the sleep fragmentation score is taken over one
night, for two groups of individuals. A sample of na = 8 individuals watch
a ‘horror’ movie before bedtime. A separate sample of nb = 8 individuals
watch a ‘feel good’ movie before bedtime. In a second stage of the study, the
sleep fragmentation index is recorded over two separate nights, for a sample
of nc = 8 individuals watching a ‘feel good’ movie and a ‘horror’ movie on
two alternate nights before bedtime (with order counterbalanced). When the
two stages of the study are combined, the total number of individuals who
watched a ‘horror’ movie is n1 = na + nc = 16. The total number of individ-
uals who watched a ‘feel good’ movie is n2 = nb + nc = 16. The hypothesis
being tested is whether the mean sleep fragmentation scores are the same
between individuals watching a ‘horror’ movie and individuals watching a
‘feel good’ movie. Thus the null hypothesis is H0 : µ1 = µ2. The alternative
hypothesis, assuming a two-sided test, is H1 : µ1 6= µ2. This is an example of
Scenario (5) in Chapter 1. The sleep fragmentation scores are given in Table
3.1.

In this scenario, from a missing data perspective it would be reasonable to
assume MCAR. There are no missing data per se; it is the design of the study
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Table 3.1: Sleep fragmentation scores.

Independent samples (stage 1) Paired samples (stage 2)
ID Horror ID Feel good ID Horror Feel good
I1 20 I9 10 P1 14 15
I2 21 I10 16 P2 15 10
I3 16 I11 18 P3 18 15
I4 18 I12 16 P4 20 17
I5 14 I13 15 P5 11 13
I6 12 I14 14 P6 19 19
I7 14 I15 13 P7 14 12
I8 17 I16 10 P8 15 13

that results in partially overlapping samples. Therefore standard approaches
of discarding either the paired or independent samples are unbiased. How-
ever, performing either the paired samples t-test or the independent samples
t-test requires discarding exactly half of the observations, and the power of
the test is reduced. This therefore is a good example of where a test statistic
that makes use of all available data, taking into account both paired and
independent observations could be useful.

For either form of the partially overlapping samples t-test, if µ1 > µ2 (i.e.
the population mean score for ‘horror’ movie is greater than the population
mean score for ‘feel good’ movie), then it is anticipated that this will be
reflected in the sample values above, and the expectation is to observe a large
positive value of the test statistic. Conversely if µ1 < µ2, the expectation
would be for a large but negative value of the test statistic to be observed.
In absolute terms it is anticipated that large values of the test statistic are
observed if H0 is false. The null hypothesis is rejected if the observed value of
the test statistic is greater than the critical value from a t-distribution with
the degrees of freedom as defined by vnew1 or vnew2.

To calculate elements for the partially overlapping samples t-test let; x̄1

= mean of all observations in Sample 1 (i.e. the mean for the n1 observations
for individuals watching a ‘horror’ movie), x̄2 = mean of all observations in
Sample 2 (i.e. the mean for the n2 observations for individuals watching a
‘feel good’ movie), s1 = standard deviation of all observations in Sample 1,
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s2 = standard deviation of all observations in Sample 2, and r = Pearson’s
correlation coefficient for the paired observations only (i.e. in nc).

The elements of the calculation of the test statistics are: n1 = 16, n2 = 16,
na = 8, nb = 8, nc = 8, x̄1 = 16.125, x̄2 = 14.125, s1 = 2.986, s2 = 2.778, r =
0.687, sp = 2.884, γ = 29.845, tnew1 = 2.421, tnew2 = 2.419, vnew1 = 18.500,
vnew2 = 18.422 and from the t-distribution the critical value is 2.097.

The calculated value of tnew1 is greater than the critical value, therefore
the null hypothesis is rejected (p = 0.026). Likewise for tnew2 (p = 0.026).

When using the partially overlapping samples t-test at the 5% signifi-
cance level, there is a statistically significant difference in the mean sleep
fragmentation index between individuals watching a ‘horror’ movie prior to
bedtime, and individuals watching a ‘feel good’ movie prior to bedtime. The
results suggest that individuals watching a ‘feel good’ movie before bedtime
have less disrupted sleep compared to individuals watching a ‘horror’ movie
before bedtime.

For this example the paired samples t-test (t1 = 1.821, v1 = 7, p = 0.111),
the independent samples t-test (t2 = 1.667, v2 = 14, p = 0.118) and Welch’s
test (t3 = 1.667, v1 = 13.912, p = 0.118) all fail to reject the null hypothesis
at the 5% significance level. Thus the choice of test to apply is important
because the statistical decision is not the same. This example emphasises
the lower power for these traditional approaches.

In general, the more observations used in the calculation of a test statistic,
the greater the power of the test will be. However, rare situations may
arise where the independent observations and the paired observations have
mean differences in opposing directions. In these situations, the partially
overlapping samples t-test may cancel out these differences, but to ignore
either the paired observations or independent observations could create bias.

In this example, the two samples are partially overlapping by design. It
is also possible to encounter a partially overlapping samples design, with
incomplete observations, as per scenario (8) in Chapter 1. In these situ-
ations, the partially overlapping samples t-test can similarly be performed
on all available observations, when the missing observations are MCAR. To
demonstrate this, consider the situation where there are occasional errors
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with the machine recording sleep fragmentation. As a result of errors, let the
‘horror’ observations for individuals ‘I1’ and ‘P1’ be missing. There is now
one missing independent ‘horror’ observation and one missing paired obser-
vation. The resulting reduction in sample size is further to the detriment of
the paired samples t-test, the independent samples t-test and Welch’s test.
Using the partially overlapping samples t-test, the ‘feel good’ observation for
individual ‘P1’ is not discarded. Revised elements of the partially overlapping
samples t-test are; n1 = 14, n2 = 16, na = 7, nb = 9, nc = 7, x̄1 = 16.000,
x̄2 = 14.125, s1 = 2.961, s2 = 2.778, r = 0.736, sp = 2.864, γ = 26.903,
tnew1 = 2.208, tnew2 = 2.194, vnew1 = 17.733, vnew2 = 17.148. Assuming equal
variances and using the test statistic tnew1, the p-value is 0.041. For comple-
tion, using the test statistic tnew2, the p-value is 0.042. H0 is rejected at the
5% significance level and the statistical conclusions are as before.

Example 2: Pilkington (2017)

The difference between baseline and three month follow-up of a ‘HeadStrong’
service for breast cancer patients, with respect to the distress caused due to
hair loss, was considered by Pilkington (2017). Six variables were recorded
based on a summed Likert scale. The number of participants that completed
the survey at both baseline and follow-up, nc, was 8 ≤ nc ≤ 9 depending on
the variable under consideration. The number of independent observations,
na, was 7 ≤ na ≤ 8. The independent observations were participants with
observations recorded at baseline only. This is an example of Scenario (8) in
Chapter 1. The drop-outs are assumed to be MCAR.

Pilkington decided to proceed with the Looney and Jones (2003) test,
Zcorrected. At the time of the submission by Pilkington, the partially overlap-
ping samples t-tests had not been published and therefore results for these
tests were not included.

Under the conditions of MCAR, equal variances can be assumed between
baseline and follow-up, and the partially overlapping samples t-test using
pooled variances could be an appropriate alternative test. This work is now
revisited with the additionally included test for illustrative purposes. Based
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on this test statistic, a 95% confidence interval for the true difference in means
using all available data are formed. Table 3.2 shows the p-values calculated
when performing each of the tests. Statistically significant mean differences
at the 5% significance level are highlighted in bold.

Table 3.2: Pilkington Type I error rates and confidence intervals updated.

Variable Zcorrected Tnew1 95% CI
Appearance distress <0.001 0.014 (-4.419, -15.762)

Self esteem 0.583 0.570 (-3.480, 5.100)
Quality of life <0.001 0.01 (8.314, 27.811)

Negative acceptance 0.154 0.161 (-10.576, 18.326)
Anxiety 0.611 0.597 (-1.785, 3.035)

Depression 0.022 0.035 (-0.499, -0.139)
Zcorrected by Looney and Jones (2003) as per original analyses
Tnew1 partially overlapping samples t-test equal variances

In this instance, conclusions from the Zcorrected test are the same as in
this update incorporating the Tnew1 test.

The 95% confidence intervals for the true difference in means indicate
arguably wide intervals due to the small sample size in the study.

Example 3: Fenton et al. (2018)

The Bystander intervention initiative at the University of the West of Eng-
land, Bristol, is recognised as a promising strategy for the prevention of
violence against women in university settings. Students from traditionally
male orientated degrees were asked to fill in a questionnaire before and after
participating in the bystander intervention initiative. This is an example of
Scenario (6) in Chapter 1.

The partially overlapping samples t-test which imposes no assumption of
equal variances, Tnew2, and maximally uses all sample information, was used
to compare student responses prior to and after taking part in the bystander
intervention initiative. Responses were taken on several summed Likert scales
as summarised in Table 3.3.
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Table 3.3: Summed Likert scales of before and after bystander initiative.

Scale Before (n1 = 22) After (n2 = 7) p-value
IRMA 1.88 (0.45) 1.75 (0.52) 0.489

DV Myth Acceptance 2.41 (0.51) 1.94 (0.51) 0.475
Intent to Help 3.51 (0.52) 3.88 (0.52) 0.110

Bystander Efficacy 27.84 (15.19) 13.20 (12.25) 0.010
Bystander Behaviour 1.14 (2.88) 1.71 (1.89) 0.499

AWS 60.91 (5.66) 63.71 (6.65) 0.382
p-value Tnew2 partially overlapping samples t-test unequal variances

For each scale the mean (and standard deviation) of the responses are
given, with the result when performing Tnew2. As shown in Table 3.3, the
partially overlapping t-tests comparing before and after scores indicated that
the Bystander Efficacy score significantly decreased, t(9.37) = 3.19, p = 0.01,
i.e. the participants confidence to intervene significantly increased. For this
contrast Cohen’s d is estimated to be a very large effect size, d = 2.08. No
other contrasts reported a significant effect, likely due to the small sample
size.

Example 4: Derrick et al. (2017a)

In education, for credit towards an undergraduate statistics course, students
may take optional modules in either ‘Mathematical Statistics’ or ‘Operational
Research’ or both. Management is interested whether the exam marks for the
two optional modules differ. This is an example of Scenario (3) in Chapter
1. The data and worked example can be found in Derrick et al. (2017a).

For the REML analysis, a mixed model is fitted with ‘Module’ as a re-
peated measures fixed effect with two factors, and ‘Student’ as a random
effect. Results from performing tests for the comparisons of means are given
in Table 3.4.

With the exception of REML, the estimates for the mean difference is
simply the difference in the means of the two samples based on the observa-
tions used in the calculation. It can quickly be seen from Table 3.4 that the
conclusions differ depending on the test used. It is of note that only the tests
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Table 3.4: Two sample tests for the comparison of two optional modules.

test statistic estimated mean difference p-value
T1 -13.375 0.056
T2 2.167 0.739
T3 2.167 0.579
Tnew1 -12.486 0.035
Tnew2 -12.486 0.045
Zcorreted -12.486 0.023
REML -12.517 0.027

using all of the available data result in the rejection of the null hypothesis at
the 5% significance level.

Example 5: Rempala and Looney (2006)

A classic example by Rempala and Looney (2006), was used by Guo and Yuan
(2017) and Amro and Pauly (2017) to illustrate the partially overlapping
samples problem. This is an example of Scenario (6) in Chapter 1. In this
example, the outcome variable is not recorded on a continuous scale. This
is not remarked upon by Guo and Yuan (2017) or Amro and Pauly (2017),
who both tackle the problem using parametric methods. This example is
henceforth extended to include non-parametric solutions.

The outcome variable is the Karnofsky performance status scale, which
measures the functional status of a patient. The data is recorded on the
last day of life and on the second to the last day. For parametric tests,
the null hypothesis that the mean Karnofsky score is the same on the last
two days of life is tested. For non-parametric tests, the null hypothesis
that the distribution of the Karnofsky score is the same on the last two
days is tested. Assuming the distributions differ only in central location,
both the parametric and non-parametric tests are assessing the same research
question.

For a total of 60 patients, 9 were recorded on both days, 28 were recorded
only on the second to the last day, and 23 were recorded only on the last day,
observations as per Table 3.5.
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Table 3.5: Example from Rempala and Looney (2006).

Patients with scores on both days
(20,10), (30,20), (25,10), (20,20), (25,20),
(10,10), (15,15), (20,20), (30,30)
Patients with scores only on the second to the last day
10,10,10,10,15,15,15,20,20,20,20,20,20,20,20,20,20,20,
25,25,25,25,30,30,30,30,30,30
Patients with scores only on the last day
10,10,10,10,10,10,10,10,10,15,15,20,20,20,20,20,20,20,25,25,30,30,30

The parametric partially overlapping samples t-tests provide evidence at
the 5% significance level to suggest that there is a difference in the mean
Karnofsky scores between the last two days of life (tnew1 = 2.522, vnew1 =
51.609, p = 0.015), (tnew2 = 2.522, vnew2 = 49.341, p = 0.016).

Turning attention to non-parametric proposals, there are many tied ranks.
Using the midpoint for tied ranks, the ranks are allocated as per Table 3.6.

Table 3.6: Ranks applied to Rempala and Looney (2006) data.

Patients with scores on both days
(37,9), (63.5,37), (53.5,9), (37,37), (53.5,37),
(9,9), (21,21), (37,37), (63.5,63.5)
Patients with scores only on the second to the last day
9,9,9,9,21,21,21,37,37,37,37,37,37,37,37,37,37,37,
53.5,53.5,53.5,53.5,63.5,63.5,63.5,63.5,63.5,63.5
Patients with scores only on the last day
9,9,9,9,9,9,9,9,9,21,21,37,37,37,37,37,37,37,53.5,53.5,63.5,63.5,63.5

The non-parametric partially overlapping samples t-tests provide evi-
dence at the 5% significance level to suggest that there is a difference in
the distribution of the Karnofsky scores between the last two days of life
(TRNK1 = 2.534, p = 0.014), (TRNK2 = 2.521, p = 0.015).

As mentioned in Chapter 2.7, preliminary tests could potentially be per-
formed to determine which of these four partially overlapping samples t-tests
to perform. A preliminary test for equal variances on the independent ob-
servations gives no evidence to suggest that the variances are not equal,
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(Levene’s test p = 0.358, Brown-Forsythe test p = 0.397). This suggests
that statistics that do not relax the assumption of equal variances may be
reasonable. Note that tests for equality of variances could be based on paired
observations or independent observations, tests for equal variances using all of
the available data appear in Chapter 10. A preliminary test for normality of
the differences from the group means as per Totton and White (2011), using
all available data, gives evidence to suggest that the normality assumption is
violated (Shapiro-Wilk test p = 0.004; Kolmogorov-Smirnov test p = 0.009).
Thus using this sample data to determine the appropriate test that uses all
of the available data would lead to the decision to perform TRNK1. However,
as noted in Chapter 2.7 the selection of the test in this way is controversial.
Instead the appropriate tests should be chosen based on the study design
and existing knowledge of the behaviour of the response variable.

As a further alternative, performing the proposed distribution free tests
also supplies evidence to reject the null hypothesis of equal means of the
transformed data (TINT1 = 2.15, p = 0.036), (TINT2 = 2.12, p = 0.039).

The conclusions made for each of the proposed test statistics, Tnew1, Tnew2,
TRNK1, TRNK2, TINT1 and TINT2 are consistent with conclusions in the context
of this application made using the methods by Looney and Jones (2003),
Samawi and Vogel (2011), and Samawi and Vogel (2014b) and using REML
(Guo and Yuan, 2017). Amro and Pauly (2017) supply confirmation that
these methods are also consistent with conclusions made by the Lin and
Stivers (1974) method and their own permutation based proposal. In contrast
to these methods making use of all available data, the naive tests, T1, T2, T3,
MW , W , all fail to reject H0.

Example 6: Oliveira-Costa (2018)

Information was collected on the psychological well-being of parents with a
child born with a congenital abnormality. The parents self-report well-being
measures. However, as per Scenario (7) in Chapter 1, in some cases there is
an absent father or the biological father is not known.

In this ongoing research, the paired sample size is large (approximately
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500), the number of cases where there is an absent father is large (approx-
imately 220), but the cases of an absent mother are very rare. Although it
is likely that the paired samples t-tests on all of the paired data would pick
up significant differences, it is considered appropriate to use the partially
overlapping samples t-test to make use of all of the available collected data.
The test statistic not restricted to equal variances, Tnew2, is considered ap-
propriate due to previous knowledge suggesting that males and females have
greater variability in results of psychological self-reporting.

This example demonstrates the requirement for the proposed test statis-
tic to be robust for extreme sample size imbalances that are not usually
considered in the literature.
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Chapter 4

Methodology

Procedures for the assessment of the robustness of test statistics are deliber-
ated. This includes a discussion of the random number generation process,
which is assessed for validity to illustrate the concept of Type I error robust-
ness. Methodology used in this thesis is as put forward in this chapter (unless
explicitly stated otherwise).

4.1 Monte-Carlo methods

Interpretations of ‘statistical robustness’ vary (Rasch and Guiard, 2004).
The sensitivity of tests for equal variances to violations of the normality
assumption was where the term ‘robustness’ was coined, or moreover lack of
robustness (Hogg, 1979).

When a new test statistic is proposed, the robustness for validity (Type I
error rate) and efficacy (power) can be explored using simulation techniques
(Serlin, 2000).

Frequently, inappropriate emphasis is placed on the power of the test
when like for like probabilities of Type I errors are not equal (Zimmerman,
1997). If Type I error rates are not equal it is not possible to correctly
compare the power of tests, and thus the preferred test is the one with the
Type I error rate closest to the nominal (Penfield, 1994). Box (1953) suggests
that the assumptions of tests statistics can be taken too literally, and the
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important aspect of robustness is for a test to maximise power. The power
of the test is the probability of rejecting the null hypothesis when it is false.
There is no standard criterion for quantifying when a test can be deemed
powerful. In a practical environment power of 80% is typically considered as
desirable (Cohen, 1992). However, it is the power of test statistics relevant
to each other that is of greater relevance for theoretical development.

Simulation techniques herein involve the random sampling of numbers,
then observing the sample properties. These techniques are therefore an ap-
plication of Monte-Carlo methods. Random samples are taken from various
distributions, so that test statistics can be analysed for long run performance
in various scenarios. The terminology Monte-Carlo simulation was coined by
Von Neumann and Ulam (1951). The terminology is thought to reflect chance
outcomes based on probabilities that arise at a casino. Some pictures of a
recent trip to Monte-Carlo can be seen in Figure 4.1.

Null hypothesis significance testing (NHST) is most frequently performed
with a nil-null hypothesis specifying that no difference between groups is
present, with a two directional alternative hypothesis (Levine et al., 2008b).

There are many pitfalls of NHST (Levine et al., 2008a). A prominent
limitation is sensitivity to sample size, it is known for many statistical tests
that a larger sample size is more likely to conclude a significant result. In
addition, the standard approach of testing the probability of observed data
given the null hypothesis is true, is not equivalent to the probability that the
null hypothesis is true given the observed data. Thus rejection of the null
hypothesis, which is always strictly false, cannot be taken as evidence that
some other alternative is true.

Whether or not the nil-null hypothesis can ever be true is open to debate
(Sawilowsky, 2016), this is because researchers are forced to work with sam-
ples rather than the entire population. However, in a Monte-Carlo study the
null hypothesis can be true (Rao and Lovric, 2016). In these Monte-Carlo
simulations NHST with a nil-null hypothesis is performed at the α = 0.05
significance level as standard, two-sided.

The issues associated with NHST can be minimised with understanding of
what a p-value represents and using p-values in conjunction with descriptive
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Figure 4.1: Sights of Monte-Carlo, August 2018.

statistics, effect size and confidence intervals.

4.1.1 Generating normally distributed random vari-
ates

For an independent vector of observations, the Mersenne-Twister algorithm
by Matsumoto and Nishimura (1998) is used to generate pairs of random
U(0, 1) variates, x1 and x2. The Mersenne-Twister algorithm is a well-
established random number generator in statistical software, and is the de-
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fault in SPSS. These Uniform variates are transformed into standard Normal
variates using the transformation by Paley and Wiener (1934), now better
known as the Box and Muller (1958) transformation so that:

z1 =
√
−2lnx1 cos(x22π) and z2 =

√
−2lnx1 sin(x22π).

The pairs are returned sequentially. Further pairs of Uniform variates are
transformed into pairs of Normal variates until the required length of Normal
variates have been returned. The generation of the na and nb variates are
independent to each other, thus the assumption of MCAR is implicit.

This process of transforming Uniform variates to Normal variates is fre-
quently used in practice, and such practice is not discredited (Chay, Fardo,
and Mazumdar, 1975). Due to its construction specific to the Normal distri-
bution the Paley andWiener (1934) approach for generating random numbers
may result in more randomness than inverse transform sampling (Devroye,
1986).

4.1.2 Generating non-normal data

For the comparison of test statistics under non-normality, data are generated
by transformation of bivariate standard Normal deviates, N as per Forbes
et al. (2011). For a moderately skewed distribution, Gumbel variates, G, are
generated using the transformation G = -log (-log U), where U is the cumula-
tive distribution function of N . Exponential variates, E, are generated using
the transformation E = -log (U) -1. To demonstrate the robustness of the test
statistics for a more extreme skewed distribution, bivariate Normal variates,
N , are transformed into Lognormal variates, L, using the transformation L
= exponential (N). These transformations are used by Zimmerman (2005)
in simulation exploration of the performance of the t-test. These transfor-
mations ensure that the distributions compared are of the same shape, and
only differ in terms of central location.

4.1.3 Assessing randomness

To confirm the legitimacy of the process detailed for the generation of random
Normal variates, 1,000 sets of n = 1, 000 N(0, 1) variates are obtained. For
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each set, the test by Wald and Wolfowitz (1940) is performed. This is a
comparison of the number of runs of sequential observations above or below
the median against what would be expected using a Normal approximation.

As an aside, the Wald-Wolfowitz test was intended as an alternative non-
parametric test for the comparison of two independent samples (Wald and
Wolfowitz, 1940). The test is now lesser known in the context of two samples.

The corresponding p-values for n = 1, 000 Wald-Wolfowitz runs tests are
summarised in Figure 4.2.

Figure 4.2: Distribution of the p-values for n = 1, 000 Wald-Wolfowitz runs
tests

Figure 4.2 shows approximately uniformly distributed p-values. Hence
the variates generated have no detectable systematic pattern.

As an alternative perspective to conceptualise the process of checking the
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robustness of a test statistic, if we assume that the variates are random,
then this indicates that the Wald-Wolfowitz test is valid for checking the
assumption of randomness.

The proportion of the n = 1, 000 Wald-Wolfowitz tests where the null
hypothesis of randomness is rejected at the 5% significance level is 0.061,
which is approximately equal to the nominal 5% significance level.

The simulations above are repeated for the first 10,000 seeds in R. It is
anticipated that the null hypothesis rejection rates would be symmetrically
distributed around the nominal significance level. The Type I error rates for
10,000 seeds is summarised in Figure 4.3.

Figure 4.3: Wald-Wolfowitz Null hypothesis rejection rates for 10,000 seeds.

Inspection of Figure 4.3 indicates that the central location of the null hy-
pothesis rejection rate for 10,000 seeds is slightly higher than the anticipated
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α = 0.05 reference line. This implies that either the data are not perfectly
random using this method, or that the Wald-Wolfowitz test is not a perfect
test for randomness. It appears that the Wald-Wolfowitz test is liberal, i.e.
it slightly inflates Type I error rates (mean = 0.054).

Using the default Inversion method of random number generation in R,
this results in the same conclusions as above (output not displayed). Given
the widespread praise of both of these random number generators, this sug-
gests that it may be the Wald-Wolfowitz test generating undue concern. To
consider this further, the simulations described above are repeated using two
alternative randomness tests; the test by Cox and Stuart (1955) and the test
by Bartels (1982). The Cox-Stuart test sequentially places observations in
pairs and then performs the sign test on the pairs. The Bartel’s rank test,
slightly more computationally intensive, is a non-parametric version of the
test by Von Neumann (1951). For these alternative approaches of assessing
randomness, null hypothesis rejection rates for n = 1, 000 iterations across
the same 10,000 seeds are shown in Figure 4.4.

Analyses from the Cox-Stuart test indicate the opposite conclusion to the
Wald-Wolfowitz test (mean = 0.044), thus suggesting that if the randomness
assumption is true the Cox-Stuart test is conservative. The Bartel’s rank
test apparently shows that the number generation process ensures random
Normal variates (mean = 0.050). Assuming randomness then the Bartel’s
rank test is the most valid test for randomness.

The three randomness tests collectively give evidence to suggest that the
generation process of N(0, 1) data is reasonable.

4.1.4 Correlated variates

Correlation has an impact on Type I error rate and power of the paired
samples t-test (Fradette et al., 2003), hence a range of correlation coefficients
are considered in a thorough simulation design.

For paired observations, Normal variates are generated as above. These
are transformed to correlated Normal bivariates, zijρ, as per Kenney and
Keeping (1951) so that:
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Figure 4.4: Null hypothesis rejection rates for 10,000 seeds.

z1jρ =
√

1 + ρ

2 z1j +
√

1− ρ
2 z2j and z2jρ =

√
1 + ρ

2 z1j −
√

1− ρ
2 z2j

where i = (Group 1, Group 2), j = (1, 2, . . . ., n12) and ρ is the population
correlation coefficient between Group 1 and Group2.

4.1.5 Sample size

Unbalanced designs are frequent in psychology (Sawilowsky and Hillman,
1992), thus a comprehensive range of values for na, nb and nc are simulated.
Simulations are performed for large and small sample sizes.

Following the global strive towards metric measures of base ten, sample
sizes of factor ten are common in research, with the exception of a smaller
sample size of five. This also allows for procedures involving trimming to be
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considered without undue additional complication.

4.1.6 Number of iterations

The number of iterations (simulation runs) for each parameter combination
varies within the literature. Examples from the literature reviewed in Chap-
ter 2 where 10,000 iterations are performed include Fagerland and Sandvik
(2009a), Rochon, Gondan, and Kieser (2012), Guiard and Rasch (2004) and
Penfield (1994). Varying numbers of iterations from 20,000 to 100,000 de-
pending on the sample size were used by Zimmerman (2011). However, small
sample sizes are not necessarily slower at converging, and this decision could
bias the results and give the false impression of stability of results for smaller
sample sizes.

There is no standard criteria for reasonable precision and hence a judg-
ment call must be made. It appears that 10,000 iterations is the most com-
monly performed in the literature and is therefore reasonable.

The Null Hypothesis Rejection Rate (NHRR) for each parameter combi-
nation is calculated as the proportion of iterations where the null hypothesis
is rejected. When the underlying assumptions of the null hypothesis are true,
the NHRR represents the Type I error rate of the test.

An indication of the precision of the calculated NHRR as the number
of iterations increases is given in Figure 4.5 for selected test statistics. The
p-values are calculated for a systematically increasing number of iterations
up to 50,000 iterations.

It can be seen from Figure 4.5 that for each of the test statistics, the
NHRR stabilises as the number of iterations increases. Most of the values
are within 50% of the overall mean NHRR when the number of iterations
reaches approximately 10,000.

A 95% confidence interval for the deviation from the theoretical value
can be mathematically defined, for a given number of iterations n, and is

equivalent to θ ± 1.96
√
α(1− α)

n
. At the 5% significance level, for 10,000

iterations the calculated rejection rate is within 0.00427 of the true value,
with 95% confidence.
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Figure 4.5: NHRR for selected test statistics, N(0, 1), na = nb = nc = 5, ρ =
0. The overall mean across all p-values calculated is recorded. The reference
lines represent the tolerance region of within 50% of this value.

Figure 4.5 gives some evidence to suggest that the proposed test statistics
are valid for the single parameter combination simulated, thus an extended
simulation design using 10,000 iterations per parameter combination may be
justified.

For simulations under the alternative hypothesis, an arbitrary amount is
added to each observation within Sample 2. In this case the NHRR represents
the power of the test.

The simulation process is summarised in Figure 4.6 at the end of this
chapter.
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4.2 Analysis methodology

Assuming the null hypothesis is true, a test statistic is valid if ordered p-
values from the simulation are uniformly distributed (Bland, 2013). Thus
the Type I error robustness of a test statistic can be viewed graphically using
a probability-probability, P-P plot. The theoretical cumulative distribution
function of the uniform distribution, ‘expected’, is plotted on the y-axis.
The cumulative distribution function of the empirical p-values, ‘observed’, is
plotted on the x-axis. P-P plots are used to show that the two distributions
are similar with points approximately on the line. Alternatively, a quantile-
quantile, Q-Q plot, produced by plotting the observed and expected quantiles
can be used to display deviations from the theoretical distribution. When
comparing a distribution against U(0, 1), a P-P plot is equivalent to a Q-Q
plot (Wilk and Gnanadesikan, 1968).

When the observed values are consistently greater than the expected val-
ues, this suggests that the test statistic is conservative, it is failing to reject
the null hypothesis at least as frequently as would be dictated by the nominal
significance level. When the observed values are consistently less than the
expected values, this suggests that the test statistic is liberal, it is rejecting
the null hypothesis more frequently than would be dictated by the nominal
significance level.

Given a nominal Type I error rate of α = 0.05, a valid test should in-
correctly reject the null hypothesis approximately 5% of the time. Bradley
(1978) noted that in research reporting to assess ‘robustness’, there is little
quantitative indication by authors what is meant by ‘robustness’. When the
null hypothesis is true, Bradley’s robustness criteria states that the observed
NHRR is Type I error robust if it is within x% of α, where x = 50 for
Bradley’s liberal criteria, x = 20 for Bradley’s moderate criteria, and x = 10
for Bradley’s stringent criteria. For α = 0.05, Sullivan and D’Agostino (1996)
state that Type I error rates ≤ 0.055 are acceptable. Similarly, Guo and Luh
(2000) state that Type I error rates ≤ 0.075 are acceptable. The proposals
by Sullivan and D’Agostino (1996) and Guo and Luh (2000) are modifica-
tions to Bradley’s stringent and liberal criteria respectively, but only flag as
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a concern the Type I error rates above α. These modifications to Bradley’s
robustness criteria take into account that a conservative test statistic is of
less concern than a liberal test statistic.

Bradley’s robustness criteria does not specify what constitutes accept-
able variability in Type I error robustness across multiple parameter combi-
nations. Some subjective decisions therefore remain when some parameter
combinations fail Bradley’s liberal Type I error robustness criteria.

An alternative proposal by Derrick and White (2018) is to quantify ro-
bustness as (1 − π)% of Type I error rates within π% of α. For example a
robustness score of 94% would mean that the calculated Type I error rates
are within 6% of α.

Some authors simply report the difference between the nominal signif-
icance level and the observed Type I error rate, with brief reference to
Bradley’s robustness criteria e.g. Fagerland, Sandvik, and Mowinckel (2011).
Other methods for quantifying robustness is to report the confidence interval
coverage of the true difference (Fagerland, 2012). The latter is only practical
for parametric tests.

Bradley’s stringent criteria is more demanding than researchers are willing
to use (Serlin, 2000). Bradley’s liberal criteria has been used in many studies
analysing the validity of t-tests and their adaptations. Examples of this
approach from the literature in Chapter 2 include Fradette et al. (2003),
Nguyen et al. (2012), and Kellermann et al. (2013).

For consistency, Bradley’s liberal robustness criteria is used throughout
this thesis. Test statistics that perform consistently within the interval are
recommended for practical use. Test statistics are first assessed for Type I
error robustness. Only test statistics that demonstrate liberal Type I error
robustness are then assessed for power (Derrick, 2017b).

All simulations herein are performed in R, various versions (R Core Team,
2019), using the R Studio interface (R Studio Team, 2019). Extant t-tests
are calculated using the ‘stats’ package. Degrees of freedom are used in cal-
culations without rounding, and reported to 3 decimal places in the text.
The Wilcoxon test is calculated using the Normal approximation corrected
for ties with continuity correction factor using the ‘stats’ package. Pratt’s
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Figure 4.6: Simulation methodology

test is calculated under the same conditions using the ‘coin’ package. For
the mixed model approach utilising REML, the package ‘lme4’ is used and
corresponding p-values are calculated using the Satterthwaite approximation
adopted by SAS using the package ‘lmerTest’ (Barr et al., 1979). The par-
tially overlapping samples t-tests in Chapters 3.1.1 and 3.1.2 are calculated
using the ‘partiallyoverlapping’ package (Derrick, 2017a).
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Chapter 5

The comparison of means, for
normally distributed data

The Type I error robustness and power of the partially overlapping samples
t-tests are investigated under normality. These test statistics are compared
against standard tests that discard data, the Looney and Jones (2003) pro-
cedure and the REML procedure. Results within are summarised in Derrick
et al. (2017a). An R package to facilitate application of the proposed tests is
documented. The chapter concludes with an assessment of the partially over-
lapping samples t-tests in scenarios where elements of the test are at their
extremes.

5.1 Simulation parameters and test statistics

Overall, the comparison of means for partially overlapping samples ‘has been
poorly treated in the literature’ (Martinez-Camblor, Corral, and De La Hera,
2013, p.77). At the genesis of this thesis, and when preparing a simulation de-
sign to compare proposed test statistics with extant approaches, the Zcorrected

test statistic by Looney and Jones (2003) is the main competitor to naive
tests that discard data or performing the independent samples t-test on all
of the available data ignoring pairing (Samawi and Vogel, 2014a).

The simulation methodology outlined in Chapter 4, is used to assess the
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Type I error robustness and power of the partially overlapping samples t-
tests, namely Tnew1 and Tnew2 as defined in Chapter 3.1.1 and 3.1.2 respec-
tively. These are compared against standard tests which discard observations;
namely T1, T2, and T3. Approaches that ignore any pairing and use all of the
available data are also investigated, T all2 and T all3 . Techniques using all of the
available data, The Zcorrected statistic by Looney and Jones (2003) and the
REML procedure outlined in Chapter 1, are also included in the comparison.
The parameters used within the simulation design are given in Table 5.1.

Table 5.1: Simulation parameters.

Parameter Values
µ1 0
µ2 0 (under H0); 0.25, 0.50, 0.75, 1.00, 1.25, 1.50 (under H1)
σ2

1 1, 2, 4, 8
σ2

2 1, 2, 4, 8
na 5, 10, 30, 50, 100, 500
nb 5, 10, 30, 50, 100, 500
nc 5, 10, 30, 50, 100, 500
ρ -0.75, -0.50, -0.25, 0.00, 0.25, 0.50, 0.75

5.2 Type I error rates

Type I error robustness is firstly assessed under the condition of equal vari-
ances. Under H0, 10,000 replicates are obtained for the 4 × 6 × 6 × 6 × 7
= 6,048 scenarios where σ2

1 = σ2
2. Figure 5.1 exhibits the Type I error rates

for each of the test statistics under equal variances. Each point represents
one parameter combination with the simulation design, reference lines for
Bradley’s liberal Type I error robustness criteria are included.

Figure 5.1 indicates that when σ2
1 = σ2

2, the statistics T1, T2, T3, Tnew1

and Tnew2 remain within Bradley’s liberal Type I error robustness criteria
throughout the entire simulation design. T all2 and T all3 are not Type I error
robust. This finding is compatible with the findings of Zimmerman (1997)
when ignoring the pairing in a paired samples design. The statistic Zcorrected
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Figure 5.1: Type I error rates where σ2
1 = σ2

2, reference lines show Bradley’s
liberal criteria.

is not Type I error robust, confirming smaller scale simulation findings by
Mehrotra (2004). Figure 5.1 also shows that REML is not Type I error robust
throughout the entire simulation design.

Type I error robustness is assessed under the condition of unequal vari-
ances. Under the null hypothesis, 10,000 replicates were obtained for the 4 ×
3 × 6 × 6 × 6 × 7 = 18,144 scenarios where σ2

1 6= σ2
2. For assessment against

Bradley’s liberal robustness criteria, Figure 5.2 shows the Type I error rates.

It can be seen from Figure 5.2 that the statistics defined using a pooled
standard deviation, T2 and Tnew1, do not provide Type I error robust solutions
when variances are not equal. The statistics T1, T3 and Tnew2 retain their
Type I error robustness under unequal variances and normality throughout
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Figure 5.2: Type I error rates where σ2
1 6= σ2

2, reference lines show Bradley’s
liberal criteria.

all conditions simulated.

The statistic Zcorrected exhibits similar Type I error rates under unequal
variances as it does when variances are equal. The statistic Zcorrected results in
an unacceptable amount of false positives when ρ ≤ 0.25 or max {na, nb, nc}
- min {na, nb, nc} is large. In addition, the statistic Zcorrected is conservative
when ρ is large and positive. The largest observed deviations from Type I
error robustness for REML are when ρ ≤ 0 or max {na, nb, nc} - min {na,
nb, nc} is large. Further insight to the Type I error rates for REML can be
seen in Figure 5.3, showing observed p-values against expected p-values from
a uniform distribution.

It can be seen from Figure 5.3 that REML is not Type I error robust
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Figure 5.3: P-P plots for 10,000 simulated p-values using REML procedure.
Selected parameter combinations (na, nb, nc, σ2

1, σ2
2, ρ) are as follows; A

(5,5,5,1,1,-0.75), B (5,10,5,8,1,0), C (5,10,5,8,1,0.5), D (10,5,5,8,1,0.5).

when the correlation coefficient is negative. In addition, caution should be
exercised if using REML when the larger variance is associated with the
smaller sample size. REML maintains Type I error robustness for positive
correlation and equal variances or when the larger sample size is associated
with the larger variance.

In contrast, Figure 5.4 shows that Tnew2 maintains uniform p-values across
the same set of scenarios. This indicates that although the 5% significance
level has been used as standard, the test statistic Tnew2 remains valid at any
significance level.
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Figure 5.4: P-P plots for 10,000 simulated p-values using Tnew2. Selected
parameter combinations (na, nb, nc, σ2

1, σ2
2, ρ) are as follows; A (5,5,5,1,1,-

0.75), B (5,10,5,8,1,0), C (5,10,5,8,1,0.5), D (10,5,5,8,1,0.5).

5.3 Power

Test statistics that do not fail to maintain Bradley’s Type I error liberal
robustness criteria are assessed under H1. REML is included in the compar-
isons for ρ ≥ 0. The power of the test statistics are assessed where σ2

1 = σ2
2 =

1, followed by an assessment of the power of the test statistics where σ2
1 > 1

and σ2
2 = 1.

Table 5.2 shows the power of T1, T2, T3, Tnew1, Tnew2 and REML, averaged
over all sample size combinations where σ2

1 = σ2
2 = 1 and µ1 - µ2 = 0.5.

Table 5.2 shows that REML, Tnew1 and Tnew2 are more powerful than naive
approaches, T1, T2 and T3, when variances are equal. Consistent with the
paired samples t-test, T1, the power of Tnew1 and Tnew2 is relatively lower when
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Table 5.2: Power of Type I error robust test statistics, σ2
1 = σ2

2, µ1 - µ2 =
0.5.

ρ T1 T2 T3 Tnew1 Tnew2 REML
0.75 0.785 0.567 0.565 0.887 0.886 0.922
0.50 0.687 0.567 0.565 0.865 0.864 0.880

na = nb 0.25 0.614 0.567 0.565 0.842 0.841 0.851
0 0.558 0.567 0.565 0.818 0.818 0.829
<0 0.481 0.567 0.565 0.778 0.778 -
0.75 0.784 0.455 0.433 0.855 0.847 0.907
0.50 0.687 0.455 0.433 0.840 0.832 0.861

na 6= nb 0.25 0.615 0.455 0.433 0.823 0.816 0.832
0 0.559 0.455 0.433 0.806 0.799 0.816
<0 0.482 0.455 0.433 0.774 0.766 -

there is zero or negative correlation between the two populations. Similar
to contrasts of the independent samples t-test, T2, with Welch’s test, T3, for
equal variances but unequal sample sizes, Tnew1 is marginally more powerful
than Tnew2, but not to any practical extent. For each of the tests statistics
making use of paired data the power increases as the correlation between the
paired samples increases.

To investigate further the relationship and differences between Tnew1 and
Tnew2, Figure 5.5 depicts a scatterplot of the the p-values for the two tests,
and a Bland-Altman plot of the mean and differences between the p-values
for the two tests, where σ2

1 = σ2
2 = 1.

In Figure 5.5 there is an apparent very strong correlation between the two
partially overlapping samples t-tests (Pearson’s r = 0.993). Using correlation
as a crude measure of agreement can mask some interesting differences (Bland
and Altman, 1986). The Bland-Altman plot suggests that for the scenarios
where the power may be low, the power gain of Tnew1 over Tnew2 is greater.
In this simulation design these scenarios occur when max {na, nb, nc} - min
{na, nb, nc} is large.

As the correlation between the paired observations increases, the power
advantage of the proposed test statistics relative to the paired samples t-test
becomes smaller. Therefore the proposed statistics Tnew1 and Tnew2 may be
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Figure 5.5: Relationship and differences between Tnew1 and Tnew2, p-values
where σ2

1 = σ2
2 = 1 and µ1 - µ2 = 0.5. A reference line for the average

difference in p-values between the two tests (0.024) is included

especially useful when the correlation between the two populations is small.
Figure 5.6 gives the power curves for the partially overlapping samples

t-test, and for comparative purposes the paired samples t-test, for a total
sample size of 30 observations. As anticipated the power increases as the
true difference in population means increases. It is of note that the relative
gain in power using the partially overlapping samples t-test over the paired
samples t-test is related to the difference in population means.

Test statistics that do not violate Bradley’s liberal robustness criteria
when σ2

1 6= σ2
2 are assessed for power. Table 5.3 gives power averaged over

the simulation design for these parameter combinations.
Table 5.3 shows that Tnew2 has superior power properties to both T1 and
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Figure 5.6: Power curves averaged over all values of ρ, σ1 = σ2 = 1 . The
left hand side has a greater number of paired observations, the right hand
side has a greater number of independent observations.

T2 when σ2
1 6= σ2

2. In common with the performance of Welch’s test for
independent samples, T3, the power of Tnew2 is higher when the larger variance
is associated with the larger sample size. In common with the performance
of the paired samples t-test, T1, the power of Tnew2 is relatively lower when
there is zero or negative correlation between the two populations.

The apparent power gain for REML when the larger variance is associated
with the larger sample size, can be explained by the pattern in the Type I
error rates. REML follows a similar pattern to the independent samples t-
test, which is liberal when the larger variance is associated with the larger
sample size, thus giving the perception of higher power.

To show the relative increase in power for varying sample sizes, Figure 5.7
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Table 5.3: Power of Type I error robust test statistics, σ2
1 6= σ2

2, µ1 - µ2 =
0.5.

ρ T1 T3 Tnew2 REML
0.75 0.555 0.393 0.692 0.645
0.50 0.481 0.393 0.665 0.588

na = nb 0.25 0.429 0.393 0.640 0.545
0 0.391 0.393 0.619 0.515
<0 0.341 0.393 0.582 -
0.75 0.555 0.351 0.715 0.589
0.50 0.481 0.351 0.688 0.508

na > nb 0.25 0.429 0.351 0.665 0.459
0 0.391 0.351 0.642 0.422
<0 0.341 0.351 0.604 -
0.75 0.555 0.213 0.559 0.693
0.5 0.481 0.213 0.539 0.649

na < nb 0.25 0.429 0.213 0.522 0.62
0 0.391 0.213 0.507 0.603
<0 0.341 0.213 0.480 -

shows the power for selected test statistics for small-medium sample sizes,
averaged across the simulation design for unequal variances.

Figure 5.7 shows a relative power advantage when the larger variance
is associated with the larger sample size, as per B2 and D2. Across the
simulation design, power is adversely affected for all test statistics when
variances are not equal. This is exacerbated for small-medium sample sizes.
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Figure 5.7: Power for Type I error robust test statistics, σ2
1 > σ2

2 and µ1−µ2 =
0.5. The sample sizes (na, nb, nc) are as follows; A (10,10,10), B1 (10,30,10),
B2 (30,10,10), C (10,10,30), D1 (10,30,30), D2 (30,10,30), E (30,30,30).

5.4 R package

To provide ease of calculation of Tnew1 and Tnew2, an R package ‘partially-
overlapping’ (Derrick, 2017a) is supplied, version control as per Table 5.4.

Table 5.4: Version control, ‘partiallyoverlapping’.

Version Date Notes
1.0 1/1/2017 Partover.test introduced
1.1 11/11/2018 command mu= added to Partover.test
2.0 12/12/2018 Prop.test added (see Chapter 9)

To ease facilitation, the structure of the Partover.test function is the same
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as the ‘t.test’ function in the ‘stats’ package.

5.4.1 Help manual

Extracts from the supporting help pages are given below to demonstrate how
the function Partover.test within the ‘partiallyoverlapping’ package is used.

Description

The formula is only applicable for the two sample partially overlapping sam-
ples t-test. The number of unpaired observations may be zero for up to one
of the two samples. The number of paired observations must be of equal
length of two or greater. Error messages are given when these conditions are
not true.

Performs a comparison of means using the partially overlapping t-test, for
two samples each with paired and unpaired observations. This functions
calculates the test statistic, the degrees of freedom, and the p-value. Ad-
ditionally calculates a confidence interval for the difference in means when
requested. By default, four vectors are to be specified: unpaired observa-
tions in Sample 1, unpaired observations in Sample 2, paired observations in
Sample 1, paired observations in Sample 2. If the structure of your data is
of two vectors, one for each sample, then the option stacked = TRUE can be
specified.

Usage and default options

Partover.test(x1 = NULL, x2 = NULL, x3 = NULL, x4 = NULL, var.equal
= FALSE, mu = 0, alternative = "two.sided", conf.level = NULL, stacked =
FALSE)

Arguments
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x1 a vector of unpaired observations in Sample 1 (or all observations in
Sample 1 if stacked = "TRUE")

x2 a vector of unpaired observations in Sample 2 (or all observations in
Sample 2 if stacked = "TRUE")

x3 a vector of paired observations in Sample 1 (not applicable if stacked =
"TRUE")

x4 a vector of paired observations in Sample 2 (not applicable if stacked =
"TRUE")

var.equal a logical variable indicating whether to treat the two variances as
being equal. If "TRUE" then the pooled variance is used to estimate the
variance, otherwise the Welch approximation to the degrees of freedom is
used.

mu difference in population means under the null hypothesis

alternative a character string specifying the alternative hypothesis, must be
one of "two.sided" (default), "greater" or "less".

conf.level confidence level of the interval.

stacked indicator of whether paired and unpaired observations are stacked
within one vector ("TRUE"), or if specified as four separate vectors (default).
Corresponding pairs should be given on the same row when "TRUE" is se-
lected.

Values

statistic The value of the t-statistic
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parameter The degrees of freedom for the test statistic

p.value The p-value for the test

estimate The estimated difference in the means

conf.int A confidence interval for the mean appropriate to the specified al-
ternative hypothesis

Example
[This is Example 1 in Section 3.2, taken from Derrick, Toher, and White
(2017)].
The sample means for two groups, "a" and "b" are compared for a two sided
test assuming equal variances.
Approach 1: For each sample, unpaired observations and paired observations
defined as separate vectors:

a.unpaired<-c(20,21,16,18,14,12,14,17)

a.paired<-c(14,15,18,20,11,19,14,15)

b.unpaired<-c(10,16,18,16,15,14,13,10)

b.paired<-c(15,10,15,17,13,19,12,13)

Partover.test(a.unpaired,b.unpaired,a.paired,b.paired,
var.equal=TRUE)

Resulting output gives; p.value = 0.026.

Equivalently, Approach 2: Independent observations and the paired samples
stacked for each sample:
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a<-c(20,21,16,18,14,12,14,17,NA,NA,NA,NA,NA,NA,NA,NA,
14,15,18,20,11,19,14,15)

b<-c(NA,NA,NA,NA,NA,NA,NA,NA,10,16,18,16,15,14,13,10,
15,10,15,17,13,19,12,13)

Partover.test(a,b,var.equal=TRUE,stacked=TRUE)

Resulting output gives; p.value = 0.026, the samples from group "a" and
group "b" have significantly different means.

5.4.2 Further application

In an application by Polster et al. (2019), irritable bowel syndrome sufferers
in two cohorts are compared. Some respondents are within the ‘Rome III
cohort’, some are in the ‘Rome IV cohort’ and some are in both. Their
severity of symptoms as reported via a questionnaire is compared between
the two cohorts using the ‘Partover.test’. The form of the test, equal variances
assumed or not assumed, is not reported. All of the authors significant results
have p < 0.01 suggesting that both tests will give the same conclusion. The
reported variances in each group appear approximately equal, and thus either
test selected would be a robust option.

In an application by Raymundo et al. (2019), the amount of coral reef
cover following bleaching events in 2013 and 2017 is compared. Normality was
considered using the Shapiro-Wilk test and equal variances was considered
using the Brown-Forsythe test. Upon satisfying these two assumptions Tnew1

is performed, it is concluded that there is a difference in the impact of the
bleaching events between the two years (t(39.2) = 2.61, p = 0.013).
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5.5 The performance of the partially overlap-
ping samples t-tests at the limits.

It is of interest whether the partially overlapping samples t-tests remain valid
for circumstances which include parameters of the test at their limits. The
following extreme or unusual conditions are explored:

1. na = 0 and nb = 0

2. na = 0 or nb = 0

3. nc = 0 or nc = 1

4. ρ = 1 or ρ = -1

5. ρ = 1 because the paired observations are identical

6. σ2 = 0

7. H0 : µ1 − µ2 = x

Particular attention is given to the validity of the ‘Partover.test’ function
in the R package ‘partiallyoverlapping’ by Derrick (2017a). Where appro-
priate, additional simulations are performed to assess the Type I error rate
under theses conditions.

1. na = 0 and nb = 0

If there are no independent observations, both forms of the partially over-
lapping samples t-test are equivalent to the paired samples t-test. The ‘Par-
tover.test’ function in R can be performed and gives equivalent results to the
paired samples t-test.

2. na = 0 or nb = 0

If paired observations are present and only one sample has independent ob-
servations, this is equivalent to scenario (8) in Chapter 1, and equivalent to
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that outlined by Qi, Yan, and Tian (2018) where incompleteness is in a single
response only. The partially overlapping samples t-tests have the advantage
that this is not a restriction to performing the ‘Partover.test’ test.

The simulation design as per Table 5.1 is repeated under H0 with a fixed
value of na = 0. For both forms of the partially overlapping samples t-test,
the proportion of parameter combinations that satisfy Bradley’s liberal Type
I error robustness criteria is given in Figure 5.8. Parameter combinations
with a Type I error rate in excess of 0.075 are deemed liberal, and those
parameter combinations with a Type I error rate less than of 0.025 are deemed
conservative. See Table 5.5 for assessment of Type I error robustness for a
small selection of parameter combinations under these conditions, with values
that fulfill Bradley’s liberal Type I error robustness criteria highlighted in
bold.

Figure 5.8: Sankey plot for extended simulation design with na = 0.
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Table 5.5: Type I error rates, extended design, na = 0.

ρ na nb nc σ2
1 σ2

2 Tnew1 Tnew2
0.25 0 30 5 1 1 0.045 0.053
0.75 0 5 5 1 1 0.041 0.040
0.25 0 30 5 4 1 0.222 0.053
0.75 0 5 5 4 1 0.124 0.048
0.25 0 30 5 1 4 0.001 0.051
0.75 0 5 5 1 4 0.032 0.041

3. nc = 0 or nc = 1

If there are no paired samples, Tnew1 is mathematically equivalent to the in-
dependent samples t-test, and Tnew2 is mathematically equivalent to Welch’s
test. When using the ‘Partover.test’ in R, a minimum of nc = 2 is required
due to the required calculation of a correlation coefficient. If nc = 1, it is
a single pair that could be discarded and the independent samples t-test or
Welch’s test could be performed without greatly impacting power. However,
caution should be exercised if the discarded pairing contains an extreme ob-
servation [see Chapter 7].

4. ρ = 1 or ρ = −1

It is theoretically possible to have perfect correlation, without the paired
observations being identical.

The simulation design in Table 5.1 is again repeated under H0, but with
a fixed parameter of ρ = 1.

For both forms of the partially overlapping samples t-test, the propor-
tion of parameter combinations that satisfy Bradley’s liberal Type I error
robustness criteria is given in Figure 5.9.

The similarity of Figure 5.8 and Figure 5.9 indicates that the partially
overlapping samples t-tests exhibit similar robustness properties at the ex-
tremes of na = 0 or ρ = 1, and these Type I error rates are in agreement
with the Type I error robustness observed for the original simulation design.

Selected results from this extension to the simulation design for selected
parameter combinations with ρ = 1 are given in Table 5.6. This table includes
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Figure 5.9: Sankey plot for extended simulation design with ρ = 1.

results of some additional simulations where both na = 0 and ρ = 1.

Table 5.6: Type I error rates, extended design, ρ = 1.

ρ na nb nc σ2
1 σ2

2 Tnew1 Tnew2
1 5 30 5 1 1 0.044 0.047
1 30 5 5 1 1 0.042 0.047
1 5 30 5 4 1 0.050 0.055
1 30 5 5 4 1 0.044 0.050
1 5 30 5 1 4 0.003 0.042
1 30 5 5 1 4 0.185 0.050
1 0 30 5 1 1 0.039 0.058
1 0 5 5 1 1 0.019 0.044
1 0 30 5 4 1 0.037 0.066
1 0 5 5 4 1 0.019 0.043
1 0 30 5 1 4 0.264 0.061
1 0 5 5 1 4 0.180 0.064

It can be seen from Table 5.5 and Table 5.6 that when variances are
equal, both partially overlapping samples t-tests remain valid when one sam-
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ple has no independent observations. Additionally when relaxing the equal
variances assumption, Tnew2 remains valid when the incompleteness is in a
single sample. Perfectly correlated data does not detract from the validity of
the tests.

5. ρ = 1 because the paired observations are identical

There may be occasions by design where two subsets of the same group
are compared, and some units are common to both subsets. For example,
in education where the mean module score for ‘Statistical Modelling’ is to
be compared for two groups, those taking the optional module ‘Mathemati-
cal Statistics’ and those taking the optional module ‘Operational Research’.
Students taking both ‘Mathematical Statistics’ and ‘Operational Research’
could be said to be ‘paired’ observations. For the students taking both op-
tional modules, the score for the Statistical Modelling module has ρ = 1.
The ‘paired’ observations could be discarded and the independent samples
t-test, T2, or Welch’s test, T3, could be performed. Instead, the situation
could be viewed as a one-way ANOVA with three groups, consisting of the
two sets of independent observations, and the one set of paired observations.
Alternatively the partially overlapping samples t-tests could be applied.

To assess whether the proposed test statistics are valid under these con-
ditions, an additional consideration is required in the simulation design with
respect to the variance. The variance of the paired observations, σ2

c , could
be equal to the variance of the observations in Group 1, σ2

a, or the variance
of the observations in Group 2, σ2

b , or both, or neither. Table 5.7 give results
of an extension to the simulation design to take into account these prop-
erties. Parameter combinations which fulfill Bradley’s liberal Type I error
robustness are highlighted in bold.

Table 5.7 shows that Tnew1 and Tnew2 are only valid if the variance in
the paired observations is equal to the variance of both sets of independent
observations. In general terms if the variance of the paired observations is
not equal to the variance of the independent observations, it is likely that
the observations are actually from separate populations, therefore a one way
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Table 5.7: Type I error rates, na = 5 ρ = 1 and identical paired observations.

nb nc σ2
a σ2

b σ2
c Tnew1 Tnew2 T1 T2 ANOVA

5 5 1 1 1 0.035 0.031 0.048 0.043 0.049
30 5 1 1 1 0.047 0.048 0.051 0.056 0.053
5 30 1 1 1 0.048 0.046 0.054 0.047 0.050
5 5 1 4 1 0.075 0.058 0.059 0.051 0.070
5 5 1 1 4 0.004 0.003 0.052 0.045 0.042
5 5 1 4 4 0.021 0.015 0.055 0.046 0.057
30 5 1 4 1 0.009 0.063 0.004 0.049 0.092
5 30 1 4 1 0.000 0.000 0.054 0.049 0.071

ANOVA may be more appropriate. The partially overlapping samples t-test
may be valid, assuming the exact form of the research question is taken into
consideration when selecting an appropriate test.

6. σ2 = 0

If the variability of the differences in the paired observations is equal to zero,
the paired samples t-test cannot be performed. If there is no variability in the
differences in the independent observations, the independent samples t-test
or Welch’s test cannot be performed. The partially overlapping samples t-
tests remain functional in both these instances, so long as there is variability
in either the independent observations or the paired observations.

It is possible that the paired observations within one sample could be con-
stant (particularly for discrete data). This would give zero variability within
the paired sample. Where the paired samples t-test in R would error, the
‘Partover.test’ function is set to give r = 0 in this circumstance so that the
test can proceed. This is a valid approach because the partially overlapping
samples t-test has been shown to be valid for ρ = 0. In this scenario the
partially overlapping samples t-statistic is identical to the independent sam-
ples t-statistic performed on all of the available data, however the degrees of
freedom differ because the partially overlapping samples t-tests incorporate
the size of the paired sample. This means that the degrees of freedom are
lower for the partially overlapping samples t-test than the independent sam-
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ples t-test on all of the data. The partially overlapping samples t-test in this
extreme scenario is therefore less powerful than performing the independent
samples t-test on all of the available data. However, a researcher would not
know in advance that the correlation is zero. If ρ = 0 is anticipated, a paired
design may not be appropriate.

In the event of zero variability within both samples, ‘Partover.test’ is set
to give p-value = 1 if x̄1 - x̄2 = 0, else ‘Partover.test’ gives p-value = 0.

7. H0 : µ1 − µ2 = x

The above simulations are concerned with testing whether there is a difference
between two groups, which is the same as testing if the difference between
the two groups is zero. There may be occasions where researchers wish to
test whether the difference between the two groups is equal to some other
fixed value. Cao, Pauly, and Konietschke (2018) state Welch’s test with
the hypothesised difference in population means on the numerator. This
extension to the numerator could be generalised to all forms of the t-test
including the partially overlapping samples t-tests. Thus each t-test has the
form:

T = X̄1 − X̄2 − (µ1 − µ2)
stderr(X̄1 − X̄2)

To demonstrate robustness of the t-tests when assessing against a null
hypothesis of a defined difference x between the two populations, the simula-
tion design in Table 5.1 is repeated for H0 : µ1−µ2 = 10. Correlated variates
are generated per Chapter 4 with µ = 0, then x = 10 is added to each vari-
ate in Group A. Type I error rates for selected parameter combinations, and
averaged across the entire simulation design are given in Table 5.8.

Table 5.8 shows that the Type I error rates for both equal and unequal
variances follow the same pattern as when testing for H0 : µ1 − µ2 = 0
thus the conclusions regarding robustness for each test generalise to any
H0 : µ1 − µ2 = x

When performing the ‘Partover.test’, assessment against a H0 : µ1−µ2 =
x can be performed by adding the command ‘mu = x’.
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Table 5.8: Type I error rates, H0 : µ1 − µ2 = 10, σ2
2 = 1, nc = 5.

ρ na nb σ2
1 T1 T2 T3 Tnew1 Tnew2

-0.75 5 10 1 0.051 0.050 0.051 0.051 0.051
-0.50 10 30 4 0.051 0.160 0.053 0.129 0.048
-0.25 30 5 1 0.048 0.052 0.059 0.051 0.052
0.00 5 5 4 0.050 0.061 0.052 0.055 0.046
0.25 10 5 1 0.049 0.055 0.054 0.047 0.046
0.50 30 10 4 0.052 0.009 0.047 0.013 0.048
0.75 5 30 1 0.051 0.047 0.054 0.042 0.043

Overall 0.050 0.101 0.051 0.079 0.049

5.6 Summary

The statistic Tnew2 is Type I error robust across all conditions simulated un-
der normality and MCAR. The greater power observed for Tnew1 compared
to Tnew2 under equal variances, is likely to be of negligible consequence in a
practical environment. This is in line with empirical evidence for the per-
formance of Welch’s test, when only independent samples are present, which
leads to many observers recommending the routine use of Welch’s test under
normality, e.g. Ruxton (2006).

The Type I error rates and power of Tnew2 follow the properties of its
counterparts, T1 and T3. Thus Tnew2 can be seen as a trade-off between the
paired sample t-test and Welch’s test, with the advantage of increased power,
due to using all available data.

A mixed model procedure using REML is not fully Type I error robust.
In those scenarios in which this procedure is Type I error robust, the power
is similar to that of Tnew1 and Tnew2. The partially overlapping samples t-
tests are less computationally intensive competitors to REML. The REML
procedure does not directly calculate the difference between the two sample
means, in a practical environment this makes its results hard to interpret.

In conclusion, for equal variances, Tnew1 and Tnew2 are Type I error robust.
In addition they are more powerful than the traditional Type I error robust
approaches. When variances are equal, there is a slight power advantage of
using Tnew1 over Tnew2, particularly when sample sizes are not equal. Under
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unequal variances, Tnew2 is the most powerful Type I error robust statistic
considered.

When faced with a research problem involving two partially overlapping
samples, if MCAR, normality and within sample independence can be rea-
sonably assumed, the statistic Tnew1 can be used when variances are equal.
Under the same conditions when equal variances cannot be assumed the
statistic Tnew2 is recommended. The proposed test statistics for partially
overlapping samples provide a competitive alternative method for analysis
of normally distributed data. These methods remain valid when unpaired
observations are in only one sample, and where there is perfect correlation.
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Chapter 6

The comparison of two groups,
for non-normally distributed
data

The partially overlapping samples t-tests, and the additional proposed solu-
tions in Chapter 3, are compared against existing non-parametric solutions.
The comparison is extended to non-normal distributions. The findings pre-
sented within this chapter are published in Derrick, White, and Toher (2017)
and Derrick, White, and Toher (in press).

6.1 Simulation parameters and test statistics

The simulation study in Chapter 5 is replicated to consider the performance
of the test statistics for non-normal distributions. Inverse Normal Transfor-
mations (INTs) and non-parametric tests are also considered.

Type I error robustness and power are assessed for the partially over-
lapping samples t-test; namely Tnew1 and Tnew2 as defined in Chapter 3.1.1
and 3.1.2 respectively. These are compared against naive parametric and
non-parametric tests which discard data; namely T1, T2, T3, MW and W .
Additional proposals that conceptually may be appropriate for non-normal
data are also considered. These additional comparators are TRNK1, TRNK2,
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TINT1 and TINT2 as defined in Chapter 3.1.3 and Chapter 3.1.4.

Each of the test statistics are assessed under N(0, 1). In addition the
test statistics are assessed under non-normality, for two samples from the
Gumbel distribution, two samples from the Exponential distribution, and
two samples from the Lognormal distribution. The data is generated as
described in Chapter 4.1.1 and Chapter 4.1.2.

Fagerland and Sandvik (2009b) show that the Mann-Whitney test results
in Type I errors that deviate from the nominal 5% significance level, if the two
distributions do not have the same shape. Fagerland and Sandvik (2009b)
note a common situation in medical research where the Mann-Whitney is
incorrectly interpreted, a disparity in the variance and skewness between
two distributions is often confounded with a difference in central location, so
the assumption of a location shift model is unrealistic.

Additional analyses are performed when the samples are drawn from
the Normal distribution with unequal variances, and then when samples are
drawn from distributions with differing functional form, for example one sam-
ple taken from a Normal distribution and one sample taken from a Lognormal
distribution. For assessing the Type I error robustness under normality with
unequal variances, the n1 observations are multiplied by σ1 and the n2 ob-
servations multiplied by σ2. Standardising is performed when comparing
samples from two distributions with differing functional form.

Type I error rates for each of the test statistics considered are reported,
followed by power for each test statistic that controls Type I error rates.
The scenario where samples are drawn from the same distribution is firstly
considered (Section 6.2). This is followed by the scenario where samples are
drawn from the Normal distribution with unequal variances (Section 6.3),
and finally the scenario when the samples are drawn from distinctly differing
distributions (Section 6.4).
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6.2 Samples taken from distributions of the
same shape

For parameter combinations where µ1 = µ2 and σ2
1 = σ2

2, the Type I er-
ror rates for each of the four distributions are summarised in Figure 6.1
and Figure 6.2. Each point represents one parameter combination within
the simulation design, reference lines are for Bradley’s liberal Type I error
robustness criteria.

Figure 6.1(a) shows that each of the test statistics considered broadly
maintain liberal Type I error robustness criteria when both samples are
drawn from N(0, 1). However, there is some minor inflation of Type I error
rates particularly for the Wilcoxon test based on only the paired observa-
tions, these occur predominantly when nc = 5. Figure 6.1(b) suggests that
the test statistics under consideration are not sensitive to relatively minor
deviations from the Normal distribution. However, there is some minor infla-
tion of Type I error rates particularly for Welch’s test. The inflation of Type
I error rates occurs when there is a sample size imbalance (e.g. na = 500,
nb = 5).

Figure 6.2 shows that for increasing skewness, the validity of some of the
test statistics start to deteriorate. The degree of skewness for the Lognormal
distribution in this simulation is larger than the degree of skewness considered
by Fagerland and Sandvik (2009b). The Mann-Whitney test remains Type I
error robustness even for the more extreme degree of skewness in this study.
Most of the test statistics proposed also remain within Bradley’s liberal Type
I error robustness criteria. However, test statistics using separate variances,
T3 and Tnew2, frequently exceed the upper threshold of Bradley’s liberal Type
I error robustness criteria.

For the statistics that use all of the available data, higher Type I error
rates are associated with large sample size imbalances between na, nb and nc.
For these statistics, lower Type I error rates are associated with small sample
sizes and negative correlation.

A summary of the power for the proposed test statistics is given in Table
6.1. Power is reported only for scenarios that exhibit Type I error robustness.
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(a) Normal

(b) Gumbel

Figure 6.1: Type I error rates, Normal distribution and Gumbel distribution.
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(a) Exponential

(b) Lognormal

Figure 6.2: Type I error rates, Exponential distribution and Lognormal dis-
tribution.
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Table 6.1: Power, continuous data.

ρ Tnew1 Tnew2 TRNK1 TRNK2 TINT1 TINT2
Normal
n1 = n2 >0 0.865 0.864 0.856 0.855 0.855 0.854

0 0.819 0.819 0.811 0.811 0.811 0.811
<0 0.779 0.779 0.772 0.771 0.770 0.769

n1 6= n2 >0 0.839 0.832 0.829 0.824 0.827 0.824
0 0.806 0.798 0.795 0.790 0.795 0.790
<0 0.774 0.767 0.763 0.760 0.761 0.758

Gumbel
n1 = n2 >0 0.783 0.782 0.815 0.814 0.824 0.823

0 0.720 0.718 0.761 0.760 0.774 0.774
<0 0.678 0.678 0.719 0.719 0.727 0.726

n1 6= n2 >0 0.740 0.735 0.779 0.776 0.789 0.786
0 0.693 0.689 0.740 0.736 0.749 0.747
<0 0.655 0.651 0.702 0.699 0.712 0.710

Exponential
n1 = n2 >0 0.867 0.864 0.938 0.937 0.946 0.944

0 0.824 0.824 0.915 0.914 0.926 0.925
<0 0.795 0.795 0.894 0.894 0.906 0.906

n1 6= n2 >0 0.841 - 0.933 0.930 0.943 0.938
0 0.811 - 0.919 0.917 0.930 0.926
<0 0.786 - 0.904 0.903 0.918 0.915

Lognormal
n1 = n2 >0 0.596 0.590 0.893 0.891 0.905 0.904

0 0.535 0.533 0.857 0.856 0.911 0.912
<0 0.506 0.506 0.826 0.826 0.918 0.925

n1 6= n2 >0 0.514 - 0.874 0.873 0.879 0.876
0 0.467 - 0.851 0.850 0.850 0.851
<0 0.438 - 0.825 0.826 0.848 0.849

Averaged over the simulation design, Table 6.1 shows that the power dif-
ference between Tnew1 and Tnew2 is negligible, and both have higher power
under normality than the other methods considered. If the normality as-
sumption does not apply Tnew1 is recommended over Tnew2 because Tnew2 is
not Type I error robust for the most skewed distributions when sample sizes
are not equal. However, Table 6.1 shows that for the non-normal distribu-
tions in this simulation design, non-parametric methods are more powerful
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than their parametric counterparts where both samples are taken from the
same distribution.

There are only a few scenarios where TRNK2 outperforms TRNK1, or where
TINT2 outperforms TINT1. These are in rare situations when there is extreme
skewness and negative correlation between the two groups. Furthermore the
difference in power between the non-parametric methods and the distribu-
tion free methods is negligible, thus the more straightforward solution TRNK1

should suffice in most practical application.
In any event, the null hypothesis that ‘the mean of the INT for Group A

is equal to the mean of the INT for Group B’ is likely to be poorly under-
stood and impractical. Furthermore, such methods do not make a population
normal, it makes a sample appear normal. The use of an INT imposes nor-
mality on the data, this is not the same as directly ensuring the assumption
of normally distributed residuals (Servin and Stephens, 2007).

Figure 6.3 shows the power for each parameter combination within the
simulation design for Tnew1 and TRNK1.

Figure 6.3 illustrates that under normality, the proposed TRNK1 is virtu-
ally equivalent to the proposed Tnew1. But for increasing degrees of skewness,
the non-parametric test statistic Tnew1 exhibits an increasing power advan-
tage over its parametric counterpart TRNK1.
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Figure 6.3: Power for each parameter combination, Tnew1 and TRNK1.

6.3 Samples taken from Normal distributions
with unequal variance

Null hypothesis rejection rates are obtained for each of the parameter com-
binations where µ1 = µ2 and σ2

1 6= σ2
2. When the observations are sampled

from two Normal distributions with equal means and unequal variances, the
null hypothesis rejection rate represents the Type I error rate of the test.
Type I error rates for each of the test statistics are given in Figure 6.4.

Figure 6.4 shows that Type I error robustness is maintained under normal-
ity for Tnew2. Thus Tnew2 is the only test statistic making use of all available
data to be Type I error robust under normality for both equal and unequal
variances.
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Figure 6.4: Type I error rates, Normal distribution.

For normally distributed data and unequal population variances, the test
statistics not constrained to equal variances are more Type I error robust
than the statistics that assume equal variances. Nevertheless, for TRNK2 and
TINT2 the number of times the null hypothesis is rejected is probably greater
than would be deemed acceptable. Closer inspection of the results shows
these statistics are not robust when the number of paired observations is
large relative to the total number of independent observations. This effect is
exacerbated when ρ is large and positive.
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6.4 Samples taken from distributions of dif-
fering functional form

To consider the behaviour of the test statistics when the two samples are
drawn from distinctly different distributions (standardised to ensure equal
means), Figure 6.5 shows the null hypothesis rejection rates when observa-
tions for Sample 1 are taken from the Standard Normal distribution, and
observations for Sample 2 are taken from the Lognormal distribution.

Figure 6.5: Sample 1 values taken from the Standard Normal distribution,
Sample 2 observations are taken from a standardised Lognormal distribution.

Under the simulation design, standardising of the population ensures that
the mean for both distributions is the same, but the shapes of the distribu-
tions are different. The null hypothesis rejection rate only represents the
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Type I error rate if the null hypothesis is strictly that there is no difference
in means. Figure 6.5 shows that the parametric tests are not sensitive to the
different shapes of the distributions and remain valid for testing the hypoth-
esis of equal means. Conversely, the null hypothesis rejection rate is well
in excess of 5% for the non-parametric test statistics. The non-parametric
statistics are sensitive to differences in the shape of the distribution, thus
could be used to assess whether the distributions are equal. The null hy-
pothesis rejection rates represent power under this latter form of H0.

6.5 Summary

The test statistics not assuming equal variances, Tnew1, TRNK1 and TINT1, ex-
hibit superior Type I error robustness for some parameter combinations, and
across all scenarios have similar power properties to their counterparts where
equal variances are not assumed Tnew2, TRNK2 and TINT2 respectively. There-
fore, when comparing two samples from the same non-normal distribution,
the equal variances assumed forms of the test are the most appropriate.

When considering the performance of the Mann-Whitney test and other
non-parametric tests, an increase in Type I error rate could be viewed as
an increase in power. For example, when comparing two samples with dif-
ferent variances, the underlying distributions are not equal, therefore a null
hypothesis of equal distributions is not true.

Under normality, the partially overlapping samples t-test proposed for
equal variances, Tnew1, is more powerful than the non-parametric equivalent
TRNK1 and the inverse Normal transformation approach TINT1.

Due to its Type I error robustness, power properties and relative sim-
plicity, TRNK1 is recommended over TINT1 as the best solution for comparing
partially overlapping samples from non-normal distributions.
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Chapter 7

The impact of outliers in the
comparison of two samples

This chapter begins with an introduction to the extant debate on how to detect
and handle outliers. The main focus is to explore the robustness of two
sample tests to outliers. This is first considered for a simulation design with
a single aberrant observation. Simulations are performed for an independent
samples design, then a paired samples design, then a partially overlapping
samples design. This is followed by a simulation design representing multiple
outliers in the partially overlapping samples framework. The concepts for
an independent samples design and a partially overlapping samples design
were presented at the Royal Statistical Society annual conference (Derrick,
2018a), following published results for a paired samples design in Derrick et
al. (2017b).

7.1 Introduction to the outlier debate

Outliers increase the variability within a sample, this results in an increased
probability of making a Type II error, an issue that is exacerbated for small
sample sizes (Cousineau and Chartier, 2010). There is no approach to outliers
that can be applied universally (Hodge and Austin, 2004). How to determine
whether outliers are present, and the process for handling outliers, is the
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subject of differing opinion.
A major difficulty in empirical research can be detecting which type of

outlier has occurred. Anscombe (1960) identify three types of outlier; (i)
measurement error, (ii) execution error, (iii) inherent variability. The first
two types specifically identify that an error was made. The decision to remove
outliers that are a result of measurement error or execution error may not
be unjustified. The approach for dealing with an outlier that is the result
of inherent variability is of further debate, frequently authors argue against
the removal of outliers in such circumstances (Grubbs, 1969; Orr, Sackett,
and Dubois, 1991). If an outlier is removed prior to analyses, conclusions
reported following the removal of the outlier, should be reported alongside
conclusions prior to the removal of the outlier (Walfish, 2006).

Examples of outliers observed in popular culture given by Gladwell (2008)
include the wealth of the individual Bill Gates or the success of the Beatles.
These extreme observations can be seen as integral to an overall dataset and
of interest in their own right. When outliers cannot be dismissed as data
errors, studying their phenomenon can give useful novel insights (Osborne
and Overbay, 2004; Aguinis, Gottfredson, and Joo, 2013).

Basic texts suggest that outliers can be identified by simple exploratory
data analyses, for example boxplots. However, different statistical software
adopt different methods for producing boxplots, which for the same dataset
can result in inconsistency in the outliers detected (Frigge, Hoaglin, and
Iglewicz, 1989). Due to the nature of random sampling, samples drawn from
a Normal distribution can be expected to have outliers identified (Dawson,
2011).

The extremity of an observation is not easily identified using simple tech-
niques. A frequently used approach to identify outliers is to define outliers as
observations which are a given number of standard deviations away from the
mean, or the mean difference. This number of standard deviations away from
the mean varies in the literature. For instance, following ideas embedded in
quality control, Ray et al. (2016) define two standard deviations beyond the
mean as ‘an alert’, and three standard deviations beyond the mean is defined
as ‘an alarm’. However, the definition of arbitrary cut points such as these
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may be subjective and misleading. For small samples, z-scores do not offer
an effective method for identifying outliers (Shiffler, 1988).

There is an abundance of formal tests to detect outliers. Grubbs’s test is
frequently praised for its robustness when testing for a single outlier (Bak-
salary and Puntanen, 1990). A comprehensive list of available tests is offered
by Barnett and Lewis (1994). However, with reference to the paired sam-
ples t-test, Preece (1982) state that formal procedures for the detection and
rejection of outliers are of negligible use for small sample sizes.

7.2 Robustness of tests in the presence of an
aberrant observation

The simulation approach is to generate sample data under the normality
assumption, then include one aberrant observation. This additional observa-
tion systematically changes in its observed value, from -8 to 8 in increments
of 0.1, and is referred to as a ‘marching observation’. Thus one observa-
tion is directly manipulated to create an extreme observation with otherwise
normally distributed data (this may be compounded with outliers due to
inherent variability within the other observations).

A systematically manipulated additional observation, demonstrates the
impact on the test statistics when the aberrant observations is close to a
mean difference of zero, as well as what happens when an extreme positive
or negative observation is included in a sample with a non-negative mean.

For each parameter combination and each test statistic the proportion of
10,000 iterations where the null hypothesis is rejected is calculated at the 5%
significance level, two sided. This gives the Null Hypothesis Rejection Rate
(NHRR). Note that the terminology NHRR is used rather than Type I error
rate, because the inclusion of the marching observation may invalidate the
underpinning assumptions.

113



7.2.1 Independent samples simulation design

An independent samples design is firstly considered. The tests performed are;
the independent samples t-test, Welch’s test, the Mann-Whitney test, and
the Yuen-Welch test. The Yuen-Welch test is performed using the R package
‘PairedData’ with 10% trimming per tail as outlined by Wilcox (2012).

Specifically, na and nb−1 Standard Normal deviates are generated using
the Box and Muller (1958) transformation. A fixed aberrant observation, xb,
is appended to the x1, x2 · · · , xb−1 observations to give a total sample size
of nb. For each simulated sample, the value of xb is systematically varied
from -8 to 8 in increments of 0.1. It is this value, xb, which is referred to as
the ‘marching observation’. The values of xb approximately range between
+/- 8 standard deviations from the mean and therefore cover limits likely
encountered in a practical environment. Without loss of generality, if x̄a −
x̄b−1 < 0 then the observations x1, x2 · · · , xb−1 are multiplied by -1 to ensure
a non-negative sample mean. This change of sign does not affect the validity
of a two-sided test of a nil-null hypothesis for these data. This condition is
to ensure that the concordance of effects x̄a− x̄b−1 > 0, xb > 0 or discordance
of effects x̄a − x̄b−1 > 0, xb < 0 can be established.

The effect of gradually increasing the marching observation is to gradually
violate the assumption of the nil-null hypothesis, therefore large positive
values of the marching observation would increase the NHRR. Negative values
of xb would cancel out the overall positive difference observed within the
sample differences and decrease the NHRR.

Interest is on relatively small sample sizes as these are situations in which
potentially large observations may have the greatest practical effect. The
sample sizes of na and nb that are varied within a factorial design are {10,
15, 20}. The values of σ1 and σ2 that are varied within the factorial design are
{1, 2}. The simulation is run 10,000 times for each parameter combination
of na, nb, xb, σ1, σ2.

Results from a selection of scenarios from the independent samples simu-
lation design are displayed. Each scenario consists of the same total sample
size of 30, and are as follows:
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1. na = 15, nb−1 = 14, σ1 = 1, σ2 = 1

2. na = 10, nb−1 = 19, σ1 = 1, σ2 = 1

3. na = 20, nb−1 = 9, σ1 = 1, σ2 = 1

4. na = 15, nb−1 = 14, σ1 = 1, σ2 = 2

5. na = 10, nb−1 = 19, σ1 = 1, σ2 = 2

6. na = 20, nb−1 = 9, σ1 = 1, σ2 = 2

For each of the six scenarios; Figure 7.1 gives the NHRR when performing
the independent samples t-test; Figure 7.2 gives the NHRR when performing
Welch’s test; Figure 7.3 gives the NHRR when performing the Yuen-welch
test; Figure 7.4 gives the NHRR when performing the Mann-Whitney test.

Figure 7.1 shows that for Scenarios 1-4, when xb = 0, the NHRR is
approximately equal to the nominal Type I error rate. However, an extreme
observation paradox is apparent. The paradox is a contrariwise decrease in
the NHRR as the value of an extreme observation increases in the direction
of the overall effect. For positive sample means, as the value of xb increases,
the independent samples t-test has an increasingly higher NHRR, until a
turning point is reached.

Figure 7.1 shows that for scenarios 5-6, when xb = 0, the NHRR is not
approximately equal to the nominal Type I error rate. This is further ev-
idence of the non-robustness of the independent samples t-test under these
conditions.

Figure 7.2 shows that for each of the scenarios, when xb = 0 the NHRR
is approximately equal to the nominal Type I error rate. This is anticipated
given the Type I error robustness of Welch’s test. However, Figure 7.2 indi-
cates that for increasing values xb of the paradox is also observed for Welch’s
test.

Figure 7.3 and Figure 7.4 show that the Mann-Whitney test and the
Yuen-Welch test are liberal for positive values of the marching observation,
and are conservative for negative values of the marching observation. The
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Figure 7.1: NHRR when performing the independent samples t-test.

Mann-Whitney test and Yuen-Welch test maintain NHRR close to the nomi-
nal significance level when sample sizes are equal or the larger sample size in-
cludes the marching observation. Both tests tend to a fixed value as xb →∞,
and both tests tend to a fixed value close to zero as xb → −∞. For the Mann-
Whitney test, due to the use of rank values, the test is not greatly affected
by the magnitude of the extreme observation. Similarly due to the trimming,
the Yuen-Welch test is not greatly affected by the magnitude of the extreme
observation.

For the independent samples t-test, Bakker and Wicherts (2014) found
inflated Type I error rates following the removal of outliers, and recommend
proceeding with the Mann-Whitney test or the Yuen-Welch test without
removal of outliers. However, Figure 7.3 and Figure 7.4 show that the fixed
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Figure 7.2: NHRR when performing Welch’s test.

value that these tests tend to is dependent on sample size and variance.
For Scenario 5, it can be seen that the NHRR when performing the Mann-
Whitney test remains below the nominal significance level for all values of xb.
It can also be seen that the Mann-Whitney test only maintains the nominal
significance level at xb = 0 for Scenario 1. These results corroborate findings
by Zimmerman (1998) that the Mann-Whitney test does not always provide
a robust alternative approach when an outlier is present.

Fagerland (2012) suggest that the problem is not the t-test itself, moreover
it may be that in the presence of an outlier, the mean may be a poor measure
of central location, and other measures of location such as trimmed means
or non-parametric tests may be more appropriate.
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Figure 7.3: NHRR when performing the Yuen-Welch test.

7.2.2 Paired samples simulation design

Using methodology akin to the above, the effect of an aberrant observation
is considered for a paired samples simulation design.

The paired samples t-test, the Wilcoxon test, and Yuen’s paired sample t-
test, are performed for a two-sided nil-null hypothesis. Yuen’s paired samples
t-test is performed using the R package ‘PairedData’ with 10% trimming per
tail as outlined by Wilcox (2012). This uses the principles of trimmed means
and windsorized variances in the Yuen-Welch test, applied to paired data.

The paired samples t-test is logically and numerically equivalent to the
one sample t-test performed on paired differences. Within the simulation,
differences are generated rather than the paired observations themselves.

Specifically, n− 1 Standard Normal deviates are generated using the Box
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Figure 7.4: NHRR when performing the Mann-Whitney test.

and Muller (1958) transformation. A fixed aberrant observation, xn, is ap-
pended to the x1, x2 · · · , xn−1. For each simulated sample, the value of xn
is systematically varied from -8 to 8 in increments of 0.1. It is this value,
xn, which is referred to as the ‘marching observation’. To isolate the phe-
nomenon of interest, if ∑(x1, x2 · · · , xn−1)/(n− 1) < 0 then the observations
x1, x2 · · · , xn−1 are multiplied by -1 to ensure a non-negative sample mean.

The sample sizes, n, varied within a factorial design are {10, 15, 20, 25}.
The simulation is run 10,000 times for each parameter combination of n and
xn, using the nominal significance level of 5%.

Figure 7.5 gives the NHRR of the paired samples t-test, Figure 7.6 gives
the NHRR of Yuen’s paired samples t-test and Figure 7.7 gives the NHRR
of the Wilcoxon test.

119



Figure 7.5: NHRR when performing the paired samples t-test.

Figure 7.5 shows that when the value of xn = 0, the NHRR is ap-
proximately equal to the nominal Type I error rate. For positive sample
differences, as the value of xn increases, the paired samples t-test has an
increasingly higher NHRR until a turning point is reached. Extreme and
increasingly larger values of the marching observation in the direction of the
sample effect results in a progressively lower NHRR, with values noticeably
lower than the nominal Type I error rate. The paradox referred to for the
independent samples t-test and Welch’s test is also observed for the paired
samples t-test. These effects are replicated for all four sample sizes, but are
marginally less extreme with increasing sample size. Figure 7.5 also shows
that a large value for the marching observation in the opposite direction to
the mean of the first n− 1 observations, effectively results in a zero value for
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Figure 7.6: NHRR when performing Yuen’s paired samples t-test.

the NHRR.

Zumbo and Jennings (2002), using a novel contamination model, con-
clude that the paired samples t-test has an inflated Type I error rate with
increasing asymmetric contamination, the marching observation simulations
above indicate that the effect of a single outlier is dependent on sample size,
magnitude and direction of the outlier, and could lead to increases as well as
decreases in the NHRR.

Figure 7.6 and Figure 7.7 show that when xn > 0 and x̄n−1 > 0, both
Yuen’s paired samples t-test and the Wilcoxon test result in the null hy-
pothesis being rejected more frequently than the nominal significance level.
Conversely, when xn < 0 and x̄n−1 > 0, both Yuen’s paired samples t-test
and the Wilcoxon test have a NHRR lower than the nominal significance
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Figure 7.7: NHRR when performing the Wilcoxon test.

level. These findings are entirely consistent with expectation for a robust
test given the design of the simulation.

For the Wilcoxon test, due to the use of rank values, the test is not
greatly affected by the magnitude of the extreme observation. Similarly due
to the trimming, Yuen’s paired samples t-test is not greatly affected by the
magnitude of the extreme observation. The phenomenon of a turning point
when xn > 0 is not observed, the NHRR tends to a fixed value as xn →∞.
Mathematical proof of this property is given in Derrick et al. (2017b)

Under a location shift model, the inclusion of genuinely large positive
observation xn into a sample with x̄n−1 > 0 should lead to an increase in
NHRR in a two-sided test of the nil-null hypothesis. This effect is observed
with Yuen’s paired samples t-test and with the Wilcoxon signed rank sum
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test, but it is not consistently observed with the paired samples t-test. Like-
wise, the inclusion of a large negative observation xn into a sample with
x̄n−1 > 0 should lead to a relative decrease in NHRR. This effect is observed
with Yuen’s paired samples t-test and with the Wilcoxon test, but the effect
is most evident, and is sample size dependent, for the paired samples t-test.

The simulations demonstrate the seemingly paradoxical effect of large
outliers on the performance of the paired samples t-test. The simulations
indicate that Yuen’s paired samples t-test and the Wilcoxon signed rank sum
test have robust behaviour in the presence of a single outlying observation,
as found by Zimmerman (2011). However, there is evidence that rank based
methods do not completely eliminate the influence of outliers.

7.2.3 Partially overlapping samples simulation design

The simulation design is extended so that the partially overlapping samples
t-tests are performed for a two-sided nil-null hypothesis.

Under a nil-null hypothesis; the parametric partially overlapping samples
t-tests, Tnew1 and Tnew2, are used to test for a mean difference of zero. Under
the same conditions, the non-parametric partially overlapping samples t-tests
TRNK1 and TRNK2 are used to test for differences symmetrically distributed
around zero.

The approach is to simulate two groups of Normal deviates for a paired
design with n = 15 and ρ = 0.5. The samples are multiplied by fixed values of
σ1 and σ2 as detailed in the six scenarios below. Without loss of generality, if
x̄a−x̄b−1 < 0 then the observations in Sample 2 are multiplied by -1 to ensure
a non-negative sample mean. Observations are then deleted completely at
random with the constraint that remaining sample sizes are as per the six
scenarios below:

1. na = 5, nb−1 = 4, nc = 5, σ1 = 1, σ2 = 1

2. na = 5, nb−1 = 4, nc = 5, σ1 = 1, σ2 = 2

3. na = 5, nb−1 = 4, nc = 5, σ1 = 2, σ2 = 1
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Figure 7.8: NHRR when performing Tnew1.

4. na = 10, nb−1 = 3, nc = 2, σ1 = 1, σ2 = 1

5. na = 10, nb−1 = 3, nc = 2, σ1 = 1, σ2 = 2

6. na = 10, nb−1 = 3, nc = 2, σ1 = 2, σ2 = 1

The six scenarios selected are for indicative purposes to show the be-
haviour of the partially overlapping samples t-tests, Tnew1, Tnew2, TRNK1 and
TRNK2.

An additional observation, xb, is appended to the nb−1 observations. For
each simulated sample, the value of xb is systematically varied from -8 to 8
in increments of 0.1. Again, it is this value, xb, which is referred to as the
‘marching observation’.
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Figure 7.9: NHRR when performing Tnew2.

Figure 7.8 - Figure 7.10 exhibits the NHRR for Tnew1, Tnew2 and TRNK1

respectively.
Figure 7.8 shows that the extreme observation paradox identified for the

independent samples t-test is also observed for Tnew1. However, under un-
equal sample sizes and unequal variances, alternative undesirable patterns
are also observed. This can be explained by, and add further support to, the
previously established non-robustness of this test statistic in these conditions.

Figure 7.9 shows the extreme observation paradox observed for Welch’s
test is also observed when performing Tnew2.

Figure 7.10 shows that TRNK1 tends towards a fixed value for the NHRR.
However the fixed NHRR value is inflated when the smaller sample size is
associated with the larger variance. Similar patterns are demonstrated for
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Figure 7.10: NHRR when performing TRNK1.

TRNK2 (not displayed).
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7.3 Robustness in the presence of multiple
outliers

To directly assess the robustness of test statistics to multiple outliers, a mixed
Normal distribution is considered.

Simulations are performed as per the design and test statistics in Chapter
6, with the following transformation applied to observations in each sample
to induce outliers; X = 10N with probability 0.1 and X = N with probability
0.9.

This is first considered under the null hypothesis where µ1 = µ2 = 0,
then under the alternative hypothesis where µ2 − µ1 = 0.5. The NHRR for
the independent samples tests and the paired samples tests are calculated by
discarding the paired observations or independent observations respectively.

The Type I error robustness, where µ1 = µ2 = 0, for the comparison of
two samples from the mixed Normal distribution is given in Figure 7.11.

A power comparison for a selection of test statistics, where µ2−µ1 = 0.5,
is given in Table 7.1.

Table 7.1: Power, mixed Normal distribution.

ρ W MW Tnew1 Tnew2 TRNK1 TRNK2 TINT1 TINT2
na = nb

>0 0.599 0.417 0.412 0.796 0.795 0.793 0.792
0 0.459 0.486 0.346 0.344 0.739 0.737 0.739 0.738
<0 0.391 0.304 0.304 0.697 0.696 0.694 0.694

na 6= nb
>0 0.597 0.329 0.351 0.752 0.753 0.751 0.752
0 0.462 0.348 0.271 0.292 0.710 0.712 0.710 0.712
<0 0.393 0.233 0.253 0.672 0.674 0.673 0.674

It can be seen from Figure 7.11 that each of the test statistics generally
maintain Type I error robustness, or are conservative, across the simulation
design. However there is some evidence that when samples are drawn from
the same mixed Normal distribution, test statistics constrained to equal vari-
ances are more Type I error robust. The Type I error rate deficiencies for
the proposed tests occur where there is a very small sample size and a very
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Figure 7.11: Type I error rates, mixed Normal distribution.

large sample size, i.e. where max {na, nb, nc} - min {na, nb, nc} = 495. For
moderate sample sizes that may be encountered in most practical settings,
performing Tnew1 or Tnew2 may be reasonable.

Table 7.1 shows that there are clear power advantages for using the rank
based methods over the parametric methods under these conditions.

When comparing two samples from the same mixed Normal distribu-
tion, TRNK1 demonstrates the tightest Type I error rate control, and superior
power. This conclusion is in line with the conclusions in Chapter 6 for the
comparison of two non-normal distributions.
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7.4 Summary

Given the debate in the literature regarding the removal of an outlier, it is
important to be aware of the impact of an outlier on the outcome of statistical
tests. The results show that a single aberrant observation can potentially
either mask true effects or show phantom significant effects. Typically the
natural desire of a researcher is to prove significant effects, the researcher
will often consider the removal of outliers in order to conclude a significant
effect. It is of note that the removal of an outlier may in fact produce the
opposite outcome. The decision not to remove an outlier could be taken
so that a significant effect is observed. In this respect, a decision not to
remove an observation should be considered with as much vigour as the
decision to remove an observation. In addition, it should be considered that
an observation that may appear to be an outlier may represent a location
shift (Walfish, 2006).

The extreme observation paradox is the contrariwise decrease in the
NHRR as the value of an extreme observation increases in the direction of
the overall effect. This paradox is observed for the paired samples t-test, the
independent samples t-test and Welch’s test. As a consequence, this para-
dox is also observed for the parametric partially overlapping samples t-tests.
These tests display behaviour strongly dependent on the magnitude of the
outlier. In contrast, test statistics making use of rank values do not suffer
from the extreme observation paradox.

In the presence of multiple outliers, as demonstrated by a mixed Normal
distribution, non-parametric tests demonstrate superior Type I error robust-
ness and power relative to the parametric tests.

In a paired samples design, outliers are identified based on the sample
differences. In an independent samples design, outliers are identified based
on the raw data in each of the two samples. Due to the presence of both
paired and independent observations, definition of an outlier in the partially
overlapping samples scenario is more complex. However, the use of a single
marching observation, or multiple extreme observations are broadly in line
with the definition of an outlier by Anscombe (1960). Thus the results herein
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give an indication of the partially overlapping samples t-tests in the presence
of outliers. Under these conditions TRNK1 is the recommended test.

In textbooks listing the assumptions of the t-test, the assumption of no
significant outliers is sometimes listed, but sometimes not. Given the results
above, the assumption should be listed. The question of how to identify
a ‘significant outlier’ has no answer that is applied universally (Hodge and
Austin, 2004; Barnett and Lewis, 1994), and is therefore an area of debate
that will continue.
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Chapter 8

The comparison of two
samples, for ordinal data

Naive tests and the partially overlapping samples t-tests are assessed for Type
I error robustness and power when two samples are taken from an ordinal
scale. For a five option Likert question, Derrick and White (2017) pro-
vide an overview of the Type I error robustness and power for test statistics
that utilise either only pairs or only independent observations. Extension to
a seven option Likert scale, and the partially overlapping samples scenario
is summarised in Derrick and White (2018). The simulation in this sec-
tion is designed as such that the partially overlapping samples scenario is
explored, alongside traditional test statistics that discard observations. The
recommended solution herein is compared to the partially overlapping samples
t-test solutions, and further documentation from the R package to facilitate
application is supplied.

8.1 Background

An application where partially overlapping samples can occur on an ordi-
nal measurement scale is a comparison of responses of two Likert questions,
where some participants did not complete both questions (Maisel and Fin-
gerhut, 2011). A further application of two partially overlapping samples is
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a comparison of the responses of the same Likert question on two separate
occasions, where some participants were not available at both measurement
periods (Bradley, Waliczek, and Zajicek, 1999). In both of these applica-
tions, the authors discarded the unpaired observations and performed the
paired samples t-test. Assuming that data are MCAR this approach is not
unjustified, given the large sample sizes obtained. However, power may be
adversely affected for studies with smaller sample sizes.

Due to their intuitive appeal and simple construction, Likert questions are
popular for measuring attitudes of respondents (Nunnally, 1994). A Likert
item is a forced choice ordinal question which captures the intensity of opinion
or degree of assessment in survey respondents. Historically a Likert item
comprises five options worded: ‘Strongly approve’, ‘Approve’, ‘Undecided’,
‘Disapprove’, ‘Strongly disapprove’ (Likert, 1932). Other alternative wording
such as ‘Agree’ or ‘Neutral’ or ‘Neither agree nor disagree’ may be used
depending on the context.

The literature is sometimes confused between the comparison of samples
using summed Likert scales and the comparison of samples for individual
Likert items (Boone and Boone, 2012). A summed Likert scale is formed by
the summation of multiple Likert items that measure similar information.
This summation process necessarily requires the assignment of scores to the
Likert ordinal category labels. The summation of multiple Likert items to
produce Likert scales is a well-established practice in scale construction, and
is one which can produce psychometrically robust scales with interval-like
properties. Such derived scales could potentially yield data amenable to
analysis using parametric techniques (Carifio and Perla, 2007). Distinct from
summed Likert scales, the comparison of two samples from a single Likert
question is considered herein so as to compare test statistics for two samples
when ordinal data is present.

In certain methodological and practical aspects, Likert question responses
may approximate interval level data and can be analysed assuming an un-
derlying continuous scale (Norman, 2010). Likert questions with five options
are frequently used, and the ordinal codes {-2, -1, 0, 1, 2} could be applied
to these options for a balanced question, with ‘0’ representing the neutral
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response. In addition, seven option Likert-type questions are often used, be-
cause the summation of responses is known to have high reliability (Cicchetti,
Shoinralter, and Tyrer, 1985). Henceforth the ordinal codes {-3, -2, -1, 0, 1,
2, 3} are used as numerical scores. Balanced response options around the
neutral option is typically assumed. Although the exact wording of the neu-
tral response is not an issue (Armstrong, 1987), if the options either side of
the neutral response are not balanced then the assumption that the responses
approximate interval level data is not reasonable (Bishop and Herron, 2015).
Other issues with Likert scales include respondents tendency to give positive
responses, and the potential for differing interpretation of categorical options
by both the responder and the analyst (Hodge and Gillespie, 2003). When
the assumption of an underlying continuous distribution is not inappropri-
ate and the questions are suitably formed, parametric tests for differences
between the two sample means are reasonable (Jamieson, 2004; Allen and
Seaman, 2007).

For two independent samples De Winter and Dodou (2010) found that
both the independent samples t-test and the Mann-Whitney test are gener-
ally Type I error robust at the 5% significance level for a five option Likert
item. This is true across a diverse range of distributions and sample sizes.
Both tests suffer some exceptions to Type I error robustness when the distri-
butions have extreme kurtosis and skew. The power is similar between the
two tests, for both equal and unequal sample sizes. When the distribution
is multimodal with responses split mainly between ‘Strongly approve’ and
‘Strongly disapprove’, the independent samples t-test is more powerful than
the Mann-Whitney test. Rasch, Teuscher, and Guiard (2007) show that us-
ing the Mann-Whitney test using the Normal approximation with correction
for ties is Type I error robust for two groups of independent observations on
a five option Likert item.

For two independent samples, Nanna and Sawilowsky (1998) found that
the independent samples t-test and the Mann-Whitney test are Type I error
robust for seven option Likert item responses, with the Mann-Whitney test
superior in power. This is likely observed because there is more scope to
encounter greater skew with more options to choose from.
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The Type I error robustness of the independent samples t-test is further
supported by Heeren and D’Agostino (1987) for a four point ordinal scale.

The literature is much quieter on the analyses of Likert items in paired
samples designs. When performing the Wilcoxon test, if the samples are from
an underlying Normal distribution, the null hypothesis of equal distributions
may not be unreasonable, but this is particularly sensitive to changes in
location (Hollander, Wolfe, and Chicken, 2013). Thus if samples are from a
bivariate Normal distribution, assessing for a location shift is reasonable.

For multiple independent groups with ordinal data, application of real
data suggests that there is little practical difference whether parametric or
non-parametric approaches are taken when sample sizes are large (Mircioiu
and Atkinson, 2017). However, the correct choice of analysis depends on the
exact form of the question of interest (Roberson et al., 1994). Non-parametric
tests are not inappropriate when interval approximating data is assumed, if
the only potential difference between the samples is their central location
(Clason and Dormody, 1994; Sisson and Stocker, 1989).

Given the discrete nature of Likert scales, differences of zero between
the two samples occur frequently. The Pratt (1959) test which incorporates
these zero differences in its calculation may overcome this issue. In Pratt’s
test the absolute paired differences are ordered including the zero differences,
ranks are applied to the non-zero differences as if the zero differences had
received ranks, and these ranks used in the Wilcoxon test. Conover (1973)
compared the Wilcoxon test dropping zero differences to Pratt’s test incor-
porating zero differences and concluded that the relative performance of the
two approaches depends on the underlying distribution. The comparison con-
ducted by Conover (1973) did not include Likert items and did not extend to
the inclusion of the paired samples t-test. A second method for handling zero
differences also suggested by Pratt (1959) is to randomly allocate each of the
zero differences to either positive or negative ranks. To achieve this, for every
zero difference a deviate sampled from U(−0.1, 0.1) is added before proceed-
ing with the ranking. The range of values for this sampling distribution is
arbitrary, but should be lower than the minimum distance between two units
on the discrete scale. An issue with this test is that adding a randomly gener-
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ated value to each score could mean that the result is different each time the
test is performed on the same data. In preliminary investigations by Derrick
and White (2017), the former method attributed to Pratt (1959) is found
to be more Type I error robust than the latter. The former method also
appears to be more widely known. Most reference in the literature refers to
the ‘Wilcoxon-Pratt’ test without formal definition of which form of the test
is used, and the ‘dictionary of statistics and methodology’ gives no further
clue than ‘correction for ties’ (Vogt, 2018). For the avoidance of doubt, the
former method where ranks are applied to the non-zero differences as if the
zero differences had received ranks is considered in the simulation below and
is referred to as Pratt’s test.

There are occasions where a test for extremely small samples of n ≤ 5 in
each group is required (De Winter, 2013). However, six pairs is the minimum
number required before a significant difference can be found when performing
the Wilcoxon test or Pratt’s test at the 5% significance level. If performing
the paired samples t-test under the same conditions a minimum of three pairs
is required.

Pratt’s test, the Wilcoxon test and the paired samples t-test can be eas-
ily extended for use when partially overlapping samples are present, if the
researcher is willing to discard any unpaired data. Similarly, the indepen-
dent samples t-test and the Mann-Whitney test can be easily extended for
the use when partially overlapping samples are present, if the researcher is
willing to discard any paired data. A simulation design to consider each of
the tests for data on an ordinal scale is given in Section 8.3. However, the
discarding of data may introduce bias and reduce power. As an alternative,
the partially overlapping samples t-tests Tnew1 and Tnew2 that make use of
all of the available data are also considered in the simulation design. Both
TRNK1 and TRNK2 are not considered in the simulation design due to the high
volume of ties inherent in this type of data, which would result in relatively
low power for these tests.
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8.2 Example

The following example for illustrative purposes only is based on an under-
graduate project conducted via an online survey of student respondents.

The number of people in industrialised countries that are following vegan
diets is increasing (Janssen et al., 2016). Attitudes towards vegetarian and
vegan dietary provisions with respect to a particular student catering facility
are considered. Responses to the following two statements are on a Likert
scale, with the frequency of responses given in Table 8.1.

Statement 1. I would like more vegetarian options on the menu.
Statement 2. I would like more vegan options on the menu.

Table 8.1: Responses to attitudes survey, Statement 1 (horizontal) and State-
ment 2 (vertical).

Strongly Strongly
disagree Disagree Neither Agree agree

Strongly disagree 4 2 4 1 0
Disagree 1 3 6 2 2
Neither 0 0 16 9 10
Agree 0 0 1 9 4

Strongly agree 0 0 1 6 12

In addition to the paired responses in Table 8.1, five participants only
responded to Statement 1 (Strongly agree: 1, Agree: 2, Neither:2), and seven
participants only responded to Statement 2 (Strongly disagree: 5, Disagree:
2).

Using codes {-2, -1, 0, 1, 2} for ‘Strongly disagree’ through to ‘Strongly
agree’, the mean response for Statement 1 is 0.73, and the mean response for
Statement 2 is 0.04.

Overall, it appears that the catering facility could improve the customer
satisfaction by increasing the number of vegetarian options on the menu.
Although slightly less clear, customer satisfaction may also be improved by
increasing the number of vegan options on the menu.

Performing Tnew1 in a comparison of the responses to Statement 1 against
Statement 2, suggests that students responded to each of the two differently.
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It may suggest that prioritising increasing the vegetarian options over the
vegan options may improve the customer satisfaction (tnew1 = 6.33, vnew1 =
98.028, p < 0.001). Further investigation would be required to explore the
attitudes further.

8.3 Methodology

Monte-Carlo methods are used to compare test statistics for two samples
which include both paired and unpaired observations, using methodology
outlined in Chapter 4. The comparison is undertaken by discretising each of
the xij Normal variates to a five point scale and a seven point scale, over a
range of sample sizes and correlation coefficients.

Without loss of generality, for a five point Likert scale the options are
numbered from -2 to 2. The Likert-style responses yij are generated using
the cut-points as follows:

yij =



2 if xij > 0.8416
1 if 0.2533 ≤ xij ≤ 0.8416
0 if −0.2533 ≤ xij ≤ 0.2533
−1 if −0.8416 ≤ xij ≤ −0.2533
−2 if xij < −0.8416


For a seven-point Likert-like scale, the responses yij numbered from -3 to

3 are generated using the cut-points as follows:

yij =



3 if xij > 1.6757
2 if 0.5659 ≤ xij ≤ 1.6757
1 if 0.1800 ≤ xij ≤ 0.5659
0 if −0.1800 ≤ xij ≤ 0.1800
−1 if −0.5659 ≤ xij ≤ −0.1800
−2 if −1.6757 ≤ xij ≤ −0.5659
−3 if xij < −1.6757


The cut-points are calculated so that under N(0, 1) the theoretical distri-
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bution of the responses is uniform. The median of Group 1 and the median
of Group 2 are represented by η1 and η2 respectively.

Figure 8.1 gives the marginal density for Group 1, the marginal density
for Group 2, and the joint density for responses. These illustrate the ap-
proximate distribution of responses a seven point scale where η1 = −1 and
η2 = 2.

Figure 8.1: Theoretical distributions of the observed responses on a seven op-
tion Likert question, η1 = −1, η2 = 2, calculated based on na = 10, 000, nb =
10, 000, nc = 5, 000, ρ = 0.5.

The complete list of the scenarios considered is given in Table 8.2. The
scenarios considered encompass each integer combination of η1 and η2. For
example, by symmetry the Type I error rate when η1 = η2 = 1 is equivalent
to the Type I error rate when η1 = η2 = −1.

Simulations are performed for each scenario in a factorial design with
ρ = {0, 0.25, 0.5, 0.75} and sample size of {5, 10, 20, 30} in each of na, nb,
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Table 8.2: Simulation scenarios

Scenario Options True µ1 µ2 η1 η2
i Five H0 0 0 0 0
ii Five H0 0.5244 0.5244 1 1
iii Five H0 1.2816 1.2816 2 2
iv Five H1 0 0.5244 0 1
v Five H1 0 1.2816 0 2
vi Five H1 0.5244 1.2816 1 2
vii Five H1 -0.5244 0.5244 -1 1
viii Five H1 -0.5244 1.2816 -1 2
ix Five H1 -1.2816 1.2816 -2 2
x Seven H0 0 0 0 0
xi Seven H0 0.3661 0.3661 1 1
xii Seven H0 0.7916 0.7916 2 2
xiii Seven H0 1.4652 1.4652 3 3
xiv Seven H1 0 0.3661 0 1
xv Seven H1 0 0.7916 0 2
xvi Seven H1 0 1.4652 0 3
xvii Seven H1 0.3661 0.7916 1 2
xviii Seven H1 0.3661 1.4652 1 3
xix Seven H1 0.7916 1.4652 2 3
xx Seven H1 -0.3661 0.3661 -1 1
xxi Seven H1 -0.3661 0.7916 -1 2
xxii Seven H1 -0.3661 1.4652 -1 3
xxiii Seven H1 -0.7916 0.7916 -2 2
xxiv Seven H1 -0.7916 1.4652 -2 3
xxv Seven H1 -1.4652 1.4652 -3 3

and nc. For each scenario and parameter combination, 10,000 iterations are
performed, and for each repetition the null hypothesis is assessed at the α =
5% significance level. Naive standard tests, T1, T2, T3, W1, and Pratt’s test,
W2, are considered alongside the parametric partially overlapping samples
t-tests, Tnew1 and Tnew2.

8.4 Results: Type I error rates

Type I error rates where η1 = η2 are given in Figure 8.2.
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(a) Five point scale

(b) Seven point scale

Figure 8.2: Type I error rates for each of the test statistics, ordinal data.
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Figure 8.2 shows a similar pattern in Type I error rates whether a five
point scale or a seven point scale is used. It can be seen that with the
exception of T3, and arguably Tnew2, the test statistics are generally within
Bradley’s liberal robustness criteria, or are conservative. They are therefore
consistent with Guo and Luh (2000) Type I error robustness criteria.

The results support the literature that the independent samples t-test
assuming equal variances, T2, is Type I error robust for ordinal data. How-
ever, there is evidence to suggest that this is not the case for the form of the
independent samples t-test not assuming equal variances, T3. When com-
paring two independent samples on a five option Likert question, there is
little practical difference between the independent samples t-test and the
Mann-Whitney test.

It should be noted that the test statistics making use of only the indepen-
dent observations have paired samples discarded, thus have an approximate
zero correlation structure in the simulations detailed here. Derrick and White
(2017) considered a paired simulation design where observations were not dis-
carded, and found that the test statistics assuming independent samples are
biased. In other words, the tests T all2 , T all3 and the Mann-Whitney test using
all of the available data ignoring the pairing are not Type I error robust.

The remainder of this chapter focuses on tests which make use of the
paired information. Type I error rates for each of the parameter combinations
within the simulation design can be seen in Figure 8.3 for the five point
design, and Figure 8.4 for the seven point design.

Figure 8.3 shows that Pratt’s test retains Type I error robustness better
than the Wilcoxon test, however Pratt’s test is not Type I error robust for
the smallest sample size within the simulation design. It can also be seen that
the paired samples t-test is not Type I error robust for the smallest sample
size within the simulation design. Both partially overlapping samples t-tests
appear to maintain reasonable Type I error robustness.

Figure 8.3 and Figure 8.4 shows that each of the test statistics echo similar
Type I error robustness whether a five point scale or a seven point scale is
used.

Closer inspection of the parameter combinations that exceed the upper
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Figure 8.3: Type I error rates for each parameter combination of each of
the scenarios under the five option Likert question simulation design. The
symbols {×, ◦, �} represent the sample sizes {nc = 5, nc = 10, nc ≥ 20 }
respectively.

limit of Bradley’s Type I error robustness, reveals that they are in the sce-
narios with the highest degree of skew, where η1 = η2 = 3, and the smaller
sample sizes.

An alternative way of quantifying robustness put forward by Derrick and
White (2018), is the value of π such that (1−π)∗100 percent of Type I error
rates are within π × 100 percent of α. Across the five point scale simulation
design the paired samples t-test is 74.7% robust. This means that 74.7%
of the Type I error rates for parameter combinations within the simulation
design are within 25.3% of the nominal Type I error rate. The Wilcoxon
test is 62.3% robust, Pratt’s test is 70.6% robust, Tnew1 is 82.1% robust and
Tnew2 is 81.4% robust. This is an intuitive and simple way of quantifying
robustness, however the robustness percentage depends on the parameters
used within the simulation design. Across the seven point scale simulation
design the pattern is the same, with Tnew2 being the most robust at 87.1%,
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Figure 8.4: Type I error rates for each parameter combination of each of
the scenarios under the seven option Likert question simulation design. The
symbols {×, ◦, �} represent the sample sizes {nc = 5, nc = 10, nc ≥ 20 }
respectively.

closely followed by Tnew1 at 84.8%.
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8.5 Results: Power

For all parameter combinations where η1 6= η2, the percentage of iterations
where the null hypothesis is rejected represents the power of the test under
those parameter conditions. Table 8.3 summarises the power for each scenario
using each test statistic, averaged over all parameter combinations.

Table 8.3: Power, ordinal data.

scenario η1 η2 T1 W1 W2 Tnew1 Tnew2
iv 0 1 0.380 0.327 0.358 0.530 0.524
v 0 2 0.788 0.679 0.740 0.972 0.966
vi 1 2 0.503 0.440 0.492 0.734 0.723
vii -1 1 0.744 0.642 0.698 0.937 0.931
viii -1 2 0.916 0.746 0.855 0.998 0.998
ix 2 -2 0.983 0.779 0.946 1.000 1.000

average 0.747 0.623 0.706 0.882 0.877
xiv 0 1 0.244 0.206 0.227 0.323 0.319
xv 0 2 0.611 0.536 0.579 0.821 0.812
xvi 0 3 0.840 0.713 0.794 0.989 0.986
xvii 1 2 0.285 0.244 0.269 0.392 0.387
xviii 1 3 0.713 0.628 0.682 0.933 0.923
xix 2 3 0.433 0.384 0.431 0.646 0.634
xx -1 1 0.582 0.509 0.550 0.782 0.774
xxi -1 2 0.794 0.677 0.752 0.964 0.959
xxii -1 3 0.918 0.743 0.871 0.999 0.998
xxiii -2 2 0.899 0.733 0.856 0.996 0.995
xxiv -2 3 0.967 0.754 0.931 1.000 1.000
xxv -3 3 0.994 0.773 0.977 1.000 1.000

average 0.690 0.575 0.660 0.820 0.816

Table 8.3 shows that the partially overlapping samples t-tests perform
similarly to each other, and consistently out-perform the tests that discard
data.

For a paired samples design, if a non-parametric test is favoured then
Pratt’s test should be used over the Wilcoxon test, because it has better Type
I error robustness and power properties. However, the evidence presented in
Figure 8.2 and Table 8.3 elicit no reason why a non-parametric test would
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be favoured over the paired samples t-test.
Table 8.3 shows that when the difference between the two groups is only

one point on the ordinal scale, and one of the groups has a neutral median,
none of the tests statistics considered have high power. For a difference
of one point on the ordinal scale, a significant effect is more likely to be
observed when both groups average responses are either positive or negative.
Assuming that the scale represents interval data of equal difference between
each point, it is a limitation that the power is not equal for each comparison
between groups with a one point difference on an ordinal scale.

The power difference between Tnew1 and the paired samples t-test is rep-
resented visually in Figure 8.5. This demonstrates that the scenarios where
the power gain of Tnew1 is greatest are when the group responses are relatively
similar.

Figure 8.5: Radar chart showing the average power for each scenario, using
the paired samples t-test and Tnew1.

Figure 8.6 shows the power for each of the parameter combinations within
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the simulation design for a five point scale.

Figure 8.6: Power for each parameter combination of each of the scenarios
under the five option Likert question simulation design. The symbols {×, ◦,
�} represent the sample sizes {nc = 5, nc = 10, nc ≥ 20 } respectively.

Figure 8.6 shows that Tnew1 is always at least as powerful as T1, W1,
and W2. Pratt’s test should be chosen over the Wilcoxon test, however if
nc ≥ 20 it makes the choice between the two largely academic. As sample
size increases, the Wilcoxon test becomes large enough to compensate for
discarded zeroes. Power comparisons where nc = 5 suggest that partially
overlapping samples t-tests may be particularly useful when sample sizes are
small.

There is an apparent strong correlation between Tnew1 and Tnew2, sug-
gesting that they share similar power properties across the parameter com-
binations and scenarios simulated. Findings for a seven point scale (not dis-
played) are the same as for a five point scale. For each test statistic relative
to each other, a similar pattern across the range of parameter combinations
is observed whether a five point scale or a seven point ordinal scale is used.
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8.6 Summary

A comparison of test statistics has been performed for ordinal data, specifi-
cally for responses from either a five point Likert question, or a seven point
Likert style question. Assuming the responses represent interval data, stan-
dard approaches such as the paired samples t-test or Pratt’s test may not be
inappropriate. However, these standard approaches discard the independent
observations and as such are less than ideal, particularly if the sample sizes
are small.

Across a range of sample sizes and correlation coefficients, Tnew1 and Tnew2

offer Type I error robust alternatives for the analysis of two partially overlap-
ping samples. The test statistic assuming equal variances, Tnew1, maintains
the nominal Type I error rate better than Tnew2. In addition Tnew1 is more
powerful than standard approaches that discard data, and also marginally
more powerful than Tnew2. For a small difference between the two groups,
greater power is obtained when responses in both groups are in the same
direction.

Tnew1 is the recommended test for analysing data recorded on an ordi-
nal scale when partially overlapping samples are present, and is particularly
useful when sample sizes are small.
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Chapter 9

The comparison of two samples,
with dichotomous data

In this chapter, approaches for comparing two proportions when partially
overlapping samples are present are explored. Six new test statistics are pre-
sented and compared against standard test statistics and other alternatives in
the literature. The main concepts and results of this chapter are summarised
in Derrick et al. (2015).

9.1 Current strategies for comparing propor-
tions

A dichotomous dependent variable is probably the most commonly occurring
scenario studied in biological research (Gart, 1971). Tests for comparing two
sample proportions of a dichotomous dependent variable with either two
independent or two dependent samples are long established. Let π1 and
π2 be the proportions of interest for two populations or distributions. The
hypothesis being tested is H0 : π1 = π2 against H1 : π1 6= π2.

Historically, when analysing partially overlapping samples, a practitioner
will choose between discarding the paired observations, or discarding the in-
dependent observations, and proceeding to perform the corresponding ‘stan-
dard’ test. It is likely the decision will be based on the sample sizes of the in-

148



dependent and paired observations. Existing ‘standard’ approaches include;
discarding all paired observations and performing Pearson’s Chi square test of
association on the unpaired data, or discarding all unpaired observations and
performing McNemar’s test on the paired data. Alternatively, techniques for
combining p-values for separate tests for paired samples and unpaired sam-
ples could be applied. Fisher’s inverse Chi-square method, Tippett’s test and
Stouffer’s test are more powerful than techniques that discard data (Samawi
and Vogel, 2011). However, it should be noted that Samawi and Vogel (2011)
did not consider Type I error rates. The scenario outlined in this chapter is
not immune to other ad-hoc approaches for using all available data such as
randomly pairing any unpaired observations, or ignoring any pairing. This
reiterates the need for research into statistically valid approaches.

The ‘standard’ approaches for tests of equal proportions are inappropriate
for similar reasons as traditional tests for equal means are inappropriate.
In fact it is more likely that these naive approaches result in violations of
the assumptions of the tests if sample sizes are small. For the χ2 test, an
expected frequency ≥ 1 is required in every cell and an expected frequency
≥ 5 is required in at least 80% of the cells (Fisher, Marshall, and Mitchell,
2011). If the analysis were to be split between independent and dependent
samples, at least 16 observations in each design would be advisable. As a
2 × 2 matrix is considered by the two standard approaches, a continuity
correction is typically applied for small sample sizes.

These naive approaches are likely to have relatively low power for small
samples when the number of discarded observations is large. A method of
analysis for partially overlapping samples that takes into account the paired
design but does not lose the unpaired information would therefore be bene-
ficial.

Choi and Stablein (1982) performed a simulation study to assess ap-
proaches for the partially overlapping samples case, they ultimately recom-
mended their test making use of all the available data as the best practical
approach. Their proposal uses one combined test statistic, weighting the
variance of the paired observations and the independent observations. The
authors additionally considered an approach using maximum likelihood es-
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timators for the proportions. The latter approach was found to be of little
practical benefit in terms of Type I error rate or power. It was noted by
Choi and Stablein (1982) that given the additional computation, the maxi-
mum likelihood solution is not a practical solution. Others have also consid-
ered maximum likelihood approaches. For example, Thomson (1995), using
maximum likelihood estimators found their proposed procedure to perform
similarly to that of Choi and Stablein (1982). However the solution by Thom-
son (1995) makes the assumption that the independent observations and the
paired observations within a sample have equal proportions (Bland and But-
land, 2011).

Samawi and Vogel (2011) proposed a further approach, using the theory
from Tippett (1931). This is to test dependent data separately from the
independent data and then compare the smallest p-value to the Bonferroni-
Sidak lower bound i.e. 1−(1−α)0.5. This method has the limitation of equal
weights for both the independent and dependent samples.

Tang and Tang (2004) propose a test procedure which is a direct adaption
of the approach proposed by Choi and Stablein (1982). But this adaption
is found to violate Type I error robustness in scenarios considered when
na + nb + 2nc = 20. The original test proposed by Choi and Stablein (1982)
is found to be Type I error robust in this scenario.

Based on the existing literature, a solution to the partially overlapping
samples case will have to outperform the best practical solution by Choi
and Stablein (1982). Tang and Tang (2004, p. 81) concluded that ‘there
may exist other test statistics which give better asymptotic or unconditional
exact performance’.

9.2 Definition of standard test statistics

Assuming a dichotomous dependent variable, where a comparison in pro-
portions between two samples is required, the layout of frequencies for the
paired observations and the independent observations is set out as per Table
9.1 and Table 9.2 respectively.
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Table 9.1: Paired samples design for two samples with one dichotomous
dependent variable.

Response Sample 2
Response Sample 1 Yes No Total

Yes a b m
No c d nc −m

Total k nc − k nc

Table 9.2: Independent samples design for two samples with one dichotomous
dependent variable.

Response
Yes No Total

Sample 1 e f na
Sample 2 g h nb

9.2.1 Discarding paired observations

For two independent samples as per Table 9.2, a Chi-square test of association
is often performed. This test is displayed in standard textbooks in terms of
χ2

1. A Chi-square distribution on one degree of freedom is equivalent to
the square of the z-distribution. Therefore under the null hypothesis an
asymptotically N(0, 1) equivalent statistic is defined as:

z1 = p̂1 − p̂2√
p̂(1−p̂)
na

+ p̂(1−p̂)
nb

(9.1)

where p̂1 = e
na
, p̂2 = g

nb
and p̂ = e+g

na+nb
.

For small samples, Yates’s correction is often performed to reduce the
error in approximation. Yates’s correction is given by:

z2 =

√√√√(na + nb) (|eh− fg| − 0.5 (na + nb))2

(e+ g) (f + h)nanb
. (9.2)

The statistic z2 is referenced against the upper tail of the standard Normal
distribution.

An alternative to this approach is Fisher’s exact test. This is computa-
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tionally more difficult. Furthermore, Fisher’s exact test is shown to deviate
from Type I error robustness (Berkson, 1978).

9.2.2 Discarding unpaired observations

For two dependent samples as per Table 9.1, McNemar’s test is often per-
formed. Under the null hypothesis, the asymptotically N(0, 1) equivalent to
McNemar’s test is:

z3 = b− c√
b+ c

. (9.3)

When the number of discordant pairs is small, a continuity correction is
often performed. McNemar’s test with continuity correction is equivalent to:

z4 =
√

(|b− c| − 1)2

b+ c
. (9.4)

The statistic z4 is referenced against the upper tail of the standard Normal
distribution.

Several methods have been proposed in the literature for calculating con-
fidence intervals for McNemar’s test. The method by Fay (2011) is used here
and is available in the R package ‘exact2x2’. In any event, odds ratios make
the results of McNemar’s test more challenging to interpret.

9.2.3 Combination of the independent and paired tests
using all of the available data

Given that a naive test for the paired observations and a separate naive
test for the independent observations can be performed, an extension to
these techniques which makes use of all of the available data would be a
combination of the two tests.

In terms of power, Fisher’s test and Tippett’s test are comparable to
a weighted approach using sample size as the weights (Samawi and Vogel,
2011). Tippett’s method and Fisher’s method are not as effective as Stouffer’s
weighted z-score test (Kim et al., 2005). Stouffer’s weighted z-score, for
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combining z1 and z3 is defined as:

z5 = wz1 + (1− w)z3√
w2 + (1− w)2

where w = na + nb
2nc + na + nb

(9.5)

Under the null hypothesis, the test statistic z5 is asymptotically N(0, 1)
Many other procedures for combining separate p-values are available, but

these are less effective than Stouffer’s test (Whitlock, 2005).
The drawbacks of Stouffer’s test are that it has issues in the interpretation

and confidence intervals for the true difference in population proportions
cannot be easily formed. Also, if the unpaired observations were only in one
of the two samples, the calculation of z1 and therefore z5 is not possible.

9.3 Definition of alternative test statistics us-
ing of all of the available data

The following proposals are designed to overcome the drawbacks identified
of the tests above. In these proposals, observations are not discarded, a
single test is performed, and the test statistics are readily considered for the
formation of confidence intervals.

9.3.1 Proposals using the phi correlation coefficient or
the tetrachoric correlation coefficient.

It is proposed that a test statistic for comparing the difference in two propor-
tions with two partially overlapping samples can be formed so that the overall
estimated difference in proportions is divided by its combined standard error,
i.e.

p1 − p2√
V ar(p1) + V ar(p2)− 2Cov(p1, p2)

where V ar(p1) = p1(1− p1)
nc + na

, V ar(p2) = p2(1− p2)
nc + nb

,
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Cov(p1, p2) =

√
p1(1− p1)

√
p2(1− p2)nc

(nc + na)(nc + nb)
.

Test statistics constructed in this manner facilitate the construction of
confidence intervals, for example a 95% confidence interval θ is equivalent to:

θ = (p1 − p2)± 1.96×
√
V ar(p1) + V ar(p2)− 2Cov(p1, p2)

Pearson’s phi correlation coefficient or Pearson’s tetrachoric correlation
coefficient are often used for measuring the correlation rx between dichoto-
mous variables.

Pearson’s phi correlation coefficient, r1 is calculated as

r1 = ad− bc√
(a+ b)(c+ d)(a+ c)(b+ d)

The result of r1 is numerically equivalent to Pearson’s product-moment
correlation coefficient and Spearman’s rank correlation coefficient applied
to Table 9.1, using binary outcomes ‘0’ and ‘1’ in the calculation (Rodgers
and Nicewander, 1988). This suggests that r1 is an appropriate correlation
coefficient to consider.

Alternatively, assuming the underlying distribution is normal, a poly-
choric correlation coefficient may be considered. A special case of the poly-
choric correlation coefficient for two dichotomous samples is the tetrachoric
correlation coefficient.

An approximation to the tetrachoric correlation coefficient, r2 given by
Digby (1983) is

r2 = s− 1
s+ 1, where s =

(
ad

bc

)0.7854

Other approximations are available, however there is no conclusive evi-
dence which is the most appropriate (Digby, 1983). In any event, r1 is likely
to be more practical than r2, because if any of the observed paired frequencies
are equal to zero then the calculation of r2 is not possible.

Constructing a test statistic using correlation coefficients r1 and r2 re-
spectively, the following test statistics are proposed:
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z6 = p1 − p2√
p1(1−p1)
nc+na + p2(1−p2)

nc+nb
− 2r1

(√
p1(1−p1)

√
p2(1−p2)nc

(nc+na)(nc+nb)

) (9.6)

z7 = p1 − p2√
p1(1−p1)
nc+na + p2(1−p2)

nc+nb
− 2r2

(√
p1(1−p1)

√
p2(1−p2)nc

(nc+na)(nc+nb)

) (9.7)

where p1 = a+ b+ e

nc + na
and p2 = a+ c+ g

nc + nb
.

Under H0, π1 = π2 = π, thus two additional test statistics considered are
defined as:

z8 = p1 − p2√
p(1−p)
nc+na + p(1−p)

nc+nb
− 2r1

(√
p(1−p)

√
p(1−p)nc

(nc+na)(nc+nb)

) (9.8)

z9 = p1 − p2√
p(1−p)
nc+na + p(1−p)

nc+nb
− 2r2

(√
p(1−p)

√
p(1−p)nc

(nc+na)(nc+nb)

) (9.9)

where p = (na + nc)p1 + (nb + nc)p2
2nc + na + nb

.

The test statistics z6, z7, z8 and z9 are referenced against the standard
Normal distribution.

In the extreme scenario of nc = 0, it is quickly verified that z8 = z9 = z1.

Under H0, in the extreme scenario of na = nb = 0, as nc → ∞ then
z8 → z3. This is confirmed in the following proof:

If na = nb = 0;

p1 = a+ b

nc
, p2 = a+ c

nc
, p1 − p2 = c− b

nc
,

p = (nc)p1 + (nc)p2
2nc

= 2a+ b+ c

2nc
,

1− p = (nc)(1− p1) + (nc)(1− p2)
2nc

,
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and so if na = nb = 0;

z2
8 = (p1 − p2)2

2p(1−p)
nc

(1− r1)
= nc(p1 − p2)2

2p(1− p)(1− r1)

Substituting p and p1 − p2 into z2
8 gives:

z2
8 = 2nc(c− b)2

(b+ c+ 2d)(b+ c+ 2a)(1− r1)

Under H0, as nc →∞ then c→ b thus

z2
8 = 2nc(c− b)2

(2a+ 2b)(2b+ 2d)(1− r1)

Given r1 = ad− bc√
(a+ b)(c+ d)(a+ c)(b+ d)

= ad− b2√
(a+ b)(b+ d)(a+ b)(b+ d)

then as nc →∞, r1 →
ad− b2

(b+ d)(a+ b) .

Substituting r1 into z2
8 it follows that:

z2
8 = 2nc(c− b)2

4(b+ d)(a+ b)(1− ad−b2

(b+d)(a+b))

= 2nc(c− b)2

4(b+ d)(a+ b)((b+ d)(a+ b)− ad−b2

(b+d)(a+b))

= 2nc(c− b)2

4(b(a+ d+ 2b))

= 2nc(c− b)2

4bnc

= (c− b)2

2b = (c− b)2

c+ b

∴ z8 = c− b√
c+ b

= z3

This property is not observed for z9.
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The properties of z8 give support from a mathematical perspective as a
valid test statistic due to the interpolation between two established statistical
tests where overlapping samples are not present.

For paired data, the effect size for McNemar’s test requires the odds ratio
of discordant pairs. As the partially overlapping z-statistic itself includes
no information on the number of discordant pairs, a standard calculation of
the effect size for two independent groups rather than a standard calculation
for effect size based on paired observations could act as a reasonable ap-
proximation. The recommended method for effect size for two independent
proportions is as given in Cohen (1992), i.e. the absolute value of arcsin√p1 −
arcsin√p2.

9.3.2 Proposal by Choi and Stablein (1982)

Choi and Stablein (1982) proposed the following test statistic as the best
practical solution for analysing partially overlapping samples:

z10 = p1 − p2√
p(1− p)

(
ψ2

1
na

+ (1−ψ1)2

nc
+ ψ2

2
nb

+ (1−ψ2)2

nc

) (9.10)

where ψ1 = na
na+nc , ψ2 = nb

nb+nc
and D = (1−ψ1)(1−ψ2)((a/nc)−p2)

nc
.

The test statistic z10 is referenced against the standard Normal distribu-
tion.

The authors additionally offer an extension of how optimization of ψ1

and ψ2 could be achieved, but suggest that the additional complication is
unnecessary and the difference in results is negligible. In common with the
other statistics presented, z10 is computationally tractable, but it may be less
easy to interpret, particularly if ψ1 + ψ2 6= 1.

9.3.3 Proposals based on the formation of a new cor-
relation coefficient.

Given the literature in the support of the Chi-square test and McNemar’s
test, a statistic which defaults to these in the extreme under both H0 and
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H1 is derived so that:

z11 = p1 − p2√
p1(1−p1)
nc+na + p2(1−p2)

nc+nb
− 2r3

(√
p1(1−p1)

√
p2(1−p2)nc

(nc+na)(nc+nb)

) (9.11)

z12 = p1 − p2√
p(1−p)
nc+na + p(1−p)

nc+nb
− 2r3

(√
p(1−p)

√
p(1−p)nc

(nc+na)(nc+nb)

) (9.12)

Utilising the definitions of z1 and z3, here z12 is used to show the derivation
of a new correlation coefficient r3. A similar derivation is applied to achieve
z11, where z1 and z3 are defined in terms of p1 and p2, instead of p.

Under H0 and H1, when na = nb = 0, a statistic is required so that:

2nc(c− b)2

(b+ c+ 2d)(b+ c+ 2a)(1− r3) = (c− b)2

(b+ c) = z3

Therefore
(b+ c) = (2a+ 2b)(2b+ 2d)(1− r3)

2nc
and so

(1− r3) = 2nc(b+ c)
(b+ c+ 2d)(b+ c+ 2a)

Hence
r3 = (b+ c+ 2d)(b+ c+ 2a)− 2nc(b+ c)

(b+ c+ 2d)(b+ c+ 2a)

Under H0 and H1, when nc = 0, it is confirmed that r3 = a+b+c+d = 0
and so the test statistic z12 defaults to z1.

9.4 Worked example

The objective of a seasonal affective disorder support group is to see if there
is a difference in the quality of life for sufferers at two different times of the
year. A binary response was required to the question whether sufferers were
satisfied with life. Membership of the group remains fairly stable, but there

158



is some natural turnover of membership over time. Responses were obtained
for nc = 15 paired observations and a further na = 9 and nb = 6 independent
observations. These are given in Table 9.3 and Table 9.4.

Table 9.3: Paired observations for worked example.

Response Time 2
Response Time 1 Yes No Total

Yes 8 1 9
No 3 3 6

Total 11 4 15

Table 9.4: Independent observations for worked example.

Response
Yes No Total

Time 1 5 4 9
Time 2 6 0 6

The elements of the test statistics are calculated as: p̂1 = 0.556, p̂2 =
1.000, p̂ = 0.733, p1 = 0.583, p2 = 0.810, p = 0.689, r1 = 0.431, r2 = 0.673, r3 =
0.400, w = 0.333, ψ1 = 0.375, ψ2 = 0.286, D = 0.002.

If discarding unpaired observations, due to the small number of discordant
pairs, McNemar’s test with correction is performed. The odds ratio is 1/3.
The 95% confidence interval for the true odds ratio is (0.006, 4.151), thus
there is no significant change in quality of life between the two response
times.

The results for the test statistics making use of all available data are given
in Table 9.5. The results in Table 9.5 are presented in the format above for
consistency with Derrick et al. (2015). However, the implicit researcher aim
is to demonstrate if there is an improvement in quality of life over time
following the intervention. For ease of interpretation in similar research, the
analyses could be performed so that it is p2 − p1 that is calculated, thus an
odds ratio greater than 1 and positive z-values are desirable.

At the 5% significance level, whether or not the null hypothesis is rejected
depends on the test performed. It is of note that the significant differences
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Table 9.5: Summarised results of worked example.

statistic z-score p-value confidence interval
z6 -2.023 0.043 (-0.445,-0.007)
z7 -2.295 0.022 (-0.419,-0.033)
z8 -1.937 0.053 (-0.455,0.003)
z9 -2.202 0.028 (-0.427,-0.025)
z10 -1.809 0.070 (-0.471,0.019)
z11 -1.995 0.046 (-0.448,-0.004)
z12 -1.909 0.056 (-0.458,0.006)

arise only with tests introduced in this chapter, z6, z7, z9, and z11. The effect
size is 0.250, small effect, with a greater frequency of respondents reporting
that they are satisfied with life after attending the support group.

Although the statistical conclusions differ for this particular example, the
numeric difference between many of the tests is small. To consider further
the situations where differences between the test statistics might arise, sim-
ulations are performed.

9.5 Simulation design and results

A comprehensive set of simulations with varying sample sizes, correlation
coefficients, and population proportions is given in Section 9.5.1. In Section
the empirical properties of the new correlation coefficient is assessed. In
Section 9.5.3 the Type I error rates for each of the test statistics is considered.
For the Type I error robust statistics, power and confidence interval coverage
are considered in Section 9.5.4 and Section 9.5.5.

9.5.1 Simulation design

Normal deviates generated as per Box and Muller (1958) are transformed
into binary outcomes using critical values from the Normal distribution to
obtain the desired π. The simulation design is summarised in Table 9.6.

The values of π are restricted to ≤ 0.5 due to the proposed statistics being
palindromic invariant with respect to π and 1− π. Negative ρ is considered
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Table 9.6: Simulation parameters, dichotomous data.

Parameter Values
π1 0.15, 0.30, 0.45, 0.50
π2 0.15, 0.30, 0.45, 0.50
na 5, 10, 30, 50, 100, 500
nb 5, 10, 30, 50, 100, 500
nc 5, 10, 30, 50, 100, 500
ρ -0.75, -0.50, -0.25, 0.00, 0.25, 0.50, 0.75

for theoretical interest, although ρ < 0 is less likely to occur in practical
applications.

9.5.2 Comparison of correlation coefficients

The value of the new correlation coefficient, r3, relative to the correspond-
ing value of r1 is explored. Figure 9.1 illustrates the relationship for seven
parameter combinations within the simulation design.

It can be seen that −1 ≤ r3 ≤ 1, thus fulfills typical definitions of a
correlation coefficient. Further exploration shows that if b = c then r3 =
r1. However if b 6= c then r3 ≤ r1. Another interesting property of r3 is
that its value does not change with differing b and c when the total b + c

remains constant. The implication of this is that r3 can be seen as measure
of the relationship between the number of concordant pairs and the number
of discordant pairs. Therefore, r3 is proposed as a competing correlation
coefficient for measuring the relationship in two samples where the dependent
variable is dichotomous.

9.5.3 Type I error rates

Under the null hypothesis, for a selected parameter combination, the distri-
bution of the p-values is assessed for uniformity. P-P plots for each of the test
statistics demonstrate that the p-values that are not uniformly distributed,
particularly at the upper tail. Due to the nature of comparing dichotomous
variables, the calculated z-values for small samples are often equivalent to
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Figure 9.1: Comparison of new correlation coefficient r3 against r1 for nc =
30, π1 = 0.5, π2 = 0.3 and ρ = {0.75, 0.5, 0.25, 0,−.025,−0.5,−0.75}.

zero. This is observed with the standard tests and the alternative proposed
tests. This is what results in the phenomenon at the upper tail. This is
demonstrated in Figure 9.2 for a selection of the test statistics.

Figure 9.2 suggests that z8, z10 and z12 are more Type I error robust than
the ‘standard’ options, because they appear to deviate less from uniformity
in the lower tails also. For the assessment of robustness of Type I errors, the
deviation in the upper tail is not majorly important because it is the lower
tail that is of interest. The deviation in the upper tail may be problematic for
clinicians performing equivalence and non-inferiority testing. These studies
require large sample sizes (Da Silva, Logan, and Klein, 2009). Investigation of
additional P-P plots from the simulation design (not displayed) demonstrate
asymptotic Type I error robustness as sample sizes increase.

Under H0, 10,000 replicates are obtained for 4 × 5 × 5 × 5 × 7 = 3500
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Figure 9.2: P-P plots for selected test statistics, where ρ = 0.75, na = nb =
nc = 10, π1 = π2 = 0.5.

scenarios. For assessment against Bradley’s liberal Type I error robustness
criteria, Figure 9.3 shows the Type I error rates for all scenarios where π1 = π2

using α = 0.05.

As may be anticipated, z1 maintains Bradley’s liberal Type I error ro-
bustness, because pairs are ignored. Similarly, z3 performs as anticipated
because the unpaired observations are ignored. The deviations from robust-
ness for z3 arise when the proportion of success is small, the paired sample
size is small, and the correlation is high. Crucially, the deviations from Type
I error robustness of z3 are conservative, resulting in less false-positives, as
such the test statistic may be acceptable in practical research.

The corrected statistics using naive approaches discarding observations,
z2 and z4, give Type I error rates below the nominal α, particularly with
small sample sizes. These findings echo the work by Ury and Fleiss (1980),
it is concluded that the corrected statistics do not provide a robust solution
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Figure 9.3: Type I error rates for each test statistic over all combinations.

to the partially overlapping samples problem.
The statistics using the phi correlation coefficient, z6 and z8, are gen-

erally Type I error robust. However, for z6 there is some deviation from
Bradley’s liberal Type I error robustness criteria. Further inspection of
the results shows that this deviation from liberal robustness occurs when
min{na, nb, nc} is small, max{na, nb, nc} − min{na, nb, nc} is large and
ρ < 0. In these scenarios the impact of this is that z6 is not Type I error
robust and results in a high likelihood of false-positives. It is therefore con-
cluded that z6 does not universally provide a Type I error robust solution to
the partially overlapping samples situation.

The statistics using r2, namely z7 and z9, have more variability in Type
I errors than the statistics that use r1. These statistics using the tetrachoric
correlation coefficient inflate the Type I error when ρ > 0.25 and nc is large.
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When min{na, nb, nc} is small, these test statistics are conservative. A
test statistic that performs consistently is favoured for practical use, there-
fore z7 and z9 do not provide Type I error robust solutions to the partially
overlapping samples situation.

The statistics using r3 or r1 and incorporating p, i.e. z8 and z12, fulfill
liberal robustness criteria throughout the entire simulation design.

The proposal by Choi and Stablein (1982), z10, maintains liberal robust-
ness except in the scenario where ρ = 0.75 and the smallest sample size
simulated na = nb = nc = 5. Since this is only one combination it is likely
due to the nature of simulated data. Additional ad-hoc runs of the simulation
with small sample sizes indicates that z10 demonstrates liberal robustness.

A total of four statistics making use of all of the available data, z5, z8, z10

and z12, are deemed to demonstrate liberal Type I error robustness. Further
analysis of Type I error rates show near identical boxplots to Figure 9.3 when
each of na, nb, nc, and ρ are fixed in turn. This means these statistics are
robust across all sample sizes and correlations. These statistics are therefore
considered for their power properties.

9.5.4 Power

The power of the test statistics that do not fail Type I error robustness
criteria, is summarised in Table 9.7. For each of the test statistics, as the
correlation increases from -0.75 through to 0.75, the power of the test in-
creases. Similarly as sample sizes increase, the power of the test increases.

It can be seen from Table 9.7 that negative correlation results in lower
power than the equivalent test statistic when positive correlation of the paired
samples is present. Negative correlation therefore should be avoided where
possible in the design stage of an experiment.

Clearly, z5 is more powerful than the other standard tests, z1 and z3,
but it is not as powerful as the alternative methods that make use of all the
available data.

The power of z8, z10 and z12 are similar. Inspection of the analyses in-
dicate that the statistics are comparable across the various sample sizes and
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Table 9.7: Power where π1 = 0.5 averaged over all combinations sample sizes.

π2 ρ z1 z3 z5 z8 z10 z12
0.45 >0 0.095 0.173 0.208 0.221 0.221 0.218
0.45 0 0.095 0.133 0.168 0.186 0.186 0.184
0.45 <0 0.095 0.112 0.150 0.166 0.166 0.164
0.3 >0 0.509 0.653 0.807 0.856 0.855 0.854
0.3 0 0.509 0.569 0.772 0.828 0.827 0.826
0.3 <0 0.509 0.508 0.746 0.801 0.801 0.800
0.15 >0 0.843 0.874 0.975 0.989 0.989 0.986
0.15 0 0.843 0.834 0.970 0.985 0.986 0.986
0.15 <0 0.843 0.795 0.966 0.980 0.982 0.982

correlation, and power is maximised when na = nb. Furthermore, increases
in the number of pairs increases the power at a greater rate than equivalent
increases in the number of independent observations.

9.5.5 Formation of confidence intervals

95% confidence intervals are generated for the Type I error robust, and most
powerful statistics, z8, z10 and z12. The percentage of iterations where the
true population difference appears within the confidence interval is the confi-
dence interval coverage. In the case of a 95% confidence interval, the coverage
should be approximately 95%. The confidence interval coverage is given in
Figure 9.4.

All of the test statistics considered in Figure 9.4 demonstrate reasonable
coverage for the true population difference π1 − π2. However, z8 frequently
performs closer to the desired 95% success rate relative to the other two test
statistics. Taking this result into account, when the objective is to form a
confidence interval, z8 is recommended as the test statistic of choice in the
partially overlapping samples case.

Caution should be expressed with these results because confidence inter-
vals for proportions are known to be inadequate due to the discrete nature
of proportions (Newcombe, 1998).
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Figure 9.4: 95% confidence interval coverage of the population difference in
proportions.

9.6 Comparison to t-test solution

The situation outlined could alternatively be viewed from the perspective
of a comparison of the means for two partially overlapping samples. This
approach may be reasonable, noting the slightly different form of the null
hypothesis due to the explicit reference to means. Although it is standard
procedure to report frequencies, observations could be coded with either a
‘1’ for each ‘success’ or ‘Yes’, or a ‘0’ for each ‘failure’ or ‘No’. This approach
can be considered as mathematically equivalent to observations recorded on
a two-point ordinal scale.

Application to the seasonal affective disorder example, where the assump-
tion of equal variances is reasonable, gives Tnew1 = -1.978, p-value = 0.060.
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This represents weaker evidence of a treatment effect, relative to the other
statistics proposed in this chapter making use of all the available data (with
the exception of z10).

The simulations as per Table 9.6 are repeated, performing the partially
overlapping samples t-tests for comparative purposes.

Table 9.8 compares the Type I error rate and power for the partially
overlapping samples t-tests and z8, averaged over the simulation design for
positive correlation. It can be see from this comparison that all three tests
under consideration maintain good Type I error robustness, but there is
apparent disparity in the power of the tests.

Table 9.8: Comparison of z8 with Tnew1 and Tnew2, ρ > 0.

π1 π2 Tnew1 Tnew2 z8
Type I error 0.15 0.15 0.047 0.060 0.048
robustness 0.3 0.3 0.049 0.051 0.049

0.45 0.45 0.049 0.050 0.050
0.5 0.5 0.049 0.050 0.050

Power 0.15 0.5 0.950 0.939 0.989
0.3 0.5 0.757 0.748 0.855
0.45 0.5 0.188 0.188 0.221

In conclusion, for the comparison of two dichotomous variables, perform-
ing the partially overlapping samples t-test is a valid solution, however the
z8 solution proposed in this chapter is recommended for its superior power.

9.7 R Package

Version 2.0 of the R package ‘partiallyoverlapping’ includes a function called
‘Prop.test’ to ease calculation of the test procedure z8.

9.7.1 Help manual

Extracts from the supporting help pages are given below to demonstrate how
the function Prop.test within the ‘partiallyoverlapping’ package is used.
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Description

The partially overlapping samples z-test for the comparison of two dichoto-
mous samples.

Usage and default options

Prop.test(x1 = NULL, x2 = NULL, x3 = NULL, x4 = NULL, alternative =
"two.sided", conf.level = NULL, stacked = FALSE)

Arguments

x1 a vector of unpaired observations in Sample 1 (or all observations in
Sample 1 if stacked = "TRUE")

x2 a vector of unpaired observations in Sample 2 (or all observations in
Sample 2 if stacked = "TRUE")

x3 a vector of paired observations in Sample 1 (not applicable if stacked =
"TRUE")

x4 a vector of paired observations in Sample 2 (not applicable if stacked =
"TRUE")

alternative a character string specifying the alternative hypothesis, must be
one of "two.sided" (default), "greater" or "less".

conf.level confidence level of the interval.

stacked indicator of whether paired and unpaired observations are stacked
within one vector ("TRUE"), or if specified as four separate vectors (default).
Corresponding pairs should be given on the same row when "TRUE" is se-
lected.
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Values

statistic The value of the z-statistic

p.value The p-value for the test

estimate The estimated difference in proportions

conf.int A confidence interval for the difference in proportions appropriate to
the specified alternative hypothesis

Example

[This is the example outlined in Section 9.4, taken from Derrick et al. (2015).]
The proportions for two groups, "a" and "b" are compared where the raw
data "1", or "0" for each unit is recorded in a data frame.
15 paired observations are given first, followed by 9 independent observations
in Sample 1, followed by 6 independent observations in Sample 2.
Independent observations and the paired samples stacked for each sample.

a<-c(1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,
1,1,1,1,1,0,0,0,0,NA,NA,NA,NA,NA,NA)

b<-c(1,1,1,1,1,1,1,1,0,1,1,1,0,0,0,
NA,NA,NA,NA,NA,NA,NA,NA,NA,1,1,1,1,1,1)

Prop.test(a,b,stacked=TRUE,conf.level=.95)

Resulting output gives; p.value = 0.053, conf.int = (-0.455, 0.003).
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9.7.2 Further application

Using the partially overlapping samples z-test, z8, NeMoyer et al. (2018) were
able to identify where the reasons given for raising competence to plead guilty
differed between attorneys representing adult clients and juvenile clients.
They found that mental illness of the client was statistically significant, it
was given as a reason more frequently for juvenile clients than for adult
clients.

9.8 Summary

Standard approaches for analysing the difference in proportions for a dichoto-
mous variable with partially overlapping samples often discard some available
information. If there is a large paired sample or a large unpaired sample, it
may be reasonable in a practical environment to use the corresponding naive
test. For small samples, the test statistics which discard data have inferior
power properties to tests statistics that make use of all available data. These
standard approaches and other ad-hoc approaches are less than desirable.

Combining the paired and independent samples z-scores using Stouffer’s
method is a more powerful standard approach, but leads to complications
in interpretation, and does not readily extend to the creation of confidence
intervals for differences in proportions. The tests introduced here, as well as
the test outlined by Choi and Stablein (1982) are more powerful than the
test statistics in common use.

The alternative tests proposed here, z6, z7, z8, z9, z11 and z12, overcome the
interpretation barrier, in addition confidence intervals can readily be formed.

Tests using the phi correlation coefficient, z6 and z8, are more robust than
the equivalent tests introduced using the tetrachoric correlation coefficient,
z7 and z9.

The most powerful valid tests are z8, z10 and z12. For ease of computation
and intuitive construction, z8 or z12 are recommended as the best practical
solutions to the partially overlapping samples problem. The empirical ev-
idence suggests that z8 is marginally better suited for forming confidence
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intervals for the true population difference than z10 or z12. Furthermore
Pearson’s correlation coefficient and associated direct descendants for differ-
ent types of data are highly regarded and ingrained within statistics (Rodgers
and Nicewander, 1988). Thus z8 has relative simplicity in calculation, strong
mathematical properties and provides ease of interpretation. In conclusion,
z8 is recommended as the best practical solution to the partially overlapping
samples framework when comparing two proportions.
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Chapter 10

The comparison of variances

Tests for equality of variances between two partially overlapping samples are
explored. New solutions which make use of all of the available data are put
forward. These new approaches are compared against approaches that dis-
card either the paired observations or the independent observations. The
approaches are assessed under equal variances and unequal variances for two
samples taken from the same distribution, as seen in Derrick et al. (2018).

10.1 Background

Much of the literature regarding assessing variances evolves from the as-
sumption of equal variances that is a requirement of many statistical tests
(see Chapter 2.8). However, equality of variances may be of direct interest,
for example to assess two treatments that have a similar mean efficacy, or a
comparison of variances in human populations. Variance can be seen as an
indicator of risk or uniformity (Parra-Frutos, 2009). Thus equality of vari-
ances can be of interest for a variety of reasons, from comparing stocks in the
stock market, to comparing products in a quality control process. Tests for
equal variances have wide ranging applications including areas in archaeology,
environmental science, business and medical research (Gastwirth, Gel, and
Miao, 2009). This chapter considers tests for equality of variances, where the
comparison of two groups with respect to their variances is of direct interest.
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In the two partially overlapping samples scenario, if the number of paired
observations is relatively large and the number of independent observations
is relatively small, a solution may be to discard independent observations
and perform a test for equal variances based on the paired observations only.
For the comparison of variances for paired data, the Pitman-Morgan test
can be performed. The Pitman-Morgan test is widely regarded as the best
test of equal variances for two paired samples under normality (Mudholkar,
Wilding, and Mietlowski, 2003). However, the Pitman-Morgan test is not
robust to violations of the normality assumption (Mudholkar, Wilding, and
Mietlowski, 2003; Grambsch, 1994). For heavy tailed distributions, the Type
I error rate of the Pitman-Morgan test is inflated (McCulloch, 1987; Wilcox,
2015).

Alternatively, if the number of independent observations is relatively large
and the number of paired observations is relatively small, a solution may be to
discard paired observations and perform a test for the comparison of variances
with only the independent observations. Numerous tests for the comparison
of variances of two independent samples have been documented (Conover,
Johnson, and Johnson, 1981). For two independent samples the most com-

mon approach is to calculate s2
1
s2

2
and compare against the F -distribution,

i.e. perform the F -test. Equivalently the numerator may be fixed to be the
sample with the highest variance.

When the normality assumption is met, the Neyman-Pearson lemma
can be used to show that the F -test is the uniformly most powerful test
for comparing the variances of two independent samples. However, the F -
test is not robust to deviations from normality (Marozzi, 2011; Markowski
and Markowski, 1990; Nordstokke and Zumbo, 2007; Conover, Johnson, and
Johnson, 1981).

Levene (1961) propose that for two independent groups, the differences
between the absolute deviations from the group means could be used to
assess equality of variances. In the two sample case, this test is equivalent
to Student’s t-test applied to absolute deviations from the group means.
This version of Levene’s test fails to control the Type I error rate when the
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population distribution is skewed (Nordstokke and Zumbo, 2007; Carroll and
Schneider, 1985).

The classical Levene’s test is performed using absolute deviations from
each group mean. When considering variability, statisticians often consider
square deviations from the mean. It is hypothesised that using squared
deviations may offer a robust alternative. Some preliminary simulations are
performed to explore this hypothesis. In a factorial simulation design, two
samples of sizes {5, 10, 20, 30, 40} from N(0, 1) are generated for 1,000
iterations. For each iteration Levene’s test using absolute deviations (L)
and Levene’s test using squared deviations (LS) are performed at the 5%
significance level. For reference, the F -test (F) is included in the comparison.
This process is repeated for the Exponential distribution. The overall Type
I error robustness for each test averaged over the simulation design is given
in Table 10.1.

Table 10.1: Comparison of absolute deviations and squared deviations.

Distribution F L LS
Normal 0.050 0.056 0.039

Exponential 0.220 0.062 0.151

Table 10.1 indicates that the use of absolute deviations, rather than
squared deviations, better maintains Type I error robustness. This suggests
that for skewed distributions the Type I error rate inflation is exacerbated
when using squared deviations. Conclusions from this crude preliminary in-
vestigation match those by Smith and Cody (1997). Thus the remainder of
this chapter proceeds on the basis of absolute deviations, as per standard
definitions of Levene’s test.

Brown and Forsythe (1974) proposed alternatives to Levene’s test when
data are not normally distributed. These alternatives use absolute devia-
tions from the median or the trimmed mean. These variations are also often
referred to as ‘Levene’s test’ (Gastwirth, Gel, and Miao, 2009; Carroll and
Schneider, 1985). For the avoidance of doubt, the convention followed herein
is that the process of assessing equality of variances using absolute deviations
from the group means is referred to as ‘Levene’s test’. Assessing equality of
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variances using absolute deviations from the group medians is referred to as
the ‘Brown-Forsythe test’.

Shoemaker (2003) offer two potential fixes to the F -test. Despite sim-
ulations showing some good results for the adjustments, Shoemaker (2003)
concludes that the Brown-Forsythe test is superior for highly skewed distri-
butions.

Many modifications of Levene’s test have been proposed, but none per-
forming well are found by Parra-Frutos (2009), the proposals by Brown and
Forsythe (1974) were not considered.

Conover, Johnson, and Johnson (1981) explored 56 tests for equal vari-
ances for two independent groups and noted five tests that are Type I error
robust over a large range of conditions, and each use deviations from the me-
dian rather than deviations from the mean. Conover, Johnson, and Johnson
(1981) found that the only test that consistently meets Bradley’s liberal Type
I error robustness criteria is the Brown-Forsythe test. However, it should be
noted that this test can be conservative with small sample sizes (Loh, 1987;
Lim and Loh, 1996).

Nordstokke and Zumbo (2010) propose a non-parametric alternative using
Levenes’s test based on the observation ranks. It is Type I error robust
and more powerful than the Brown-Forsythe test when population means
are equal. However, Shear, Nordstokke, and Zumbo (2018) show that this
alternative test is not robust when the assumption of equal population means
is relaxed. Given that the population mean may be an unknown nuisance
parameter, Shear, Nordstokke, and Zumbo (2018) direct researchers to the
use of the Brown-Forsythe test.

The general consensus regarding two independent samples, is using de-
viations from the median, particularly the Brown-Forsythe test (Nordstokke
and Zumbo, 2007; Mirtagiouglu et al., 2017; Carroll and Schneider, 1985).

The comparison of variances in the partially overlapping samples case has
been given very little attention by recent authors that consider the compar-
ison of means in the partially overlapping samples case. Bhoj (1979) and
Ekbohm (1981) independently considered a weighted combination of inde-
pendent and paired observations to create a new test statistic. Other solu-
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tions such as ignoring the pairing and performing the F -test on all of the
available data were considered by Ekbohm (1982). Bhoj (1984) concluded
that his test statistic is a powerful approach if the correlation is negative or
small. Otherwise, performing the F -test on all of the available data is more
powerful than the solutions put forward by either of the authors (Ekbohm,
1981; Ekbohm, 1982). The simulations performed by these authors were on
a relatively small scale. No solution was comprehensively agreed upon for all
scenarios. Furthermore, the non-robustness of the Pitman-Morgan test has
a detrimental impact on the weighted tests. A different solution that uses
all available data without a complex weighting structure, or the discarding
of valuable information about the pairing, may therefore be advantageous.

It is proposed that as an alternative test for equal variances in the two
sample case, the partially overlapping samples t-test can be performed, using
absolute deviations from the sample group medians, as outlined below.

Let Xji denote the i-th observation in group j, for j = {Sample 1, Sample
2}, and X̃j denote the sample median, so that Yji = Xji − X̃j, then

Tvar1 = Ȳ1 − Ȳ2

Spy
√

1
n1

+ 1
n2
− 2ρ nc

n1n2

where Spy =

√√√√(n1 − 1)S2
1 + (n2 − 1)S2

2
(n1 − 1) + (n2 − 1)

(10.1)
The test statistic Tvar1 is referenced against the t-distribution with v1

degrees of freedom.
For the comparison of variances, Loh (1987) suggest adopting the form of

the t-test unconstrained to equal variances, using absolute deviations from
the sample group medians. The partially overlapping samples test statistic
unconstrained to equal variances can be similarly modified to provide a test
for equality of variances so that:

Tvar2 = Ȳ1 − Ȳ2√
S2

1
n1

+ S2
2
n2
− 2ρS1S2nc

n1n2

(10.2)

The test statistic Tvar2 is referenced against the t-distribution with v2

degrees of freedom.
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10.2 Example

For illustrative purposes, returning to the example by Rempala and Looney
(2006), with a research question of whether there is a difference in the vari-
ability of patients scores between the last day of life and the second to last
day.

The deviations from the group medians are calculated, then the tests are
performed using the R package by Derrick (2017a).

The results are: X̃1 = 20, X̃2 = 20, Tvar1 = −0.886 (p-value = 0.380),
Tvar2 = −0.882 (p-value = 0.380).

Thus there is no evidence to suggest that the variability is not equal
between the two days.

10.3 Methodology

Approaches for the comparison of variances in the two sample case are as-
sessed using simulation. The tests considered are the Brown-Forsythe test,
the Pitman-Morgan test, and the proposed Tvar1 and Tvar2.

Within the simulation design, the sample sizes {na, nb, nc} are {5, 10, 30,
50}. The correlation coefficients, ρ, are {0.00, 0.25, 0.50, 1.00}. Simulations
for each possible parameter combination of na, nb, nc and ρ are performed
in a factorial design.

Firstly the comparison of variances is performed for normally distributed
data. Under the null hypothesis, X1 ∼ N(0, 1) and X2 ∼ N(0, 1). Under the
alternative hypothesis, the observations in Sample 2 are multiplied by σ = 2,
thus X1 ∼ N(0, 1) and X2 ∼ N(0, 4).

Secondly the comparison of variances is performed for a skewed distri-
bution. Under the null hypothesis, Normal deviates are first generated as
above, and then the exponent of each value is calculated to create a Lognor-
mal distribution as per Chapter 4.1.2. Under the alternative hypothesis this
process is repeated, each of the observations in Sample 2 multiplied by σ = 2
to create unequal variances.

For each parameter combination, the data generating process is repeated
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10,000 times, and each of the statistical tests to be evaluated is performed
on each replicate. Under the null hypothesis, the proportion of the 10,000
replicates where H0 is rejected represents the Type I error rate. Under the
alternative hypothesis, the proportion of the replicates where the H0 is re-
jected represents the power of the test. The simulations and test procedures
are performed in R, at the 5% significance level, two-sided. The simulation
design allows that the conditions of MCAR are met.

10.4 Results

Type I error rates and power are investigated for each of; the Brown-Forsythe
test, BF, the Pitman-Morgan test, PM, and the partially overlapping samples
tests, Tvar1 and Tvar2.

Firstly, for a comparison of variances for two samples from the Normal
distribution, each of the test statistics are assessed under the null hypothesis
where X1 ∼ N(0, 1) and X2 ∼ N(0, 1). The Type I error robustness for each
of the parameter combinations within the simulation design are summarised
in Figure 10.1.

Figure 10.1 shows that the Pitman-Morgan test and the proposed test
statistics are Type I error robust throughout the simulation design, with Tvar1

being on average more conservative relative to Tvar2. The Brown-Forsythe
test has a Type I error rate below the nominal significance level for every
parameter combination within the simulation design. For the smallest sample
sizes within the design, the Brown-Forsythe test is very conservative. This
result makes the Brown-Forsythe test appealing for researchers that like to
err on the side of caution during their analyses.

Next, each of the test statistics are assessed when both samples are taken
from skewed but identical distributions. The Type I error robustness for each
of the parameter combinations within the simulation design are summarised
in Figure 10.2.

Figure 10.2 shows that the Pitman-Morgan test is not Type I error robust
when the samples are taken from the Lognormal distribution. This supports
the findings by McCulloch (1987) and Wilcox (2015). In addition it can be
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Figure 10.1: Type I error robustness for each parameter combination, samples
from Standard Normal distribution.

seen that Tvar2 does not fully maintain Type I error robustness across all
scenarios within the simulation design.

To identify where the deviations from Type I error robustness materialise,
a selection of parameter combinations from the Lognormal distribution and
their Type I error rates are given in Table 10.2.

Studying the Type I error rates for different parameter combinations in
Table 10.2 shows that both BF and Tvar1 are similarly conservative, for small
and large sample sizes. Tvar2 is liberal when one of the samples is more
dominant in terms of size, and when there is a large imbalance between
the number of independent observations and the number of pairs. These
conclusions are replicated regardless of the extent of the correlation between
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Figure 10.2: Type I error robustness for each parameter combination, samples
from Lognormal distribution.

the two populations.
These findings coincide with findings in Chapter 6 with respect to the non-

robustness of a test statistic modified to take into account unequal variances,
when distributions are skewed.

Relative power comparisons for each of the test statistics are assessed
where X1 ∼ N(0, 1) and X2 ∼ N(0, 4), followed by power for samples from
distributions with differing skew. The power averaged across the simulation
design for increasing ρ is given in Table 10.3.

Table 10.3 shows that the proposed solution, Tvar1, is more powerful than
the Brown-Forsythe test. It also indicates that both the Brown-Forsythe test
and the newly proposed test, Tvar1, are less powerful when samples are taken
from a heavy-tailed distribution.
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Table 10.2: Type I error robustness, tests for equal variances, selected pa-
rameter combinations, Lognormal distribution.

ρ na nb nc BF PM Tvar1 Tvar2
0.5 30 50 30 0.046 0.500 0.047 0.043
0.5 30 50 5 0.039 0.261 0.036 0.043
0.5 30 50 50 0.041 0.547 0.045 0.040
0.5 5 50 30 0.045 0.507 0.045 0.059
0.5 5 50 5 0.045 0.259 0.042 0.133
0.5 5 50 50 0.039 0.551 0.052 0.053
0.5 50 50 30 0.040 0.507 0.045 0.041
0.5 50 50 5 0.040 0.262 0.037 0.036
0.5 50 50 50 0.041 0.541 0.045 0.040
0 30 50 30 0.039 0.524 0.043 0.044
0 30 50 5 0.041 0.274 0.039 0.046
0 30 50 50 0.041 0.553 0.043 0.042
0 5 50 30 0.043 0.515 0.043 0.063
0 5 50 5 0.043 0.268 0.044 0.142
0 5 50 50 0.042 0.552 0.044 0.053
0 50 50 30 0.041 0.510 0.043 0.043
0 50 50 5 0.043 0.267 0.040 0.038
0 50 50 50 0.040 0.560 0.043 0.043

Table 10.3: Power, tests for equal variances.

Distribution ρ BF PM Tvar1 Tvar2
Normal 0 0.495 0.655 0.887 0.867
Normal 0.25 0.495 0.667 0.891 0.871
Normal 0.5 0.495 0.700 0.900 0.880
Normal 0.75 0.496 0.778 0.916 0.898
Skewed 0 0.198 0.621 0.623 0.442
Skewed 0.25 0.198 0.627 0.633 0.466
Skewed 0.5 0.198 0.651 0.657 0.507
Skewed 0.75 0.198 0.715 0.704 0.577

Power is given for PM for intrigue and completion purposes only. For
some individual parameter combinations the power of Tvar2 exceeds the power
of Tvar1 due to the liberal nature of Tvar2 for those parameter combinations.
However it can be seen from Table 10.3 that averaged across the simulation
design, Tvar2 is less powerful.
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The superior validity and power of Tvar1 gives this test great credentials
as a useful test within the partially overlapping samples framework.

10.5 Summary

A common research question in psychology, education, medical sciences, busi-
ness and manufacturing, is whether or not the variances between two groups
are equal (Gastwirth, Gel, and Miao, 2009).

There has been little previous research into techniques for the comparison
of variances for samples that contain both independent observations and
paired observations. Standard solutions that involve discarding data are less
than desirable.

Two solutions that make use of the partially overlapping samples t-tests
introduced in Chapter 3 are proposed in this chapter. Simulations across a
range of sample sizes show that these solutions are Type I error robust under
normality and the assumption of MCAR. These solutions are more powerful
than established solutions that discard data, namely the Pitman-Morgan test
and the Brown-Forsythe test.

The equal variances form of the partially overlapping samples variances
test, Tvar1, is marginally more powerful than the unconstrained form of the
test Tvar2.

The proposed test statistic Tvar1 further maintains Type I error robustness
for skewed distributions where Tvar2 does not. Tvar1 is therefore recommended
as a powerful test for the equality of variances between two samples when
there is a combination of paired observations and independent observations
in two samples.
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Chapter 11

Conclusions and Further Work

The partially overlapping samples framework has been researched. Common
issues identified with existing methods have driven this investigation. The
focus of the thesis is on the robustness and application of newly proposed
solutions. In this final chapter, recommendations are summarised, and future
avenues of exploration are put forward. Finally, reflections on the journey
are given.

11.1 Conclusion

There are many situations where the presence of both paired observations and
independent observations cannot be avoided. Partially overlapping samples
may occur due to missing data in a paired samples design, and other occasions
where paired samples tests alone might not adequately reflect the structure
of the data being collected.

For extreme sample size imbalances, where the number of independent
observations in one sample greatly differs from the number of independent
observations in the other sample or the number of paired observations, tests
which use all of the available data are not always ideal. For large sample
sizes, naive tests which discard observations are likely to be powerful enough
for most practical applications. In this situation it is important to ensure
that the discarded observations would not give different information to the
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included observations.
The extant tests considered and the newly proposed tests assume within

sample independence. Simulations in this thesis have been performed un-
der the assumption of MCAR. Partially overlapping samples that occur by
design are regarded as being MCAR. Partially overlapping samples can also
occur through missing data in a paired samples design. The assumption of
MCAR is often reasonable in scenarios including equipment failure or loss in
transit (Kang, 2013). A common occurrence of partially overlapping samples
is a paired samples design where participants drop out of the study. In this
case the researcher needs to make a judgment whether analyses on the re-
sponse variable will be impacted by the missing data. The proposed partially
overlapping samples tests are not recommended for data that is MNAR.

Controversial practices for comparing two samples of paired observations
and independent observations are frequently performed, from discarding ob-
servations, to imputing observations (Choi and Stablein, 1982). Other poor
practices observed range from treating all observations as independent and
ignoring the pairing, to randomly pairing unpaired observations (Bedeian
and Feild, 2002).

Particularly for smaller sample sizes, partially overlapping samples tests
using all of the available data can be advantageous. Tests which act as a
simple parameter difference ease interpretation, and confidence intervals can
readily be formed. Solutions using all of the available data facilitated by the
‘Partiallyoverlapping’ R package (Derrick, 2017a) offer intuitive, valid and
powerful solutions for the analyses of partially overlapping samples.

For the comparison of central location, if the assumptions of normality
and equal variances can be made, the Type I error robustness of Tnew1 sug-
gests that Tnew1 can be used as default. Little power is lost relative to Tnew2.
If the normality assumption is reasonable but the equal variances assumption
is not reasonable, Tnew2 is the recommended test of choice. However, where
the assumption of normality is not reasonable, including in the presence of
outliers, the non-parametric test TRNK1 is the recommended test. The poor
outcomes for these parametric tests with respect to outliers reflect the t-tests
upon which these tests are based. The findings are in contrast to suggestions
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by Ruxton (2006) and Delacre, Lakens, and Leys (2017) who suggests the
routine use of Welch’s test. While the use of Welch’s test under the condition
of normality is reasonable, tests not constrained to equal variances perform
badly under non-normality. Tests not constrained to equal variances should
only be performed if there is no reason to doubt the normality assumption.

Non-parametric tests are often over used due to obsession with testing the
normality assumption (Rasch and Guiard, 2004). For cases where extreme vi-
olation of the normality assumption is anticipated, the non-parametric TRNK1

offers a robust alternative to naive non-parametric tests. The form of the
null hypothesis should be given consideration, the non-parametric tests can
be viewed as a test of central location when the distributions are equal (Ri-
etveld and Van Hout, 2017).

The recommended approach is to consider the reasonableness of normal-
ity first and foremost. Choose between Tnew1 and Tnew2 under normality,
otherwise perform TRNK1. This philosophy is in agreement with those that
perform more formal preliminary testing because the default positions are
normality and equal variances.

Similarly developed solutions which are robust, with easy to interpret
results, are recommended for the comparison of proportions, z8, and the
comparison of variances, Tvar1. Performing z8 can be recommended for all
applications where there is a dichotomous response for two samples. The
use of Tvar1 is not directly recommended as a preliminary test, but is recom-
mended for applications where equality of variances are of primary interest.

The new solutions provided are applicable in numerous disciplines, these
include applications in; medicine (Alhouayek et al., 2019; Polster et al., 2019),
environmental geography (Raymundo et al., 2019), psychology (NeMoyer et
al., 2018; Cummins, Hussey, and Hughes, 2019), education (Guerrero Segura,
2019), business and finance (Kimotho, 2018), and technology and human
relationships (Bourrelly et al., 2018; Carolus et al., 2019).
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11.2 Further work

Alongside continual exploration into this area as the literaure develops, some
specific areas of further work are given below.

11.2.1 Further R releases

Future releases of the ‘Partiallyoverlapping’ R package could include specific
functions for Tvar1 and TRNK1 so that the preliminary ranking is performed
for the user.

In communication with a Data Scientist from Highmark Health, Penn-
sylvania, I have been alerted to ‘a minor issue with the Prop.test. I was
using the function on a relatively large dataset (about a million observa-
tions), and got the warning message In u × v : NAs produced by integer
overflow. This resulted in an NA value’. Changing the source code of (u ×
v) to (as.numeric(u) × as.numeric(v)) resolves the issue for the user. This
correction may not be worthy of a new release in its own right, but will be
added to any future release.

11.2.2 Extension to Parallel Randomised Controlled
Trials

Randomised Controlled Trials (RCTs) are widely regarded as the ‘gold stan-
dard’ method for estimating treatment effectiveness (Hewitt et al., 2010).
Parallel RCTs are the most frequently used (Walsh et al., 2014). Any differ-
ences between two groups at baseline should be reported, however missing
data at baseline complicates the issue of attrition (Hewitt et al., 2010). At-
trition reduces the sample size, which reduces statistical power and limits the
extent to which results can be generalised (Leon et al., 2006). The discard-
ing of information to perform complete case analysis requires the implicit
assumption of MCAR. An analysis that uses all of the available information
without imputation is a mixed effect model (Leon et al., 2006). The volume
of attrition that becomes problematic is unclear (Schulz and Grimes, 2002).
A large volume of data MCAR results in less bias than a small amount of
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non-random attrition (Hewitt et al., 2010). In a RCT the sample size calcu-
lation frequently results in an impractical sample size requirement (Pocock,
1985). This can greatly impact the power of the test. It is usual for an RCT
to have missing data on the dependent variable in excess of 10%, and a larger
degree of missing data is not uncommon (Holis and Campbell, 1999).

As an extension to the partially overlapping samples framework, missing
data may be present for both groups at both time points. The comparison
of the differences between two groups over time can be performed using the
t-test, TD, being a comparison of the differences between Group A and Group
B at follow-up less the differences between Group A and Group B at baseline.
Partially overlapping samples naturally inhibit the power of this test, because
four observations all need to be present to form any one comparison within
TD.

An alternative approach that uses all the available data is introduced.
ZD is constructed so that the differences in differences are divided by the
standard error of the differences in differences. An approach that directly
assesses a difference in differences, equivalent to the assessment of an inter-
action effect, is considered here.

The two group scenario can be given as per Equation 11.1 where nij =
number of subjects recorded at time i only in group j only, nλj = number
of subjects recorded at both Time 1 and Time 2 in group j, Sij = standard
deviation of subjects recorded at time i in group j. Although time is used in
this notation, the scenario described is not restricted to time and could be
used for the comparison between any two factors.

ZD = (X̄1A − X̄2A)− (X̄1B − X̄2B)√
S2

1A
n1A

+ S2
2A
n2A
− 2ρS1AS2AnλA

n1An2A
+ S2

1B
n1B

+ S2
2B
n2B
− 2ρS1BS2BnλB

n1Bn2B

(11.1)

Some preliminary simulations are outlined here. Normally distributed
deviates are sampled. Paired observations and independent observations are
generated separately for each group at each time period. For the paired
observations the correlation between Group A and Group B, is derived as per
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Kenney and Keeping (1951). The implicit correlation between Time 1 and
Time 2 is zero, and the differences are normally distributed. The simulation
is based on Group A having the same variance for both time periods, and
Group B having the same variance for both time periods, but Group A
and B are not restricted to both having the same variance. Simulations
are performed for a factorial design under H0 with nij = {5, 10, 20, 30},
ρ = {0, 0.25, 0.5, 0.75} and σ2

i = {1, 4}. For each parameter combination,
1,000 iterations are performed. The test statistic ZD is compared against
TD. Both tests are performed at the 5% significance level for each iteration.

Initial simulations take place under H0 where there are no differences
in differences. Figure 11.1 shows the overall Type I error rates across the
simulation design for each of ZD and TD. In some additional preliminary
simulations, a test statistic devised with the restriction to equal variances
was also attempted, however the results did not exhibit reasonable Type I
error robustness.

Figure 11.1: Type I error rates, TD and ZD.

Figure 11.1 demonstrates that both ZD and TD maintain Type I error
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robustness across the simulation design. The proposed approach could there-
fore be valuable for clinical trials performed under intent to treat, because
all observations are included in the analysis.

This could be further extended to a cross-over trial. The numerator of
Equation 11.1 can be modified to test for a period effect, i.e. (X̄1A− X̄1B)−
(X̄2A − X̄2B). Likewise the numerator of Equation 11.1 can be modified to
test for a carry-over effect, i.e. (X̄1A − X̄2B)− (X̄2A − X̄1B).

11.2.3 Multivariate scenario

There has been much less attention given to the multivariate situation, where
partially overlapping samples are in more than two groups (Mantilla and
Terpstra, 2018). Under these conditions, the issues with regards to discarding
observations or imputing observations are exacerbated. This adds an area for
further research. One potential avenue for exploration would be to construct
a test making use of the generalized t-test, Hotelling’s t-squared statistic (Lu
and Yuan, 2010).

The Freidman test is a test for equal distributions in a repeated measures
design, with three or more samples. However it can only be performed when
the study design is completely balanced. The Skillings-Mack test is a known
alternative to the Freidman test when some observations are missing, i.e.
when the design is not balanced. Further alternative approaches to both the
Freidman test and the Skillings-Mack test is proposed here. The solution
is to calculate the mean of each block and deduct from each original score.
This means that the repeated measures information is used, and thus the
Kruskal-Wallis test, or the one-way ANOVA, can then be performed on the
modified data. The mathematical form of this solution and the robustness
of the solution is part of final year undergraduate student projects I am
currently supervising.

11.2.4 Recent advances

Concurrently with this research, some authors are starting to look into non-
parametric solutions, and solutions using resampling methods.
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Samawi, Yu, and Vogel (2015) put forward a non-parametric solution
attempting to combine the Wilcoxon test and the Mann-Whitney test, they
suggest that this is among the most Type I error robust powerful procedures.

Resampling methods are increasingly advocated analyses methods that do
not make any prior assumptions about the distribution of the data (Odén and
Wedel, 1975). There are several resampling strategies, the common theme is
that repeatedly sampling from the observed data gives a distribution based
on the sample. Resampling methods are particularly of use for small sample
sizes when tests would traditionally yield low power. Overviews of basic
resampling methods are given by Yu et al. (2012), and Good (2013).

For paired differences, bootstrapping is not Type I error robust for small
samples, whereas permutation tests do maintain Type I error robustness
(Konietschke and Pauly, 2014). Permutation based approaches control the
Type I error rate across many distributions and ρ (Konietschke and Pauly,
2014). Permutation based methods are computationally intensive to the
point of being prohibitive if sample size is large. Randomization tests involve
taking a random sample of permutations from the complete set of possible
permutations, and as such have good intuitive and mathematical properties
(Odén and Wedel, 1975; Edgington and Onghena, 2007).

Yu et al. (2012) show that permutation based methods based on Bhoj
(1978) and Kim et al. (2005) perform similarly to their counterparts. When
applied to non-normality, Type I error rates are reasonably maintained, but
associated power values are approximately halved.

Amro and Pauly (2017) propose a permutation solution based on the
solution by Bhoj (1978). This test statistic involves a complex weighting
structure of the paired samples t-test and the independent samples t-test.
Unlike the solution the permutation test is based on, the solution by Amro
and Pauly (2017) is Type I error robust across a range of distributions. Rem-
pala and Looney (2006) found that a linear combination of randomization
tests can be robust. However, it is not robust for non-positive correlation.

Amro, Konietschke, and Pauly (2018) propose further non-parametric
permutation approaches for performing weighted combination tests so that
the combined Type I error rate is 5%. This incorporates weighted tests for the
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paired samples t-test and Welch’s test, as well as for the Wilcoxon test and
the Mann-Whitney test. For the three distributions they consider, Normal,
Exponential and Lognormal, they show that these methods do not maintain
Type I error robustness, unless permutation tests are adopted. However,
Amro, Konietschke, and Pauly (2018) only show the average Type I error
rate for each value of ρ, some sample size conditions where the test may be
particularly liberal or conservative may be obscured.

11.3 Reflection

The Monte-Carlo simulation process has worked well for developing new so-
lutions to an enduring problem. Collaboration on these solutions has led to
outputs which have been of interest both to academics and those in more
practical fields, as can be seen with the interactions in Appendix 1. The
well-known problem of analysing partially overlapping samples, in addition
to intuitive solutions, attracts interest from those in attendance at confer-
ence presentations and in other general discussions with those familiar with
statistics. Conferences attended are listed in Appendix 2.

A seed was not set in early simulations, in hindsight making it difficult
for precise replication of the results. Upon reflection, using a reference fil-
ing system from the outset would have been beneficial for recalling correct
attribution during the write-up.

In many of the papers where the proposed methods have been applied,
the form of the test performed is not stated e.g. Raymundo et al. (2019) and
Carolus et al. (2019). In the published outputs, more explicitly stated deci-
sion rules regarding choice of test would encourage researcher transparency.

Statistics is often perceived as an ‘art’, not a ‘science’. While the aims
have been met with recommendations put forward, a degree of subjectivity
is inevitable to remain. In order for the solutions to maintain broad appeal,
the recommendations are likely to remain open to interpretation.

Many outputs have been published from this research, as detailed in Ap-
pendix 2. Publications include further exploration of existing methods (Ap-
pendices P2, P5, P8, P9), and technical detail of the newly proposed solutions
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(Appendices P1, P3, P6, P7, P10). Outputs targeting user accessibility are
well received, particularly the R package and the tutorial paper (Appendix
P4).

11.4 Summary

This thesis makes a contribution to methodology, the principles of robustness
and the process of using simulation to explore the robustness of test statistics.
The criteria applied given by Bradley (1978) for identification of Type I
error robustness is open to some subjectivity when comparing across multiple
parameter combinations within a simulation design. An alternative way of
measuring Type I error robustness is also introduced, but requires simulation
designs to be comparable for the technique to be relevant across multiple
studies.

The content contributes to ongoing debate regarding when to use non-
parametric tests, and when to use preliminary testing. The recommendation
is that if the comparison of central location is of primary interest, parametric
tests should be used unless there is strong pre-existing evidence that distri-
butions are not-normal. In the unlikely event of absence of any pre-existing
evidence regarding the distribution, preliminary tests defined in advance can
be carried out. Likewise the equality of variances assumption should be deter-
mined based on prior knowledge where available. If study units are randomly
allocated to groups, the equal variances assumption should be applied.

Within this research users are provided with new tools for overcoming the
common problems of partially overlapping samples. These solutions can be
applied in any discipline and are recommended to be used when comparing
two groups if there is a combination of paired observations and independent
observations. An exception is if the sample size of either the independent
observations or paired observations is large (≥ 100) and the sample size of
either the independent observations or paired observations is small (≤ 5),
here traditional methods that discard a small amount of data will typically
suffice.

The R package by Derrick (2017a) has been validated by several statis-
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ticians, downloaded approximately 10,000 times, and can be used with con-
fidence by researchers. When reporting results, as a minimum users should
specifically state which form of the test they have used, the value of the test
statistic, the degrees of freedom, and the p-value. More complete reporting
would also include a confidence interval.

The solutions published are subject to the same limitations underlying
all frequentist statistical tests, including good quality research design, any
missing data does not arise due to any systematic pattern, and that there is
independence of observations within groups.

The further work section introduces a solution that is of potentially high
impact for trials performed under intention to treat principles. Bayesian
techniques could also be considered for alternative solutions.
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Appendix 1: Testimonials

For confidentiality all names have been removed in the following list of tes-
timonials received via e-mail, the institution of each person is listed.

‘I’m currently looking at some of the methods we employ for diversity
analysis within the Department. One area I am looking at is year on year
changes in the percentage of staff declaring themselves as BAME within
the Department. This seems to fit the criteria of partially overlapping data
(involving staff who leave the department, staff who join the department and
staff who remain in place year on year) so I thought I could apply one of the
statistics you suggest in the paper (probably z8)... Excellent.’

Operational Research Analyst, Department for Transport, UK

‘I’ve planned to try to implement (we’ll see) your test... my wife works
in neuroscience and experimental psychology, and she is also interested in
such method because she sometimes uses mixed experiences combining paired
and unpaired participants regarding the complexity of her protocols and the
limited time available for each participant. I’m not a statistician, the Derrick,
Toher, and White (2017) paper is easier to use for programming and check
computing.’

R&D engineer, Decathlon Sports Lab, France

‘We work at the New York City Department of Health and are evaluating
the results of a participant survey for a hepatitis C care coordination pro-
gram. Some of our respondents completed both our baseline and our post
survey, but a good number completed only one or the other. We read with
great interest your papers on adapted t-tests and z-tests for partially overlap-
ping samples and intend to use your methodology in our evaluation. You’ve
very helpfully addressed a problem that has been largely overlooked by the
literature, although it must arise often.’

‘This is very helpful. Thank you so much, Ben!’

Bureau of Communicable Diseases, New York, USA
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‘I am a post-doctoral research fellow at Massachusetts General Hospital
in the United States. I recently received feedback on a journal submission
suggesting that I utilize the methods you described in 2015 to compare pro-
portions with partially overlapping samples. In familiarizing myself with that
paper, I also came across your 2017 paper discussing a t-test for use with
partially overlapping samples, which I also found very helpful. Thank you so
much for your time and for your research.’

‘Thank you so much for your response, Ben – I really appreciate it!’

Research fellow, Massachusetts General Hospital/Harvard
Medical School, Boston, USA

‘I am an MS student major in Statistics at Portland State University. Now
we get a project to deal with a big data set with both paired observations
and independent observations and luckily find that your research is a perfect
match and you also derived an R package which is such a wonderful work
and makes us excited.’

‘Thank you Ben, for sending us your newly published paper which is very
impressive. And since the real data would not be allowed to send to us, we
only summarized the scenario...which is a perfect match with your new test
statistics.’

MS student, Portland State University, USA

‘I am reading your paper Why Welch’s test Type I error robust which
was published in the journal of TQMP in 2016. This is a nice paper because
it really teaches me how to make a sound simulation design.’

‘Great thanks... The code is very helpful!’

Research student, Florida State University, USA

‘I’m a PhD student in Epidemiology at McGill University in Canada and
am hoping to use your methods for overlapping samples in my PhD. I’m very
interested in your 2017 paper in the Journal of Modern Applies Statistical
Methods, Test statistics for the comparison of means for two samples which
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include both paired observations and independent observations. I would like
to cite your novel t-test equations in a PhD research proposal I am submit-
ting to my academic department. Out of interest, are you also developing
other statistical methods for overlapping samples? As a last note, thanks for
creating an R package for your methods!’

PhD candidate, McGill University, Canada

[Re: How to compare the means of two samples that include paired obser-
vations and independent observations: A companion to Derrick, Russ, Toher
and White (2017)]

‘I must say I found these new tests very exciting. I also checked the R
package. I found everything in good order. Thank you so much for sharing
this excellent work with the readers of TQMP.’

Editor, The Quantitative Methods for Psychology.

[Re: Comparing two samples from an individual question on a five point
Likert scale]

‘We feel that your manuscript would be well-suited to our Cogent Series, a
multidisciplinary, open journal platform for the rapid dissemination of peer-
reviewed research across all disciplines.’

Editor, Journal of Statistical Computation and Simulation

‘Recently I came across your paper Test Statistics for the Comparison of
Means for Two Samples at Include Both Paired and Independent Observa-
tions. I’m glad that I found your paper since it is one of the rare references
with clear guidance on how to address samples which are only partially in-
dependent.’

PhD candidate, Department of Land Economy, University of
Cambridge, UK

‘I was so glad to find an R package for comparing partially overlapping
samples, thanks for your work on this!’

Data Scientist, Highmark Health, Pennsylvania
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Appendix 2: Outputs

The cumulative number of downloads for the R package ‘Partiallyoverlap-
ping’ is given in Figure A1. The gradient change at the end of 2018 coincides
with the release of version 2 featuring the z8 test for comparing two dichoto-
mous samples.

Figure A1: Cumulative downloads of ‘Partiallyoverlapping’ R package,
recorded monthly, quarterly values displayed

Table A1 lists open access papers authored towards this thesis, with sum-
mary statistics of their impact. Table A2 lists restricted access publications
authored towards this thesis with summary statistics of their impact. Each
of the publications listed in Table A1 and Table A2 have been peer reviewed,
and are available as Appendices P1-P10. Additional unpublished research is
listed in Table A3. Table A4 lists relevant conferences attended and presen-
tations.
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Table A1: Publication metrics: Open access papers.

Publication Citations Appendix
Derrick, B. et al. (2015). “Test statistics for com-
paring two proportions with partially overlapping
samples”. Journal of Applied Quantitative Methods
10 (3), pp. 1–14

14 P1

Derrick, B., Toher, D., and White, P. (2016). “Why
Welch’s test is Type I error robust”. The Quantitative
Methods in Psychology 12 (1), pp. 30–38

67 P2

Derrick, B. et al. (2017a). “Test statistics for the
comparison of means for two samples which include
both paired observations and independent observa-
tions.” Journal of Modern Applied Statistical Methods
16 (1), pp. 137–157

22 P3

Derrick, B., Toher, D., and White, P. (2017). “How
to compare the means of two samples that include
paired observations and independent observations:
A companion to Derrick, Russ, Toher and White
(2017)”. The Quantitative Methods in Psychology
13 (2), pp. 120–126

27 P4

Derrick, B. et al. (2017b). “The impact of an extreme
observation in a paired samples design”. metodološki
zvezki-Advances in Methodology and Statistics 14

7 P5

Derrick, B. et al. (2018). “Tests for equality of vari-
ances between two samples which contain both paired
observations and independent observations”. Journal
of Applied Quantitative Methods 13 (2), pp. 36–47

6 P6

Derrick, B., White, P., and Toher, D. (in press).
“Parametric and non-parametric tests for the com-
parison of two samples which both include paired and
unpaired observations”. Journal of Modern Applied
Statistical Methods

2 P7

Pearce, J. and Derrick, B. (2019). “Preliminary test-
ing: the devil of statistics?” Reinvention: an Inter-
national Journal of Undergraduate Research 12

1 P8

Citations from Google Scholar, correct up to 02/2020
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Table A2: Publication metrics: Papers not open access.

Publication Citations Appendix
Derrick, B. andWhite, P. (2017). “Comparing two sam-
ples from an individual Likert question”. International
Journal of Mathematics and Statistics 18 (3), pp. 1–13

51 P9

Derrick, B. and White, P. (2018). “Methods for com-
paring the responses from a Likert question, with paired
observations and independent observations in each of
two samples”. International Journal of Mathematics
and Statistics 19 (3), pp. 84–93

1 P10

Citations from Google Scholar, correct up to 02/2020

Table A3: Unpublished contributions.

Derrick, B., White, P., and Toher, D. (2017). “An Inverse Normal Transfor-
mation solution for the comparison of two samples that contain both paired
observations and independent observations”. arXiv:1708.00347
Fenton, R. et al. (2018). “They didn’t really see the point: Getting students
through the door. A mixed-methods exploratory evaluation of a bystander pro-
gram for the prevention of violence against women in male-dominated university
environments”. unpublished manuscript
Derrick, B., Toher, D., and White, P. (2019). “The performance of the partially
overlapping samples t-tests at the limits”. arXiv:1906.01006

Table A4: Conference proceedings.

Title Location Date
Robust methods for the analysis
of partially overlapping samples

Young Statisticians Meeting,
University College London

Aug 2016

Statistics: New t-tests for the
comparison of two partially over-
lapping samples [poster]

Faculty of Environment and
Technology Degree Show,
UWE Bristol

Jun 2017

To preliminary test or not to pre-
liminary test, that is the question

Research Students Conference
in Probability and Statistics,
University of Sheffield

Jul 2018

An outlier in an independent
samples design

Royal Statistical Society Con-
ference, Cardiff City Hall

Sep 2018

For the establishment Faculty of Environment and
Technology Postgraduate
Conference, UWE Bristol

Jun 2019
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Abstract 

Standard tests for comparing two sample proportions of a dichotomous dependent variable 

where there is a combination of paired and unpaired samples are considered. Four new tests 

are introduced and compared against standard tests and an alternative proposal by Choi and 

Stablein (1982). The Type I error robustness is considered for each of the test statistics. The 

results show that Type I error robust tests that make use of all the available data are more 

powerful than Type I error robust tests that do not. The Type I error robustness and the power 

among tests introduced in this paper using the phi correlation coefficient is comparable to that 

of Choi and Stablein (1982). The use of the test statistics to form confidence intervals is 

considered. A general recommendation of the best test statistic for practical use is made. 

Key words: Partially overlapping samples, Partially matched pairs, Partially correlated 

data, Equality of proportions 

 

1. Introduction 

 

Tests for comparing two sample proportions of a dichotomous dependent variable with 

either two independent or two dependent samples are long established. Let 1  and 2  be the 

proportions of interest for two populations or distributions. The hypothesis being tested is 

210 :  H  against 211 :  H . However, situations arise where a data set comprises a 

combination of both paired and unpaired observations. In these cases, within a sample there 
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are, say a total of ‘ 12n ’ observations from both populations, a total of ‘ 1n ’ observations only 

from population one, and a total of ‘ 2n ’ observations only from population two. The hypothesis 

being tested is the same as when either two complete independent samples or two complete 

dependent samples are present. This situation with respect to comparing two means has been 

treated poorly in the literature (Martinez-Camblor et al, 2012). This situation with respect to 

comparing proportions has similarly been poorly treated. 

Early literature in this area with respect to comparing proportions, refers to paired 

samples studies in the presence of incomplete data (Choi and Stablein, 1982; Ekbohlm, 

1982), or missing data (Bhoj, 1978). These definitions have connotations suggesting that 

observations are missing only by accident. Recent literature for this scenario refers to partial-

ly matched pairs (Samawi and Vogel, 2011), however this terminology may be construed as 

the pairs themselves not being directly matched. Alternatively, the situation outlined can be 

referred to as part of the ‘partially overlapping samples framework’ (Martinez-Camblor et al, 

2012). This terminology is more appropriate to cover scenarios where paired and independ-

ent samples may be present by accident or design. Illustrative scenarios where partially over-

lapping samples may arise by design include: 

i) Where the samples are taken from two groups with some common ele-

ment. For example, in education, when comparing the pass rate for two op-

tional modules, where a student may take one or both modules.  

ii) Where the samples are taken at two points in time. For example, an annual 

survey of employee satisfaction will include new employees that were not 

employed at time point one, employees that left after time point one and 

employees that remained in employment throughout.  

iii) When some natural pairing occurs. For example, a survey taken comparing 

views of males and females, there may be some matched pairs ‘couples’ 

and some independent samples ‘single’. 

Repeated measures designs can have compromised internal validity through famili-

arity (e.g. learning, memory or practise effects). Likewise, a matched design can have com-

promised internal validity through poor matching. However, if a dependent design can avoid 

extraneous systematic bias, then paired designs can be advantageous when contrasted with 

between subjects or independent designs. The advantages of paired designs arise by each 

pair acting as its own control helping to have a fair comparison. This allows differences or 

changes between the two samples to be directly examined (i.e. focusing directly on the phe-

nomenon of interest). This has the result of removing systematic effects between pairs. This 

leads to increased power or a reduction in the sample size required to retain power com-

pared with the alternative independent design. Accordingly, a method of analysis for partial-

ly overlapping samples that takes into account any pairing, but does not lose the unpaired 

information, would be beneficial.  

Historically, when analysing partially overlapping samples, a practitioner will 

choose between discarding the paired observations or discarding the independent observa-

tions and proceeding to perform the corresponding ‘standard’ test. It is likely the decision 

will be based on the sample sizes of the independent and paired observations.  Existing 

‘standard’ approaches include: 

Option 1: Discarding all paired observations and performing Pearson’s Chi square 

test of association on the unpaired data.  



 

Quantitative Methods Inquires 

 

 
3 

Option 2: Discarding all unpaired observations and performing McNemar’s test on 

the paired data.  

Option 3: Combining p-values of independent tests for paired and unpaired data. 

This can be done by applying Fisher’s inverse Chi square method or Tippett’s test. These 

approaches make use of all of the available data. These techniques were considered by Sa-

mawi and Vogel (2011) and are shown to be more powerful than techniques that discard 

data. However, it should be noted that the authors did not consider Type I error rates.  

Other ad-hoc approaches for using all available data include randomly pairing any 

unpaired observations, or treating all observations as unpaired ignoring any pairing. These 

ad-hoc approaches are clearly incorrect practice and further emphasise the need for re-

search into statistically valid approaches. 

Choi and Stablein (1982) performed a small simulation study to consider standard 

approaches and ultimately recommended an alternative test making use of all the available 

data as the best practical approach. This alternative proposal uses one combined test statistic 

weighting the variance of the paired and independent samples, see Section 3.2 for defini-

tion. The authors additionally considered an approach using maximum likelihood estimators 

for the proportions. This approach was found to be of little practical benefit in terms of Type I 

error rate or power. Others have also considered maximum likelihood approaches. For ex-

ample Thomson (1995) considered a similar procedure, using maximum likelihood estima-

tors, and found the proposed procedure to perform similarly to that of Choi and Stablein 

(1982). It was noted by Choi and Stablein (1982) that given the additional computation, the 

maximum likelihood solution would not be a practical solution. 

Tang and Tang (2004) proposed a test procedure which is a direct adaption of the 

best practical approach proposed by Choi and Stablein (1982).  This adaption is found to be 

not Type I error robust in scenarios considered when 1n  + 2n  + 122n = 20. The test pro-

posed by Choi and Stablein (1982) is found to be Type I error robust in this scenario. The 

literature reviewed suggests that a solution to the partially overlapping samples case will 

have to outperform the best practical solution by Choi and Stablein (1982). Tang and Tang 

(2004, p.81) concluded that, ‘there may exist other test statistics which give better asymptotic 

or unconditional exact performance’.  

In this paper, we introduce four test statistics for comparing the difference between 

two proportions with partially overlapping samples. These test statistics are formed so that 

no observations are discarded. The statistics represent the overall difference in proportions, 

divided by the combined standard error for the difference. 

This paper will explore test statistics for testing 0H , in the presence of partially 

overlapping samples. In Section 2, existing ‘standard’ approaches and variants of are de-

fined.  In Section 3, our alternative proposals making use of all the available data are then 

introduced, followed by the most practical proposal of Choi and Stablein (1982). 

In Section 4, a worked example applying all of the test statistics is given, followed 

by the simulation design in Section 5. 

In Section 6.1, for all of the test statistics, the Type I error robustness is assessed 

when 0H  is true. This is measured using Bradley’s (1978) liberal criteria. This criteria states 

that the Type I error rate should be between nominal 0.5 nominal . 

There is no standard criteria for quantifying when a statistical test can be deemed 

powerful. The objective is to maximise the power of the test subject to preserving the Type I 
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error rate nominal . If Type I error rates are not equal it is not possible to correctly compare 

the power of tests. The preferred test where Type I error rates are not equal should be the 

one with the Type I error rate closest to nominal  (Penfield 1994). In Section 6.2, power will be 

considered under 1H  for the test statistics that meet Bradley’s liberal criteria. 

There is frequently too much focus on hypothesis testing. Confidence intervals may 

be of more practical interest (Gardner and Altman 1986). Confidence intervals allow insight 

into the estimation of a difference and the precision of the estimate. In Section 6.3, the cov-

erage of the true difference under 1H  within 95% confidence intervals is considered. This is 

considered only for the most powerful test statistics that are Type I error robust. 

 

2. Definition of standard test statistics 

 

Assuming a dichotomous dependent variable, where a comparison in proportions 

between two samples is required, the layout of frequencies for the paired and the independ-

ent samples would be as per Table 1 and Table 2 respectively.  

 

Table 1. Paired samples design for two samples and one dichotomous dependent variable 

 

Response Sample 1 

Response Sample 2 

Yes No Total 

Yes a b m 

No c d 

12n - m 

Total k 

12n -k 12n  

 

Table 2. Independent samples design for two samples and one dichotomous dependent 

variable 

 Response 

 Yes No Total 

Sample 1 e f 

1n  

Sample 2 g h 

2n  

 

 

 

2.1. Option 1: Discarding all paired observations 

For two independent samples in terms of a dichotomous variable, as per Table 2, a 

Chi-square test of association is typically performed. This test will be displayed in standard 

textbooks in terms of 
2

1 . A chi square distribution on one degree of freedom is equivalent 

to the square of the z-distribution. Therefore under the null hypothesis an asymptotically 

N(0,1) equivalent statistic is defined as: 

21

21
1

)p̂1(p̂)p̂1(p̂

p̂p̂

nn

z






   where 

1

1p̂
n

e
 ,  

2

2 =p̂
n

g
 and 

21

 p̂
nn

ge




 . 

For small samples, Yates’s correction is often performed to reduce the error in ap-

proximation. Yate’s correction is given by: 
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2

2121

2
))((

))(5.0)(((

nnhfge

nnfgehnn
z




 . 

The statistic 2z  is referenced against the upper tail of the standard normal distribu-

tion.  

An alternative to the Chi square approach is Fisher’s exact test. This is computa-

tionally more difficult. Furthermore, Fisher’s exact test is shown to deviate from Type I error 

robustness (Berkson, 1978). Fisher’s exact test will not be considered for the analysis of the 

partially overlapping samples design in this paper. 

 

2.2. Option 2: Discarding all unpaired observations 

For two dependent samples in terms of a dichotomous variable, as per Table 1, 

McNemar’s test is typically performed. Under the null hypothesis, the asymptotically N(0,1) 

equivalent to McNemar’s test is: 

cb

cb




 =z3 . 

When the number of discordant pairs is small, a continuity correction is often per-

formed. McNemar’s test with continuity correction is the equivalent to: 

 
cb

cb




2

4

1
=z . 

The statistic 4z is referenced against the upper tail of the standard normal distribu-

tion.  

Test statistics based on Option 1 and Option 2 are likely to have relatively low 

power for small samples when the number of discarded observations is large. A method of 

analysis for partially overlapping samples that takes into account the paired design but does 

not lose the unpaired information could therefore be beneficial.  

 

2.3. Option 3: Applying an appropriate combination of the independent and paired 

tests using all of the available data 

Given that test statistics for the paired samples and dependent samples can be cal-

culated independently, an extension to these techniques which makes use of all of the avail-

able data would be some combination of the two tests.  

In terms of power, Fisher’s test and Tippett’s test are comparable to a weighted ap-

proach using sample size as the weights (Samawi and Vogel, 2011). Tippett’s method and 

Fisher’s method are not as effective as Stouffer’s weighted z-score test (Kim et al, 2013). 

Stouffer’s weighted z-score, for combining 1z  and 3z  is defined as:   

22

31
5

)1(

z)1(z
=z

ww

ww




 where w = 

2112

21

2 nnn

nn




. 

Under the null hypothesis, the test statistic 5z  is asymptotically N(0,1). 

Many other procedures for combining independent p-values are available, but 

these are less effective than Stouffer’s test (Whitlock, 2005).  
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The drawbacks of Stouffer’s test are that it has issues in the interpretation and con-

fidence intervals for the true difference in population proportions cannot be easily formed. 

 

3. Definition of alternative test statistics making use of all of the avai-

lable data 

 

The following proposals are designed to overcome the drawbacks identified of the 

standard tests. In these proposals observations are not discarded and the test statistics may 

be considered for the formation of confidence intervals. 

 

3.1. Proposals using the phi correlation or the tetrachoric correlation coefficient 

It is proposed that a test statistic for comparing the difference in two proportions 

with two partially overlapping samples can be formed so that the overall estimated differ-

ence in proportions is divided by its combined standard error, i.e.  

)p,p(2)p()p(

pp

2121

21

CovrVarVar x


 

where 

112

11
1

)p1(p
)p(

nn
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


 , 

212

22
2

)p1(p
)p(

nn
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


 , 

))((

)p1(p)p1(p
)p,p(

212112

122211

21
nnnn

n
Cov




   

and xr  is a correlation coefficient. 

Test statistics constructed in this manner will facilitate the construction of confidence 

intervals, for example a 95% confidence interval   would be equivalent to: 

 )p,p(2)p()p(96.1)pp( 212121 CovrVarVar x . 

Pearson’s phi correlation coefficient or Pearson’s tetrachoric correlation coefficient 

are often used for measuring the correlation xr  between dichotomous variables.  

Pearson’s phi correlation coefficient is calculated as 

))()()((
1

dbcadcba

bcad
r




 . 

The result of 
1r  is numerically equivalent to Pearson’s product-moment correlation 

coefficient and Spearman’s rank correlation coefficient applied to Table 1, using binary out-

comes ‘0’ and ‘1’ in the calculation. In this 22 case, 1r  is also numerically equivalent to 

Kendall’s Tau-a and Kendall’s Tau-b as well as Cramér's V and Somer’s d (symmetrical). This 

suggests that 
1r  would be an appropriate correlation coefficient to use. 

Alternatively, assuming the underlying distribution is normal, a polychoric correlati-

on coefficient may be considered. A special case of the polychoric correlation coefficient for 

two dichotomous samples is the tetrachoric correlation coefficient.  

An approximation to the tetrachoric correlation coefficient as defined by Edwards 

and Edward (1984) is: 

 

1

1
=2





s

s
r where 

0.7854
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






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Other approximations are available, however there is no conclusive evidence which 

is the most appropriate (Digby, 1983). In any event, 1r  is likely to be more practical than 2r  

because if any of the observed paired frequencies are equal to zero then the calculation of 

2r  is not possible. 

Constructing a test statistic using correlation coefficients 1r  and 2r  respectively, the 

following test statistics are proposed: 


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Under 0H ,   21 , therefore two additional test statistics that may be consid-

ered are defined as: 
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The test statistics 6z , 7z , 8z  and 9z are referenced against the standard normal 

distribution. 

In the extreme scenario of 012 n , it is quickly verified that  98 zz
1z . Under 0H  

in the extreme scenario of 021  nn , as 12n  then 38 zz  . This property is not ob-

served for 9z . The properties of 8z  give support from a mathematical perspective as a valid 

test statistic to interpolate between the two established statistical tests where overlapping 

samples are not present. 

 

3.2. Test statistic proposed by Choi and Stablein (1982) 

Choi and Stablein (1982) proposed the following test statistic as the best practical 

solution for analysing partially overlapping sample: 
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The test statistic 10z  is referenced against the standard normal distribution. 

The authors additionally offer an extension of how optimization of 1w  and 2w  

could be achieved, but suggest that the additional complication is unnecessary and the dif-

ference in results is negligible. 

In common with the other statistics presented, 10z  is computationally tractable but 

it may be less easy to interpret, particularly if 1 + 12  .  

 

4. Worked example 

 

The objective of a Seasonal Affective Disorder (SAD) support group was to see if 

there is a difference in the quality of life for sufferers at two different times of the year. A 

binary response, ‘Yes’ or ‘No’ was required to the question whether they were satisfied with 

life. Membership of the group remains fairly stable, but there is some natural turnover of 

membership over time. Responses were obtained for 12n 15 paired observations and a 

further 1n 9 and 2n 6 independent observations. The responses are given in Table 3. 

 

Table 3. Responses to quality of life assessment. 

 Response Time  2 

Response Time 1 Yes No Total 

Yes 8 1 9 

No 3 3 6 

Total 11 4 15 

 Response 

 Yes No Total 

Time 1 5 4 9 

Time 2 6 0 6 

 

The elements of the test statistics (rounded to 3 decimal places for display purpos-

es), are calculated as: 1p̂ 0.556, 2p̂ 1.000, p̂ 0.733, 1p 0.583, 2p 0.810, p

0.689, 1r 0.431, 2r 0.673, w 0.333, 1 0.375, 2 0.286, D 0.002. The result-

ing test statistics are given in Table 4. 

 

Table 4. Calculated value of test statistics (with corresponding p-values) 

z

-score 

-

1.907 

1

.311 

-

1.000 

0

.500 

-

1.747 

-

2.023 

-

2.295 

-

1.937 

-

2.202 

-

1.809 

p

-value 

0

.057 

0

.190 

0

.317 

0

.617 

0

.081 

0

.043 

0

.022 

0

.053 

0

.028 

0

.070 
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At the 5% significance level, whether 0H  is rejected depends on the test per-

formed. It is of note that the significant differences arise only with tests introduced in this 

paper, 6z , 7z  and 9z .  

Although the statistical conclusions differ for this particular example, the numeric 

difference between many of the tests is small. To consider further the situations where differ-

ences between the test statistics might arise, simulations are performed.  

 

5. Simulation design 

 

For the independent observations, a total of 1n  and 2n unpaired standard normal 

deviates are generated. For the 12n  paired observations, additional unpaired standard nor-

mal deviates ijX are generated where i = (1,2) and j = (1,2,…., 12n ). These are converted 

to correlated normal bivariates ijY  so that: 

 jY1 jj XX 21
2

1

2

1  



 and jY2 jj XX 12

2

1

2

1  



 

where     correlation between population one and population two. 

The normal deviates for both the unpaired and correlated paired observations are 

transformed into binary outcomes using critical values iC  of the normal distribution. If

iij CX  , 1ijY , otherwise 0ijY   

10,000 iterations of each scenario in Table 5 are performed in a 44555
7=14000 factorial design.  

Table 5. Values of parameters simulated for all test statistics. 

Parameter Values 

1  
0.15, 0.30, 0.45, 0.50 

2  
0.15, 0.30, 0.45, 0.50 

1n  
10, 30, 50, 100, 500 

2n  
10, 30, 50, 100, 500 

12n  
10, 30, 50, 100, 500 

  -0.75, -0.50, -0.25, 0.00, 0.25, 0.50, 0.75 

 

A range of values for 1n , 2n  and 12n  likely to be encountered in practical applica-

tions are considered which offers an extension to the work done by Choi and Stablein 

(1982).  Simulations are conducted over the range   from 0.15 to 0.5 both under 0H  and 

1H . The values of  have been restricted to   <= 0.5 due to the proposed statistics being 

palindromic invariant with respect to   and 1 . Varying   is considered as it is known 

that   has an impact on paired samples tests.  Negative   has been considered so as to 

provide a comprehensive overview and for theoretical interest, although   < 0 is less likely 

to occur in practical applications.    
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Two sided tests with nominal 0.05 is used in this study. For each combination of 

10,000 iterations, the percentage of p-values below 0.05 is calculated to give the Type I 

error rate  . The Type I error rate under 0H ,  for each combination considered in the simu-

lation design, should be between 0.025 and 0.075 to meet Bradley’s liberal criteria and to 

be Type I error robust.    

All simulations are performed in R.   

 

6. Simulation Results 

 

A comprehensive set of results with varying independent and paired sample sizes, 

correlation, and proportions was obtained as outlined in Section 5. 

 

6.1. Type I error rates 

Under 0H , 10,000 replicates were obtained for 45557=3500 scenarios. For 

assessment against Bradley’s (1978) liberal criteria, Figure 1 shows the Type I error rates for 

all scenarios where 1 2  using nominal 0.05. 

 

Figure 1: Type I error rates for each test statistic. 

 

As may be anticipated, 1z  is Type I error robust because matched pairs are simply 

ignored. Similarly, 3z  performs as anticipated because the unpaired observations are ig-

nored. Deviations from robustness for 3z  appear when 12n  is small and   is large. Although 

deviations from stringent robustness are noted for 3z , this is not surprising since the cross 

product ratio is likely to be small when the proportion of success is low and the sample size 

is low. Crucially, the deviations from Type I error robustness of 3z  are conservative and will 

result in less false-positives, as such the tests statistic may not be considered unacceptable. 
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The corrected statistics, 2z  and 4z , generally give Type I error rates below the nom-

inal alpha, particularly with small sample sizes. Ury and Fleiss (1980) found that 1z  is Type I 

error robust even with small samples, however applying Yate’s correction is not Type I error 

robust and gives Type I error rates less than the nominal alpha. It is therefore concluded that 

2z  and 4z  do not provide a Type I error robust solution.  

The statistics using the phi correlation coefficient, 6z  and 8z , are generally liberal 

robust. For 6z  there is some deviation from the nominal Type I error rate. The deviations 

occur when min{ 1n , 2n , 12n } is small, max{ 1n , 2n , 12n }   min{ 1n , 2n , 12n } is large and 0 .   

In these scenarios the effect of this is that 6z  is not liberal robust and results in a high likeli-

hood of false-positives. It is therefore concluded that 6z  does not universally provide a Type I 

error robust solution to the partially overlapping samples situation. 

The statistics using the tetrachoric correlation coefficient, 7z  and 9z , have more 

variability in Type I errors than the statistics that use the phi correlation coefficient. The sta-

tistics using the tetrachoric correlation coefficient inflate the Type I error when 25.0 and 

12n  is large. When min{ 1n , 2n , 12n } is small the test statistic is conservative. A test statistic that 

performs consistently would be favoured for practical use. It is therefore concluded that  7z  

and 9z  do not provide a Type I error robust solution to the partially overlapping samples 

situation. 

Three statistics making use of all of the available data, 5z , 8z  and 10z , demon-

strate liberal robustness across all scenarios. Analysis of Type I error rates show near identi-

cal boxplots to Figure 1 when each of the parameters are considered separately. This means 

these statistics are Type I error robust across all combinations of sample sizes and correlation 

considered. 

 

6.2. Power 

The test statistics 2z , 4z , 6z , 7z  and 9z  are not Type I error robust. Therefore only 

1z , 3z , 5z , 8z  and 10z  are considered for their power properties (where 1H  is true). Table 6 

summarises the power properties where 1 0.5.  

 

Table 6. Power averaged over all sample sizes. 

1  2  
  

1z  3z  5z  8z  10z  

0.5 0.45 

0  

0.095 

0.173 0.208 0.221 0.221 

0  0.133 0.168 0.186 0.186 

0  0.112 0.150 0.166 0.166 

0.5 0.3 

0  

0.509 

0.653 0.807 0.856 0.855 

0  0.569 0.772 0.828 0.827 

0  0.508 0.746 0.801 0.801 

0.5 0.15 

0  

0.843 

0.874 0.975 0.989 0.989 

0  0.834 0.970  0.985 0.986 

0  0.795 0.966 0.980 0.982 
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For each of the test statistics, as the correlation increases from -0.75 through to 

0.75 the power of the tests increase. Similarly, as sample sizes increase the power of the test 

increases.  

Clearly, 5z  is more powerful than the other standard tests 1z  and 3z , but it is not 

as powerful as the alternative methods that make use of all the available data.  

The power of 8z  and 10z  are comparable. Separate comparisons of 8z  and 10z  in-

dicates that the two statistics are comparable across the factorial combinations in the simula-

tion design. Either test statistic could reasonably be used for hypothesis testing in the partial-

ly overlapping samples case.  

 

6.3. Confidence interval coverage 

For 8z  and 10z , the coverage of the true difference of population proportions with-

in 95% confidence intervals has been calculated as per the simulation design in Table 5 

where 1 2 . The results are summarised in Figure 2. 

 

Figure 2: Percentage of iterations where the true difference is within the confidence interval. 

 

Both 8z  and 10z  demonstrate reasonable coverage of the true population differ-

ence 21   . However, Figure 2 shows that 8z  more frequently performs closer to the de-

sired 95% success rate. Taking this result into account, when the objective is to form a confi-

dence interval, 8z  is recommended as the test statistic of choice in the partially overlapping 

samples case. 
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7. Conclusion 

 

Partially overlapping samples may occur by accident or design. Standard approach-

es for analysing the difference in proportions for a dichotomous variable with partially over-

lapping samples often discard some available data. If there is a large paired sample or a 

large unpaired sample, it may be reasonable in a practical environment to use the corre-

sponding standard test.  For small samples, the test statistics which discard data have inferior 

power properties to tests statistics that make use of all the available data. These standard 

approaches and other ad-hoc approaches identified in this paper are less than desirable.  

Combining the paired and independent samples z-scores using Stouffer’s method is 

a more powerful standard approach, but leads to complications in interpretation, and does 

not readily extend to the creation of confidence intervals for differences in proportions. The 

tests introduced in this paper, as well as the test outlined by Choi and Stablein (1982) are 

more powerful than the test statistics in ‘standard’ use. 

The alternative tests introduced in this paper, 6z , 7z , 8z  and 9z , overcome the in-

terpretation barrier, in addition confidence intervals can readily be formed.  

Tests introduced using the phi correlation coefficient, 6z  and 8z , are more robust 

than the equivalent tests introduced using the tetrachoric correlation coefficient, 7z  and 9z .  

The most powerful tests that are Type I error robust are 8z  and 10z . The empirical 

evidence suggests that 8z  is better suited for forming confidence intervals for the true popu-

lation difference than 10z . Additionally, 8z  has relative simplicity in calculation, strong 

mathematical properties and provides ease of interpretation. In conclusion, 8z  is recom-

mended as the best practical solution to the partially overlapping samples framework when 

comparing two proportions. 
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Abstract The comparison of two means is one of the most commonly applied statistical procedures in psychology. The
independent samples t-test corrected for unequal variances is commonly known as Welch’s test, and is widely considered
to be a robust alternative to the independent samples t-test. The properties of Welch’s test that make it Type I error robust
are examined. The degrees of freedom used in Welch’s test are a random variable, the distributions of which are examined
using simulation. It is shown how the distribution for the degrees of freedom is dependent on the sample sizes and the
variances of the samples. The impact of sample variances on the degrees of freedom, the resultant critical value and the
test statistic is considered, and hence gives an insight into why Welch’s test is Type I error robust under normality.
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Introduction

One of the most commonly applied hypothesis test proce-
dures in applied research is the comparison of two popu-
lation means (Wilcox, 1992). For theoretical development
purposes, assume two normally distributed populations
N (µ1, σ2

1) and N (µ2, σ2
2) are to be compared based upon n1

and n2 mutually independent observations. Let X i and S2
i

denote random variables for sample means and variances
respectively (i = 1,2).1 If the population variances, σ2

1 and
σ2

2, are assumed to be equal, then an appropriate test statis-
tic is the independent samples t-test, based on (1) and (2).

T1 = X 1 −X 2

StandardError(X 1 −X 2)
(1)

In the independent samples t-test, the standard error of
(X 1 −X 2), say SE1, is given by:

SE1 = Sp

√
2

ñ
(2)

where Sp =
√

(n1−1)S2
1+(n2−1)S2

2
(n1−1)+(n2−1) and ñ is the harmonic mean

of n1 and n2. T1 is referenced against the t-distribution with
degrees of freedom equal to υ1 = n1 +n2 −2.

It is known that, when the assumptions of the indepen-
dent samples t-test are met, the independent samples t-
test is an exact test and is the most uniformly powerful test
(Sawilowsky & Blair, 1992). The independent samples t-test
is an approximate test when population variances are un-
equal. If sample sizes are unequal and variances are un-
equal, the probability of rejecting the null hypothesis when

it is true deviates from the nominal Type I error rate. This
is particularly problematic when the smaller sample size is
associated with the larger variance (Zimmerman & Zumbo,
2009; Coombs, Algina, & Oltman, 1996). This gives rise to
the dilemma of how to compare means in the presence of
unequal variances. This question, applied to two indepen-
dent random samples from normal populations, is known
as the Behrens-Fisher problem. Behrens (1929) and Fisher
(1935, 1941) suggested a solution for the problem. It is pro-
posed that the t-test when equal variances cannot be as-
sumed is defined as per (3) and (4).

T2 = X1 −X2

StandardError(X1 −X2)
(3)

In the unequal variances case, the standard error of (X 1 −
X 2), say SE2 is estimated by:

SE2 =
√

S2
1

n1
+ S2

2

n2
(4)

The formula developed for the degrees of freedom is com-
plex, but it is proposed that an approximation for the de-
grees of freedom could be given by (5). This is given in most
textbooks (e. g., Alfassi, Boger, & Ronen, 2005; Miles & Ban-
yard, 2007).

υ2 =

(
S2

1
n1

+ S2
2

n2

)2

(
S2

1
n1

)2

/(n1 −1)+
(

S2
2

n2

)2

/(n2 −1)

(5)

1As standard notation, random variables are shown in upper case, and derived sample values are shown are in lower case.
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A numerically equivalent expression for the approxima-
tion υ2 is given in (6). This is shown in some textbooks (e. g.,
Ott & Longnecker, 2001).

υ2 = (n1 −1)(n2 −1)

(n2 −1)c2 + (n1 −1)(1− c)2 (6)

where

c = S2
1/n1

S2
1

n1
+ S2

2
n2

The approximation υ2 dates back to a series of pa-
pers by Welch (1938, 1947, 1951), independent work by
Satterthwaite (1946), works by Fairfield-Smith (1936), and
Aspin (1948, 1949). The independent samples t-test cor-
rected for unequal variances is sometimes referred to
as the Satterthwaite-Smith-Welch test, the Welch-Aspin-
Satterthwaite test, or other interchangeable variations.
This may be referred to generically as the unequal vari-
ances t-test, or as the separate variances t-test. Usually the
unequal variances t-test with the degrees of freedom ap-
proximated as above is simply known as Welch’s test.

Originally, an alternative approximation for the degrees
of freedom given by Welch, is given in (7):

υ3 =

(
S2

1
n1

+ S2
2

n2

)2

(
S2

1
n1

)2

/(n1 +1)+
(

S2
2

n2

)2

/(n2 +1)

−2 (7)

The approximation is given in some textbooks (e. g. Frank &
Althoen, 1994), rounded down to the nearest integer. How-
ever, υ3 is not generally used, and is not numerically equiv-
alent to υ2.

Textbooks frequently recommend the calculation of υ2,
rounded down to the nearest integer (e. g. Frank & Althoen,
1994; Ott & Longnecker, 2001). Rounding down tends to
produce a conservative test. More generally, some text-
books recommend rounding to the nearest integer (e. g. Al-
fassi et al., 2005). The rounding requirements appear in
textbooks for the purposes of manual calculations. There
is a need to use integer degrees of freedom when using sta-
tistical tables for critical values. However, the calculation
of Welch’s test is easy in statistical software such as R and
SPSS (Rasch, Kubinger, & Yanagida, 2011). These statisti-
cal software would ordinarily conduct the test with non-
integer degrees of freedom.

Welch’s test better approximates nominal significance
levels, and has greater power than the Behrens-Fisher so-
lution (Lee & Gurland, 1975; Best & Rayner, 1987). Fay and
Proschan (2010, p. 14) confirm that Welch’s solution “is ap-
proximately valid for the Behrens-Fisher perspective”.

When sample sizes are equal and variances are equal,
both the independent samples t-test and Welch’s test
perform similarly (Zimmerman & Zumbo, 1993; Moser,
Stevens, & Watts, 1989). For unequal sample sizes and un-
equal variances, Welch’s test has superior Type I error ro-
bustness (Fagerland & Sandvik, 2009). Ruxton (2006) advo-
cates the routine use of Welch’s test.

Grimes and Federer (1982, p.10) state that, "In the case
of comparing two sample means, the consensus in the lit-
erature seems to be the approval of Welch’s approximate
solution". Thus the most commonly used solution to the
Behrens-Fisher problem, is Welch’s test with the degrees of
freedom calculated by approximation. In a practical envi-
ronment, Welch’s approximation can be used with little loss
of accuracy (Wang, 1971; Scheffe, 1970).

It can be seen from (5) that Welch’s degrees of freedom,
υ2, is a random variable and therefore has its own sampling
distribution. Consequently the critical value used in hy-
pothesis testing is also a random variable. In addition, it
can be seen from (4) that the sample variances affect both
the value of T2 and the value of υ2.

In this paper; worked examples of the independent
samples t-test and Welch’s test are provided. The distribu-
tions of the degrees of freedom for Welch’s test are explored,
and the two methods of estimating the standard error of
are considered. Simulation is used to identify how the esti-
mated standard error facilitates the Type I error robustness
of Welch’s test, and provides insight into why the Welch test
works in a practical environment.

Worked examples

As part of an investigation into sensitivity when exposed to
evidence of "White Privilege", Phillips and Lowery (2015)
randomly allocated U.S. participants who self-identified as
White/European-American into two groups. The partici-
pants completed a survey about equality and their child-
hood memories ("Experiment 1a"). Prior to completing the
survey, Group 1 (n1 = 54) were given a paragraph to read
about "White Privilege", whereas Group 2 (n2 = 40) were
not. Questions on the survey measured participants per-
ceived "life hardship" on a Likert type scale, between 1 =
"strongly disagree" and 7 = "strongly agree". The authors
performed the independent samples t-test using each par-
ticipant’s mean score.2 This implies that equality of vari-
ance between groups is assumed; this is a seemingly rea-
sonable assumption due to the random assignment of par-
ticipants. For demonstration purposes, both the indepen-
dent samples t-test and Welch’s test are provided in the
present paper. For "Experiment 1a", the published data
are as follows; the average participant score for Group 1 is
4.41, (standard deviation of 1.20). The average participant

2The published results differ slightly from the calculations given here, due to the use of the published (rounded) sample data in the present paper.

The Quantitative Methods for Psychology 312



¦ 2016 Vol. 12 no. 1

score for Group 2 is 3.82 (standard deviation of 1.20). Thus,
x1 = 4.410, s2

1 = 1.440, x2 = 3.820 and s2
2 = 1.440. Calcula-

tions for the independent samples t-test give: sp = 1.200,
se1 = 0.250, t1 = 2.357, υ1 = 92.000, the p-value using the in-
dependent samples t-test is 0.021. Calculations for Welch’s
test give: se2 = 0.250, t2 = 2.357, υ2 = 84.186, the p-value us-
ing Welch’s test is 0.021. It can be seen that because the two
sample variances are equal, t1 = t2 . The degrees of freedom
applicable for each test are different, but the impact of this
on the critical values of the tests is small. Thus the p-values
for both tests are the same to three decimal places. The sta-
tistical conclusion made at the 5% significance level, is that
the sample mean for Group 1 is significantly greater than
the sample mean for Group 2. The authors conclude that
perceived "life hardship" is greater when participants are
subjected to evidence of "White Privilege".

Phillips and Lowery (2015) replicated this experiment
with n1 = 49 and n2 = 42 participants ("Experiment 1b").
The published data shows that the average participant
score for Group 1 is 4.53, (standard deviation of 1.52). The
average participant score for Group 2 is 3.96, (standard de-
viation of 1.28). Thus, x1 = 4.530, s2

1 = 2.310, x2 = 3.960
and s2

2 = 1.638. Calculations for the independent samples
t-test give: sp = 1.415, se1 = 0.297, t1 = 1.916, υ1 = 89.000,
the p-value using the independent samples t-test is 0.059.
Calculations for Welch’s test give: se2 = 0.294, t2 = 1.942,
υ2 = 88.978, the p-value using Welch’s test is 0.055. In this
experiment, the p-values for the two tests are different due
to the unequal sample sizes and unequal variances of the
two samples. With reference to Experiment 1b, the authors
state that participants in Group 1 claim more "life hard-
ship" than participants in Group 2. However, for either
test, at the 5% significance level, Experiment 1b alone rep-
resents insufficient statistical evidence that there is a differ-
ence between Group 1 and Group 2.

Methodology

Simulation is used to investigate Welch’s test for Type I er-
ror robustness, and the distributional properties of υ2. For
both the independent samples t-test and Welch’s test, two
sided tests are performed with nominal Type I error rate
of α = 0.05. The aim is to demonstrate deviations from
Type I error robustness for the independent samples t-test
for unequal variances. The standard error of the indepen-
dent samples t-test and Welch’s test are explored to assess
the impact of the standard error on the result of the tests.
To achieve these goals, simulations under H0 for two nor-
mally distributed samples are performed as per the layout
in Table 1; with n1 at two levels, n2 at two levels and σ2

at two levels. Parameters are selected to cover both "large"
and "small" samples and equal and unequal variances. The
sample sizes represent extreme scenarios in order to assist

in the illustration of the effects.
For each scenario in the simulation design, 10,000 iter-

ations are performed under the condition where H0 is true.

Results

Welch’s degrees of freedom.

The investigation of the distribution of υ2, gives insight into
when the degrees of freedom used in Welch’s test differ
from the degrees of freedom used in the independent sam-
ples t-test.

Figure 1 shows the distribution of the degrees of free-
dom for each of the 8 scenarios simulated (10,000 observa-
tions per scenario).

Inspection of Figure 1 shows the greatest discrepancy
between υ1 and υ2 to occur when n1 6= n2. The simula-
tions demonstrate that [mi n{n1,n2} − 1] ≤ υ2 ≤ υ1. This
can be proven mathematically using (6). By differentia-
tion, the maximum value of υ2 is found when s2

1/s2
2 = {(n1 −

1)n1}/{(n2 − 1)n2}. The minimum value of υ2 is fixed by the
sample with the larger variance. If Sample 1 has the larger
variance, then the lower bound is n1 − 1. If Sample 2 has
the larger variance, then the lower bound is n2 −1. Hence,
mi n{n1,n2}−1 is a very conservative approximation to the
degrees of freedom when the smaller sample size is associ-
ated with the larger variance. To illustrate these points, see
Figure 2 with a fixed variance for Sample 1.

From Figure 2 it can be seen that as s2
2/s2

1 tends to
zero, the degrees of freedom tends to n1 − 1. As s2

2/s2
1 be-

comes increasingly large, the degrees of freedom asymp-
totically tends to n2 −1. The maximum value occurs when
s2

1/s2
2 = {(n1 − 1)n1}/{(n2 − 1)n2}. The examples have a total

sample size of 30, thus the maximum value of υ2 is 28.

Type I error robustness for the independent samples t-test
and Welch’s test.

In this section, p-values calculated from performing both
the independent samples t-test and Welch’s test are con-
sidered, as per the simulation design in Table 1. If H0 is
true and if underlying assumptions hold, then the p-values
from a valid test procedure are expected to be uniformly
distributed (Bland, 2013). Deviations from uniformity give
evidence that the test is not Type I error robust. If p-values
are consistently less than expected under a uniform distri-
bution, the test gives too many false positives, and is said
to be “liberal”. If p-values are consistently greater than ex-
pected under a uniform distribution, the test is “conserva-
tive”.

There is negligible difference between the p-values
when performing the independent samples t-test or
Welch’s test under equal variances, regardless of sample
size. In this case, p-values are approximately uniformly dis-
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Table 1 Summary of the simulation design.

Test statistics T1,T2

Degrees of freedom υ1,υ2

Sample sizes (n1,n2) (5,5), (5,100), (100,5), (100,100)
Standard deviations (σ1,σ2) (1,1), (1,2)
Programming language R version 3.1.2 (R Development Core Team, 2013)

tributed for both tests (results not shown).
When variances are unequal, Welch’s test is not a lin-

ear function of the independent samples t-test. Figure 3
is a P-P plot (percentile-percentile plot), for p-values for
both the independent samples t-test (T1) and Welch’s test
(T2), with unequal variances. This shows ordered expected
p-values from a uniform distribution plotted against or-
dered observed p-values. Given that for a valid test pro-
cedure, observed p-values should be approximately uni-
formly distributed on (0, 1) then an approximate diagonal
would demonstrate Type I error robustness.

Both panels of Figure 3 show that when sample sizes are
unequal and variances are unequal, the independent sam-
ples t-test is not Type I error robust. When the smaller sam-
ple size is associated with the larger variance (left panel,
Figure 3), the observed p-values under the independent
samples t-test are smaller than expected, and the test is lib-
eral. Conversely, when the larger sample size is associated
with the larger variance (right panel, Figure 3), the p-values
are larger than expected and the independent samples t-
test is conservative, (i.e. the expected Type I error rate is
less than the pre-chosen nominal level of significance, α).

The p-values for Welch’s test are also given in Figure 3.
The simulated p-values for Welch’s test, are approximately
uniformly distributed. This results in the approximate line
of equality observed. Welch’s test therefore "corrects" for
the fact that the independent samples t-test gives p-values
that are not Type I error robust.

To demonstrate the impact of the degrees of freedom,
for insight only, the independent samples t-test T1 but with
υ2 degrees of freedom is considered. Likewise, for insight
only, Welch’s test using statistic T2 but with υ1 degrees of
freedom is considered. These are compared against the
standard approaches for the independent samples t-test
and Welch’s test. Table 2 summarises the Type I error
rates observed (α = .05, two-sided) for each combination.
Bradley’s (1978) liberal robustness criteria states that the
Type I error rate when the nominal α is .05 should be in
the range {0.025, 0.075}.

Table 2 shows that Welch’s test (test statistic and degrees
of freedom ) is Type I error robust across all scenarios simu-
lated. For unequal sample sizes and unequal variances, T1

used in conjunction with υ1 or υ2, and T2 used in conjunc-
tion with υ1, do not meet liberal robustness criteria. Welch’s

degrees of freedom therefore represent an important prop-
erty for controlling Type I error rates. However, clearly the
calculation of the test statistic, which takes into account the
two separate sample variances, is also important.

Impact of the standard error on the properties of Welch’s
test.

In this section, the impact of the standard error of the test
statistics for the independent samples t-test and Welch’s
test is considered. The corrective properties of Welch’s test
are, in part, due to the impact of the sample variances on
the degrees of freedom, which in turn affects the critical
value used in the test. However, Type I error robustness
could also be due to the impact of the estimated standard
error on the magnitude of the test statistic. Figure 4 and
Figure 5 demonstrate how the standard error, SE1 and SE2,
relate to the critical value and to the absolute values of the
test statistic for the independent samples t-test, T1, and
Welch’s test, T2, respectively.

Both panels of Figure 4 suggest that, when performing
the independent samples t-test, the estimated standard er-
ror, SE1, has no apparent relationship with the value of the
test statistic, T1. When the smaller sample size is associ-
ated with the larger population variance (left panel, Figure
4), the absolute value of the test statistic has a larger mean
and a larger variability. When the larger sample size is asso-
ciated with the larger population variance (right panel, Fig-
ure 4), the absolute value of the test statistic has a smaller
mean and a smaller variability. This has the result that more
false positives are observed when the smaller sample size is
associated with the larger variance.

Both panels of Figure 5 demonstrate the impact of the
degrees of freedom on the critical value. In the simulated
scenario; the theoretical minimum degrees of freedom is
mi n(n1,n2) = 4, accordingly the upper bound of the criti-
cal value is 2.776; the theoretical maximum degrees of free-
dom is υ1 = 98, accordingly the lower bound of the critical
value is 1.984.

It can be seen from both panels of Figure 5 that as
Welch’s estimate of standard error, SE2, increases, the ab-
solute value of T2 decreases. As the estimated standard er-
ror becomes large, the impact is far greater on the absolute
value of T2 relative to the critical value. This combination
results in fewer false positives being observed as the esti-
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Figure 1 Distribution of υ2 for each scenario. The references lines represent the theoretical maximum and minimum
values that υ2 can take. The upper reference line is equivalent to υ1.

mated standard error increases.

Discussion

For additional clarity of the above findings, Table 3 sum-
marises theoretical values for each of the combinations in
the simulation design. For illustration purposes differences
in means are fixed at 1.000, s1 and s2 are fixed as σ1 and σ2

respectively.
From Table 3, it can be seen that when sample sizes are

equal or variances are equal, the test statistics for the in-
dependent samples t-test and Welch’s test are equivalent.
Therefore, the difference in p-values are a direct result of
the degrees of freedom used to calculate the critical value.

When variances are not equal, Welch’s estimated stan-
dard error impacts the critical value, but this effect is
smaller than the effect on the value on the test statistic.
When the smaller sample size is associated with the larger
variance, the effect on the value of the test statistic is exac-

erbated.

Conclusion

The literature favours Welch’s test for a comparison of two
means. This paper adds further support to the findings in
the literature with respect to the Type I error robustness of
Welch’s test. The degrees of freedom of Welch’s test are a
random variable based on the sample size and variance of
each sample. The degrees of freedom used in Welch’s test
are always less than or equal to the degrees of freedom used
in the independent samples t-test. The degrees of freedom
used in the independent samples t-test and Welch’s test are
equivalent when s2

1/s2
2 = {(n1 −1)n1}/{(n2 −1)n2}. The min-

imum value of Welch’s degrees of freedom is mi n{n1,n2}−
1, this minimum is determined by the sample with the
larger variance. Therefore Welch’s approximate degrees of
freedom are more conservative than the degrees of freedom
used in the independent samples t-test, particularly when
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Figure 2 Value of υ2 with varying s2
2 , and fixed value s2

1 = 1. Values to the left of s2
2 = 1 have the larger variance associated

with Sample 1. Values to the right of s2
2 = 1 have the larger variance associated with Sample 2.

Table 2 Type I error rates for each combination of test statistic with degrees of freedom. Type I error robust combinations
are highlighted in bold.

(n1,n2) (σ1,σ2) T1 with υ1 T1 with υ2 T2 with υ1 T2 with υ2

5,5 1,1 0.050 0.045 0.050 0.045
1,2 0.056 0.047 0.056 0.047

5,100 1,1 0.053 0.012 0.110 0.056
1,2 0.001 0.000 0.093 0.060

100,5 1,1 0.050 0.011 0.108 0.055
1,2 0.295 0.153 0.118 0.052

100,100 1,1 0.049 0.049 0.049 0.049
1,2 0.050 0.049 0.050 0.049

the smaller sample size is associated with the larger vari-
ance. When performing Welch’s test, the estimated stan-
dard error impacts the magnitude of the test statistic. Un-
der the null hypothesis, it is the estimated standard error
when performing Welch’s test, which is the most influential
factor on the result of the test. For Welch’s test, the prob-
ability of making a Type I error decreases as the standard
error increases. This paper gives insight in to why Welch’s
test is Type I error robust for normally distributed data, in
scenarios when the independent samples t-test is not. Ad-
ditionally, it is shown that in situations when the indepen-
dent samples t-test is Type I error robust, Welch’s test is
also. In a practical environment for the comparisons of two
means from assumed normal populations, a general rule to
preserve Type I error robustness is, if in doubt use Welch’s
test.
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Test Statistics for the Comparison of Means for Two Samples Which Include Both Paired 

Observations and Independent Observations. 

 

Introduction 

Hypothesis tests for the comparison of two population means, 1  and 2 , with two samples of either 

independent observations or paired observations are well established. When the assumptions of the 

test are met, the independent samples t-test is the most powerful test for comparing means between 

two independent samples (Sawilowsky & Blair, 1992). Similarly, when the assumptions of the test are 

met, the paired samples t-test is the most powerful test for the comparison of means between two 

dependent samples (Zimmerman, 1997). If a paired design can avoid extraneous systematic bias, then 

paired designs are generally considered to be advantageous when contrasted with independent 

designs.  

There are scenarios where, in a paired design, some observations may be missing. In the literature, 

this scenario is referred to as paired samples that are either “incomplete” (Ekbohm, 1976) or with 

“missing observations” (Bhoj, 1978). There are designs that do not have completely balanced 

pairings. Occasions where there may be two samples with both paired observations and independent 

observations include: 

i) Two groups with some common element between both groups. For example, in 

education when comparing the average exam marks for two optional subjects, where 

some students take one of the two subjects and some students take both.  

ii) Observations taken at two points in time, where the population membership changes 

over time but retains some common members. For example, an annual survey of 

employee satisfaction may include new employees that were unable to respond at 

time point one, employees that left after time point one, and employees that remained 

in employment throughout. 
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iii) When some natural pairing occurs. For example, in a survey taken comparing views 

of males and females, there will be some matched pairs “couples” and some 

independent samples “single”. 

The examples given above can be seen as part of the wider missing data framework. There is much 

literature on methods for dealing with missing data and the proposals in this paper do not detract from 

extensive research into the area. The simulations and discussion in this paper are done in the context 

of data missing completely at random (MCAR). 

Two samples which include both paired and independent observations is referred to using varied 

terminology in the literature. The example scenarios outlined can be referred to as “partially paired 

data” (Samawi & Vogel, 2011). However, this terminology has connotations suggesting that the pairs 

themselves are not directly matched. Derrick et.al. (2015) suggest that appropriate terminology for the 

scenarios outlined gives reference to “partially overlapping samples”. For work that has previously 

been done on a comparison of means when partially overlapping samples are present, “the partially 

overlapping samples framework….has been treated poorly in the literature” (Martínez-Camblor, 

Corral, & María de la Hera, 2012, p.77). In this paper, the term partially overlapping samples will be 

used to refer to scenarios where there are two samples with both paired and independent observations.  

When partially overlapping samples exist, the goal remains to test the null hypothesis 210 :  H . 

Standard approaches when faced with such a situation, are to perform the paired samples t-test, 

discarding the unpaired data, or alternatively perform the independent samples t-test, discarding the 

paired data (Looney & Jones, 2003). These approaches are wasteful and can result in a loss of power. 

The bias created with these approaches may be of concern. Other solutions proposed in a similar 

context are to perform the independent samples t-test on all observations ignoring the fact that there 

may be some pairs, or alternatively randomly pairing unpaired observations and performing the paired 

samples t-test (Bedeian & Feild, 2002). These methods distort Type I error rates (Zumbo, 2002) and 

fail to adequately reflect the design. This emphasises the need for research into a statistically valid 
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approach. A method of analysis which takes into account any pairing but does not lose the unpaired 

information would be beneficial.  

One analytical approach is to separately perform both the paired samples t-test on the paired 

observations and the independent samples t-test on the independent observations. The results are then 

combined using Fisher’s (1925) Chi-square method, or Stouffer’s (1949) weighted z-test. These 

methods have issues with respect to the interpretation of the results. Other procedures weighting the 

paired and independent samples t-tests, for the partially overlapping samples scenario, have been 

proposed by Bhoj, (1978), Kim et. al. (2005), Martínez-Camblor, Corral, & María de la Hera (2012), 

and Samawi & Vogel (2011).  

Looney & Jones (2003) proposed a statistic making reference to the z-distribution that uses all of the 

available data, without a complex weighting structure. Their corrected z-statistic is simple to compute 

and it directly tests the hypothesis 210 :  H . They suggest that their test statistic is generally Type 

I error robust across the scenarios that they simulated. However, they only consider normally 

distributed data with a common variance of 1 and a total sample size of 50 observations. Therefore 

their simulation results are relatively limited, simulations across a wider range of parameters would 

help provide stronger conclusions. Mehrotra (2004) indicates that the solution provided by Looney & 

Jones (2003) may not be Type I error robust for small sample sizes.  

Early literature for the partially overlapping samples framework focused on maximum likelihood 

estimates, when data are missing by accident rather than by design. Lin (1973) use maximum 

likelihood estimates for the specific case where data is missing from one of the two groups. Lin 

(1973) uses assumptions such as the variance ratio is known. Lin & Strivers (1974) apply maximum 

likelihood solutions to the more general case, but find that no single solution is applicable.  

For normally distributed data, Ekbohm (1976) compared Lin & Strivers (1974) tests with similar 

proposals based on maximum likelihood estimators. Ekbohm (1976) found that maximum likelihood 

solutions do not always maintain Bradley’s liberal Type I error robustness criteria. The results suggest 

that the maximum likelihood approaches are of little added value compared to standard methods. 

Furthermore the proposals by Ekbohm (1976) are complex mathematical procedures and are unlikely 

to be considered as a first choice solution in a practical environment.  

A solution available in most standard software is to perform a mixed model using all of the available 

data. In a mixed model, effects are assessed using Restricted Maximum Likelihood estimators 
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“REML”. Mehrotra (2004) indicates that for positive correlation, REML is Type I error robust and 

more powerful approach than that proposed by Looney & Jones (2003).  

For small sample sizes, an intuitive solution to the comparison of means with partially overlapping 

samples, would be a test statistic derived using concepts similar to that of Zumbo (2002) so that all 

available data are used making reference to the t-distribution.  

In this paper, two test statistics are proposed. The proposed solution for equal variances acts as a 

linear interpolation between the paired samples t-test and the independent samples t-test. The 

consensus in the literature is that Welch’s test is more Type I error robust than the independent 

samples t-test, particularly with unequal variances and unequal samples sizes (Derrick, Toher & 

White, 2016; Fay & Proschan, 2010; Zimmerman & Zumbo, 2009). The proposed solution for 

unequal variances is a test which acts as a linear interpolation between the paired samples t-test and 

Welch’s test.  

Standard tests and the proposal by Looney & Jones (2003) are given below. This is followed by the 

definition of the presently proposed test statistics. A worked example provided using each of these 

test statistics and REML is provided. The Type I error rate and power for the test statistics and REML 

is then explored using simulation, for partially overlapping samples simulated from a Normal 

distribution. 
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Notation 

Notation used in the definition of the test statistics is given in Table 1. 

Table 1. Notation used in this paper. 

an  number of observations exclusive to Sample 1 

bn  number of observations exclusive to Sample 2 

cn  number of pairs 

1n  total number of observations in Sample 1 (i.e. 1n an + cn ) 

2n  total number of observations in Sample 2 (i.e. 2n bn  + cn ) 

1X  mean of all observations in Sample 1 

2X  mean of all observations in Sample 2 

aX  mean of the independent observations in Sample 1 

bX  mean of the independent observations in Sample 2 

1cX  mean of the paired observations in Sample 1 

2cX  mean of the paired observations in Sample 2 

2

1S  variance of all observations in Sample 1 

2

2S  variance of all observations in Sample 2 

2

aS  variance of the independent observations in Sample 1 

2

bS  variance of the independent observations in Sample 2 

2

1cS  variance of the paired observations in Sample 1 

2

2cS  variance of the paired observations in Sample 2 

12S  covariance between the paired observations 

r  Pearson’s correlation coefficient for the paired observations 

 

All variances above are calculated using Bessel’s correction, i.e. the sample variance with 1in  

degrees of freedom (see Kenney & Keeping 1951, p.161). 

As standard notation, random variables are shown in upper case, and derived sample values 

are shown are in lower case.  
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Definition of Existing Test Statistics 

Standard approaches for comparing two means making reference to the t-distribution are given below. 

These definitions follow the structural form given by Fradette et.al. (2003), adapted to the context of 

partially overlapping samples. 

To perform the paired samples t-test, the independent observations are discarded so that 
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The statistic 1T  is referenced against the t-distribution with 11  cn  degrees of freedom. 

To perform the independent samples t-test, the paired observations are discarded so that 
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The statistic 2T  is referenced against the t-distribution with 22  ba nn  degrees of freedom.  

To perform Welch’s test, the paired observations are discarded so that 
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For large sample sizes, the test statistic for partially overlapping samples proposed by Looney & 

Jones (2003) is  

))((
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The statistic correctedZ  is referenced against the standard Normal distribution. In the extremes of 

0 ba nn , or 0cn , correctedZ  defaults to the paired samples z-statistic and the independent 

samples z-statistic respectively. 

Definition of Proposed Test Statistics 

Two new t-statistics are proposed; new1T , assuming equal variances, and new2T , when equal variances 

cannot be assumed. The test statistics are constructed as the difference between two means taking into 

account the covariance structure. The numerator is the difference between the means of the two 

samples and the denominator is a measure of the standard error of this difference. Thus the test 

statistics proposed here are directly testing the hypothesis 210 :  H .  

The test statistic new1T  is derived so that in the extremes of 0 ba nn  or 0cn , new1T  defaults to 

1T  or 2T  respectively, thus  
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The test statistic new1T  is referenced against the t-distribution with degrees of freedom derived by 

linear interpolation between 1v  and 2v  so that: new1v  =  ba

cba

cba
c nn
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In the extremes, when 0 ba nn , new1v  defaults to 1v ; or when 0cn , new1v  defaults to 2v . 
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Given the superior Type I error robustness of Welch’s test when variances are not equal, a test 

statistic is derived making reference to Welch’s approximate degrees of freedom. This test statistic 

makes use of the sample variances, 
2

1S  and 
2

2S . The test statistic new2T  is derived so that in the 

extremes of 0 ba nn  or 0cn , new2T  defaults to 1T  or 3T  respectively, thus 
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The test statistic new2T  is referenced against the t-distribution with degrees of freedom derived as a 

linear interpolation between 1v  and 3v  so that 
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In the extremes, when 0 ba nn , new2v  defaults to 1v ; or when 0cn , new2v  defaults to 3v . 

Note that the proposed statistics, new1T  and new2T , use all available observations in the respective 

variance calculations. The statistic correctedZ  only uses the paired observations in the calculation of 

covariance. 

Worked Example 

An applied example is given to demonstrate the calculation of each of the test statistics defined. In 

education, for credit towards an undergraduate Statistics course, students may take optional modules 

in either Mathematical Statistics, or Operational Research, or both. The programme leader is 

interested whether the exam marks for the two optional modules differ. The exam marks attained for a 

single semester are given in Table 2. 
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Table 2. Exam marks for Students studying on an undergraduate Statistics course. 

Student  Mathematical 

Statistics 

Operational 

Research 

1 73 72 

2 82  

3 74 89 

4 59 78 

5 49 64 

6  83 

7 42 42 

8 71 76 

9 

 

79 

10 39 89 

11 

 

67 

12 

 

82 

13 

 

85 

14 

 

92 

15 59 63 

16 85  

 

As per standard notion, the derived sample values are given in lower case. In the calculation of the 

test statistics, 1x 63.300, 2x 75.786, 2

1s 263.789, 2

2s 179.874, an 2, bn 6, cn 8, 1n

10, 2n 14, 1v 7, 2v 6, 3v 6,  17.095, new1v 12, new2v 10.365, r 0.366, 12s 78.679. 

For the REML analysis, a mixed model is performed with “Module” as a repeated measures fixed 

effect and “Student” as a random effect. Table 3 gives the calculated test statistics, degrees of freedom 

and corresponding p-values. 

Table 3. Test statistic values and resulting p-values (two-sided test). 

 
1T  

2T  3T  
correctedZ  REML new1T  new2T  

estimate of mean 

difference 
-13.375 2.167 2.167 -12.486 -12.517 -12.486 -12.486 

t-value -2.283 0.350 0.582 -2.271 -2.520 -2.370 -2.276 

degrees of 

freedom 
7.000 6.000 6.000  11.765 12.000 10.365 

p-value 0.056 0.739 0.579 0.023 0.027 0.035 0.045 
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With the exception of REML, the estimates of the mean difference are simply the difference in the 

means of the two samples, based on the observations used in the calculation. It can quickly be seen 

that the conclusions differ depending on the test used. It is of note that only the tests using all of the 

available data result in the rejection of the null hypothesis at nominal 0.05. Also note that the results 

of the paired samples t-test and the independent samples t-test have sample effects in different 

directions. This is only one specific example given for illustrative purposes, investigation is required 

into the power of the test statistics over a wide range of scenarios. Conclusions based on the proposed 

tests cannot be made without a thorough investigation into their Type I error robustness.  

 

Simulation Design 

Under normality, Monte-Carlo methods are used to investigate the Type I error robustness of the 

defined test statistics and REML. Power should only be used to compare tests when their Type I error 

rates are equal (Zimmerman & Zumbo, 1993). Monte-Carlo methods are used to explore the power 

for the tests that are Type I error robust under normality. 

Unbalanced designs are frequent in psychology (Sawilowski & Hillman, 1982), thus a comprehensive 

range of values for an , bn  and cn  are simulated. These values offer an extension to the work done 

by Looney & Jones (2003). Given the identification of separate test statistics for equal and unequal 

variances, multiple population variance parameters {
2

1 , 
2

2 } are considered. Correlation has an 

impact on Type I error and power for the paired samples t-test (Fradette et. al., 2003), hence a range 

of correlations {  } between two normal populations are considered. Correlated normal variates are 

obtained as per Kenney & Keeping (1951). A total of 10,000 replicates of each of the scenarios in 

Table 4 are performed in a factorial design. 

All simulations are performed in R version 3.1.2. For the mixed model approach utilising REML, the 

R package lme4 is used. Corresponding p-values are calculated using the Satterthwaite approximation 

adopted by SAS using the R package lmerTest (Goodnight, 1976). 
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For each set of 10,000 p-values, the proportion of times the null hypothesis is rejected, for a two sided 

test with nominal 0.05 is calculated.  

Table 4. Summary of simulation parameters 

Parameter Values 

1  0 

2  0 (under 0H ) 

0.5 (under 1H ) 

2

1  1, 2, 4, 8 

2

2  1, 2, 4, 8 

an  5, 10, 30, 50, 100, 500 

bn  5, 10, 30, 50, 100, 500 

cn  5, 10, 30, 50, 100, 500 

  -0.75, -0.50, -0.25, 0.00, 0.25, 0.50, 0.75 

 

Type I Error Robustness 

For each of the test statistics, Type I error robustness is assessed against Bradley’s (1978) liberal 

criteria. This criteria it is widely used in many studies analysing the validity of t-tests and their 

adaptions. Bradley’s (1978) liberal criteria states that the Type I error rate   should be within 

nominal  0.5 nominal . For nominal  0.05, Bradley’s liberal interval is [0.025, 0.075]. 

Type I error robustness is firstly assessed under the condition of equal variances. Under the null 

hypothesis, 10,000 replicates are obtained for the 4   6   6   6   7   6,048 scenarios where 

2

2

2

1   . Figure 1 shows the Type I error rates for each of the test statistics under equal variances for 

normally distributed data. 
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 Figure 1. Type I error rates where 
2

2

2

1   , reference lines show Bradley’s (1978) liberal criteria.  

 

Figure 1 indicates that when variances are equal, the statistics 
1T , 

2T , 
3T , new1T  and new2T  remain 

within Bradley’s liberal Type I error robustness criteria throughout the entire simulation design. The 

statistic correctedZ  is not Type I error robust, thus confirming the smaller simulation findings of 

Mehotra (2004). Figure 1 also shows that REML is not Type I error robust throughout the entire 

simulation design. A review of our results shows that for REML the scenarios that are outside the 

range of liberal Type I error robustness are predominantly those that have negative correlation, and 

some where zero correlation is specified. Given that negative correlation is rare in a practical 

environment, the REML procedure is not necessarily unjustified. 

Type I error robustness is assessed under the condition of unequal variances. Under the null 

hypothesis, 10,000 replicates were obtained for the 4   3   6   6   6   7   18,144 scenarios where 
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2

2

2

1   . For assessment against Bradley’s (1978) liberal criteria, Figure 2 shows the Type I error 

rates for unequal variances for normally distributed data. 

Figure 2. Type I error rates when 
2

2

2

1   , reference lines show Bradley’s (1978) liberal criteria.  

It can be seen from Figure 2 that the statistics defined using a pooled standard deviation 
2T  and new1T , 

do not provide Type I error robust solutions when equal variances cannot be assumed. The statistics 

1T , 
3T  and new2T  retain their Type I error robustness under unequal variances throughout all 

conditions simulated. 

The statistic correctedZ  maintains similar Type I error rates under equal and unequal variances. The 

statistic correctedZ  was only designed to be used in the case of equal variances. For unequal variances, 

we observe that the statistic correctedZ  results in an unacceptable amount of false positives when 

25.0  or max { an , bn , cn } - min{ an , bn , cn } is large. In addition, the statistic correctedZ  is 
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conservative when   is large and positive. The largest observed deviations from Type I error 

robustness for REML are when 0  or max { an , bn , cn } - min{ an , bn , cn } is large. Further 

insight to the Type I error rates for REML can be seen in Figure 3 showing observed p-values against 

expected p-values from a uniform distribution. 

 

Figure 3. P-P plots for simulated p-values using REML procedure. Selected parameter combinations   

(  ,,,,, 2

2

2

1cba nnn ) are as follows; A (5,5,5,1,1,-0.75), B (5,10,5,8,1,0), C  (5,10,5,8,1,0.5), D

 (10,5,5,8,1,0.5). 

 

If the null hypothesis is true, for any given set of parameters the p-values should be uniformly 

distributed. Figure 3 gives indicative parameter combinations where the p-values are not uniformly 

distributed when applying a mixed model assessed using REML. It can be seen that REML is not 

Type I error robust when the correlation is negative. In addition, caution should be exercised if using 

REML when the larger variance is associated with the smaller sample size. REML maintains Type I 
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error robustness for positive correlation and equal variances or when the larger sample size is 

associated with the larger variance.  

 

Power of Type I Error Robust Tests under Equal Variances 

The test statistics that do not fail to maintain Bradley’s Type I error liberal robustness criteria are 

assessed under 1H . REML is included in the comparisons for 0 . The power of the test statistics 

are assessed where 12

2

2

1  , followed by an assessment of the power of the test statistics where 

12

1   and 12

2  .  

Table 5 shows the power of 
1T , 

2T , 
3T , new1T , new2T  and REML, averaged over all sample size 

combinations where 12

2

2

1  . 

Table 5. Power of Type I error robust test statistics, 12

2

2

1  , 05.0 , 5.0μμ 12  . 

   
1T  

2T  3T  
new1T  new2T  REML 

an = bn  

0.75 0.785 0.567 0.565 0.887 0.886 0.922 

0.50 0.687 0.567 0.565 0.865 0.864 0.880 

0.25 0.614 0.567 0.565 0.842 0.841 0.851 

0  0.558 0.567 0.565 0.818 0.818 0.829 

0  0.481 0.567 0.565 0.778 0.778 - 

an    bn  

0.75 0.784 0.455 0.433 0.855 0.847 0.907 

0.50 0.687 0.455 0.433 0.840 0.832 0.861 

0.25 0.615 0.455 0.433 0.823 0.816 0.832 

0  0.559 0.455 0.433 0.806 0.799 0.816 

0  0.482 0.455 0.433 0.774 0.766 - 

 

 

Table 5 shows that REML and the test statistics proposed in this paper, new1T  and new2T , are more 

powerful than standard approaches, 
1T , 

2T  and 3T , when variances are equal. Consistent with the 

paired samples t-test, 
1T , the power of new1T  and new2T  is relatively lower when there is zero or 

negative correlation between the two populations. Similar to contrasts of the independent samples t-

test, 
2T , with Welch’s test, 

3T , for equal variances but unequal sample sizes, new1T  is marginally more 
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powerful than new2T , but not to any practical extent. For each of the tests statistics making use of 

paired data, as the correlation between the paired samples increases, the power increases.  

As the correlation between the paired samples increases, the power advantage of the proposed test 

statistics relative to the paired samples t-test becomes smaller. Therefore the proposed statistics new1T  

and new2T  may be especially useful when the correlation between the two populations is small. 

To show the relative increase in power for varying sample sizes, Figure 4 shows the power for 

selected test statistics for small-medium sample sizes, averaged across the simulation design for equal 

variances. 

 

Figure 4. Power for Type I error robust test statistics, averaged across all values of   where 
2

2

2

1    

and 5.012   . The sample sizes ( an , bn , cn ) are as follows; A (10,10,10),  B (10,30,10), 

C (10,10,30), D (10,30,30), E (30,30,30). 



Page 17 of 23 
 

From Figure 4 it can be seen that for small–medium sample sizes, the power of the proposed test 

statistics new1T  and new2T  is superior to standard test statistics.  

 

Power of Type I Error Robust Rests under Unequal Variances 

For the Type I error robust test statistics under unequal variances, Table 6 shows the power of 
1T , 

3T , 

new2T  and REML, averaged over the simulation design where 5.012   . 

Table 6. Power of Type I error robust test statistics where 12

1  , 12

2  ,  0.05, 5.012  . 

Within this table, ba nn   represents the larger variance associated with the larger sample size, and 

ba nn   represents the larger variance associated with the smaller sample size. 

   
1T  3T  

2newT  REML 

an = bn  

0.75 0.555 0.393 0.692 0.645 

0.50 0.481 0.393 0.665 0.588 

0.25 0.429 0.393 0.640 0.545 

0  0.391 0.393 0.619 0.515 

0  0.341 0.393 0.582 - 

an > bn  

0.75 0.555 0.351 0.715 0.589 

0.50 0.481 0.351 0.688 0.508 

0.25 0.429 0.351 0.665 0.459 

0  0.391 0.351 0.642 0.422 

0  0.341 0.351 0.604 - 

an < bn  

0.75 0.555 0.213 0.559 0.693 

0.50 0.481 0.213 0.539 0.649 

0.25 0.429 0.213 0.522 0.620 

0  0.391 0.213 0.507 0.603 

0  0.341 0.213 0.480 - 

 

Table 6 shows that new2T  has superior power properties to both 
1T  and 

3T  when variances are not 

equal. In common with the performance of Welch’s test for independent samples, 
3T , the power of 

new2T  is higher when the larger variance is associated with the larger sample size. In common with the 

performance of the paired samples t-test, 
1T , the power of new2T  is relatively lower when there is zero 

or negative correlation between the two populations.  
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The apparent power gain for REML when the larger variance is associated with the larger sample size, 

can be explained by the pattern in the Type I error rates. REML follows a similar pattern to the 

independent samples t-test, which is liberal when the larger variance is associated with the larger 

sample size, thus giving the perception of higher power.   

To show the relative increase in power for varying sample sizes, Figure 5 shows the power for 

selected test statistics for small-medium sample sizes, averaged across the simulation design for 

unequal variances. 

Figure 5. Power for Type I error robust test statistics, 
2

2

2

1    and 5.012   . The sample sizes 

( an , bn , cn ) are as follows; A (10,10,10), 1B (10,30,10), 2B (30,10,10), C (10,10,30), 1D

(10,30,30), 2D (30,10,30), E (30,30,30). 
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Figure 5 shows a relative power advantage when the larger variance is associated with the larger 

sample size, as per 2B  and 2D . A comparison of Figure 4 and Figure 5 shows that for small-medium 

sample sizes, power is adversely effected for all test statistics when variances are not equal.  

 

Discussion 

The statistic new2T  is Type I error robust across all conditions simulated under normality. The greater 

power observed for new1T , compared to new2T , under equal variances, is likely to be of negligible 

consequence in a practical environment. This is in line with empirical evidence for the performance of 

Welch’s test, when only independent samples are present, which leads to many observers 

recommending the routine use of Welch’s test under normality (e.g. Ruxton, 2006).   

The Type I error rates and power of new2T  follow the properties of its counterparts, 
1T  and 

3T . Thus 

new2T  can be seen as a trade-off between the paired sample t-test and Welch’s test, with the advantage 

of increased power across all conditions, due to using all available data.  

The partially overlapping samples scenarios identified in this paper could be considered as part of the 

missing data framework and all simulations have been performed under the assumption of MCAR.  

The statistics proposed in this paper form less computationally intensive competitors to REML. The 

REML procedure does not directly calculate the difference between the two sample means, in a 

practical environment this makes its results hard to interpret. The statistics proposed in this paper will 

also far more easily lend themselves to the development of non-parametric tests.  

 

Conclusion 

A commonly occurring scenario when comparing two means is a combination of paired observations 

and independent observations in both samples, this scenario is referred to as partially overlapping 



Page 20 of 23 
 

samples. Standard procedures for analysing partially overlapping samples involve discarding 

observations and performing either the paired samples t-test, or the independent samples t-test, or 

Welch’s test. These approaches are less than desirable. In this paper, two new test statistics making 

reference to the t-distribution are introduced and explored under a comprehensive set of parameters, 

for normally distributed data. Under equal variances, new1T  and new2T  are Type I error robust. In 

addition they are more powerful than standard Type I error robust approaches considered in this 

paper. When variances are equal, there is a slight power advantage of using new1T  over new2T , 

particularly when sample sizes are not equal. Under unequal variances, new2T  is the most powerful 

Type I error robust statistic considered in this paper. We recommend that when faced with a research 

problem involving partially overlapping samples and MCAR can be reasonably assumed, the statistic 

new1T  could be used when it is known that variances are equal. Otherwise under the same conditions 

when equal variances cannot be assumed the statistic new2T  could be used.  

A mixed model procedure using REML is not fully Type I error robust. In those scenarios in which 

this procedure is Type I error robust, the power is similar to that of new1T  and new2T . 

The proposed test statistics for partially overlapping samples provide a real alternative method for 

analysis for normally distributed data, which could also be used for the formation of confidence 

intervals for the true difference in two means. 
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Introduction

It is well established that the paired samples t-test can be

used for comparing means between two dependent sam-

ples (Zimmerman, 1997; Fradette, Keselman, Lix, Algina, &

Wilcox, 2003). The assumptions of the paired samples t-

test are that data are randomly sampled from two related

populations, and that the differences between the paired

observations are approximately normally distributed. It

is also well established that the independent samples t-

test can be used for comparing means between two inde-

pendent samples with equal variances (Rasch, Teuscher,

& Guiard, 2007; Fradette et al., 2003). When variances

are not equal, the independent samples t-test is not Type

I error robust, particularly when the sample sizes are not

equal (Ramsey, 1980). When equal variances cannot be as-

sumed, a Type I error robust alternative to the indepen-

dent samples t-test is Welch’s test (Derrick, Toher, & White,

2016; Fradette et al., 2003). For the avoidance of doubt,

here the independent samples t-test assuming equal vari-

ances is referred to as the independent samples t-test, and

the independent samples t-test not assuming equal vari-

ances is referred to as Welch’s test. The assumptions of the

independent samples t-test and Welch’s test are that data

are randomly sampled from two unrelated populations,

which are approximately normally distributed. Welch’s

test is considered Type I error robust for all but the most

extreme deviations from the normality assumption (Rux-

ton, 2006). Extensive testing of these assumptions is not

recommended (Rasch, Kubinger, & Moder, 2011; Rochon,

Gondan, & Kieser, 2012). A further assumption of these

tests is that observations within a sample are independent

of each other. This assumption is critical, violations of the

independence of observations assumption make hypothe-

sis testing invalid (Lissitz & Chardos, 1975).

Conventional teaching of statistics usually assumes a

perfect world with completely dependent samples or com-

pletely independent samples (for example, Magel, 1998).

However, a question that is often asked in research is how

to compare means between two samples that include both

paired observations and unpaired observations. These sce-

narios are referred to as ‘partially overlapping samples’
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(Derrick, Russ, Toher, & White, 2017; Derrick, Dobson-

McKittrick, Toher, & White, 2015; Martinez-Camblor, Cor-

ral, & de la Hera, 2012). Paired samples designs are often

advantageous relative to independent samples designs, be-

cause paired samples designs allow differences between

two samples to be directly compared. However, partially

overlapping samples designs are often required due to the

limited resource of paired samples, where a number of in-

dependent observations are available to compensate. This

could also occur in a matched pairs design, when pairing

individuals on certain characteristics, there may be some

additional independent observations that cannot be rea-

sonably paired on any characteristics. In addition there

are occasions where it is desired that observations from

a paired samples design, and a separate independent sam-

ples design, may be combined, resulting in a partially over-

lapping samples design.

These alternative ap-
proaches emphasise
the need for statis-
tically valid tests in
the partially overlap-
ping samples case.

The approach for analysing par-

tially overlapping samples by design

has received relatively little attention

within the literature. Consider the sce-

narios in Figure 1, which demonstrates

eight scenarios where there are two

samples, each with a different num-

ber of paired observations and indepen-

dent observations.

It is not well established how to pro-

ceed for the scenarios represented by

Figure 1 where there is partial overlap. One ‘standard’ ap-

proach if the number of pairs is large, is to perform the

paired samples t-test on only the paired observations. Con-

versely, if the number of independent samples is large a

‘standard’ approach is to perform the independent sam-

ples t-test or Welch’s test, on only the independent samples

(Looney & Jones, 2003). These standard methods discard

data which adversely impacts the power of the test. Ap-

proaches that discard data are likely to maintain adequate

power if the number of discarded observations is relatively

‘small’ and the sample sizes are relatively ‘large’. One al-

ternative approach that is commonly applied, is to per-

form the independent samples t-test on all of the available

data. However, this is less powerful than a paired sam-

ples approach and ignores the fact that there are matched

pairs. Alternative ad hoc approaches using all of the avail-

able data, but not mimicking the design structure, will not

be considered further in this paper. These alternative ap-

proaches emphasise the need for statistically valid tests in

the partially overlapping samples case.

A frequent occurrence of partially overlapping sam-

ples is a paired samples design with missing observations

(Martinez-Camblor et al., 2012). In this situation partially

overlapping samples do not occur by design, and so it is

necessary to consider why the samples are incomplete. If

data are missing completely at random (MCAR), the reason

for missing data is not related to the value of the observa-

tion itself, or other variables recorded. An example of data

that is MCAR is a question in a survey that is accidentally

missed, or data that is accidentally lost. If incomplete ob-

servations are MCAR, it is reasonable to discard the corre-

sponding paired observations without causing bias (Don-

ders, van der Heijden, Stijnen, & Moons, 2006). If data are

missing at random (MAR), data are missing based on char-

acteristics not directly measured by the missing observa-

tion itself. However, the missing data is related to another

variable in the dataset. The discarding of information that

are MAR is likely to cause bias, therefore the standard ap-

proach of pairwise or listwise deletion is not recommended

(Schafer, 1997; Donders et al., 2006). If data aremissing not

at random (MNAR), the probability of an observation be-

ing missing, directly depends on

the value of the observation being

recorded. When data are MNAR, there

is no statistical procedure that can elim-

inate potential bias (Musil, Warner,

Yobas, & Jones, 2002). This is particu-

larly of concern for analyses with miss-

ing data because it is difficult to dis-

tinguish between data that is MAR and

data that is MNAR. Nevertheless if the

amount of missing data is small, the

bias is likely to be inconsequential. The literature sug-

gests that up to 5% of observations missing is acceptable

(Graham, 2009; Schafer, 1997). Some take a more liberal

stance suggesting that up to 20% of data missing may be

acceptable (Schlomer, Bauman, & Card, 2010).

For a paired samples design with incomplete obser-

vations, researchers often attempt to impute the missing

data. Ad hoc basic imputation approaches for imputing

missing data are biased solutions (Schafer, 1997). Mean

imputation reduces the variation in the data set. Re-

gression imputation inflates the correlation between vari-

ables. More sophisticated techniques, Expected Maximisa-

tion and Multiple Imputation, minimise the bias of the pa-

rameter estimates (Musil et al., 2002; Dong & Peng, 2013).

Standard statistical software will perform the paired

samples t-test, the independent samples t-test or Welch’s

test upon command. In SAS the standard ‘proc ttest’ per-

forms the paired samples t-test, omitting cases pairwise

from calculations when any observation from a declared

paired variable is missing. Likewise in Unistat, a paired

samples t-test is performed, excluding any ‘missing val-

ues’ pairwise. Performing the paired samples t-test in SPSS

gives the options of excluding cases pairwise or exclud-

ing cases listwise, which are equivalent in the two sample
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Figure 1 Examples of ‘partially overlapping samples’. In each scenario each of two samples are represented by a cir-

cle. The paired observations are represented by the overlap and shaded black. From left to right the graphic shows a

decreasing number of paired observations. The relative sample sizes are represented by the size of the circle.

case. In all of these approaches, the unpaired observations

are excluded and the analysis is done only on the paired

data. Caution should be exercised when using SAS, SPSS

or Unistat, because users may be tempted to analyse only

the complete pairs when readily presented with the oppor-

tunity, and not realise the consequences of not using all of

the data. BothMinitab and the standard ‘t.test’ in R present

an error message when a paired samples t-test is selected

with unequal sample sizes, these software at the very least

make users aware there are considerations to take into ac-

count with the analysis they are trying to perform.

Derrick, Russ, et al. (2017) developed two partially

overlapping samples t-tests thatmake use of all of the avail-

able data, that are valid under MCAR and robust under

the assumptions of normality. These test statistics act as

a straightforward interpolation between the paired sam-

ples t-test, and either the independent samples t-test, or

Welch’s test. Using these tests for comparing two sample

means represents a more powerful alternative to discard-

ing information. In the case of a paired samples design

with incomplete observations, these test statistics also rep-

resent an alternative to the need to perform complicated

imputation techniques.

In this paper, the partially overlapping samples test

statistics that make use of all of the available data, account-

ing for the fact that there is a combination of paired obser-

vations and independent observations, are demonstrated

by use of example. It also shows how to perform these new

tests using an R package, partiallyoverlapping.
The paper concludes with a discussion on comparing the

use of traditional tests against the partially overlapping

samples t-tests.

Worked Example

In this section, an example of the partially overlapping t-

test in application is given, with a summary of the calcula-

tions and the hypothesis test procedure.

The sleep fragmentation index measures the quality of

sleep for an individual over one night. A lower sleep frag-

mentation score represents less disrupted sleep. The re-

search question is whether the genre of a movie watched

before bedtime impacts the quality of sleep. The data are

plausible fictional data used for illustrative purposes only.

Study participants are randomly allocated to either a

between subjects design (stage 1) or a repeated measures

(stage 2) part of the investigation. In the first stage of

the study, the sleep fragmentation score is taken over one

night, for two groups of individuals. A sample of na = 8
individuals watch a ‘horror’ movie before bedtime. A sep-

arate sample of nb = 8 individuals watch a ‘feel good’
movie before bedtime. This first stage is an independent

samples design. In a second stage of the study, the sleep

fragmentation index is recorded over two separate nights,

for a sample of nc = 8 individuals watching a ‘feel good’
movie and a ‘horror’ movie on two alternate nights before

bedtime (with order counterbalanced). This second stage

is a paired samples design. When the two stages of the

study are combined, the total number of individuals who

watched a ‘horror’ movie is n1 = na + nc = 16. The to-
tal number of individuals who watched a ‘feel good’ movie

is n2 = nb + nc = 16. The hypothesis being tested is
whether themean sleep fragmentation scores are the same

between individuals watching a ‘horror’ movie and indi-

viduals watching a ‘feel good’ movie. Thus the null hy-
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pothesis is : H0 : µ1 = µ2. The alternative hypothesis,

assuming a two-sided test is : H1 : µ1 6= µ2. The sleep

fragmentation scores are given in Table 1.

In this scenario, from a missing data perspective it

would be reasonable to assume MCAR. There are no miss-

ing data per se; it is the design of the study that results

in partially overlapping samples. Therefore standard ap-

proaches of discarding either the paired or independent

samples are unbiased. However, performing either the

paired samples t-test or the independent samples t-test re-

quires discarding exactly half of the observations, and the

power of the test is reduced. This therefore is a good exam-

ple of where a test statistic that makes use of all available

data, taking into account both paired and independent ob-

servations could be useful.

Assuming normality and MCAR, the partially overlap-

ping samples t-test is a Type I error robust method for com-

paring means between the two samples (Derrick, Russ, et

al., 2017). To calculate elements for the partially overlap-

ping samples t-test let: x̄1 be the mean of all observations
in Sample 1 (i.e. the mean for the n1 observations for in-
dividuals watching a ‘horror’ movie), x̄2 be the mean of all
observations in Sample 2 (i.e. the mean for the n2 obser-
vations for individuals watching a ‘feel good’ movie), s1 be
the standard deviation of all observations in Sample 1, s2
be the standard deviation of all observations in Sample 2,

and r be the Pearson’s correlation coefficient for the paired
observations only (i.e. in nc). There are two forms of
the partially overlapping samples t-test; t1 for when equal
variances between the two samples can be assumed, and t2
for when equal variances between the two samples cannot

be assumed.

The partially overlapping samples t-test assuming

equal variances acts as an interpolation between the inde-

pendent samples t-test and the paired samples t-test, and is

defined by Derrick, Russ, et al. (2017) as:

t1 =
x̄1 − x̄2

sp

√
1
n1

+ 1
n2
− 2r nc

n1n2

(1)

where

sp =

√
(n1 − 1)s21 + (n2 − 1)s22

(n1 − 1) + (n2 − 1)
(2)

If the null hypothesis is true, the test statistic t1 follows a
t-distribution with approximate degrees of freedom given

as:

ν1 = (nc − 1) +
na + nb + nc − 1

na + nb + 2nc
(na + nb). (3)

If equal variances cannot be assumed, the partially

overlapping samples t-test which acts as an interpolation

between Welch’s test and the paired samples t-test is de-

fined by Derrick, Russ, et al. (2017) as:

t2 =
x̄1 − x̄2√

s21
n1

+
s22
n2
− 2r s1s2nc

n1n2

(4)

If the null hypothesis is true, the test statistic t2 follows
a t-distribution with degrees of freedom approximated by:

ν2 = (nc − 1) +
γ − nc + 1

na + nb + 2nc
(na + nb) (5)

and where

γ =

(
s21
n1

+
s22
n2

)2

(s21/n1)2

n1−1 +
(s22/n2)2

n2−1

(6)

These test statistics can be viewed as a generalised form

of the two sample t-tests. When there are no independent

observations, t1 and t2 default to the paired samples t-test.
When there are no paired observations, t1 defaults to the
independent samples t-test, and t2 defaults to Welch’s test.
For either version of the partially overlapping samples

t-test, if µ1 > µ2 (i.e. the population mean score for ‘hor-

ror’ movie is greater than the population mean score for

‘feel good’ movie), then it is anticipated that this will be re-

flected in the sample values above, and the expectation is

to observe a large positive value of the test statistic. Con-

versely if µ1 < µ2, the expectation would be for a large

but negative value of the test statistic to be observed. In

absolute terms it is anticipated that large values of the test

statistic will be observed if the null hypothesis is not true.

The null hypothesis is rejected if the observed value of

the test statistic is greater than the critical value from a

t-distribution with the degrees of freedom as defined by ν1
or ν2.
The elements of the calculation of the test statistics

are
1
: n1 = 16, n2 = 16, na = 8, nb = 8, nc = 8,

x̄1 = 16.125, x̄2 = 14.125, s1 = 2.986, s2 = 2.778,
r = 0.687, sp = 2.884, γ = 29.845, t1 = 2.421, t2 = 2.419,
ν1 = 18.500, and ν2 = 18.422.
The calculated value of the test statistic t1 is 2.421. The

calculated value of the test statistic t2 is 2.419. Using the
degrees of freedom ν1 = 18.500 or ν2 = 18.422, from the
t-distribution at the 5% significance level the critical value

is 2.097. The calculated value of the test statistic is greater

than the critical value, therefore the null hypothesis is re-

jected (p=0.026).

Instead of performing the above calculations manually,

the partially overlapping samples t-tests can be easily per-

formed in R, using the package ‘Partiallyoverlapping’ (Der-

rick, 2017). In the following, let ‘a’ represent ‘horror’ movie

1
Unrounded values are used in each part of the calculation, each element displayed to 3 decimal places.
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Table 1 Sleep fragmentation scores obtained for each individual (ID)

Independent Samples Paired Samples

(Stage 1) (Stage 2)

ID Horror ID Feel good ID Horror Feel good

I1 20 I9 10 P1 14 15

I2 21 I10 16 P2 15 10

I3 16 I11 18 P3 18 15

I4 18 I12 16 P4 20 17

I5 14 I13 15 P5 11 13

I6 12 I14 14 P6 19 19

I7 14 I15 13 P7 14 12

I8 17 I16 10 P8 15 13

and ‘b’ represent ‘feel good’ movie. Example R code to en-

ter the data and perform the analyses assuming equal vari-

ances is given below:

install.packages(’Partiallyoverlapping’)
library(Partiallyoverlapping)
a.unpaired <- c(20,21,16,18,14,12,14,17)
b.unpaired <- c(10,16,18,16,15,14,13,10)
a.paired <- c(14,15,18,20,11,19,14,15)
b.paired <- c(15,10,15,17,13,19,12,13)
Partover.test(a.unpaired, b.unpaired,

a.paired, b.paired, var.equal=TRUE)
#Output: statistic =2.421 , parameter=18.500,
# p.value=0.026.

Alternatively, to perform the test when equal variances

are not assumed, the var.equal=TRUE option can be
dropped or replaced by var.equal= FALSE. The re-
sults from either test performed replicate their respective

manual calculation and show that the samples from group

‘a’ (Horrormovie) and group ‘b’ (Feel goodmovie) have sig-

nificantly different means at the 5% significance level.

When using the partially overlapping samples t-test at

the 5% significance level, there is a statistically significant

difference in the mean sleep fragmentation index between

individuals watching a ‘horror’ movie prior to bedtime,

and individuals watching a ‘feel good’ movie prior to bed-

time. The results suggest that individuals watching a ‘feel

good’movie before bedtime, have less disrupted sleep com-

pared to individuals watching a ‘horror’ movie before bed-

time.

Discussion

Further consideration is given to the choice between tra-

ditional tests that discard information, and the partially

overlapping samples t-tests. Table 2 gives a summary of

results obtained from the example in Table 1. This shows

results when performing ‘standard’ tests and results from

performing the partially overlapping samples t-tests, with

their respective statistical decisions at the 5% significance

level.

It can be seen from Table 2 that the choice of test to

apply is important because the statistical decision is not

the same. This example emphasises the lower power for

the traditional approaches. In general, the more observa-

tions used in the calculation of a test statistic, the greater

the power of the test will be. However, rare situations

may arise where the independent observations and the

paired observations have mean differences in opposing di-

rections. In these situations the partially overlapping sam-

ples t-testmay cancel out these differences, but to ignore ei-

ther the paired observations or independent observations

could create bias.

In the worked example, the two samples are partially

overlapping by design. It is also possible to encounter a

partially overlapping samples design, with incomplete ob-

servations. In these situations, the partially overlapping

samples t-test can similarly be performed on all available

observations, when the missing observations are MCAR.

To demonstrate this, consider the situation where there

are occasional errors with the machine recording sleep

fragmentation. As a result of errors, let the ‘horror’ ob-

servations for individuals ‘I1’ and ‘P1’ be missing. There

is now one missing independent ‘horror’ observation and

one missing paired observation. The resulting reduction

in sample size is further to the detriment of the paired

samples t-test, the independent samples t-test and Welch’s

test. Using the partially overlapping samples t-test, the ‘feel

good’ observation for individual ‘P1’ is not discarded, it is

treated as an independent observation. Revised elements

of the partially overlapping samples t-test are; n1 = 14,
n2 = 16, na = 7, nb = 9, nc = 7, x̄1 = 16.000,
x̄2 = 14.125, s1 = 2.961, s2 = 2.778, r = 0.736, sp =
2.864, γ = 26.903, t1 = 2.208, t2 = 2.194, ν1 = 17.733,
ν2 =17.148. Assuming equal variances and using the test
statistic t1, the p-value is 0.041. For completion, using the
test statistic t2, the p-value is 0.042. The null hypothesis is
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Table 2 Summary of results for the worked example, including the calculated value of each test statistic (t), the degrees
of freedom (df), the p-value (p) and the statistical decision.

Test t df p Decision

Paired samples t-test 1.821 7.000 0.111 Fail to rejectH0

Independent samples t-test 1.667 14.000 0.118 Fail to rejectH0

Welch’s test 1.667 13.912 0.118 Fail to rejectH0

Partially overlapping samples t-test (t1) 2.421 18.500 0.026 RejectH0

Partially overlapping samples t-test with Welch’s df (t2) 2.419 18.422 0.026 RejectH0

rejected at the 5% significance level and the statistical con-

clusions are as before.

The assumptions of the partially overlapping samples

t-test (t1) match the assumptions of the independent sam-
ples t-test. The assumptions are that observations within

a sample are independent of each other, observations are

sampled from normally distributed populations and equal

variances between the two groups. The assumptions of

the partially overlapping samples t-test with Welch’s de-

grees of freedom (t2), match the assumptions of Welch’s
test. This assumes that observations within a sample are

independent of each other and observations are sampled

from normally distributed populations. Similarly as stated

for the standard tests that discard data, extensive test-

ing of these assumptions is not recommended. The par-

tially overlapping samples t-test with Welch’s degrees of

freedom is Type I error robust with equal and unequal

variances, and the power difference relative to the inde-

pendent samples t-test is negligible. Many authors advo-

cate the routine use of Welch’s test in the two indepen-

dent samples case, (for example, Ruxton, 2006; Rasch et al.,

2011). Therefore, if in doubt and normality and MCAR can

be assumed, the partially overlapping samples t-test with

Welch’s degrees of freedom can be used routinely in the

two partially overlapping samples case.

Conclusion

A common issue in psychology is a paired samples design

with incomplete observations, or a study that otherwise re-

sults in both paired observations and independent obser-

vations being observed. These scenarios are referred to in

the literature as partially overlapping samples.

In these scenarios, the discarding of observations is

common practice. However, discarding observations may

cause bias, and has a substantial impact on power when

sample sizes are small and/or if the number of discarded

observations is large. The partially overlapping samples

approach uses all available data and has appeal when the

assumption of normality has not been grossly violated, and

the MCAR assumption is reasonable. These solutions do

not detract from other analytical strategies but do provide

a simple generalisation of the standard two sample t-tests.
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The Impact of an Extreme Observation in a Paired
Samples Design

Ben Derrick1 Antonia Broad Deirdre Toher Paul White

Abstract

The effect of systematically altering the value of a single observation within a
paired differences design is considered. A paradox is observed for the paired samples
t-test, where increasing the value of an observation in the direction of the true mean
difference results in a higher p-value. Using simulation, deviations from robustness
of the paired samples t-test is demonstrated, and is contrasted with Yuen’s paired
samples t-test and the Wilcoxon signed rank sum test.

1 Introduction
The paired samples t-test is logically and numerically equivalent to the one sample t-test
performed on paired differences, and it is one of the most well-established and commonly
performed statistical tests. Zimmerman (1997) demonstrated that the type I error rate
of the paired samples t-test remains close to the nominal significance level for varying
correlation and sample sizes under normality. Under less idealised conditions, Posten
(1979), Herrendörfer et al, (1983), Rasch and Guiard (2004), and Fradette et al. (2003)
found that the paired samples t-test maintains type I error robustness for a range of non-
normal distributions. However, Blair and Higgins (1985) found the Wilcoxon signed
rank sum test to also be type I error robust and to have some power advantages over the
paired samples t-test for a range of non-normal distributions. Chaffin and Rhiel (1993)
demonstrated that the tails of the sampling distribution of the paired samples test statistic
are skewness dependent, particularly with relatively small sample sizes.

Zumbo and Jennings (2002), using a novel contamination model, determined the ef-
fect of outliers on the validity and power of the paired samples t-test. They found the
paired samples t-test to have robust validity for symmetric contamination, but with in-
creasing inflation of the type I error rate with increasing asymmetric contamination. This
is coupled with degradation in power in the presence of outliers when the true effect is
small and sample sizes are small. In their work the number of outliers in the sample is
considered to be a random variable.

One of the assumptions of the paired samples t-test is that the differences between the
two samples are normally distributed, or alternatively and in a practical sense, that the
mean difference has a distribution which can reasonably be approximated by a normal

1Engineering, Design and Mathematics, University of the West England, Bristol, United Kingdom;
ben.derrick@uwe.ac.uk
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distribution. A closely related assumption is that there are no large outliers in the differ-
ences. When performing the paired samples t-test, there may be competition between the
magnitude of the mean difference and the standard deviation of the differences. In par-
ticular, extreme observations within a dataset can distort the balance between these two
elements of the test. To illustrate this, consider the example data in Table 1.

Table 1: Example data for six units within a paired design

Pair Sample 1 Sample 2 Difference

1 30 22 8
2 28 18 10
3 45 45 0
4 57 54 3
5 38 32 6
6 37 37 - X X

For the first five pairs, the mean of Sample 1 is greater than or equal to the mean of
Sample 2. For the sixth pair, let the difference between the Sample 1 observation and
the Sample 2 observation be denoted as X. Intuition might suggest that a positive value
of X may contribute towards an overall significant difference in means being observed.
If this were the case, a large positive value of X should seemingly contribute towards
a significant effect. In the following, the value of X is systematically altered in order
to demonstrate its impact on the paired samples t-test. The observation X will “march”
through the data set and will be colloquially referred to as a marching observation. Table 2
shows the results of a two-sided paired samples t-test for negative values of X through to
large positive values of X.

Table 2: Paired samples t-test on five degrees of freedom for increasing values of X

X t p-value X t p-value X t p-value

−3 1.984 0.104 11 3.670 0.014 25 2.425 0.060
−1 2.406 0.061 13 3.461 0.018 27 2.319 0.068

1 2.870 0.035 15 3.240 0.023 29 2.226 0.077
3 3.321 0.021 17 3.033 0.029 31 2.145 0.085
5 3.671 0.014 19 2.848 0.036 33 2.073 0.093
7 3.840 0.012 21 2.687 0.043 35 2.009 0.101
9 3.820 0.012 23 2.546 0.052 37 1.953 0.108

The values of X for which the null hypothesis of equal means is rejected at the 5%
significance level are highlighted in Table 2. For low values of X it can be seen that as the
value of X increases, the p-value decreases. In this example, as the value of X increases
beyond approximately 8, the p-value increases. As the value of the observed difference
in the sixth pair increases (and hence as the mean difference increases), the p-value also
increases. Observing an extreme value of X in the direction of the seemingly observed
effect can increase the sample variance to such an extent that it impedes the test from
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giving a significant result. The extreme observation paradox is the contrariwise p-value
increase as the value of an extreme observation increases in the direction of the overall
effect.

As the absolute value of the marching observation increases, the assumptions of the
paired samples t-test are increasingly violated. When the sample size is small or the
assumptions of the paired samples t-test are violated, researchers often choose to perform
the Wilcoxon signed rank sum test. Aguinis et al., (2013) summarise a comprehensive list
of techniques for dealing with outliers and state that non-parametric tests give results that
are robust in the presence of outliers. However, Zimmerman (2011) indicates that rank
based methods do not necessarily eliminate the influence of outliers. Another alternative
approach when outliers are present is to use Yuen’s paired samples t-test. In this test, the
principles of trimmed means outlined by Yuen (1974), are applied to the paired differences
(Wilcox, 2005).

In this paper, simulation is used to explore the scenarios in which the extreme obser-
vation paradox is observed in a paired samples design. We are particularly interested in
isolating those situations when two-sided hypothesis testing is undertaken (e.g. see Ring-
walt et al., 2011), when sample sizes are relatively small (i.e. when outliers may have
a greater effect on the paired samples t-test). The concept of a systematically marching
observation similar to the demonstration in Table 2, is used to investigate the effects of
an aberrant observation. In the simulation design, this aberrant observation is a forced
additional observation not fitting with the simulated data, and is not due to inherent vari-
ability. Simulations are performed for an aberrant observation in the direction of the
effect suggested by the rest of the sample, and secondly where an aberrant observation is
in the opposing direction of the effect suggested by the rest of the sample. Thus situations
where the sign of the marching observation is concordant or discordant with the mean
of the other observations are considered. For comparative purposes, the paired samples
t-test, the Wilcoxon signed rank sum test, and Yuen’s paired samples t-test are included.

Null hypothesis significance testing is most frequently performed with a nil-null hy-
pothesis specifying that no difference between groups is present, and a two directional
alternative (Levine et al., 2008). Therefore the impact of an extreme observation for a
two-sided test is the main emphasis of this paper. However, one-sided tests retain some
practical utility, and the simulations are extended to a one-sided test.

We hypothesise that the seemingly paradoxical behaviour exhibited in Table 2 will be
a feature of the paired samples t-test in general. In contrast, we hypothesise that Yuen’s
paired samples t-test and the Wilcoxon signed rank sum test will be robust to a single
aberrant observation.

In order to gain insight, we firstly investigate the mathematical limiting forms of each
of the three test statistics under consideration as a single marching observation becomes
increasingly large compared with the rest of the sample, and then proceed to a simulation
investigation.

2 An Unbounded Marching Observation
For development purposes consider a random sample X1, X2, . . . , Xn−1, Xn , and let
X(1) < X(2) < · · ·X(n−1) < X(n) denote the order statistics. Further, let Xk = Yk
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for (k = 1, 2, . . . , n − 1), let Y(1) < Y(2) < · · ·Y(n−1) be the corresponding order statis-
tics, and let Xn = ξ be the marching observation. In this notation, Yk (k = 1, . . . , n− 1)
denotes the observations prior to the inclusion of the marching observation.

The following analytical exposition investigates the behaviour of the one sample t-
test, Yuen’s paired samples t-test, and the Wilcoxon signed rank sum test, as the marching
observation Xn = ξ becomes relatively large compared with the rest of the sample.

2.1 The t-test
Consider the single sample t-test test statistic on the paired differences, used to test
H0 : µX = 0, defined by

T : =
X̄

σ̂X+

√
n

where

X̄ :=
X1 +X2 + · · ·+Xn

n
and

σ̂X+ :=

√
(X1 − X̄)2 + (X2 − X̄)2 + · · ·+ (Xn − X̄)2

n− 1
.

Observe that

X̄ =
(n− 1)Ȳ + ξ

n
, X̄ − Ȳ =

ξ − Ȳ
n

, and ξ − X̄ =
(n− 1)(ξ − Ȳ )

n
.

Thus

σ̂X+ =

√
(Y1 − X̄)2 + (Y2 − X̄)2 + · · ·+ (Yn−1 − X̄)2 + (ξ − X̄)2

n− 1
.

Note that
n−1∑

j=1

(Yj − X̄)2 =
n−1∑

j=1

(Yj − Ȳ + Ȳ − X̄)2

=
n−1∑

j=1

(Yj − Ȳ )2 + (n− 1)(Ȳ − X̄)2 + 2(Ȳ − X̄)
n−1∑

j=1

(Yj − Ȳ )

= (Y1 − Ȳ )2 + (Y2 − Ȳ )2 + · · ·+ (Yn−1 − Ȳ )2 + (n− 1)(Ȳ − X̄)2 + 0.

Hence

σ̂X+ =

√
(Y1 − Ȳ )2 + (Y2 − Ȳ )2 + · · ·+ (Yn−1 − Ȳ )2 + (ξ − X̄)2

n− 1
+ (X̄ − Ȳ )2.

For the n− 1 values, define

σ̂Y :=

√
(Y1 − Ȳ )2 + (Y2 − Ȳ )2 + · · ·+ (Yn−1 − Ȳ )2

n− 1
.
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Note that σ̂ does not have the “+” symbol, i.e. that the marching observation is not
included. An alternative definition for σ̂ could have n− 2 in the denominator and so

σ̂X+ =

√
σ̂2
Y +

(ξ − X̄)2

n− 1
+ (X̄ − Ȳ )2

=

√
σ̂2
Y +

(n− 1)2

n2

(ξ − Ȳ )2

n− 1
+

(ξ − X̄)2

n2

=

√
σ̂2
Y +

(ξ − Ȳ )2

n

and hence

T =
(n− 1)Ȳ + ξ√
nσ̂2

Y + (ξ − Ȳ )2

It can be seen that as ξ →∞, T → 1, and similarly as ξ → −∞, T → −1. Accordingly,
for any value of significance level likely to be encountered in practice the results ξ →
±∞, T → ±1 indicate that the null hypothesis would not be rejected under the stated
conditions.

2.2 Yuen’s Paired Samples t-test

Let γ denote the per tail proportion of trimming, let e := bγnc and let f := n − 2e.
Define the trimmed sample Xt1, Xt2, . . . , Xtf−1, Xtf as Xtk := X(k+e) (k = 1, 2, . . . , f )
and define the winsorised sample Xw1, Xw2, . . . , Xwf as

Xwk :=





X(e+1) k = 1, 2, . . . , e

X(k) k = e+ 1, e+ 2, . . . , n− e
X(n−e) k = n− e+ 1, n− e+ 2, . . . , n

Let X̄t =
∑f

k=1 Xtk/f , and X̄w =
∑n

k=1 Xwk/n define the trimmed mean and win-
sorised mean respectively and let, σ̂2

Xw+ =
∑n

k=1(Xwk − X̄w)2/(n − 1) denote the win-
sorised variance. In this notation, Yuen’s test statistic is given by TY := X̄t

σ̂Xw+

√
n(1−2γ).

For ξ < Y(e)

X̄t =
Y(e) + Y(e+1) + Ye+2 + · · ·+ Y(n−e−1)

f
,

X̄w =
eY(e) + Y(e) + Y(e+1) + Y(e+2) + · · ·+ Yn−e−1 + eYn−e−1

n
and

σ̂2
Xw+ =

e(Y(e) − X̄w)2 +
∑n−e−1

k=e (Y(k) − X̄w)2 + e(Y(n−e−1) − X̄w)2

n− 1

For fixed values, Y1, Y2, . . . , Yn−1, as ξ → −∞, TY := X̄t

σ̂Xw+

√
n(1 − 2γ) stabilises to

some limiting value.
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Similarly, for ξ > Y(n−e)

X̄t =
Y(e+1) + Y(e+2) + Y(e+2) + · · ·+ Y(n−e)

f
,

X̄w =
eY(e+1) + Y(e+1) + Y(e+2) + Y(e+2) + · · ·+ Y(n−e) + eYn−e

n
and

σ̂2
Xw+ =

e(Y(e+1) − X̄w)2 +
∑n−e

k=e+1(Y(k) − X̄w)2 + e(Y(n−e) − X̄w)2

n− 1

For fixed values, Y1, Y2, . . . , Yn−1 as ξ → −∞, TY := X̄t

σ̂Xw+

√
n(1 − 2γ) stabilises to

some limiting value. Moreover, for a sufficiently large sample, the limit values for both
directions of the marching observation should be close to each other. Hence the properties
displayed as ξ → −∞ or ξ → −∞ are consistent with TY being a robust test statistic.

2.3 The Wilcoxon signed rank sum test
Assuming no ties and no zero observations, then the test statistic for the Wilcoxon signed
rank sum test, W , is defined as

W = RX
1 sgn(X1) +RX

2 sgn(X2) + · · ·+RX
n sgn(Xn)

where RX
k is the rank of |Xk| among |X1| , |X2| , . . . , |Xn|. If X1, X2, . . . , Xn are inde-

pendent and follow the same symmetric continuous distribution, then W follows a distri-
bution with mean 0 and variance n(n+ 1)(2n+ 1)/6.

Denote by RY
k the rank of |Yk| among |Y1| , |Y2| , . . . , |Yn−1|. For

|ξ| > max {|Y1| , |Y2| , . . . , |Yn−1|} ,

W = RY
1 sgn(Y1) +RY

2 sgn(Y2) + · · ·+RY
n sgn(Yn) + n sgn(ξ).

Hence under the stated conditions, for fixed values Y1, Y2, . . . , Yn−1, the Wilcoxon signed
rank sum statistic stabilises to some situation dependent limit value as ξ → +∞, and
to some situation dependent limit value as ξ → −∞. The difference between these two
values is n−(−n) = 2n, and the standardised values differ by

√
24n/{(n+ 1)(2n+ 1)}.

These are close to each other for sufficiently large n.

3 Simulation Methodology
The approach is to generate sample data meeting the assumptions of the paired samples
t-test, and to then include an additional observation in the sample. This additional ob-
servation systematically changes in its observed value. The paired samples t-test, the
Wilcoxon signed rank test, and Yuen’s paired samples t-test, are performed for a two-
sided nil-null hypothesis. Under a two-sided nil-null hypothesis; the paired samples t-test
is used to test a distribution mean difference of zero; and Yuen’s paired samples t-test is
used to test the distribution of the trimmed mean equal to zero. Historically, the derivation
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of the Wilcoxon rank sum distribution has been made for continuous random variables un-
der a null hypothesis of no distributional differences, and is sensitive to changes in central
location (Gibbons and Chakraborti, 2011).

Within the simulation, the differences are generated rather than the paired observations
themselves. Specifically, n − 1 random normal deviates n1, x2, . . . , xn−1 are generated
using the Box-Muller (1958) transformation, where n represents the sample size of the
paired differences. Under H0 , the n− 1 random normal deviates have a population mean
of zero (µ = 0) and a standard deviation of one (σ = 1).

To isolate the phenomenon and behaviour of interest, if x̄n−1 =
∑n−1

i=1 xi/(n− 1) < 0
then x1, x2, . . . , xn−1 are multiplied by −1 to ensure a non-negative sample mean. (This
change of sign does not affect the validity of a two-sided test of a nil-null hypothesis for
these data.)

Under H1, for each of the n− 1 deviates, a constant d is added to each of the values.
The simulations are performed under normality so that the data fulfil the assumptions of
the test with the exception of an aberrant observation.

An additional observation, xn, is added to the n−1 observations to give a total sample
size of n. For any simulated sample, the value of xn is systematically varied from−8 to 8
in increments of 0.1. It is this value, xn, which is referred to as the ‘marching observation’.
The values of xn approximately range between±8 standard deviations from the mean and
would therefore cover limits likely encountered in a practical environment. Note that the
condition of x̄n−1 > 0 is to ensure that the concordance of effects (x̄n−1 > 0, xn > 0) or
discordance of effects (x̄n−1 > 0, xn < 0) can be established.

A summary of the values of n, xn and d used in the full factorial simulation design is
given in Table 3. The simulation is run 10 000 times for each combination of sample size
and mean difference.

In a second set of simulations, the impact of the marching observation is similarly
assessed, removing the condition that the mean sample difference is positive, and per-
forming a one-sided test. This is done as per the parameter combinations in Table 3 using
upper tail critical values.

Table 3: Summary of simulation design

Sample size 10, 15, 20, 25
Marching observation −8:8 (0.1)
Mean difference 0, 0.5
Significance level 5%
Number of Iterations 10 000
Programming Language R version 3.1.3

For the paired samples t-test and the Wilcoxon signed rank sum test, the default
stats package in R is used. Yuen’s paired samples t-test is performed using the R pack-
age PairedData as outlined by Wilcox (2005). 10% trimming per tail is performed.

The proportion of the 10 000 iterations where the null hypothesis is rejected is cal-
culated at the nominal significance level of 5%. This gives the Null Hypothesis Rejec-
tion Rate (NHRR). Note that the terminology NHRR is used and not type I error rate,
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because the inclusion of the marching observation would strictly invalidate the underpin-
ning assumptions of the resultant test. The effect of gradually increasing the marching
observation is to gradually violate the assumption of the nil-null hypothesis.

The research question being asked is “How is the performance of the paired samples
t-test, Yuen’s paired samples t-test, and the Wilcoxon signed rank sum test affected by
the presence of an aberrant observation?”

4 Results
The Null Hypothesis Rejection Rate (NHRR) is assessed for each of the three statistical
tests under consideration for a two-sided test, firstly when d = 0 and secondly in the
presence of a systematic effect size (d = 0.5).

Figure 1 gives the NHRR of the paired samples t-test when d = 0, using the nominal
significance level of 5%.

Figure 1: NHRR of the paired samples t-test, d = 0, two-sided

Figure 1 shows that when the value of xn = d = 0, the NHRR is approximately equal
to the nominal type I error rate of 5%. For positive sample means, as the value of xn starts
to increase above zero, the paired samples t-test has an increasingly higher NHRR until
a turning point is reached and with a subsequent return to the nominal type I error rate.
Extreme and increasingly larger values of the marching observation, xn, in the direction
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of the sample effect results in a progressively lower NHRR, with values noticeably lower
than the nominal type I error rate. These effects are replicated in all four sample sizes, but
the effects are marginally less noticeable with increasing sample size. Figure 1 also shows
that a large value for the marching observation in the opposite direction to the mean of
the first n − 1 observations, effectively results in a zero value for the NHRR. This effect
is consistent with the asymptotic behaviour given in Section 2 and the findings alluded to
in the example given in Table 2.

Figure 2 gives the NHRR of Yuen’s paired samples t-test and Figure 3 gives the NHRR
of the Wilcoxon signed rank sum test, both when d = 0.

Figure 2: NHRR of Yuen’s paired samples t-test, d = 0, two-sided.

Figure 2 and Figure 3 show that when xn > 0 and x̄n−1 > 0, both Yuen’s paired
samples t-test and the Wilcoxon signed rank sum test result in the null hypothesis being
rejected more frequently than the nominal significance level. Conversely, when xn < 0
and x̄n−1 > 0, both Yuen’s paired samples t-test and the Wilcoxon signed rank sum
test have a NHRR lower than the nominal significance level. These findings are entirely
consistent with expectation for a robust test given the design of the simulation.

For the Wilcoxon signed rank sum test, due to the use of rank values, the test is
not greatly affected by the magnitude of the extreme observation. Similarly due to the
trimming, Yuen’s paired samples t-test is not greatly affected by the magnitude of the
extreme observation. The phenomenon of a turning point when xn > 0 is not observed
for either the Wilcoxon signed rank sum test or Yuen’s paired samples t-test.
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Figure 3: NHRR of the Wilcoxon signed rank sum test, d = 0, two-sided.
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Figure 4 gives indicative power of the paired samples t-test, where d = 0.5. For a
sample of size n = 10 independent Normal deviates with µ = 0 and σ = 1, the power
of the test for the paired samples t-test for testing H0 : µ = 0 is 0.293. Under the same
conditions, the power of the paired samples t-test for n = 15, 20 and 25 is 0.438, 0.565,
and 0.670 respectively. These reference lines are added to the graphics for comparative
purposes.

Figure 4: NHRR of the paired samples t-test, d = 0.5, two-sided

Figure 4 shows that for xn > d = 0.5, increases in xn are initially associated with an
increase in power. This power increase relative to the expected power for each of the sam-
ple sizes is clear to see but might not be of great practical consequence. In addition, there
is a noticeable turning point at which the power decreases as xn further increases. For
larger sample sizes, the paired samples t-test is relatively more robust to the presence of
an extreme observation. For smaller sample sizes, the power reduction when an extreme
observation is present is exacerbated. When the marching observation is in the opposite
direction to the true effect, an increasingly large negative difference eliminates the effect
under the stated conditions.

Figure 5 gives the NHRR of Yuen’s paired samples t-test and Figure 6 gives the NHRR
of the Wilcoxon signed rank sum test, both when d = 0.5. Under the same normality
conditions, for n = 10, 15, 20 and 25, the corresponding power for the Wilcoxon signed
rank sum test is 0.279, 0.419, 0.543, and 0.648 respectively, and the corresponding power
for the Yuen paired samples t-test is 0.263, 0.356, 0.528, and 0.613 respectively. These
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reference lines are added to the graphic for comparative purposes.

Figure 5: NHRR of Yuen’s paired samples t-test, d = 0.5, two-sided

Figure 5 and 6 show that for xn > d = 0.5, increases in xn are associated with
an increase in power relative to the expected power for each of the sample sizes, but
the increase might not be of great practical consequence. For small samples, when the
marching observation is in the opposite direction to the true effect, an increasingly large
negative marching observation reduces the effect and this is seen in the reduced power.

The second simulation set-up is now considered. The condition that the sample mean
differences are positive is removed, and a one-sided test using the upper tail of the distri-
bution is performed. Figure 7 shows the impact of the marching observation for each of
the three tests when the null hypothesis is true.

Figure 7 demonstrates that the patterns observed and identifiable conclusions for the
two-sided tests are the same under these conditions. In fact, the impact of the marching
observation in the second simulation set-up is qualitatively similar to the first simulation
set-up. For brevity, the remaining graphics under this condition are not displayed.

5 Discussion
We have used a systematically increasing marching observation to demonstrate the im-
pact on the Null Hypothesis Rejection Rate (NHRR) for the paired samples t-test, Yuen’s
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Figure 6: NHRR of the Wilcoxon test, d = 0.5, two-sided.
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Figure 7: NHRR for each of the three tests when n = 15, d = 0, one sided
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paired samples t-test, and the Wilcoxon signed rank sum test. This systematic approach,
similar to one-factor at a time experimentation, would lend itself to other similar investi-
gations e.g. two independent samples design, or to other single sample tests such as the
single sample variance test, or be extended to investigations involving multiple march-
ing observations. In practice, xn and the condition x̄n−1 > 0 may be independent and
the condition x̄n−1 > 0 is imposed to separate potential different behaviours of the tests
statistics.

The mathematical exposition in Section 2 indicates that for a two sided paired samples
t-test, a large observation either concordant or discordant with the rest of the sample will
lead to a non-rejection of the null hypothesis. With the paired samples t-test the inclusion
of a very large positive observation xn into a sample with x̄n−1 > 0 may in fact severely
reduce the probability of rejecting the null hypothesis.

Simulations comprising normal deviates and in testing a nil-null hypothesis of no
location effects have been performed. Stipulation of the condition x̄n−1 > 0 does not
invalidate the two-sided test procedure. However, the inclusion of a single, but often large
discrepant observation, does imply that the nil-null hypothesis is not strictly true, hence
our use of the terminology of the NHRR (the null hypothesis rejection rate), rather than
using the terminology type I error rate.

For small sample sizes there is a paradox when performing the paired samples t-
test that more extreme values of the marching observation in the direction of the sample
mean difference result in a greater p-value than a less extreme value of the marching
observation.

Under a location shift model, the inclusion of genuinely large positive observation xn
into a sample with x̄n−1 should lead to an increase in statistical power in a two-sided test
of the nil-null hypothesis. This effect is observed with Yuen’s paired samples t-test and
with the Wilcoxon signed rank sum test, but it is not consistently observed with the paired
samples t-test.

Under a location shift model, the inclusion of a large negative observation xn into a
sample with x̄n−1 > 0 should lead to a relative decrease in statistical power. This effect is
observed with Yuen’s paired samples t-test and with the Wilcoxon signed rank sum test,
but the effect is most evident, and is sample size dependent, for the paired samples t-test.

In summary, Yuen’s paired samples t-test and the Wilcoxon signed rank sum test
broadly display properties consistent with being robust statistical tests in the presence of
a large outlier. In contrast the paired samples t-test displays behaviour strongly dependent
on the magnitude of the outlier. Specifically, for small sample sizes the more extreme the
values of the marching observation in the direction of the sample mean difference the
greater the p-value compared to a less extreme value of the marching observation.

Zumbo and Jennings (2002), using their novel contamination model, concluded that
the paired samples t-test had an inflated type I error rate with increasing asymmetric
contamination, however our marching observation simulations indicate that the effect of
a single outlier on this test is dependent on sample size, magnitude and direction of the
outlier, and could lead to increases and decreases in the NHRR. It should be noted that the
simulations of Zumbo and Jennings (2002) consisted of situations in which the underlying
distributions were contaminated with outliers and simultaneously a true null hypothesis is
maintained. In contrast our simulations are based on the fulfilment of correct assumptions
prior to the inclusion of the marching observation.
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Our simulations demonstrate the seemingly paradoxical effect of large outliers on
the performance of the paired samples t-test, and although we concur with Zimmerman
(2011) that rank based methods do not necessarily eliminate the influence of outliers, the
simulations indicate that Yuen’s paired samples t-test and the Wilcoxon signed rank sum
test have robust behaviour in the presence of a single outlying observation.

In the preparation of this paper, methods for outlier detection in the conditions above
were attempted, but we were unable to identify a suitable method. With reference to
paired samples, Preece (1982) states that formal procedures for the detection and rejection
of outliers are of negligible use for small sample sizes. Further debate and investigation
into outlier detection methods offers an area for further research.
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Abstract 

Tests for equality of variances between two samples which contain both paired observations 

and independent observations are explored using simulation. New solutions which make use 

of all of the available data are put forward. These new approaches are compared against 

standard approaches that discard either the paired observations or the independent 

observations. The approaches are assessed under equal variances and unequal variances, for 

two samples taken from the same distribution. The results show that the newly proposed 

solutions offer Type I error robust alternatives for the comparison of variances, when both 

samples are taken from the same distribution. 

Key words: Brown-Forsythe test; Equal variances; Partially overlapping samples; Pitman-

Morgan test; Simulation; Robustness 
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1. Introduction 

 

An equality of variances test is often performed as a preliminary test to inform the 

most appropriate statistical test for a comparison of means (Mirtagioğlu et al. 2017). The 

pitfalls of this process are well documented (Zimmerman, 2004; Zimmerman and Zumbo, 

2009; Rasch et al., 2011; Rochon et al., 2012). This paper considers tests for equality of var-

iances where it is the equality of variances that is of importance in their own right. Examples 

include a comparison of two treatments that have a similar mean efficacy, or a comparison 

of products in quality control, or a comparison of variances in human populations. Tests for 

equal variances have wide ranging applications including areas in archaeology, environ-

mental science, business and medical research (Gastwirth et al., 2009).   

Numerous tests for the comparisons of variances for two independent samples 

have been documented (Conover, et al., 1981). The Pitman-Morgan test is widely regarded 

as the optimum test of equal variances with two paired samples under normality (Mudholkar 

et al., 2003). However, situations may arise where there are two samples which contain both 

independent observations and paired observations (Derrick et al., 2015). For example, when 

some experimental data in a paired samples design is missing due to an error or accident. 

This paper is concerned with the direct comparison of variances between two sam-

ples, which contain both paired observations and independent observations. For simplicity, 

these scenarios are referred to as partially overlapping samples (Martinez-Camblor et al., 

2013; Derrick et al., 2017). The conditions of Missing Completely at Random (MCAR) are 

assumed.  

In the two partially overlapping samples scenario, if the number of paired observa-

tions is relatively large and the number of independent observations is relatively small, a 

solution may be to discard independent observations and perform a test for equal variances 

on the paired observations. The standard F-test is not appropriate for paired samples (Ken-

ny, 1953). For the comparison of variances for paired data, the Pitman-Morgan test can be 

performed (Pitman 1938; Morgan 1939). However, the Pitman-Morgan test is not robust to 

violations of the assumption of normality (Mudholkar et al., 2003; Grambsch, 2015). For 

heavy tailed distributions the Type I error rate of the Pitman-Morgan test is larger than nom-

inal Type I error rate (McCulloch, 1987; Wilcox, 2015).  

Alternatively, if the number of independent observations is relatively large and the 

number of paired observations is relatively small, a solution may be to discard paired obser-

vations and perform one of numerous established tests for the comparison of variances with 

independent observations.  

When the normality assumption is met, the standard F-test is the uniformly most 

powerful test for two independent samples. However, the standard F-test is not robust to 

deviations from normality (Marozzi, 2011).  

Levene (1960) proposed that for two independent groups, the differences between 

the absolute deviations from the group means could be used to assess equality of variances. 

In the two sample case, this test is equivalent to Student’s t-test applied to absolute devia-

tions from the group means. This version of Levene’s test, fails to control the Type I error rate 

when the population distribution is skewed (Carroll and Schneider, 1985; Nordstokke and 

Zumbo, 2007).  

Brown and Forsythe (1974) proposed alternatives to Levene’s test when data are 

not normally distributed. These alternatives use deviations from the median or trimmed 

mean. These variations are also often referred to as “Levene’s test” (Carroll and Schneider, 

1985; Gastwirth et al., 2009). For the avoidance of doubt, in this paper the convention fol-
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lowed is that assessing equality of variances using deviations from the mean is referred to as 

Levene’s test. Assessing equality of variances using deviations from the median is referred to 

as the Brown-Forsythe test.  

Conover et al. (1981) explored 56 tests for equal variances for two independent 

groups and noted that the five tests that are Type I error robust use deviations from the me-

dian rather than deviations from the mean. Conover et al. (1981) found that the only test 

that consistently meets Bradley’s (1978) liberal Type I error robustness criteria is the Brown-

Forsythe test, using absolute deviations from the median. There is no uniformly robust and 

most powerful test applicable for all distributions and sample sizes. The general consensus is 

praise of the Brown-Forsythe test using deviations from the median (Carroll and Schneider, 

1985; Nordstokke and Zumbo, 2007; Mirtagioğlu et al., 2017). However, it should be noted 

that this test can be conservative with small sample sizes (Loh, 1987; Lim and Loh, 1995). 

The use of absolute deviations rather than squared deviations better maintains Type I error 

robustness (Cody and Smith, 1997). 

Performing a test using either only the independent observations or only the paired 

observations may result in loss of power. The discarding of data is particularly problematic if 

the overall total sample size is small. In addition, if the assumption of MCAR is not reasona-

ble, the discarding of data is likely to cause bias. 

Bhoj (1979, 1984) and Ekbohm (1981, 1982) debated methods using all of the 

available data for testing the equality of variances in scenarios that they refer to as “incom-

plete data”. In this debate the authors do not recognise that a combination of independent 

observations and paired observations may occur by design and not only by accident. Bhoj 

(1979)  and Ekbohm (1981, 1982) independently considered a weighted combination of 

existing independent sum of squares techniques to create a new test statistic. Other solutions 

such as ignoring the pairing and performing the F-test on all of the available data were con-

sidered by Ekbohm (1982). Bhoj (1984) concluded that his test statistic is the most powerful if 

the correlation is negative or small. Otherwise, performing the F-test on all of the available 

data is more powerful than the solutions put forward by either of the authors (Ekbolm, 1982; 

Bhoj 1984). The simulations performed by these authors were on a relatively small scale, 

with only 1,000 replicates at each point in their design space. No solution was comprehen-

sively agreed upon for all scenarios, and this is likely to contribute to them not being well 

established. Furthermore the non-robustness of the Pitman-Morgan test has a detrimental 

impact on their weighted tests. A solution that uses all available data without a complex 

weighting structure, or the discarding of valuable information about the pairing, may there-

fore be advantageous. 

For the comparison of means when both independent observations and paired ob-

servations are present, partially overlapping samples t-tests are given by Derrick, et al. 

(2017). These solutions are generalised forms of the t-test and are Type I error robust under 

normality. These solutions are also robust in the comparison of two ordinal samples where 

the scale represents interval data (Derrick and White, 2018). 

We propose that as an alternative test of equal variances when there is a combina-

tion of paired observations and independent observations, the partially overlapping samples 

t-test can be performed, using deviations from the group medians, as outlined below. 

Let jiX  denote the i-th observation in group j for j = {Sample1, Sample 2}, and 

jX
~

 denote the sample median, so that jjiji XXY
~

 , then 
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where an  number of unpaired observations exclusive to Sample 1, bn  number of un-

paired observations exclusive to Sample 2, cn  number of pairs, jn  total number of ob-

servations in Sample j, 2
jS  variance of Sample j based on the jiY  observations. 

For the comparison of variances, Loh (1987) suggested adapting the unequal vari-

ances t-test using deviations from the medians.  For the comparison of means, Student’s t-

test is sensitive to deviations from the equal variances assumption (Ruxton, 2006; Derrick, 

Toher and White, 2016). As a result of this Derrick et al. (2017) additionally proposed the 

partially overlapping samples t-test for unequal variances. We propose that the partially 

overlapping samples test statistic unconstrained to equal variances can be similarly modified 

to provide a test for equality of variances so that: 
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2v  =  ba

cba

c
c nn

nnn

n
n 
















2

1
)1(


 where 

   
1

/

1

/
 

2

2

2

2

2

1

2

1

2

1

2

2

2

2

1

2

1


















n

nS

n

nS

n

S

n

S

  

Methodology for assessing the Type I error rate of these proposals is given in Sec-

tion 2, with an example application given in Section 3.  

 

2. Methodology 

 

For two samples containing both independent observations and paired observa-

tions, approaches for the comparison of variances are assessed using simulation. The ap-

proaches considered are the Brown-Forsythe test, the Pitman-Morgan test, and the proposed 

var1T  and var2T . Type I error robustness is assessed using Bradley’s (1978) liberal robustness 

criteria. Power is assessed for test statistics that do not violate Bradley’s liberal criteria. 

Within the simulation design, the sizes of an , bn , cn  are {5, 10, 30, 50}. The cor-

relation coefficients   are {0.00, 0.25, 0.50, 0.75}. Simulations for each possible parame-

ter combination of an , bn , cn ,   are performed in a factorial design. Standard Normal 

deviates are calculated using the Box-Muller (1958) transformation. For the cn  observa-

tions, correlated Standard Normal deviates are obtained as per Kenney and Keeping (1951) 
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In Section 4.1, the comparison of variances is performed for normally distributed 

data. Under the null hypothesis, 1X  ~ N(0,1) and 2X  ~ N(0,1). Under the alternative hy-

pothesis, the observations in Sample 2 are multiplied by two, thus 1X  ~ N(0,1) and 2X  ~ 

N(0,4).  

In Section 4.2, the comparison of variances is performed for skewed distributions. 

Under the null hypothesis, Normal deviates are first generated as above, and then the expo-

nential of each value is calculated. Under the alternative hypothesis this process is repeated, 

and each of the observations in Sample 2 are multiplied by two to create unequal variances.  

For each parameter combination, the data generating process is repeated 10,000 

times, and each of the statistical tests to be evaluated is performed on each replicate. Under 

the null hypothesis, the proportion of the replicates where the null hypothesis is rejected 

represents the Type I error rate. Under the alternative hypothesis, the proportion of the repli-

cates where the null hypothesis is rejected, represents the power of the test, assuming Type I 

error rates can be reasonably compared. The simulations and tests are performed in R, at 

the 5% significance level, two-sided. 

The simulation design allows that the conditions of MCAR can be assumed. 

 

3. Example 

 

In the assessment of an undergraduate university module, two lecturers share the 

marking of 32 student submissions. As part of the marking regulations, at random six of the 

submissions are independently assessed by both lecturers. The remaining submissions are 

randomly split between the two lecturers, ensuring that both have an equal number to as-

sess. Thus Lecturer 1 has one sample comprising of six paired observations and 13 inde-

pendent observations. Likewise, Lecturer 2 has a sample of equal size. The samples are par-

tially overlapping by design, thus MCAR can be reasonably assumed.  

There is concern that the lecturers do not allocate marks at the top end and the 

bottom end of the marking scale in the same way. Tests for equal variances are performed 

on the independent observations (Table 1), the paired observations (Table 2), and all obser-

vations. 

 

Table 1. Marks awarded to the 26 students randomly allocated to the lecturers. 

Lecturer 1 55 56 58 60 60 60 61 61 62 62 64 65 67 

Lecturer 2 40 50 51 60 60 60 60 60 61 66 69 72 82 

  

Table 2. Marks awarded by each lecturer for the six students that are marked by both. 

Student  A B C D E F 

Lecturer 1 54 55 60 63 65 70 

Lecturer 2 50 56 60 61 67 73 

 

The Brown-Forsythe test is performed on the data in Table 1 using the R package 

“lawstat” (Gastwirth et al., 2015). This shows no evidence to reject the null hypothesis of 

equal variances (t = -1.9673, v  = 24, p = 0.061). 

The Pitman-Morgan test is performed on the data in Table 2 using the R package 

“PairedData” (Champely, 2013). This shows no evidence to reject the null hypothesis of 

equal variances (t = -2.352, v  = 4, p = 0.078). 
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In order to perform the tests for equal variances using all of the available data, for 

each submission marked my Lecturer 1 the absolute deviation from the median mark given 

by Lecturer 1 is calculated. Similarly, the absolute deviations for Lecturer 2 are calculated. 

The partially overlapping samples t-test is performed on the absolute deviations us-

ing the R package “Partiallyoverlapping” (Derrick, 2017). The null hypothesis of equal vari-

ances is rejected at the 5% significance level for both the equal variances assumed variant (

var1t = -2.324, 1v = 26.211, p = 0.028) and the equal variances not assumed variant ( var2t  

= -2.183, 2v  = 17.488, p = 0.043). It would appear that Lecturer 2 is making greater use 

of the full range of potential marks relative to Lecturer 1. 

 

3.1. Comparison of variances for two samples from the Normal distribution 

Type I error rates and power are summarised for each of; the Brown-Forsythe test, 

BF, the Pitman-Morgan test, PM, and the partially overlapping samples tests, var1T  and var2T . 

Each of the test statistics are assessed under the null hypothesis where 1X  ~ N (0,1) and 

2X  ~ N (0,1). The Type I error robustness for each of the parameter combinations within 

the simulation design are summarised in Figure 1. 

 

Figure 1. Type I error robustness for each parameter combination, assessed against Brad-

ley’s liberal criteria, samples from Standard Normal distribution  

 

Figure 1 shows that the Pitman-Morgan test and the proposed test statistics are 

Type I error robust throughout the simulation design, with var1T  being more conservative 
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than var2T . For the smallest sample sizes within the design, the Brown-Forsyth test is very 

conservative. 

Relative power comparisons for each of the test statistics are assessed where 1X  ~ 

N (0,1) and 2X ~ N (0,4). The power averaged across the simulation design for increasing 

  is given in Figure 2. 

 

Figure 2. Relative power, averaged across the simulation design for increasing  , samples 

from Normal distributions. 

 

Figure 2 shows that the proposed test statistics var1T  and var2T  perform similarly to 

each other under normality, and they have superior power qualities to the standard tests 

which discard data. 

 

3.2. Comparison of variances for two samples from skewed distributions 

Each of the test statistics are assessed when both samples are taken from skewed 

but identical distributions. The Type I error robustness for each of the parameter combina-

tions within the simulation design are summarised in Figure 3. 
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Figure 3. Type I error robustness for each parameter combination, assessed against Brad-

ley’s liberal criteria, samples from skewed distribution.  

 

Figure 3 shows that the Pitman-Morgan test is not Type I error robust when the 

samples are taken from identical heavy tailed distributions. This supports the findings by 

McCulloch (1987) and Wilcox (2015). In addition it can be seen that var2T  does not fully 

maintain Type I error robustness. Further investigation shows that var2T  is liberal when one 

of the samples is more dominant in terms of size, and when there is a large imbalance be-

tween the number of independent observations and the number of pairs. 

Relative power comparisons for each of the test statistics are assessed where the 

samples are taken from different skewed distributions. Due to the poor Type I error robust-

ness of the Pitman-Morgan test and var2T , this comparison is done only for the Brown-

Forsythe test and var1T . The power averaged across the simulation design for increasing   is 

given in Figure 4. 
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Figure 4. Relative power, averaged across the simulation design for increasing  , samples 

from skewed distributions. 

 

Figure 4 shows that the proposed solution, var1T , is more powerful than the Brown-

Forsythe test. A comparison of Figure 4 against Figure 2 also indicates that both the Brown-

Forsythe test and the newly proposed test, var1T , are less powerful when samples are taken 

from a heavy-tailed distribution. 

 

4. Conclusion 

 

A common research question in psychology, education, medical sciences, business 

and manufacturing, is whether or not the variances are equal (Gastwirth, Gel and Miao, 

2009).  

There has been little research into techniques for the comparison of variances for 

samples that contain both independent observations and paired observations. Standard so-

lutions that involve discarding data are less than desirable. Two solutions that make use of 

the tests statistics by Derrick et al. (2017) are proposed in this paper. Simulations across a 

range of sample sizes show that these solutions are Type I error robust under normality and 

the assumption of MCAR. These solutions are more powerful than established solutions that 

discard data, namely the Pitman-Morgan test and the Brown-Forsythe test. 
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The equal variances form of the partially overlapping samples variances test, var1T , 

is marginally more powerful than the unconstrained form of the test var2T .  

The proposed test statistic var1T  further maintains Type I error robustness for skewed 

distributions where var2T  does not. var1T  is therefore recommended as a powerful alternative 

to test for the equality of variances between two samples when there is a combination of 

paired observations and independent observations in two samples. 
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Parametric and non-parametric tests for the comparison of two samples which both include paired and 

unpaired observations. 

    

Introduction 

 

Basic teaching of statistics usually assumes a perfect world with completely independent samples or 

completely dependent samples. Real world study designs and associated analyses are often far from 

these simplistic ideals. There are occasions where there are a combination of paired observations and 

independent observations within a sample. These scenarios are referred to as ‘partially overlapping 

samples’ (Martinez-Camblor et.al., 2012, Derrick et.al., 2015; Derrick et.al., 2017). Other 

terminology for the described scenario is ‘partially paired data’ (Samawi & Vogel, 2011; Guo & 

Yuan, 2017). However, this terminology can be misconstrued as referring to pairs that are not directly 

matched (Derrick et.al., 2015).  

 

A typical partially overlapping samples scenario is a design which includes both paired observations 

and unpaired observations due to limited resource of paired samples. When a resource is scarce, 

researchers may only be able to obtain a limited number of paired observations, but would want to 

avoid wastage and also make use of the independent observations. For example, in a clinical trial by 

Hosgood et.al., (2017) assessing the performance of kidneys following transplantation, one group 

incorporates a new technique that reconditions the kidney prior to the transplant, and one group is the 

control group of standard cold storage. When the kidneys arrive at the transplanting centre in pairs, 

one is randomly allocated to each of the two groups. When a single kidney arrives at the transplanting 

centre, this is randomly allocated to one of the two groups in a 1:1 ratio.  

 

A commonly encountered partially overlapping samples problem is a paired samples design which 

inadvertently contains independent observations (Martinez-Camblor et.al., 2012; Guo & Yuan, 2017). 

In these circumstances the reason for the missing data should be considered carefully. Solutions 

proposed within the current paper do not detract from extensive literature on missing data and 

solutions herein are assessed under the assumption of data missing completely at random (MCAR).  

 

A naive approach often taken when confronted with scenarios similar to the above is to discard 

observations and perform a basic parametric test (Guo & Yuan, 2017). Naive parametric methods for 



 
 

the analysis of partially overlapping samples used as standard include; i) Discard the unpaired 

observations and perform the paired samples t-test, 
1T ; ii) Discard the paired observations and 

perform the independent samples t-test assuming equal variances, 
2T ; iii) Discard the paired 

observations and perform the independent samples t-test not assuming equal variances, 3T . 

  

When the omission of the paired observations or independent observations does not result in a small 

sample size, traditional methods may maintain adequate power (Derrick et.al., 2015). However, the 

discarding of observations is particularly problematic when the available sample size is small 

(Derrick, Toher and White, 2017). Other naive approaches include treating all the observations as 

unpaired, or randomly pairing data (Guo & Yuan, 2017). These approaches fail to maintain the 

structure of the original data and introduce bias (Derrick et.al., 2017). 

 

Amro and Pauly (2017) define three categories of solution to the partially overlapping samples 

problem that use all available data and do not rely on resampling methods. The categories are; tests 

based on maximum likelihood estimators, weighted combination tests, and tests based on a simple 

mean difference. Early literature on the partially overlapping samples framework focused on 

maximum likelihood estimators when data are missing by accident. Guo and Yuan (2017) reviewed 

parametric solutions under the condition of normality, and recommend the Lin and Strivers (1974) 

maximum likelihood approach when the normality assumption is met. However, Amro and Pauly 

(2017) demonstrate that this maximum likelihood estimator approach has an inflated Type I error rate 

under normality and non-normality. Furthermore, maximum likelihood proposals are complex 

mathematical procedures, which would be a barrier to some analysts in a practical setting. Thus these 

are not considered further in this paper. 

 

A weighted combination based approach is to obtain the p-values for 
1T  and 

2T  as defined above, 

then combine them using the weighted z-test (Stouffer et.al., 1949), or the generalised Fisher test 

proposed by Lancaster (1961). When used to combine p-values from independent tests, the latter 

method is more powerful (Chen, 2011). A procedure specifically attempting to act as a weighting 

between the paired samples t-test and the independent samples t-test under normality was proposed by 

Bhoj (1978). Uddin and Hasan (2017) optimised the weighting constants used by Bhoj (1978) so that 

the combined variance of the two elements minimized.  Further weighted combination tests are 

proposed by Kim et.al. (2005), Samawi and Vogel (2011), and Martinez-Camblor et.al. (2012). All of 

these weighting based approaches have issues with respect to the interpretation of the results. The 



 
 

mathematical formulation of the statistics does not have a numerator that is equivalent to the 

difference in the two means. Neither do these proposals have a denominator that represents the 

standard error of the difference in two sample means, therefore confidence intervals for mean 

differences are not easily formed. Thus these are not considered further in this paper. 

  

Looney and Jones (2003) put forward a parametric solution using all of the available data that does 

not rely on a complex weighting structure and is regarded as a simple mean difference estimator. 

However, several issues with the test have been identified and their solution is not Type I error robust 

under normality (Mehrotra, 2004; Derrick et.al., 2017). A correction to the test by Looney and Jones 

(2003) is provided by Uddin and Hasan (2017), however the test statistic is a minor adjustment, and 

also makes reference to the z-distribution. 

  

For the partially overlapping two group situation, two parametric solutions that are Type I error robust 

under the assumptions of normality and MCAR are given by Derrick et.al. (2017). These solutions are 

simple mean difference estimators and act as an interpolation between, firstly 
1T  and 

2T , or secondly 

between 
1T  and 3T . These solutions are referred to as the partially overlapping samples t-tests. The 

authors noted that their parametric partially overlapping samples t-tests can be readily developed to 

obtain non-parametric alternatives. 

  

Naive non-parametric tests for the analysis of partially overlapping samples include; i) Discard the 

paired observations and perform the Mann-Whitney-Wilcoxon test, MW; ii) Discard the unpaired 

observations and perform the Wilcoxon Signed Rank test, W. 

  

In a comparison of samples from two identical non-normal distributions, non-parametric tests are 

often more Type I error robust than their parametric equivalents (Zimmerman, 2004). For skewed 

distributions with equal variances, the MW test is the most powerful Type I error robust test when 

compared against 
2T  and 3T  (Fagerland & Sandvik, 2009a). 

 

These traditional non-parametric tests provide low power when the discarding of observations result 

in a small sample size. For very small samples MW will only detect differences when a very large 

effect size is present (Fay & Proschan, 2010). The normality assumption is often hard to ascertain for 



 
 

small samples, thus non-parametric solutions that take into account all of the available data would be 

beneficial. 

  

In textbooks by Mendenhall, Beaver and Beaver (2008) and Howell (2012), the null hypothesis of the 

MW test is reported as the distributions are equal. Fagerland and Sandvik (2009b) assert that the null 

hypothesis is more correctly reported as Prob(X > Y) = 0.5. For a comparison of two distributions, it 

is possible that the latter null hypothesis is true, but for the samples to be from distributions of 

different shape. When the distributions are equal other than in central location, the MW test can be 

considered as a comparison of central location (Skovlund & Fenstad, 2001). The MW test is not 

recommended as a test for location shift when variances are not equal (Zimmerman 1987; Penfield, 

1994; Moser & Stevens, 1989). Ultimately, the MW test can detect differences in the shape of the two 

sample distributions, or their medians, or their means (Hart, 2001). 

  

When there are three or more groups with both paired observations and independent observations, a 

possible non-parametric approach is the Skillings-Mack test (Skillings & Mack, 1981). This test is 

equivalent to the Freidman test when data are balanced (Chatfield & Mander, 2009). For an 

unbalanced design the Skillings-Mack test requires that any block with only one observation is 

removed. The Skillings-Mack test therefore cannot be used in the two group situation. This gives 

further motivation for the development of non-parametric tests for the two sample scenario. 

 

In this paper, non-parametric solutions to the partially overlapping samples problem are considered, 

under normality and non-normality. This comparison includes a recent parametric solution proposed 

by Derrick et.al. (2017) for comparative purposes. The parametric solutions by Derrick et.al. (2017) 

and newly proposed non-parametric solution are defined, and methodology for comparing the Type I 

error robustness and power of the solutions is given. Results of the simulations for Normal and non-

normal distributions are then considered, followed by a practical example incorporating the 

techniques explored. 

 

Solutions to the partially overlapping samples problem 

 

Parametric test statistics for the comparison of equal means in the presence of partially overlapping 

samples are taken from Derrick et.al. (2017). Proposed non-parametric solutions derived using the 



 
 

ranks of the actual values within the partially overlapping samples t-test procedure are then 

introduced. In line with Derrick et.al. (2015) who derived solutions for two partially overlapping 

samples of a dichotomous variable, the standard error of the partially overlapping samples tests is 

derived as the difference between two random variables.  

 

Parametric solutions 

 

Without loss of generality let =1X mean of Sample 1, =2X  mean of Sample 2, =an  number of 

unpaired observations exclusive to Sample 1, =bn  number of unpaired observations exclusive to 

Sample 2, =cn  number of pairs, =1n  number of observations in Sample 1 (i.e. =1n an + cn ), 

=2n  number of observations in Sample 2 (i.e. =2n bn  + cn ), =2

1S  variance of Sample 1, =2

2S  

variance of Sample 2, r  = Pearson’s correlation coefficient for the cn  observations. All variances 

above are calculated using Bessel’s correction as per Kenney & Keeping (1951). 

 

The parametric partially overlapping samples test statistic, new1T , is an interpolation between the 

paired samples t-test, 
1T , and the independent samples t-test assuming equal variances, 

2T , defined 

as:  
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The test statistic new1T  is referenced against the t-distribution with degrees of freedom: 
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For normally distributed data, the independent samples t-test is sensitive to deviations from the equal 

variances assumption. If equal variances cannot be assumed then Welch’s test is a Type I error robust 

alternative under normality (Ruxton, 2006; Derrick, Toher & White, 2016). It follows that new1T  is 

also sensitive to deviations from the equal variances assumption (Derrick et.al., 2017). The partially 



 
 

overlapping samples test statistic when the comparison is not constrained to equal variances, new2T , is 

an interpolation between the paired samples t-test, 
1T ,  and Welch’s test, 3T , defined as: 
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The test statistic new2T  is referenced against the t-distribution with degrees of freedom:  
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These solutions are easily applied using the R package ‘Partiallyoverllaping’ (Derrick, 2017) as 

demonstrated by Derrick, Toher & White (2017) 

 

Non-parametric solutions 

 

For the proposed non-parametric solutions, all observations are pooled into one data set and assigned 

rank values in ascending order. This is equivalent to an RT-1 (Conover & Iman, 1981) ranking 

procedure. The rank values are substituted into the elements of the calculation for new1T  and new2T  in 

place of the observed values. Tied ranks are each given the median of the tied ranks. This gives the 

test statistics 1RNKT  and 2RNKT  respectively. The degrees of freedom are 
1  and 

2  respectively, 

calculated using the pooled rank values. The calculation of r uses an RT-2 (Conover & Iman, 1981) 

ranking procedure, so that r represents Spearman’s rank correlation coefficient between the paired 

observations. For the two sample situation, the means, variances, skewness and kurtosis maintain 

similar characteristics for a distribution transformed to ranks, as are observed in the original 

distribution (Zimmerman, 2011). 

 

 

 

 



 
 

Simulation methodology 

 

The robustness of existing test statistics and proposed test statistics for two samples containing both 

independent observations and paired observations is assessed using simulation. Monte-Carlo studies 

are long established techniques for identifying appropriate test statistics in a given scenario (Serlin, 

2000). Firstly, Type I error robustness is assessed using liberal robustness criteria (Bradley, 1978). 

Power is only calculated for Type I error robust statistics, so that fair power comparisons can be made 

(Zimmerman, 1987; Penfield, 1994). 

 

The values an , bn , cn ,  , 
2

1  and 
2

2  are defined as part of a factorial design as given in Table 1. 

Normal deviates for an  and bn  observations are calculated using methodology outlined by Box and 

Muller (1958). Similarly, two sets of cn  observations are generated, and are converted to correlated 

Normal variates using methodology outlined by Kenney and Keeping (1951).  

 

Each of the test statistics given in Table 1 are assessed firstly under the standard Normal distribution. 

For the comparison of test statistics under non-normality, random numbers are generated by 

transformation of bivariate standard Normal deviates, N (Forbes et.al., 2011). For a moderately 

skewed distribution, Gumbel deviates, G, are generated using the transformation G = − log(− log U), 

where U is the cumulative distribution function of N. To demonstrate the robustness of the test 

statistics for a more extreme skewed distribution, bivariate Normal deviates, N, are transformed into 

Lognormal deviates, L, using the transformation L = exponential (N).  

 

In this Monte-Carlo study, the nominal Type I error rate is nominalα  =0.05. For each of the parameter 

combinations in Table 1, two sided tests are performed and the null hypothesis rejection rate is the 

proportion of the 10 000 replicates where the null hypothesis is rejected. 

  

The alternative hypothesis is generated by adding 0.5 to the 2n  observations so that =− 12  0.5. 

The difference applied is arbitrary for the purposes of comparing which test statistics are more 

powerful relative to each other for otherwise equivalent simulation parameters. 

 



 
 

The transformations outlined above ensure that the distributions compared are of the same shape, and 

only differ in terms of central location. Additional analyses are then performed when the samples are 

drawn from the Normal distribution with unequal variances, and then when samples are drawn from 

distributions with differing functional form. For the latter one sample is taken from a Normal 

distribution and one sample taken from a Lognormal distribution. For assessing the Type I error 

robustness under normality with unequal variances, the 1n  observations are multiplied by 
1  and the 

2n  observations multiplied by 
2 . Standardising is performed when comparing samples from two 

distributions with differing functional form. 

 

Table 1. Summary of the simulation design. 

Parameter Values 

an  5, 10, 30, 50, 100, 500 

bn  5, 10, 30, 50, 100, 500 

cn  5, 10, 30, 50, 100, 500 

  -0.75, -0.50, -0.25, 0.00, 0.25, 0.50, 0.75 

),( 2

2

2

1   (1,1) , (1,4) , (4,1) 

),( 21   (0,0) , (0,0.5) 

Distributions Normal, Lognormal, Gumbel. 

Test 

statistics 

1T   Paired Samples t-test (discard unpaired observations) 

2T  Equal variances assumed Independent samples t-test (discard paired observations) 

3T  Welch’s unequal variances independent samples t-test (discard paired observations) 

MW Mann-Whitney test (discard paired observations) 

W Wilcoxon test (discard unpaired observations) 

new1T  Partially overlapping samples t-test, equal variances assumed 

new2T  Partially overlapping samples t-test, equal variances not assumed 

RNK1T  Non-parametric partially overlapping samples t-test, equal variances assumed 

RNK2T  Non-parametric partially overlapping samples t-test, equal variances not assumed 

Iterations 10,000 

nominalα  0.05 

Language  R version 3.1.3 

 

  



 
 

Results 

 

In general, Type I errors are more serious than Type II errors (Wells & Hintze, 2007). The results 

therefore show Type I error rates for each of the test statistics considered, followed by power only for 

test statistics that control Type I error. The scenario where samples are drawn from the same 

distribution is firstly considered. This is followed by the scenario where samples are drawn from the 

Normal distribution with unequal variances, and finally the scenario when the samples are drawn from 

distinctly differing distributions.  

 

Samples taken from distributions of the same shape 

 

Null hypothesis rejection rates are obtained for each of the parameter combinations where 21  =  

and 
2

2

2

1  = . Sampling from identical distributions with equal underlying population variances 

ensures that a difference in central location is directly assessed. For each parameter combination, the 

null hypothesis rejection rate represents the Type I error rate of the test. The Type I error rates for 

each of the distributions are given in Figure 1. Reference lines added represent Bradley’s liberal Type 

I error robustness criteria.  



 
 

 
 
Figure 1. Type I error rates for when both samples are taken from the same distribution. 

 

Figure 1 provides evidence that when two samples are drawn from the Standard Normal distribution, 

traditional test statistics that discard data, 
1T , 

2T , 3T , MW, W, MW, remain within Bradley’s liberal 

Type I error robustness criteria. This coincides with findings by Fradette et.al., (2003). Figure 1 also 

shows that the statistics new1T  and new2T  are Type I error robust under normality and equal variances. 

For normally distributed data, the proposed non-parametric statistics, RNK1T  and RNK2T , have similar 

Type I error robustness to new1T  and new2T .  

 

Figure 1 suggests that the test statistics under consideration are not sensitive to relatively minor 

deviations from the Normal distribution. However, it can be seen that only the following test statistics 

maintain Bradley’s liberal criteria when both samples are drawn from a Lognormal distribution; 
2T , 



 
 

MW, W, new1T , RNK1T , and RNK2T . The paired samples t-test, 
1T , is slightly conservative relative to 

the other tests statistics.  

 

The degree of skewness for the Lognormal distribution in this paper is larger than the degree of 

skewness considered by Fagerland and Sandvik (2009a). Figure 3 shows that the MW test remains 

Type I error robustness for the more extreme degree of skewness in this paper. However, test statistics 

using separate variances, 3T  and new2T , frequently exceed the upper limit of Bradley’s liberal Type I 

error robustness criteria.  

 

To explore in more detail the performance of the tests under extreme scenarios, Table 2 gives Type I 

error rates under the Lognormal distribution for small sample size combinations and combinations 

where max { an , bn , cn } - min{ an , bn , cn } is large. 

 

Table 2. Type I error rates for selected sample size combinations under the Lognormal distribution, 

= 0.5.   

an  bn  cn  
1T  2T  3T  W MW new1T  new2T  RNK1T  RNK2T  

5 5 5 .029 .027 .020 .056 .062 .044 .018 .051 .042 

10 5 5 .024 .042 .047 .046 .059 .046 .028 .044 .041 

10 10 5 .022 .038 .033 .050 .064 .032 .020 .049 .046 

10 10 10 .027 .040 .038 .051 .042 .045 .032 .048 .048 

5 5 10 .030 .030 .020 .057 .049 .044 .013 .043 .042 

30 5 5 .031 .058 .120 .048 .067 .046 .080 .047 .052 

30 10 5 .026 .056 .070 .049 .067 .038 .060 .045 .045 

50 5 5 .022 .053 .135 .052 .059 .055 .098 .040 .043 

100 5 5 .019 .055 .176 .048 .061 .038 .130 .043 .065 

500 5 5 .022 .044 .173 .047 .063 .042 .150 .049 .053 

5 5 30 .032 .036 .025 .050 .053 .053 .036 .053 .051 

5 10 30 .047 .044 .048 .040 .053 .072 .052 .050 .051 

5 5 50 .049 .025 .016 .053 .048 .057 .046 .040 .039 

5 5 100 .050 .028 .017 .053 .046 .056 .043 .056 .056 

5 5 500 .062 .033 .018 .053 .056 .066 .059 .055 .055 

 

The range of the sample sizes in this simulation design is large, Table 2 shows that the inflation in the 

Type I error rate of 3T  and new2T  increases as max { an , bn , cn } - min{ an , bn , cn } increases. In 

the scenario of partially overlapping samples, a large overall sample size does not necessarily result in 

a robust test. Simply increasing the number of independent observations does not compensate for a 



 
 

small number of paired observations, and vice-versa.  When sample sizes are balanced, the non-

parametric tests maintain Type I error robustness for the smallest sample size combinations in the 

simulation design. For a balanced design with increasing sample size the parametric test statistics 

improve their Type I error robustness as per the central limit theorem, the sampling distribution of the 

mean differences approaches normality as sample size increases. 

 

Under the alternative hypothesis, when =− 12  0.5, the null hypothesis rejection rate represents the 

power of the test. For test statistics that do not clearly violate Bradley’s liberal robustness criteria, the 

power of the test statistics for each of the distributions is given in Table 3.  

 

Table 3. Power when =− 12  0.5. Calculated at = 0.05, two sided, averaged over all values of 

cn . N = Normal, L = Lognormal, G = Gumbel. For test statistics using only independent 

observations, the value for = 0 is displayed. NR is displayed if not Type I error robust. 

    
1T  

2T  3T  W MW new1T  new2T  

 

RNK1T

 

 

RNK2T

 

N 

ba nn =

 

> 0 .695 

 .567 .565 

.693 

.563 

.865 .864 .856 .855 

0 .558 .556 .819 .819 .811 .811 

< 0 .481 .474 .779 .779 .772 .771 

ba nn 

 

> 0 .695 

 .455 .433 

.692 

.438 

.839 .832 .829 .824 

0 .559 .553 .806 .798 .795 .790 

< 0 .482 .476 .774 .767 .763 .760 

G 

ba nn =

 

> 0 .611 

.472 .470 

.630 

.510 

.783 .782 

.718 

.678 

.815 .814 

0 .464 .483 .720 .761 .760 

< 0 .398 .407 .678 .719 .719 

ba nn 

 

> 0 .612 

.345 .340 

.629 

.380 

.740 .735 

.689 

.651 

.779 .776 

0 .466 .481 .693 .740 .736 

< 0 .398 .410 .655 .702 .699 

L 

ba nn =

 

> 0 .455 

.340 NR 

.727 

.533 

.596 NR 

NR 

NR 

.893 .891 

0 .334 .729 .535 .857 .856 

< 0 .297 .693 .506 .826 .826 

ba nn 

 

> 0 .453 

 .194 NR 

.562 

.518 

.514 NR 

NR 

NR 

.874 .873 

0 .336 .430 .467 .851 .850 

< 0 .296 .423 .438 .825 .826 

 

When population variances are equal, Table 3 shows that test statistics not assuming equal variances, 

new2T  and RNK2T , perform similarly to their counterparts where equal variances are assumed new1T  and 

RNK1T  respectively. 

 



 
 

From Table 3 it can be seen that for normally distributed data, traditional parametric methods, 
1T , 

2T  

and 3T , are more powerful than their non-parametric counterparts, W and MW. Similarly when the 

normality assumption is true, the parametric statistics new1T  and new2T  are marginally more powerful 

than their non-parametric counterparts RNK1T  and RNK2T , but not to any meaningful extent. Figure 2 

shows the power for each parameter combination within the simulation design for new1T and RNK1T . 

 

Figure 2. Power for each parameter combination, for new1T  and RNK1T . 

 

For the non-normal distributions in this simulation, non-parametric methods are more powerful than 

their parametric counterparts when both samples are taken from the same distribution. For increasing 

degrees of skewness, the proposed non-parametric test statistic, RNK1T , exhibits an increasing power 

advantage over its parametric counterpart, new1T . 

 



 
 

From Table 3 it is apparent that for all of the test statistics making use of some paired element, a 

negative correlation between two samples is problematic. A large positive correlation results in more 

powerful results. This is true for each of the distributions in the simulation design. For selected tests 

making use of the paired data, Figure 3 shows the power for each parameter combination within the 

simulation design. 

Figure 3. Power of selected test statistics making use of paired data, for two N(0,1) samples. 

 

Figure 3 illustrates that as the correlation between the paired observations increases, the power of the 

tests statistics making use of paired information increases. For the Normal distribution and the 

Gumbel distribution, when the correlation coefficient is negative or small, the power advantage when 

using all of the available data is large. For the Gumbel distribution, new1T  is only slightly less 

powerful than RNK1T , however for the Lognormal distribution there is a clear power advantage of 

RNK1T  over new1T . This suggests that the proposed RNK1T  is particularly useful for comparing two 

samples from a distribution with a clear deviation from normality, and a negative or small correlation 

between the two groups. 



 
 

 

Samples taken from the Normal distributions with unequal variance 

 

Null hypothesis rejection rates are obtained for each of the parameter combinations where 21  =  

and 
2

2

2

1   . When the observations are sampled from two Normal distributions with equal means 

and unequal variances, the null hypothesis rejection rate represents the Type I error rate of the test. 

Type I error rates for each of the test statistics across the simulation design are given in Figure 4. 

 

Figure 4.  Type I error rates for samples from the Normal distribution with =2

1 1, =2

2 4. 

 

Figure 4 shows that Type I error robustness is maintained under normality for new2T . Thus new2T  is the 

only test statistic making use of all available data to be Type I error robust under normality for both 

equal and unequal variances. 

  



 
 

For normally distributed data and unequal population variances, the test statistics not assuming equal 

variances are more Type I error robust than the statistics that do assume equal variances. 

Nevertheless, for RNK2T  the number of times the null hypothesis is rejected is in excess of acceptable 

levels. Closer inspection of our results shows these statistics are not robust when the number of paired 

observations is large relative to the total number of independent observations. This effect is 

exacerbated when   is large and positive. To a lesser extent, the rejection rates for RNK2T  are 

inflated when the total number of independent observations are very large relative to the number of 

paired observations. 

  

Samples taken from distributions of unequal shape 

 

To consider the behaviour of the test statistics when the two samples are drawn from distinctly 

different distributions (standardised to ensure equal means), Figure 5 shows the null hypothesis 

rejection rates when observations for Sample 1 are taken from the standard Normal distribution, and 

observations for Sample 2 are taken from the Lognormal distribution.  

 



 
 

 

Figure 5. Sample 1 values taken from the standard Normal distribution, Sample 2 observations are 

taken from a standardised Lognormal distribution. 

 

Under the simulation design, standardising of the population ensures that the mean for both 

distributions is the same, but the shapes of the distributions are different. The null hypothesis rejection 

rate only represents the Type I error rate if the null hypothesis is strictly that there is no difference in 

means. Figure 5 shows that the parametric tests are not sensitive to the different shapes of the 

distributions and remain valid for testing the hypothesis of equal means. Conversely, the null 

hypothesis rejection rate is well in excess of 5% for the non-parametric test statistics. The non-

parametric statistics are sensitive to differences in the shape of the distribution, thus could be used to 

assess the null hypothesis of equal distributions. The null hypothesis rejection rates represent power 

under the latter form of the null hypothesis.  

 

  



 
 

Example 

 

The following is a classic example by Rempala and Looney (2006), used by Guo and Yuan (2017) 

and Amro and Pauly (2017) to illustrate the partially overlapping samples problem. The outcome 

variable is the Karnofsky performance status scale, which measures functional status of a patient. The 

data is recorded on the last day of life and on the second to the last day. For the parametric tests, the 

null hypothesis that the mean Karnofsky score is the same on the last two days of life is tested. For the 

non-parametric tests, the null hypothesis that the distribution of the Karnofsky score is the same on 

the last two days is tested. Assuming the distributions differ only in central location, both the 

parametric and nonparametric tests are assessing the same research question. 

  

For a total of 60 patients, 9 were recorded on both days, 28 were recorded only on the second to the 

last day, and 23 were recorded only on the last day. The test statistic and p-value for each of the 

approaches considered are given in Table 4, based on the data below: 

 

Patients with scores on both days: 

(20, 10), (30, 20), (25, 10), (20, 20), (25, 20), (10, 10), (15, 15), (20, 20), (30, 30) 

Patients with scores only on the second to the last day: 

10,10,10,10,15,15,15,20,20,20,20,20,20,20,20,20,20,20,25,25,25,25,30,30,30,30,30,30  

Patients with scores only on the last day: 

10,10,10,10,10,10,10,10,10,15,15,20,20,20,20,20,20,20,25,25,30,30,30 

 

Using the midpoint of tied ranks to calculate 1RNKT  and 2RNKT ; all scores of 10 have rank of 9, all 

scores of 15 have rank of 21, all scores of 20 have rank of 37, all scores of 25 have rank of 53.5, all 

scores of 30 have rank of 63.5. 

 

Table 4. Results from Rempala and Looney example 

Method 1T  
2T  3T  MW W new1T  new2T  1RNKT  2RNKT  

Test 

statistic 
1.818 1.800 2.286 412.5 10 2.522 2.507 2.534 2.521 

p-value 0.075 0.079 0.052 0.078 0.098 0.015 0.016 0.014 0.015 

 



 
 

Table 4 shows that the parametric partially overlapping samples t-tests provide evidence at the 5% 

significance level to suggest that there is a difference in the mean Karnofsky scores between the last 

two days of life. Similarly, the non-parametric partially overlapping samples t-tests provide evidence 

at the 5% significance level to suggest that there is a difference in the distribution of the Karnofsky 

scores between the last two days of life. 

 

Conclusion 

 

There are many scenarios which gives rise to partially overlapping samples. Traditional methods of 

analyses which discard data are less than desirable. The partially overlapping samples t-tests by 

Derrick et.al., (2017) offer robust parametric solutions, assuming MCAR, using all of the available 

data. 

 

Under normality, parametric solutions new1T  and new2T  are Type I error robust and have greater power 

than other tests statistics considered in this paper. When the normality assumption is true, new1T  is 

recommended for equal variances, and new2T  is recommended for unequal variances. For the non-

normal distributions considered here, new1T  is Type I error robust when comparing two samples taken 

from the same distribution, whereas new2T  is not fully Type I error robust. 

 

Non-parametric approaches developed in this paper, RNK1T  and RNK2T  are Type I error robust when 

comparing two samples taken from the same distribution with equal means and equal variances. When 

observations for two groups are sampled from the same non-normal distribution, there is a power 

advantage of using the non-parametric approaches RNK1T  and RNK2T . 

  

When comparing samples from two distinctly different distributions, the correct form of the null 

hypothesis for the non-parametric methods is open to interpretation. If performing parametric tests, 

the null hypothesis of equal means is valid. Results show that as with traditional non-parametric tests, 

the proposed non-parametric test statistics are sensitive to differences in location, but are 

simultaneously sensitive to differences in the shape of the distribution. If the sampling distributions 

are not thought to be identical, the proposed non-parametric tests are not appropriate when the 



 
 

primary goal is to assess for differences in location. If the research question is whether the 

distributions are equal, RNK1T  and RNK2T  offer valid and more powerful alternatives to their 

parametric counterparts new1T  and new2T  respectively, as well as more powerful alternatives to 

standard non-parametric methods which discard data.  

 

References 

 

Amro, L., & Pauly, M. (2017). Permuting incomplete paired data: a novel exact and asymptotic 

correct randomization test. Journal of Statistical Computation and Simulation, 87(6), 1148-1159. 

Bhoj, D. (1978). Testing equality of means of correlated variates with missing observations on both 

responses. Biometrika, 65(1), 225-228. 

Box, G. E. P., & Muller, M. (1958). A note on the generation of random normal deviates. Annals of 

Mathematical Statistics, 29, 610-611. 

Bradley, J. V. (1978). Robustness?. British Journal of Mathematical and Statistical Psychology, 

31(2), 144-152. 

Conover, W. J., & Iman, R. L. (1981). Rank transformations as a bridge between parametric and 

nonparametric statistics. The American Statistician, 35(3), 124-129. 

Chatfield, M., & Mander, A. (2009). The Skillings–Mack test (Friedman test when there are missing 

data). The Stata Journal, 9(2), 299-305. 

Chen, Z. (2011). Is the weighted z‐test the best method for combining probabilities from independent 

tests? Journal of Evolutionary Biology, 24(4), 926-930 

Derrick, B. (2017) Partiallyoverlapping: Partially overlapping samples t-tests. CRAN [R-package]. 

Derrick, B., Dobson-McKittrick, A., Toher, D. & White P. (2015). Test statistics for comparing two 

proportions with partially overlapping samples. Journal of Applied Quantitative Methods, 10(3), 1-14. 

Derrick, B., Russ, B., Toher, D. & White P. (2017). Test statistics for the comparison of means for 

two samples which include both paired observations and independent observations. Journal of 

Modern Applied Statistical Methods, 16(1), 137-157. 

Derrick, B., Toher, D. & White, P. (2016). Why Welch’s test is Type I error robust. The Quantitative 

Methods for Psychology, 12(1), 30-38. 



 
 

Derrick, B., Toher, D. & White, P. (2017). How to compare the means of two samples that include 

paired observations and independent observations: A companion to Derrick, Russ, Toher and White 

(2017). The Quantitative Methods for Psychology, 13(2), 120-126. 

Fagerland, M., & Sandvik, L. (2009a) Performance of five two-sample location tests for skewed 

distributions with unequal variances. Contemporary Clinical Trials, 30, 490-496. 

Fagerland. M., & Sandvik, L. (2009b) The Wilcoxon-Mann-Whitney test under scrutiny. Statistics in 

Medicine, 28(10), 1487-1497. 

Fay, M. P., & Proschan, M. A. (2010). Signed Rank Sum Wilcoxon-Mann-Whitney or t-test? On 

assumptions for hypothesis tests and multiple interpretations of decision rules. Statistics Surveys, 4, 1-

39. 

Forbes, C., Evans, M., Hastings, N., & Peacock, B. (2011). Statistical distributions. John Wiley & 

Sons. 

Fradette, K., Keselman, H.J., Lix, L., Algina, J., & Wilcox, R. (2003) Conventional and Robust Paired 

and Independent Samples t-tests: Type I Error and Power Rates, Journal of Modern Applied 

Statistical Methods,  2(2), 481-496. 

Guo, B., & Yuan, Y. (2017). A comparative review of methods for comparing means using partially 

paired data. Statistical methods in medical research, 26(3), 1323-1340. 

Hart, A. (2001). Mann-Whitney test is not just a test of medians: differences in spread can be 

important. British Medical Journal, 323(7309), 391. 

Hosgood, S.A., Saeb-Parsy, K., Wilson, C., Callaghan, C., Collett, D. and Nicholson, M.L. (2017). 

Protocol of a randomised controlled, open-label trial of ex vivo normothermic perfusion versus static 

cold storage in donation after circulatory death renal transplantation. BMJ open, 7(1), p.e012237. 

Howell, D. (2012). Statistical Methods for Psychology. Cengage Learning. 

Kim, B. S., Kim, I., Lee, S., Kim, S., Rha, S. Y., & Chung, H. C. (2005). Statistical methods of 

translating microarray data into clinically relevant diagnostic information in colorectal cancer. 

Bioinformatics, 21(4), 517-528. 

Kenney, J. F. & Keeping, E. S. (1951) Mathematics of Statistics, Pt. 2, 2nd ed. Princeton, NJ: Van 

Nostrand. 

Lancaster, H. O. (1961). The combination of probabilities: an application of orthonormal functions. 

Australian Journal of Statistics, 3(1), 20-33. 

Lin, P., & Strivers L. (1974) Difference of Means with Incomplete Data, Biometrika, 61(2), 325-334. 



 
 

Looney, S. & Jones, P. (2003) A method for comparing two normal means using combined samples 

of correlated and uncorrelated data, Statistics in Medicine, 22, 1601-1610. 

Mehrotra, D (2004). Letter to the editor, A method for comparing two normal means using combined 

samples of correlated and uncorrelated data. Statistics in Medicine, 23, 1179–1180. 

Mendenhall, W., Beaver, R., & Beaver, B. (2008). Introduction to Probability and Statistics. Cengage 

Learning. 

Martinez-Camblor, P., Corral, N., & De La Hera,. J. M. (2012) Hypothesis test for paired samples in 

the presence of missing data, Journal of Applied Statistics, 40(1), 76-87. 

Moser, B. K., Stevens, G. R., & Watts, C. L. (1989). The two-sample t test versus Satterthwaite's 

approximate F test. Communications in Statistics-Theory and Methods, 18(11), 3963-3975. 

Penfield, D. A. (1994). Choosing a two-sample location test. The Journal of Experimental Education, 

62(4), 343-360. 

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical 

Computing, Vienna, Austria. www.R-project.org. 2014; version 3.1.3. 

Rempala, G. A., & Looney, S. W. (2006). Asymptotic properties of a two sample randomized test for 

partially dependent data. Journal of statistical planning and inference, 136(1), 68-89. 

Ruxton, G. (2006). The unequal variance t-test is an underused alternative to Student's t-test and the 

Mann-Whitney U test. Behavioral Ecology. 17(4), 688-690. 

Samawi, H. M., & Vogel, R. (2011). Tests of homogeneity for partially matched-pairs data. Statistical 

Methodology, 8(3), 304-313. 

Serlin, R. C. (2000). Testing for robustness in Monte Carlo studies. Psychological Methods, 5(2), 230. 

Skillings, J. H., & Mack, G. A. (1981). On the use of a Friedman-type statistic in balanced and 

unbalanced block designs, Technometrics, 23(2), 171-177. 

Skovlund, E., & Fenstad, G. U. (2001). Should we always choose a nonparametric test when 

comparing two apparently non-normal distributions?, Journal of Clinical Epidemiology, 54(1), 86-92. 

Stouffer, S. A., Suchman, E. A., DeVinney, L. C., Star, S. A., & Williams Jr, R. M. (1949). The 

American soldier: combat and its aftermath. Studies in Social Psychology in World War II (2). 

Uddin, N., & Hasan, M. S. (2017). Testing equality of two normal means using combined samples of 

paired and unpaired data. Communications in Statistics-Simulation and Computation, 46(3), 2430-

2446. 



 
 

Wells, C. S., & Hintze, J. M. (2007). Dealing with assumptions underlying statistical tests. 

Psychology in the Schools, 44(5), 495-502. 

Zimmerman, D. W. (1987). Comparative power of Student t-test and Mann-Whitney U test for 

unequal sample sizes and variances. The Journal of Experimental Education, 55, 171-174. 

Zimmerman, D. W. (2004). Inflation of type I error rates by unequal variances associated with 

parametric, nonparametric, and rank-transformation tests. Psicologica: International Journal of 

Methodology and Experimental Psychology, 25(1), 103-133. 

Zimmerman, D. W. (2011). Inheritance of Properties of Normal and Non-Normal Distributions after 

Transformation of Scores to Ranks. Psicologica: International Journal of Methodology and 

Experimental Psychology, 32(1), 65-85. 



Appendix P8

Pearce, J. and Derrick, B. (2019). “Preliminary testing:
the devil of statistics?” Reinvention: an International

Journal of Undergraduate Research 12
Accepted Version

335



1 

 

Preliminary Testing: The Devil of Statistics? 

 

Jack Pearce 

Applied Statistics Group 

University of the West of England, Bristol 

Frenchay Campus  

BS16 1QY 

jrepearce@outlook.com  

 

Jack graduated from the University of the West of England, Bristol, in July 2018 with a first 

class BSc(Hons) Mathematics, winning the Institute of Mathematics and its Applications 

(IMA) prize for outstanding achievement. 

 

 

Ben Derrick 

Applied Statistics Group 

University of the West of England, Bristol 

Frenchay Campus  

BS16 1QY 

ben.derrick@uwe.ac.uk 

 

Ben is a PhD student and lecturer at the University of the West of England, Bristol.  



2 

 

Abstract 

In quantitative research, the selection of the most appropriate statistical test for the 

comparison of two independent samples can be problematic. There is a lack of consensus in 

the statistics community regarding the appropriate approach; particularly towards assessing 

assumptions of normality and equal variances. The lack of clarity in the appropriate strategy 

affects the reproducibility of results. Statistical packages performing different tests under the 

same name, only adds to this issue. 

The process of preliminary testing assumptions of a test using the sample data, before 

performing a test conditional upon the outcome of the preliminary test, is performed by some 

researchers; this practice is often criticised in the literature. Preliminary testing is typically 

performed at the arbitrary 5% significance level. In this paper this process is reviewed, and 

additional results are given using simulation, examining a procedure with normality and 

equal variance preliminary tests to compare two-independent samples. 
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Statistics, robustness, t-test, preliminary testing, conditional tests, independent samples  
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Introduction 

 

In statistical hypothesis testing, the literature rarely reaches an agreement on the most 

appropriate analysis strategy for any given scenario. To illustrate the problems faced, this 

paper will focus on comparing the central location of two independent samples. For example, 

some researchers may use an independent samples t-test with pooled variances 

(Independent t-test), some may use a form of the independent samples t-test not 

constrained to equal variances (Welch’s test), others may use the Mann-Whitney or the 

Yuen-Welch test due to concerns over normality.  

Each of these two-sample tests have accompanying assumptions. The Independent t-test 

assumes both normality and equal variances. Welch’s test assumes normality, but not equal 

variances. The Mann-Whitney test assumes equal variances, but not normality. Yuen-

Welch’s test has no assumptions regarding normality or equal variances. 

Assessment of the assumptions to determine the appropriate two sample test can occur at 

the design stage, or after the data has been collected in the form of preliminary tests of the 

assumptions. A researcher could have a plan to perform one of the above tests based on 

pre-existing knowledge of the assumptions, or they might plan to perform preliminary tests 

on the assumptions to determine the correct test, or they may have no plan at all.  

There is no consensus as to the correct method of preliminary analyses, which results in 

researchers choosing tests in ad hoc ways, even selecting methods of analysis after the 

data has been compiled that provides the desired conclusion. This has contributed to the 

reproducibility crisis in the sciences.  

The Independent t-test is taught as the ‘standard’ two-sample test. Undergraduate students 

are taught how to run the test, but not necessarily the definitive set of conditions when it 

might be appropriate, or the knowledge to evaluate the appropriateness of the test. Along 

with many practical users, undergraduate students will follow a set of arbitrary instructions 

based on an arbitrary decision tree provided by their lecturer, or other resource. Many 

decision trees can be found on the internet outlining a two-sample test procedure (Martz, 

2017), but rarely in academic papers. One example of a two-sample test decision tree in an 

academic paper is Marusteri and Bacarea (2010), which involves both normality and equal 

variance preliminary tests. 

Before an informed decision can be made as to whether the Independent t-test is the most 

appropriate two-sample test, questions regarding the assumptions of the Independent t-test 

must be answered, namely checking if the data are normally distributed and the group 
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variances are equal. Preliminary tests can be used to answer these questions. However, 

there are many different tests that could be performed to check the assumptions. To check 

the normality assumption, the Shapiro-Wilk test or the Kolmogorov-Smirnov test could be 

performed, among others. The tests for equality of variances assumptions could be Levene’s 

test using deviations from the group means or Levene’s test using deviations from group 

medians, among others.  

Another issue with regards to reproducibility is the fact that different software run different 

tests under the same name. For assessing equality of variances, SPSS runs Levene’s test 

using deviations from means, whereas Minitab runs Levene’s test using deviations from 

medians. This affects reproducibility, because both SPSS and Minitab are widely used 

statistical packages in quantitative research. Researchers may run what they believe is the 

same Levene’s test for equal variances, but receive conflicting conclusions, affecting their 

chosen conditional two-sample test and thus the final conclusions. 

For example, data has been collected from an exam consisting of 20 multiple choice 

questions, taken by two different tutorial groups, i.e. there are two independent samples. The 

scores awarded by the participants of the exam can be found in Table 1.  

 

Group 1 9 12 12 12 12 12 13 13 13 14 14 14 

Group 2 9 10 11 14 15 15 15 16 16 17 18 19 

 

Table 1: Number of correctly answered multiple choice questions out of 20. 

 

The decision rule applied by both SPSS and Minitab is; if the null hypothesis of equal 

variances is failed to be rejected, the Independent t-test is performed, and conversely 

Welch’s test is performed when variances are found to be unequal. If one researcher uses 

SPSS and the other uses Minitab, the following would occur, as per Table 2.  
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Test for equal variances 

Levene’s test using means (SPSS) Levene’s test using medians (Minitab) 

p = .030 

Reject null hypothesis of equal variances. 

p = .071 

Fail to reject null hypothesis of equal variances. 

 

Two-sample test depending on preliminary test 

Welch’s test (SPSS) Independent t-test (Minitab) 

p = .051 

Fail to reject the null hypothesis that the two 

samples means do not differ. 

p = .046 

Reject the null hypothesis that the two samples 

means do not differ. 

 

Table 2: Two-sample test procedure with test for equal variances preliminary test on 

multiple-choice scores, where normality is assumed. 

 

As seen in Table 2, testing at the 5% significance level, performing the procedure on SPSS 

with Levene’s preliminary test (using means), the researcher would reject the assumption of 

equal variances (𝑝 = .030); the conditional test is therefore Welch’s test which finds no 

significant difference in the mean scores (𝑝 = .051). However, performing the procedure on 

Minitab with Levene’s preliminary test (using medians), the researcher would fail to reject the 

assumption of equal variances (𝑝 = .071); then run the Independent t-test and find a 

significant difference in the mean exam scores (𝑝 = .046).  

Therefore, two researchers with the same data arrive at different conclusions, simply due to 

the software used. Hence, even if there was a consensus as to the correct preliminary test 

procedure to run, researchers can have a hard time producing the same results. It is 

apparent that a lack of a plan and user apathy as to which statistical tests are being 

performed is dangerous. Moreover, a researcher could reverse engineer the software used 

and statistical test performed in order to achieve their desired conclusion. 

A two-sample test procedure is often presented in the form of a decision tree. Figure 1 

shows a two-step test procedure when comparing two independent samples. The test 

procedure includes both equal variance and normality preliminary tests. 
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Figure 1: Two-Step test procedure, with both equal variance and normality preliminary tests. 

 

Notice in Figure 1 that the Independent t-test is the default test, because without evidence to 

reject the assumption of normality or equal variances, the Independent t-test is performed.  

Hoekstra, Kiers and Johnson (2012) studied whether 30 Ph.D. students checked fictitious 

data for violations of the assumptions of the statistical tests they used. Hoekstra et al. found 

that the assumptions were rarely checked; in fact, the assumptions of normality and equal 

variances were formally checked only in 12% and 23% of cases respectively. When the 

Ph.D. students were asked the reason behind them not checking the assumptions, for the 

assumption of normality, approximately 90% of them said it was because they were 

unfamiliar with the assumption; similarly, approximately 60% of the Ph.D. students gave the 

same reason for not checking the assumption of equal variances. 

Wells and Hintze (2007) suggested that the assumptions should be considered in the 

planning of the study, as opposed to being treated almost as an afterthought. Considering 

assumptions at the planning stage by: testing using prior data from the same/similar source; 

using theoretical knowledge or reasoning; addressing the assumptions before the data are 

collected, which can avoid the issues surrounding preliminary testing. Wells and Hintze 

finished by suggesting that studies should be designed, and statistical analyses selected that 

are robust to assumption violations, i.e. equal sized groups or large sample sizes, whenever 

possible. Equal sized groups are desirable due to most two sample tests that assume equal 

variances being robust against violations when there are equal sized groups, for example 

the Independent t-test (Nguyen et al., 2012; Derrick, Toher and White, 2016).  
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Zumbo and Coulombe (1997) warned of at least two scenarios where equal variances 

cannot be assumed: when the groups of experimental units are assembled based on 

important differences such as age groups, gender, or education level; or the experimental 

units differ by an important, maybe unmeasured variable. Thus, ideally it is the design of the 

experiment that should determine whether this assumption is true, not the samples collected. 

At the 5% significance level, a valid test procedure should reject the null hypothesis 

approximately 5% of the time; this would represent Type I error robustness. Rochon, 

Gondan and Kieser (2012) investigated the Type I error robustness of the Independent t-test 

and the Mann-Whitney test. Interestingly, the unconditional test (i.e. no preliminary test) 

controlled Type I error rates for both two-sample tests, under normality, and exponentially 

distributed data. There may be little need for preliminary tests, if the conditional tests are 

robust to minor deviations from the assumptions. 

Garcia-Perez (2012) and Rasch, Kubinger and Moder (2011) highlighted the ramifications of 

checking assumptions using the same data that is to be analysed; if the researchers do not 

test the assumptions, they could suffer uncontrolled Type I error rates; or they can test the 

assumptions but will surrender control of the Type I error rates too. ‘It thus seems that a 

researcher must make a choice between two evils’ (Garcia-Perez, 2012,  21). Any 

preliminary assessment of assumptions can affect the Type I error rate of the final 

conditional test of interest; Ruxton (2006) and Zimmerman (2004) advise against preliminary 

testing. 

Many textbooks recommend checking the assumptions of normality and equal variances 

graphically, e.g. Moore, Notz and Fligner (2018). However, Garcia-Perez (2012) emphasised 

that the problem of distorted Type I errors still persists because the decision on what 

technique to use is conditioned on the results of this graphical preliminary analysis, just like 

a formal hypothesis test. A graphical approach also introduces a further element of 

researcher subjectivity. 

When preliminary testing for normality was performed, Rochon et al. (2012) have shown that 

the conditional Mann-Whitney test had elevated Type I error rates for the normally 

distributed data. Similarly, when preliminary testing, the conditional Independent t-test had 

large Type I error rates for the exponential distribution and uniform distribution; likely due to 

the lack of times it is performed, where tests for normality are performed on non-normal 

data. Rochon et al. concluded that for small samples, the Shapiro-Wilk test for normality 

lacks power to detect deviations from normality. However, this may be a good thing for a 

preliminary test due to the Independent t-test’s robustness against violations of normality 

and its high power; in fact, the Kolmogorov-Smirnov test has less power than the Shapiro-
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Wilk test (Razali and Wah, 2011) and is often preferred. Rochon et al. also suggested if the 

application of the Independent t-test is advised against due to potential concerns over 

normality, then the unconditional use of the Mann Whitney test is the most appropriate 

choice.  

Other ad-hoc methods for selecting a test to compare the central location of two samples 

include looking at sample size or skewness. Fagerland (2012) recommend the Mann-

Whitney test for small sample sizes. Rasch, Teuscher and Guiard (2007) suggest to always 

perform Welch’s test when there are unequal sample sizes. Penfield (1994) recommends the 

Mann-Whitney test when the samples are highly skewed (i.e. non-normal). However, 

Fagerland and Sandvik (2009) found there was no clear best test across different 

combinations of variance and skewness. Another ad-hoc method for selecting the most 

appropriate test is to assess for outliers, and perform the Mann-Whitney test or the Yuen-

Welch test if an outlier is identified (Derrick et al., 2017). This highlights the amount of 

literature on the subject without a clear consensus. 

A further complication is the choice of the 5% significance level mostly used in all preliminary 

tests. The 5% significance level is an arbitrary level suggested by statisticians, so it is not 

necessarily the optimal significance level for every application. Standard thinking regarding 

statistical inference at the 5% significance level is to be challenged (Wasserstein and Lazar, 

2016). 

In this paper, a simulation study investigates the Type I error robustness of the two sample 

test procedure outlined in Figure 1. The procedure is investigated for two commonly used 

normality tests and two commonly used tests for equal variances, each performed at varying 

significance levels. 

 

Simulation Methodology 

 

Serlin (2000) explained that in testing robustness, running simulations is the standard and 

appropriate approach. The simulation approach, where numerous iterations are run, 

generates the long-run probability of a Type I error; because for each individual test there is 

either a Type I error or not; performing this process numerous times allows us to calculate 

the Type I error rate. 

In a two independent samples design, each of the Independent t-test (IT), Welch's test (W), 

the Mann-Whitney test (MW), and the Yuen-Welch test (YW) are performed.  
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The normality preliminary tests considered are the Shapiro Wilk test (SW) and the 

Kolmogorov-Smirnov test (KS). The tests for equality of variances considered are Levene’s 

test using means (LMean) and Levene’s test using medians (LMed). Each preliminary test is 

performed on each conditional test. The preliminary tests are performed at the 1% and 5% 

significance levels. The conditional test is selected based on the results of each of the 

preliminary tests and performed at the 5% significance level. 

To account for both normally distributed data and skewed distributions, the distributions 

considered are Normal, Exponential and Lognormal. The Normal distribution is considered 

for both groups sampled from distributions with means of zero. Firstly, where both groups 

have variances equal to one. Secondly, groups sampled from the Normal distributions with 

unequal variances {1, 2, 4} are considered. Observations from the exponential distribution 

are generated with a mean and variance of 1. Observations from the lognormal distribution 

are generated with a mean of 0 and variance of 1. Thus, in effect four separate sets of 

simulations are performed. 

For each set of simulations, sample sizes for each of the two groups are generated in a 

factorial design {5,10,20,30}, i.e. 16 sample size combinations. 10,000 iterations are 

performed for each combination. Emphasis is on small sample sizes, reflecting practical 

application. 

To calculate the Type I error rates of the conditional test procedure in Figure 1, for each 

combination of sample size the weighted averages of the Type I error rates for the two-

sample tests performed are taken; this provides one overall value to represent the test 

procedure’s performance. The weighting for the Type I error rates is how often the test is 

performed; the two-sample test performed most often is likely the most appropriate test (i.e. 

its assumptions match the characteristics of the two samples distributions) and should have 

the largest influence on the Type I error rate. Simply taking averages is not fair because one 

test may only be performed a small percentage of the time; similarly, reporting each 

conditional test Type I error rate separately is not fair because it does not consider how often 

the test is performed. 

The Type I error rates in this study are ideally 5% because two-sample tests are designed so 

that their Type I error rate should match that of the significance level being tested at. These 

will be scrutinised in conjunction with Bradley’s liberal criterion (Bradley, 1978), which says 

that a robust or stable Type I error rate is between 2.5% and 7.5% when testing at the 5% 

significance level. To determine what two-sample test or test procedure has the most robust 

Type I errors across the four distributions, it is proposed that the average absolute deviation 

from 5% across the four distributions is examined. 
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Results 

 

Before the conditional test procedure which uses preliminary tests is assessed, first the 

unconditional performance of the four tests across the four distributions is considered. The 

unconditional performance refers to the different two-sample tests Type I error rates when 

performed regardless of whether the assumptions are met or not, no preliminary tests are 

performed. In Table 3 the ‘Overall Type I Error Rate’ refers to the average of the Type I error 

rates for the combinations of sample size, and variances (when using the Normal 

distribution) for the two samples. 

 

 
Overall Type I Error Rate 

Distribution IT MW W YW 

     

Normal (Equal Variances) 5.01% 4.54% 5.16% 5.99% 

Normal (Unequal Variances) 6.24% 5.05% 5.09% 6.00% 

Exponential 4.54% 4.58% 6.04% 5.82% 

Lognormal 4.17% 4.43% 5.61% 5.18% 

     

Average absolute deviations from 5% 0.0063 0.0038 0.0047 0.0075 

 

Table 3: Two-Sample tests unconditional average Type I error rates. 

 

Table 3 shows that simply disregarding all assumptions and performing the Independent t-

test unconditionally may not be the most robust approach. The Mann-Whitney test has the 

most robust Type I error rates across the four distributions since the average of the absolute 

deviations from 5% across the four distributions is the smallest. When looking at the test with 

the most Type I error control for each of the four distributions, the Independent t-test is most 

robust under the Normal distribution and equal variances; the Mann-Whitney test is most 

robust under the Normal distribution with unequal variances and the Exponential distribution; 

Yuen-Welch’s test is the most robust under the Lognormal distribution. It is worth noting all 

these Type I error rates are within Bradley’s liberal criterion, so they all control the Type I 

error. 
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Figure 2 shows the distribution of the 16 Type I Error Rates for the different combinations of 

sample sizes (96 for the Normal Distribution under unequal variances). ‘Normal EV’ and 

‘Normal UEV’, refer to the Normal distribution under equal and unequal variances 

respectively. The dotted horizontal lines represent Bradley’s liberal criterion boundaries. 

 

Figure 2: Two-Sample tests unconditional Type I error rates. 

 

None of the two-sample tests considered, control the Type I error rates for all combinations 

of sample size, across the four distributions. The largest violations occur when there are 

large disparities in sample size. Therefore, performing any of the four two-sample tests 

unconditionally will provide Type I error rates outside of Bradley’s liberal criterion for specific 

combinations of sample size and variances. Thus, a preliminary testing procedure may be 

required. 

  



12 

 

The test procedure with both normality and equal variance preliminary testing as per Figure 

1 is considered. This two-stage preliminary test procedure provides 16 combinations of 

preliminary tests considered in a factorial design, i.e. two normality tests (SW and KS), two 

equal variances tests (LMean and LMed), two significance levels for the normality tests (1% 

and 5%), and two significance levels for the equal variances tests (1% and 5%).  

The best preliminary test combinations for each distribution was assessed. For each of these 

preliminary test combinations, the average absolute deviation from 5% across the four 

distributions is given in Table 4.  

 

 
Overall Type I Error Rate 

Distribution 

LMean 5% 

KS 5%  

LMean 1% 

KS 1% 

LMed 1% 

SW 1% 

LMed 1% 

SW 5% 

     

Normal (Equal Variances) 5.11% 5.00% 5.07% 5.14% 

Normal (Unequal Variances) 5.73% 5.81% 6.15% 6.24% 

Exponential 5.10% 4.20% 5.11% 4.97% 

Lognormal 4.34% 3.74% 4.68% 4.61% 

     

Average absolute deviations from 5% 0.0040 0.0072 0.0041 0.0045 

 

Table 4: Two-Sample tests procedures average Type I error rates. 

 

For the two non-normal distributions, the Shapiro-Wilk normality test is preferred. When 

drawing from the non-normal distributions, normality needs to be rejected as often as 

possible to provide better Type I error rate control, therefore the Shapiro-Wilk test which 

does this more often, is the better normality test in this case. The average weighted Type I 

error rates are comfortably within Bradley’s liberal criterion, with the Type I errors from the 

Normal distribution with unequal variances being the worst.  

Table 4 shows that the two-step test procedure with Kolmogorov-Smirnov and Levene’s 

(Mean) preliminary tests, both at the 5% significance level, achieves the most Type I error 

rate control. However, there is negligible difference between each of the preliminary test 

combinations to be of real practical consequence. 
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Conclusion 

 

This paper examines some of the standard statistical tests for comparing two samples. 

Results show that the Independent t-test’s Type I errors were less robust than the Mann-

Whitney’s and Welch’s, but still within Bradleys liberal robustness criterion; therefore, it is not 

necessarily a bad choice for the default two-sample test, just not necessarily the best. Wells 

and Hintze (2007) and Rasch et al. (2011) also question why the Independent t-test is 

considered the default two-sample test and suggested using Welch’s test as the default. 

These results further advocate a theory that the approach be revised so that Welch’s test is 

the default. 

In this paper procedures with preliminary hypotheses tests are examined to replicate the 

conditions many users face when comparing two independent samples. The weighted 

average Type I error rates for each combination of preliminary tests was considered. Taking 

averages with Type I error rates does have its limitations, since robust Type I error rates are 

defined in a range; the limitations of this is that it is possible to have equally non-robust Type 

I error rates either side of 5%, that when averaged provide a robust Type I error rate, which 

is not the case. However, it is more likely the test procedure has either consistently liberal or 

conservative Type I errors, due to the changes in sample size and variances considered 

being relatively small, making switches from liberal to conservative Type I errors less likely. 

The implication of this is that when averaged, the weighted Type I error rate will identify 

either a liberal or conservative Type I error rate, if the set of Type I error rates are truly liberal 

or conservative, instead of showing robust Type I errors when the set of Type I errors is not. 

When comparing the two-sample tests performed unconditionally to the conditional testing 

procedure, the weighted Type I errors across the four distributions for the recommended 

conditional test procedures were comparable and more robust in most cases. This implies 

that despite the test procedures introducing compounded errors caused by the preliminary 

tests, the weighted Type I error rates were better for it, because the most appropriate test 

was performed more often.  

For the scenarios considered, the benefits of implementing a test procedure to find the most 

appropriate two-sample test may outweigh that of performing a two-sample test 

unconditionally, in terms of controlled Type I error rates across the four distributions. 

However, it is advised if possible to follow Wells and Hintze (2007) advice of: determining 

whether the sample size is large enough to invoke the Central Limit Theorem; considering 

the assumptions in the planning of the study; testing assumptions if necessary from a similar 

previous data source.  
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The preliminary testing procedure that most closely maintains the Type I error rate is 

preforming Kolmogorov-Smirnov normality test and Levene’s (Mean) test for equal 

variances, both at the 5% significance level. The test procedure performs well, with robust 

Type I errors when data are from either the Normal distribution or the skewed distributions 

considered. However, the use of a flow diagram and this rule to select the ‘appropriate’ test 

can encourage inertia and restrict critical thinking from the user about the test being 

performed.  

Given the capacity for different researchers to conduct potentially conflicting analyses, 

solutions which offer the most transparency and forward planning are recommended. This is 

leading to some disciplines requesting that analysis plans are pre-registered, examples 

include the Journal of Development Economics and the Center for Open Science. This 

would seem like an appropriate way forward.   
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ABSTRACT 

For two independent samples there is much debate in the literature whether parametric or non-
parametric methods should be used for the comparison of Likert question responses. The 
comparison of paired responses has received less attention in the literature. In this paper, 
parametric and non-parametric tests are assessed in the comparison of two samples from a 
paired design on a five point Likert question. The tests considered are the independent samples t-
test, the Mann-Whitney test, the paired samples t-test and the Wilcoxon test. Pratt’s modified 
Wilcoxon test for dealing with zero differences is also included. The Type I error rate and power 
of the test statistics are assessed using Monte-Carlo methods. The parameters varied are; 
sample size, correlation between paired observations, and the distribution of the responses. The 
results show that the independent samples t-test and the Mann-Whitney test are not Type I error 
robust when there is correlation between the two groups compared. Pratt’s test more closely 
maintains the Type I error rate than the standard Wilcoxon test does. The paired samples t-test is 
Type I error robust across the simulation design. As the correlation between the paired samples 
increases, the power of the test statistics making use of the paired information increases. The 
paired samples t-test is more powerful than Pratt’s test when the correlation is weak. The power 
differential between the test statistics is exacerbated when sample sizes are small. Assuming 
equally spaced categories on a five point Likert item, the paired samples t-test is not 
inappropriate. 

Keywords: Likert item; Likert scale; Wilcoxon test; Pratt’s test; Paired samples t-test 

Mathematics Subject Classification: 60 62 

1. INTRODUCTION 

A Likert item is a forced choice ordinal question which captures the intensity of opinion or degree of 

assessment in survey respondents. Historically a Likert item comprises five points worded: Strongly 

approve, Approve, Undecided, Disapprove, Strongly Disapprove (Likert, 1932). Other alternative 

wording, such as “agree” or “neutral” or “neither agree nor disagree” may be used depending on the 

context.

The literature is sometimes confused between the comparison of samples using summed Likert 

scales and the comparison of samples for individual Likert items (Boone and Boone, 2012). A 

summed Likert scale is formed by the summation of multiple Likert items that measure similar 

information. This summation process necessarily requires the assignment of scores to the Likert 
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ordinal category labels. The summation of multiple Likert items to produce Likert scales has not been 

without controversy but it is a well-established practice in scale construction, and is one which may 

produce psychometrically robust scales with interval-like properties. Such derived scales, could 

potentially yield data amenable to analysis using parametric techniques (Carifo and Perla, 2007). 

Distinct from Likert scales, the comparison of two samples on an individual Likert question is the 

subject of this paper.   

The response categories of a five point Likert item may be coded 1 to 5 and the item responses 

viewed as being ordinal under Stevens (1946) classification scheme. Extant literature acknowledges 

that in certain practical and methodological aspects, the Likert-item responses may approximate 

interval level data(Norman, 2010). The ordinal codes 1, 2, 3, 4, and 5 or alternatively -2, -1, 0, 1, 2 

could be used as numerical scores in robust tests for differences. This change from codes to numeric 

scores is used in the creation of summated Likert scales and is at the heart of the controversy. 

Proponents in favour of such practice advance an argument that the Likert question is accessing 

some information from an underlying scale and the resultant score is a non-linear realisation from this 

scale (Norman, 2010). Thus, although the scored item may not perfectly have the required properties 

to be classed as interval level data under Stevens classification scheme, the scored item might, in 

practice, approximate interval level data and be amenable to analysis using parametric techniques.   

When comparing two independent sets of responses from a Likert question, the independent samples 

t-test is frequently performed. The corresponding non-parametric test for independent samples is the 

Mann-Whitney-Wilcoxon test (Wilcoxon, 1945). This test may also be referred to as the Wilcoxon-

Mann-Whitney test, or as is the case in this paper, simply referred to as the Mann-Whitney test.  

For two independent samples, whether the correct approach for analysis should be a parametric t-test 

or the non-parametric Mann-Whitney test is much debated in the literature (Sullivan and Artino, 2013). 

The choice between parametric and non-parametric tests for the analysis of single Likert items 

depends on the assumptions that researchers are willing to make and the hypotheses that they are 

testing (Jamieson, 2004). Some practitioners are uncomfortable with a comparison of means using a 

parametric test, arguing that response categories cannot be justifiably assumed to be equally spaced 

and consequently the use of equally spaced scores is unwarranted. In contrast, Allen and Seaman 

(2007) suggests that Likert items measure an underlying continuous measure and suggests the use 

of the independent samples t-test as a pilot test, prior to obtaining a continuous measure. If the 

assumption that the underlying distribution is continuous can be deemed reasonable, Likert 

responses approximate interval data. For interval data, the use of parametric tests may not be 

inappropriate. When the assumption of interval data applies, consideration should be given to the 

sample size and distribution of the responses before applying the independent samples t-test 

(Jamieson, 2004). 

If sample sizes are large, both parametric and non-parametric test statistics are likely to have 

adequate power. However, in research there is a trade-off between increasing sample size and 
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reducing collection costs. When resource is scarce, the most powerful test statistic for small samples 

is of interest. 

For two independent samples, De Winter and Dodou(2010) found that both the independent samples 

t-test and the Mann-Whitney test are generally Type I error robust at the 5% significance level for a 

five point Likert item. This is true across a diverse range of distributions and sample sizes. Both tests 

suffer some exceptions to Type I error robustness when the distributions have extreme kurtosis and 

skew. The power is similar between the two tests, for both equal and unequal sample sizes. When the 

distribution is multimodal with responses split mainly between strongly approve and strongly 

disapprove, the independent samples t-test is more powerful than the Mann-Whitney test. Rasch, 

Teuscher and Guiard(2007) show that using the Mann-Whitney test using the Normal approximation 

with correction for ties is Type I error robust for two groups of independent observations on a five 

point Likert item.

For two independent samples, Nanna and Sawilowski(1998) found that the independent samples t-

test and the Mann-Whitney test are Type I error robust for seven point Likert item responses, with the 

Mann-Whitney test superior in power. This is likely observed because there is more scope to apply 

greater skew on a higher point Likert-style scale.  

The literature is much quieter on the analysis of Likert items in paired samples designs. A non-

parametric test for paired samples is the Wilcoxon rank sum test (Wilcoxon, 1945). This is often 

referred to as the Wilcoxon signed rank test, or as is the case in this paper, simply referred to as the 

Wilcoxon test. When the samples are from an underlying Normal distribution, the null hypothesis is of 

equal distributions, but this is particularly sensitive to changes in location (Hollander, Wolfe and 

Chicken, 2013). Thus if samples are from a bivariate Normal distribution, assessing for a location shift 

is reasonable. 

When comparing two groups of paired samples on a five point Likert item, the paired samples t-test is 

often used in preference to the Wilcoxon test (Clason and Dormody, 1994). This choice of test is not 

inappropriate when interval approximating data is assumed, and when the null hypothesis is one of no 

difference in central location (Sisson and Stocker, 1989).  

The degree of correlation between two samples is likely to impact the choice of test. The correlation 

between two sets of responses on a Likert scale is typically hard to quantify. With respect to bivariate 

Normal distributions, Fradette et.al. (2003) suggest that if the correlation is small then the 

independent samples t-test could be used. However, under the same conditions, Zimmerman (1997) 

argues that using the independent samples t-test for even a small a degree of correlation violates the 

independence assumption and can distort the Type I error rate. For bivariate normality, Vonesh(1983) 

demonstrates that the paired samples t-test is more powerful than the independent samples test when 

��  0.25.

In general, the Wilcoxon test with a correction for ties, may be used to test for a location shift between 

two discrete groups. The Wilcoxon test discards observations where there is a zero difference 
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between the two groups. Given the discrete nature of Likert item data, it would not be unusual to 

observe a large proportion of zero differences in a sample. The discarding of many data pairs with a 

zero difference may be problematic. Pratt (1959)proposed a modification of the Wilcoxon test to 

overcome potential problems caused by discarding zero differences. In Pratt’s test, the absolute 

paired differences are ordered including the zero differences, ranks are applied to the non-zero 

differences as if the zero differences had received ranks, and these ranks used in the Wilcoxon test. 

Conover (1973) compared the Wilcoxon test dropping zero differences to Pratt’s test incorporating 

zero differences and concluded that the relative performance of the two approaches depends on the 

underlying distribution. The comparison conducted by Conover (1973) did not include Likert items and 

did not extend to the inclusion of the paired samples t-test.  

A further alternative method for handling zero differences suggested by Pratt (1959) is to randomly 

allocate zero differences to either positive or negative ranks. To achieve this for every zero difference 

add a random uniform deviate )1.0,1.0(~ �U� and then proceed with the ranking. This approach is 

referred to as the random epsilon method in the following.  

For paired five point Likert data we seek to compare the relative behaviour of the Wilcoxon test, 

Pratt’s test, the random epsilon method and the paired samples t-test. The comparison is undertaken 

by discretising realisations from bivariate Normal distributions on to a five point scale over a range of 

correlation coefficients, � , including � = 0. For this latter reason we additionally include the Mann-

Whitney test and the independent samples t-test in the comparison. Mindful that differences in 

location are likely to be accompanied with differences in variances, we additionally include the 

separate variances t-test i.e. Welch’s test in the comparison.It is known that for independent samples, 

Welch’s test is Type I error robust under normality for both equal and unequal variances (Derrick, 

Toher and White, 2016). 

Below we give the simulation study, key results and a discussion of the findings. 

2. METHODOLOGY 

Random Normal deviatesfor two groups of sample size n are generated usingthe Box–Muller (1958) 

transformation. These deviates are transformed into n  pairs with Pearson’s correlation coefficient �

using methodology outlined by Kenney and Keeping (1951). 

For each combination of n  and � , correlated bivariate Normal deviates ijx  are generated, where i=

{1:n} and j = {Group 1, Group 2}. The mean of the sample is varied by adding j�  to each deviate so 

that ijx ~N( j� ,1). The values of each of the parameters simulated are given in Table 1.

International Journal of Mathematics and Statistics

4



�
�

Table 1. Summary of the simulation design. 

Sample size, n 10, 20, 30, 50 
Correlation coefficient, � 0.00, 0.25, 0.50, 0.75

Scenarios 
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Test Statistics 

1T  Paired samples t-test 

2T  Independent samples t-test 

3T  Welch’s t-test 

1W  Wilcoxon test (Traditional method, discarding zeroes) 

2W  Pratt’s test (Wilcoxon test, Pratt’s zeroes modification) 

3W  Random � (Wilcoxon test, )1.0,1.0(~ �U� added to zeroes) 

MW Mann-Whitney test. 
Number of iterations 10,000 
Nominal significance level 5% (two-sided test) 
Programming language R version 3.1.3 

Complete tables of all results available on request. 

Without loss of generality the five points on the Likert scale are numbered from -2 to 2, the “neutral” 

response is 0. The Likert-style responses ijy  are calculated using the cut-points as follows:  
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The cut-points are calculated so that under N(0,1) the theoretical distribution of the Likert-style 

responses is uniform. The median of Group 1 and the median of Group 2 are represented by 1�  and 

2�  respectively. Scenarios A) to I) in Table 1 give an example of each of the possible bivariate 
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pairings of 1�  and 2�  within a five point Likert design. For example, scenario D) 01 �� , 12 �� , is 

equivalent to 11 �� , 02 �� ; 01 �� , 12 ��� ; and 11 ��� , 02 �� .

For selected parameter combinations within the factorial simulation design, theoretical observed 

proportions of ijy  are illustrated in Figure 1. These showcase the range of distributions in the 

simulation design.  

Figure 1. Theoretical distributions of the proportion of observed responses, for selected 
parameter combinations.  

For non-parametric tests, exact p-values are difficult to obtain due to the frequent occurrence of ties 

for Likert data. When there are ties, the Normal approximation corrected for ties can be used to 

calculate p-values(Hollander, Wolfe and Chicken, 2013).The Normal approximations for both the 

Mann-Whitney test and the Wilcoxon test arevery accurate even for small sample sizes(Bellera, Julien 

and Hanley, 2010).The continuity correction factor is often used when approximating discrete 

distributions using the Normal distribution. The correction factor has little impact when n� 10

(Emerson and Moses, 1985). The non-parametric tests are performed using the Normal 

approximation with correction for ties. A continuity correction factor is also applied.Two-sided tests are 

performed at the nominal 5% significance level. 
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For each of the parametercombinations within the simulation design the process outlined above is 

repeated 10,000 times. The proportion of the 10,000 iterations where 0H is rejectedis calculated. For 

the three scenarios in the simulation design where 0H  is true, the proportion of iterations where 0H

is rejected represents the Type I error rate. For the six scenarios in the simulation design where 1H  is 

true, the proportion of iterations where 0H  is rejected represents the power of the test. 

3. RESULTS 

Type I error rates for each of the test statistics are considered. This is followed by a summary of the 

power of the test statistics. 

When the null hypothesis is true, 0H rejection rates within the interval [0.025 , 0.075]  are within 

Bradley’s(1978) liberal limits. This Type I error robustness criteria is often used by researchers, 

although there is no consensus on the most appropriate criteria(Serlin, 2000). For the three scenarios 

in the simulation design where 0H  is true, the Type I error rates for each of the test statistics is given 

in Table 2. 

Table 2. Type I error rates for selected combinations. For each parameter combination the test 
statistics within Bradley’s (1978) liberal robustness criteria is highlighted in bold.  

�
1� 2� n 1T 2T 3T 1W 2W 3W MW

0 0 0 10 0.0528 0.0510 0.0498 0.0375 0.0487 0.0385 0.0441 
0 0 0 20 0.0523 0.0513 0.0511 0.0466 0.0484 0.0464 0.0486 
0 0 0 30 0.0494 0.0508 0.0508 0.0464 0.0501 0.0463 0.0494 
0 1 1 10 0.0484 0.0498 0.0472 0.0344 0.0466 0.0356 0.0426 
0 1 1 20 0.0549 0.0527 0.0524 0.0489 0.0506 0.0488 0.0509 
0 1 1 30 0.0471 0.0486 0.0481 0.0447 0.0473 0.0446 0.0455 
0 2 2 10 0.0352 0.0461 0.0313 0.0168 0.0570 0.0185 0.0441 
0 2 2 20 0.0450 0.0460 0.0450 0.0350 0.0520 0.0400 0.0480 
0 2 2 30 0.0410 0.0500 0.0500 0.0400 0.0440 0.0410 0.0490 

0.75 0 0 10 0.0438 0.0018 0.0018 0.0243 0.0546 0.0268 0.0014 
0.75 0 0 20 0.0498 0.0005 0.0005 0.0392 0.0482 0.0405 0.0007 
0.75 0 0 30 0.0463 0.0006 0.0006 0.0432 0.0459 0.0438 0.0005 
0.75 1 1 10 0.0381 0.0014 0.0012 0.0207 0.0514 0.0219 0.0012 
0.75 1 1 20 0.0514 0.0006 0.0006 0.0398 0.0485 0.0406 0.0004 
0.75 1 1 30 0.0468 0.0009 0.0009 0.0404 0.0439 0.0410 0.0008 
0.75 2 2 10 0.0221 0.0036 0.0025 0.0077 0.0402 0.0103 0.0036 
0.75 2 2 20 0.0460 0.0050 0.0050 0.0270 0.0470 0.0310 0.0080 
0.75 2 2 30 0.0470 0.0040 0.0040 0.0380 0.0520 0.0400 0.0050 
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Table 2 shows that all of the test statistics under consideration fulfil Bradley’s Type I error robustness 

criteria when 0�� . As the correlation increases, test statistics assuming independent samples ( 2T ,

3T  and MW ) do not maintain Type I error robustness. Test statistics assuming independent samples 

are valid when the structure of the data is unpaired, but appear biased when the structure of the data 

is paired.

Test statistics making use of paired information are robust across the range of � . Pratt’s test ( 2W ) is 

Type I error robust for every combination of parameters under the simulation design. 1T , 1W  and 3W

are also generally Type I error robust, with minordeviations when the sample size is small ( 10�n )

and both samples are heavily skewed ( 21 �� , 22 �� ).

Figure 2 summarises for each test statistic the Type I error rates for all of the sample size and 

correlation coefficient combinations within the design. It can be seen from Figure 2 that the paired 

samples t-test ( 1T ) and Pratt’s test ( 2W ) perform closest to the nominal Type I error rate of 5% across 

the simulation design.  

Figure 2. Type I error rates for each test statistic, averaged over each combination of 
parameters. The dotted line represents significance level of 5%. 
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Figure 2 demonstrates that each of the test statistics are generally conservative. A conservative test 

statistic is of less concern than a liberal test statistic (Mehta and Srinivasan, 1970). Alternative Type I 

error robustness criteria states that Type I error rates within the interval [0 , 0.055] are acceptable 

(Sullivan and D’Agostino, 1996). For all of the test statistics, each of the parameter combinations 

within the factorial design are within at least one of the mentioned Type I error robustness criteria. 

Hence, the power of each of the test statistics can be reasonably compared.  

The power for each of the test statistics is given in Table 3, for the six scenarios in the simulation 

design where 1H  is true. 

Table 3. Power for selected conditions. For each parameter combination the most powerful test is 
highlighted in bold. 

�
1� 2� n 1T 2T 3T 1W 2W 3W MW

0 -1 1 10 0.5261 0.5682 0.5651 0.4587 0.4943 0.4594 0.5366 
0 -1 1 20 0.8496 0.8640 0.8637 0.8283 0.8350 0.8292 0.8593 
0 -1 1 30 0.9594 0.9650 0.9650 0.9534 0.9544 0.9535 0.9629 
0 0 1 10 0.1742 0.1905 0.1873 0.1381 0.1631 0.1386 0.1707 
0 0 1 20 0.3200 0.3300 0.3292 0.2956 0.3057 0.2965 0.3202 
0 0 1 30 0.4522 0.4631 0.4627 0.4354 0.4404 0.4354 0.4573 
0 0 2 10 0.6502 0.7044 0.6970 0.5745 0.6275 0.5791 0.6805 
0 0 2 20 0.9415 0.9497 0.9494 0.9291 0.9338 0.9292 0.9488 
0 0 2 30 0.9913 0.9935 0.9934 0.9897 0.9910 0.9900 0.9929 

0.75 -1 1 10 0.9299 0.5935 0.5878 0.8741 0.9353 0.8808 0.5618 
0.75 -1 1 20 0.9989 0.9508 0.9508 0.9988 0.9989 0.9988 0.9501 
0.75 -1 1 30 1.0000 0.9967 0.9967 1.0000 1.0000 1.0000 0.9970 
0.75 0 1 10 0.3974 0.0842 0.0819 0.3025 0.4186 0.3112 0.0764 
0.75 0 1 20 0.7496 0.2342 0.2328 0.7119 0.7381 0.7164 0.2341 
0.75 0 1 30 0.9079 0.4336 0.4334 0.8976 0.9000 0.8990 0.4292 
0.75 0 2 10 0.9585 0.7548 0.7413 0.8986 0.9706 0.9114 0.7345 
0.75 0 2 20 0.9998 0.9890 0.9888 0.9997 0.9998 0.9997 0.9896 
0.75 0 2 30 1.0000 0.9996 0.9996 1.0000 1.0000 1.0000 0.9997 

Table 3 shows that the power difference between the independent samples t-test ( 2T ) and Welch’s 

test ( 3T ) is negligible. Additionally, there is little power differential between the traditional Wilcoxon 

test ( 1W ) and the Random � method ( 3W ).

To summarise the power across the parameters within the simulation design, Figure 3 depicts how 

the test statistics 1T , 2T , 1W , 2W  and MW perform with increasing � for a small sample size of 

10�n . Figure 4depicts how the test statistics 1T , 2T , 1W , 2W  and MW perform with increasing �

for a larger sample size of 20�n .
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Figure 3. Power of the test statistics 1T , 2T , 1W , 2W  and MW where 10�n , averaged 
across each scenario within the simulation design. 

Figure 3 shows that the independent samples t-test consistently out performs the Mann-Whitney test. 

When 0��  the independent samples t-test is the recommended test of choice. When � >0 the 

paired samples t-test is more powerful than the independent samples t-test. These findings are 

consistent with the paired samples t-test and the independent samples t-test for continuous data 

(Fradette et. al. 2003; Zimmerman, 1997; Vonesh, 1983). 

It can also be seen from Figure 3 that the standard Wilcoxon test consistently lacks power compared 

to Pratt’s test and the paired samples t-test. When 25.0��  the paired samples t-test is the most 

powerful test.As the correlation increases, Pratt’s method becomes the test of choice.  

As 1��  the power of both 1T  and 2W increases. Given that both the paired samples t-test and 

Pratt’s test havehigh power when the correlation is strong, the decision between the two tests is not of 

any major practical consequence in these circumstances. 

Figure 4 shows that as sample size increases, thechoice between the Wilcoxon test, Pratt’s test and 

the paired samples t-test becomes less important. Thesample size is large enough to compensate for 

discarded zeroes in the Wilcoxon test for n�  20. 
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Figure 4. Power of the test statistics 1T , 2T , 1W , 2W  and MW where 20�n , averaged across 
each scenario within the simulation design. 

4. CONCLUSION 

Simulations have been performed based on an underlying continuum with a nonlinear transformation 

mapping to a five point equally spaced scoring scheme. The results indicate that parametric statistical 

procedures maintain good statistical properties for these data, i.e. the scores seemingly have interval 

like properties. This tends to suggest that if any real world application has a five point Likert scale 

designed to have perceived equally spaced categories, then the analyst may proceed with parametric 

approaches.   

When comparing two independent samples on a five point Likert question, the independent samples t-

test, Welch’s test and the Mann-Whitney test are Type I error robust. There is little practical difference 

between the power of these three tests. These findings support those in the literature (De Winter and 

Dodou, 2010; Rasch, Teuscher and Guiard, 2007).

When the structure of the experimental design includespaired observations, the independent samples 

t-test, Welch’s test and the Mann-Whitney test do not fulfil allType I error robustness definitions. 
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Nevertheless, these testsare conservative in natureandso their use may not be completely unjustified. 

However, these tests lack power in a paired design and are therefore not recommended, unless it is 

considered that the relationship between the two groups being compared is extremely small. 

When sample sizes are large, there is little practical difference in the conclusions made from the 

paired samples t-test, the Wilcoxon test, or Pratt’s test. When the sample size is large the choice 

becomes a more theoretical question about the exact form of the hypothesis being tested and the 

assumptions made. 

When sample sizes are small and the correlation between two paired groups is strong, Pratt’s test 

outperforms the paired samples t-test and the Wilcoxon test.When the correlation between the two 

groups is weak, the paired samples t-test outperforms the Wilcoxon test and Pratt’s test. 
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Researchers often encounter two samples of Likert data, which contain both independent 
observations and paired observations. Standard analyses in this scenario typically involve 
discarding the independent observations and performing the paired samples t-test, the Wilcoxon 
signed-rank test or the Pratt test. These naive approaches are examined alongside recently 
developed partially overlapping samples t-tests that make use of all of the available data in the 
two sample scenario. For two samples of observations from a Likert question with five categories 
or seven categories, test statistics are assessed for their Type I error robustness and power. A 
summary measure of Type I error robustness across the simulation design is quantified as that 
value of π such that (1- π )×100 percent of Type I error rates are within π ×100 percent of the 
nominal significance level. Across a range of sample sizes and correlation coefficients, the 
partially overlapping samples t-tests are Type I error robust, and offer a more powerful alternative 
for the analysis of two samples including both paired observations and independent observations. 
In these scenarios, when the assumption of an underlying continuous distribution is not 
inappropriate, the partially overlapping samples t-test is recommended. 
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Glossary

ANOVA Analysis of Variance
Brown-Forsythe
test (BF)

Brown-Forsythe test for equal variances using absolute
deviations from the median

Cov Covariance
CI Confidence Interval
INT Inverse Normal Transformation
KS Kolmogorov-Smirnov test for normality
Levene’s test (L) Levene’s test for equal variances using absolute devia-

tions from the mean
MAR Missing at random
MCAR Missing completely at random
MNAR Missing not at random
NA Not applicable or missing
NHRR Null hypothesis rejection rate
NHST Null hypothesis significance testing
P-P Probability-Probability
PM Pitman-Morgan test for equal variances
REML Restricted Maximum Likelihood
SW Shapiro-Wilk test for normality
Var Variance
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