
  Harris and El Hindy 2019 

 

1 

BCAT-induced autophagy regulates Aβ load through an interdependence of redox state 

and PKC phosphorylation-implications in Alzheimer’s disease. † 

 

Harris, M.‡*, El Hindy, M.‡*, Usmari-Moraes, M.‡*, Hudd, F. ‡, Shafei, M. ‡ Dong, M. ¥, 

Hezwani, M.‡, Clark, P.‡, House, M.‡, Forshaw, T.‡, Kehoe, P.§, and Conway, ME‡† 

‡Faculty of Health and Applied Sciences, University of the West of England, Coldharbor Lane, 

Bristol, BS16 1QY, UK. 

¥Department of Chemistry, North Carolina Agricultural and Technical State University, Market 

Street, Greensboro, North Carolina, 27411, USA. 

§Institute of Clinical Neurosciences, Learning and Research Building, Southmead Hospital, 

Bristol, United Kingdom. 
 

†This study was supported by PhD Fellowship from BRACE awarded to M.E.C. at the 

University of the West of England. 

*These authors contributed equally to the paper. 

Running title:  BCAT regulated autophagy and Aβ. 

 

*Address correspondence:  Myra E. Conway, Faculty of Health and Life Sciences, University 

of the West of England, Coldharbor Lane, Bristol, BS16 1QY, UK Tel: 0044 117 328 3552; 

Fax: 0044 117 328 2904; email: myra.conway@uwe.ac.uk. 

  

mailto:shutson@wfubmc.edu


  Harris and El Hindy 2019 

 

2 

ABSTRACT 

Leucine, nutrient signal and substrate for the branched chain aminotransferase (BCAT) 

activates the mechanistic target of rapamycin (mTORC1) and regulates autophagic flux, 

mechanisms implicated in the pathogenesis of neurodegenerative conditions such as 

Alzheimer’s disease (AD).  BCAT is upregulated in AD, where a moonlighting role, imparted 

through its redox-active CXXC motif, has been suggested.  Here we demonstrate that the redox 

state of BCAT signals differential phosphorylation by protein kinase C (PKC) regulating the 

trafficking of cellular pools of BCAT.  We show inter-dependence of BCAT expression and 

proteins associated with the P13K/Akt/mTORC1 and autophagy signalling pathways.  In 

response to insulin or an increase in ROS, BCATc is trafficked to the membrane and docks via 

palmitoylation, which is associated with BCATc-induced autophagy through PKC 

phosphorylation.  In response to increased levels of BCATc, as observed in AD, amyloid β 

(Aβ) levels accumulate due to a shift in autophagic flux.  This effect was diminished when 

incubated with leucine, indicating that dietary levels of amino acids show promise in regulating 

Aβ load.  Together these findings show that increased BCATc expression, reported in human 

AD brain, will affect autophagy and Aβ load through the interdependence of its redox-regulated 

phosphorylation offering a novel target to address AD pathology. 

 

KEYWORDS:  BCAT, phosphorylation, redox regulated, PKC, insulin signalling, 

autophagy, Aβ.  

Abbreviations:   

α-ketoisocaproate (KIC), and α-ketoisovalerate (KIV), α-keto-β-methylvalerate (KMV) 

Alzheimer’s disease (AD), amyloid β (Aβ), branched chain amino acids (BCAA), branched 

chain aminotransferase (BCAT), cytosolic BCAT (BCATc), mitochondrial BCAT (BCATm), 

branched chain α-keto acid dehydrogenase (BCKD), Glutamate dehydrogenase (GDH), 

glutathione (GSH), mechanistic target of rapamycin (mTORC1), hydroxylamine (HAM), 

leucine deprivation (LD), N-ethyl maleimide (NEM), , oxidised glutathione (GSSG), phorbal 

12-myristate 13-acetate (PMA), protein kinase C (PKC), phenylmethanesulfonyl fluoride 

(PMSF), S-Nitrosoglutathione (GSNO), staurosporine (SS). 
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INTRODUCTION 

The branched chain aminotransferase proteins (BCAT), BCATm (mitochondrial) and BCATc 

(cytosolic) catalyse the transamination of the branched chain amino acids (BCAA), leucine, 

valine and isoleucine to their respective α-keto acids and glutamate (Ichihara, 1975., reviewed 

in Conway and Hutson, 2016).  Complete oxidation of the resulting α-keto acids, by the 

branched chain α-keto acid dehydrogenase complex (BCKDC), generates acyl-CoA, which 

enters the TCA cycle.  These enzymes have established roles in amino acid metabolism and 

whole-body nitrogen shuttling, in particular with respect to the de novo synthesis of brain 

glutamate (LaNoue et al., 2001; García-Espinosa et al., 2007; Leith et al., 2001; Coles et al., 

2012).  We have previously reported that the levels of these proteins were increased in 

Alzheimer’s disease (AD) brain, which could contribute to the generation of excess glutamate, 

promoting neurotoxicity (Hull et al., 2015).  However, emerging new evidence has since 

indicated that these proteins, traditionally assigned metabolic roles, may have additional 

cellular ‘moonlighting’ functions (particularly through the P13K/mTORC1 and autophagy 

pathways), which are regulated through their peroxide sensitive-redox active CXXC motif 

(Conway and Lee, 2015).   

This CXXC motif is unique to these aminotransferases (Conway et al., 2002; Conway et al., 

2003; Conway, 2004) and when modified through oxidation (Conway et al., 2002, Conway et 

al., 2004) S-nitrosation (Coles et al., 2009) or S-glutathionylation (Conway et al., 2008) are 

reversibly inactivated.  The N-terminal cysteine residue acts as a redox sensor and the second 

cysteine operates as the resolving cysteine, preventing irreversible oxidation.  The function of 

this redox switch has in part been characterised for BCATm, influencing its formation of a 

metabolon with the E1 subunit of BCKDC (Islam et al., 2007) and glutamate dehydrogenase 

(GDH) (Islam et al., 2010), enzymes important for the complete oxidation of the BCAA.  When 

inhibited by oxidation, BCATm no longer catalyzes transamination, preventing metabolite 

channeling through both its lack of activity and its decreased ability to stabilize multi-enzyme 

complexes.  We have also shown that in vitro the BCAT proteins have novel thiol 

oxidoreductase activity that can accelerate the refolding of reduced and denatured RNase, in 

particular when S-glutathionylated, supporting a chaperone role for BCAT in protein folding 

(El Hindy et al., 2014).  Several other proteins, isolated from neuronal IMR32 cells, that are 

directly involved or controlled by G protein cell signalling and known to be modulated by 

peroxide were also identified as binding partners for BCAT (Coles et al., 2009).  While various 

phosphorylation sites, particular to protein kinase C (PKC) are structurally evident in BCAT, 
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it remains unknown if BCAT phosphorylation influences its activity or proposed moonlighting 

role, in particular with respect to AD pathology.   

PKC, like the P13K/Akt/mTORC1 signalling pathway, regulates autophagy through key 

nutrient signals such as the BCAAs, insulin and nutrient deprivation (Choi et al., 2015; Heras-

Sandoval et al., 2014; Zhou et al., 2015).  Autophagy is a degradation and recycling system 

that removes cytoplasmic components such as misfolded or aggregated proteins through 

several stages that culminates with fusion of the autophagosome and the lysosome (Glick et 

al., 2010).  Induced autophagy can be stimulated by changes in nutrient status, growth factors 

or oxidative stress, important to cell survival (Shafei and Conway, 2017).  However, inhibition 

or disruption to the formation or clearance of the autophagosome or fusion with the lysosome 

can result in a shift in autophagic flux, leading to aggregate accumulation as observed in 

neurodegenerative conditions such as AD (Nixon et al., 2005).  In fact, accumulation of 

autophagic vacuoles with high levels of amyloid β have been reported in post-mortem AD brain 

(Cataldo et al., 1997; Nixon et al., 2005; Nixon, 2007) and considered an early event in disease 

pathogenesis (Perez et al., 2015).  Therefore, whilst autophagy is generally considered to play 

a role in cell survival, disruption to autophagic flux has been linked with cell death. 

Inhibition of PKC using staurosporine (SS) is known to cause a loss in autophagy, whereas 

activation using phorbal 12-myristate 13-acetate (PMA) can promote it (Zhang et al., 2009).  

In AD models, it is known that activation of PKCα (and MAPK) promotes the production of 

the secretory form of amyloid precursor protein (sAPPα) (Kim et al., 2011), which reduces the 

accumulation of pathogenic Aβ levels (Hung et al., 1993; Gabuzda et al., 1993), whereas Aβ 

accumulation directly inhibits PKC activation (Lee et al., 2004).  Indeed in AD brain, levels of 

PKC, its receptors (Battaini et al., 1999; Kurmatani et al., 1998) or activity (Moore et al., 1998; 

Zhu et al., 2001) and associated phosphatases are decreased (Sontag and Sontag, 2014), as is 

autophagosome flux (Nixon et al., 2005; Yu et al., 2005; Yu et al., 2004), all of which have 

been correlated with AD pathology and possibly as a direct result of Aβ.  However, the 

underlying mechanisms relating these pathways and how they are perturbed in AD is still 

unknown.   

As nutrient signals and insulin drive crosstalk between these pathways, which relate to BCAT 

metabolism, the focus of this study was to determine if BCAT plays a fundamental role in 

autophagy-mediated regulation of Aβ through redox-regulated phosphorylation of BCAT.  

Collectively, our data support kinase-mediated phosphorylation of BCAT that is modulated by 
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cysteine residues and redox state, and linkage of phosphorylation state to Aβ accumulation via 

deregulation of autophagic flux, pointing to novel targets to regulate Aβ load in AD.  In 

summary, subcellular translocation of BCATc is mediated through redox-regulated PKC 

phosphorylation, important to autophagic flux and Aβ processing.
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MATERIALS AND METHODS 

Materials 

Protein kinase C isoforms; α, βI, βII, γ, θ, ε, η, and δ, adenosine triphosphate (ATP), 

phosphatase inhibitor, L-glutamic acid, L-glutathione reduced, L-glutathione oxidized, 

diacylglycerol, PS, protease inhibitor, iodoacetamide, N-ethyl maleimide (NEM), hydrogen 

peroxide, -ketoisocaproate (KIC), -ketoisovalerate (KIV), phenylmethanesulfonyl fluoride 

(PMSF), tunicamycin, chloroquine diphosphate salt, bafilomycin and rapamycin were obtained 

from Sigma Aldrich (Poole, Dorset, UK).  Protein A/G Sepharose was purchased from Abcam 

(Cambridge, UK). HiTrapTM Q HP and PD10 columns were obtained from GE Healthcare 

(Buckinghamshire, UK).  γ32P-ATP was obtained from Perkin Elmer (Cambridge, UK).  

Labelled C14 Valine was obtained from ARC (London, UK).  Rabbit raised antibody to BCATc 

was raised against protein purified by this group and purchased from Insight Biotechnology 

Limited (Wembley, UK).  All other chemicals were obtained from Fisher Scientific 

(Loughborough, UK) or Invitrogen (Paisley, UK). 

In vitro phosphorylation of BCAT proteins with various PKC isoforms in response to altered 

redox condtions. 

In vitro phosphorylation of BCAT proteins was assessed by incubation of BCAT with various 

PKC isoforms using the radioactive isotope γ32P-ATP.  Initially, BCAT was exchanged into 50 

mM HEPES (pH 7.2), containing 0.2 mM DTT and subsequently phosphorylated in the 

presence of 10 mM MgCl2, 10 mM ATP (γATP), diacyl glycerol (10 mg/mL) and phosphatidyl 

serine (2 mg/mL) (α, βI, βII, γ, 5 mM CaCl2) for 30 minutes at 30ºC.  Phosphorylated BCAT 

was separated using 1D-SDS-PAGE (12%) and the proteins were resolved using Gel-code.  

The gels were subsequently vacuum-dried and imaged via digital autoradiography.  As 

phosphorylation was optimal for PKCα, this isoform was used in all subsequent experiments.  

The effect of phosphorylation over time (2-30 minutes) was also determined at 30ºC.  The 

importance of the redox-active thiol groups was established using mutant BCAT proteins 

(BCATc: C335S, C338S, C335/8S and BCAT: C315S and C318S) in place of wild-type 

proteins under the same experimental conditions.   

To determine the effect of changing the redox environment on BCAT proteins, phosphorylation 

by PKCα, the proteins were incubated for 30 minutes with S-Nitrosoglutathione (GSNO) (1 

mM), oxidised glutathione (GSSG) (1 mM) or reducing agents such as DTT (1 mM) and 

glutathione (GSH) (1 mM), and also the thiol inhibitor, NEM (8 mM), respectively.  The BCAT 

http://en.wikipedia.org/wiki/Diacylglycerol
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proteins were subsequently exchanged into 50 mM HEPES buffer (pH 7.2) and phosphorylated 

as described above.  Phosphorylation then proceeded for 15 minutes at 30C following the 

addition of the kinase.   

In vitro dephosphorylation of BCAT proteins in a time dependent manner. 

To evaluate the effect of time on dephosphorylation, BCAT proteins were exchanged into 50 

mM HEPES buffer (pH 7.2) containing 0.2 mM DTT.  The BCAT proteins were 

phosphorylated for 30 minutes at 30ºC by PKCα as described above and subsequently 

dephosphorylated using 2 µL of protein phosphatase 1 over 0, 5, 10, 15, 20 and 50 minutes at 

30ºC.  Dephosphorylation was imaged as previously described above. 

Phosphorylation of BCAT proteins in human neuroblastoma cells IMR-32. 

Phosphorylation of BCAT proteins in human neuroblastoma (IMR-32) cells was demonstrated 

by incubating cells in buffer containing 5.6 mM KCl, 0.2 mM KH2PO4, 137.6 mM NaCl, 2.4 

mM Na2HCO3, 5.6 mM glucose, 0.4 mM MgSO4, 0.5 mM MgCl2, 20 mM HEPES (pH 7.4), 

1.26 mM CaCl2 and 10 mM ATP for 2 hours at 37°C at 5% CO2.  Proteins from these cells 

were extracted in RIPA buffer containing 10 mM Tris (pH 7.6), 150 mM NaCl, 1 mM EDTA, 

1 mM EGTA, 1% triton X-100, 1X protease inhibitor and were subjected to lysis using a 

syringe followed by centrifugation at 10,000 X g at 4°C.  Proteins were separated by 1D-SDS-

PAGE (4-12% Bis-Tris gels) followed by Western blot analysis to probe for BCAT 

phosphorylation using an antibody which detects phosphorylation at serine residues 

surrounding by arginine/lysine and hydrophobic residues of PKC substrates (1/1000) (Cell 

Signalling, Hertfordshire, UK) and BCATc (1/1000).   

Subcellular fractionation  

After appropriate treatment, IMR-32/SH-SY5Y cells were washed twice in ice cold PBS prior 

to scraping in PBS.  The cells were centrifuged for 5 minutes at 900 X G and re-suspended in 

Tris buffer (50 mM Tris, 150 mM NaCl, 1 X EDTA-free Protease inhibitor, pH 7.5), extracted 

through a G25 needle twenty times and incubated on ice for 30 minutes.  To remove the nuclear 

fraction, the cell lysates were centrifuged at 900 X G for 5 minutes at 4°C.  The supernatant 

was removed and centrifuged at 20,000 X G to isolate the membrane fraction from the 

cytosolic, which was then re-suspended in MES-buffered saline (25 mM MES, 150 mM NaCl, 

1% Triton X-100™, 1 X EDTA-free Protease Inhibitor, pH 6.5) and incubated on ice for 60 

minutes.  After centrifugation at 20,000 X G for 30 minutes at 4°C, the non-raft membrane 

fraction was collected as supernatant and the raft-membrane pellet was re-suspended in Tris 
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buffer containing 60 mM β-octylglucoside and 1 % Triton X-100™ and incubated on ice for 

30 minutes.  The raft-membrane fraction was then collected as supernatant after centrifugation 

at 15,000 X G for 20 minutes at 4°C.  Protein concentrations were calculated using the Bradford 

assay, the samples were separated by 4-12% SDS-PAGE followed by Western blot analysis. 

Western blot analysis of proteins from IMR-32 and SH-SY5Y treatments. 

Protein samples (20 µg/µL) were separated on a 4-12% SDS PAGE and transferred either a 

nitrocellulose or a PVDF membrane for 2 h at 50 V (low molecular weight proteins) or 18 

hours at 35 V (high molecular weight proteins) in transfer buffer (20% Methanol, 25 mM Tris, 

190 mM Glycine, pH 8.3).  The membrane was washed three times with Tris buffered saline 

with Tween (TBST: 0.1% Tween, 200 mM NaCl, 2 mM Tris, pH 7.5) for 10 minutes each and 

blocked (with 5% non-fat milk or 5% BSA) for 1 hour.  Primary antibody (5% BSA for pAkt, 

pmTOR and pS6K (1/1000), and in 5% non-fat milk for BCATc (1/3000), Beclin (1/1000), 

p62 (1/2000) and LC3 (1/500/1/1000)) was added to the membrane and incubated overnight at 

4°C.  After three 10-minute washes with TBST and an additional block with 5% non-fat milk 

for 30 minutes, secondary antibody (HRP linked) in 5% non-fat milk was added for 1 hour.  

Following three 10-minute washes with TBST, chemiluminescent HRP substrate was added 

for 1 minute and exposed to film for various time periods, or imaged using an Odyssey FC (Li-

cor Biosciences, Cambridge, UK). 

Confirmation of palmitoylation of BCATc 

SH-SY5Y cells were transferred to EBSS for 1 hour and subsequently treated with 10 µM 

tunicamycin +/- 100 nM insulin for 2 hours in EBSS.  Cells were washed twice in ice-cold PBS 

and scraped in lysis buffer (LB – 1% IGEPAL CA-630, 150 mM NaCl, 10% glycerol, 10 mM 

PMSF, 50 mM Tris-HCl, pH 7.5) containing protease cocktail inhibitor + 50 mM NEM.  Cells 

were collected in pre-cooled 1.5 mL centrifuge tubes and sonicated for 15 seconds on ice, 

before nutating for 30 minutes at 4ºC.  Cell lysates were subsequently centrifuged at 16 000 x 

g for 30 minutes and supernatant collected into a new pre-cooled 1.5 mL centrifuge tube.  

Protein concentration was measured using the Bradford assay.  BCATc primary antibody was 

added to the cell lysates, and incubated overnight at 4ºC. 

Following overnight incubation, 60 µL of protein A/G-coated sepharose beads were added to 

each sample and incubated for 1 hour at 4ºC.  Lysates were centrifuged at 0.5 x g for 1 minute 

at 4ºC, the supernatant removed and the pellet resuspended in 600 µL LB + 10 mM NEM.  

Following resuspension, 200 µL of sample were added to pre-cooled tubes labelled –HAM 
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with an additional 300 µL of LB + 10 mM NEM.  The remaining 400 µL were added to +HAM 

tubed with 100 µL LB + 10 mM NEM, and all samples were incubated on ice for 10 minutes. 

Samples were quickly washed with 0.5 mL stringent buffer (10 mM NEM, 0.1% SDS in LB), 

following three washes with 0.5 mL LB, pH 7.2 and 0.5 x g for 1-minute spins between washes.  

0.5 mL of LB pH 7.2 were added to each –HAM sample, and 0.5 mL of LB pH, 7.2 with 1 M 

HAM were added to +HAM samples.  These were allowed to react for 1 hour at room 

temperature. 

Beads were gently washed with LB pH 6.2 to remove residual HAM buffer, prior to supernatant 

being removed and samples incubated on ice. 0.5 mM of Biotin-BMCC buffer (2.5 µM Biotin-

BMCC solution in LB pH 6.2) were added to each sample and these were reacted for 1 hour at 

4ºC.  Following incubation, samples were gently washed once with LB pH 6.2 and three times 

with LB pH 7.5 + PMSF and protease inhibitor.  Supernatant was then removed and any 

remaining buffer collected underneath the bead slurry was carefully removed.  Proteins were 

separated using 4-10% SDS PAGE.  

Regulation of BCAT subcellular translocation  

To evaluate the effect of changes in the redox environment on BCATc translocation, SH-SY5Y 

cells were incubated with 100 µM and 1000 µM H2O2, respectively, relative to reduced 

conditions using 10 mM DTT.  Proteins were subsequently extracted and analysed using 

subcellular fractionation and Western blot analysis as described above.  As leucine is a key 

nutrient signal, it may play an important role in recruiting BCATc to the membrane.  SH-SY5Y 

cells were grown in EBSS for one hour, and treated with 5 mM, 10 mM or 20 mM leucine or 

glutamate, respectively or 100 nM insulin and then analysed using subcellular fractionation 

followed by Western blot analysis.  To determine the effect of PKC activation or inhibition on 

translocation of proteins to the cell membrane, cells were incubated in EBSS for 1 hour and 

then treated for 3 hours with 200 nM PMA (PKC activator) or 2.3 nM Go6976 and 3 nM 

staurosporine (PKC inhibitor) +/- 100 nM insulin, and analysed using subcellular fractionation 

followed by Western blot analysis. 

Confocal microscopy of BCATc under varied redox or nutrient conditions 

SH-SY5Y cells were allowed to reach 70%–80% confluence and treated under various redox 

(+ / - hydrogen peroxide (100 µM or 1000 µM) or +/- DTT (10 mM)) for 30 min, respectively, 

at 37°C in a humidified incubator that was adjusted to contain 5% CO2.  In a separate 

experiment SH-SY5Y cells were grown in EBSS for one hour, and treated with 100 nM insulin 
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or 100 nM rapamycin for 30 minutes.  After serial washes, the cells were fixed with 0.25% 

glutaraldehyde and permeabilized with 0.2% Triton X-100 for 20 minutes at RT in a 0.1 M 

sodium cacodylate buffer, pH 7.4 adjusted to contain 0.1 M sucrose.  The cells were further 

treated by a succession of washes with sodium borohydride (1 mg/ml in PBS) and blocked in 

3% BSA overnight before incubating with primary antibodies, anti-BCATc, (1/500), anti-

Vps34, anti-LC3 and anti-4EBP1 (1/150 dilution), respectively, for 1 h at RT.  After serial 

washes, the cells were incubated with goat anti-rabbit Alexa Fluor-568 or goat anti-mouse 

Alexa Fluor 488 for 1 h at RT.  Slides were washed in cacodylate buffer and mounted in 300 

nM DAPI in glycerol.  The Mander’s correlation coefficients (Mx and My) were derived using 

Volocity (Perkin-Elmer) from an average of 15 individual cell images. 

Autophagy analysis using bafilomycin and chloroquine 

For autophagy assessment, SH-SY5Y cells were maintained in culture to approximately 80% 

confluence, and subsequently nutrient deprived in EBSS for 3 hours.  Cells were treated with 

100 nM rapamycin, 100 nM bafilomycin or 50 μM chloroquine for 30 minutes, leucine 

deprived for 3 hours.  Protein was extracted from whole cells by scraping in RIPA buffer (25 

mM Tris, 150 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 1 mM NaF, 1 mM PMSF, 1 x 

phosphatase inhibitor, 1 x protease inhibitor, pH 7.6) containing 0.01% Triton X-100, and 

quantified using the Bradford assay.  Samples were analysed by Western blot analysis using 

antibodies against BCATc (1/3000), LC3 (1/1000) and p62 (1/2000).   

Knockdown and overexpression of BCATc in SH-SY5Y and autophagy assessment 

Knockdown (autophagy): SH-SY5Y cells were seeded into 6-well plates and immediately 

transfected with 20 nM BCATc siRNA, following optimisation from the manufacturer’s 

protocol (Lipofectamine™ RNA iMAX, Thermo Fisher Scientific, Waltham, MA, USA).  

Cells were incubated for 24, 48, and 72 with media changed after 24 h for longer incubation 

times.  Proteins from whole cell extracts were separated on 4-12% SDS PAGE followed by 

Western blot analysis as described. 

Overexpression of BCATc and autophagy (subcellular fractionation):  Cells were seeded at 

highest confluency in 75 mm2 culture flasks and allowed to attach overnight.  BCATc was 

overexpressed by preparing 10 µg total BCATc plasmid DNA and 30 µg polyethylenimine 

(PEI – 1:3 DNA to PEI ratio (w/v)) in Opti-MEM, incubating complex for 15 minutes and 

adding to cells for a total of 72 h, including a 24 h post-transfection medium change.  Cells 

were nutrient deprived for 1 hour and treated for 3 hours with PKC inhibitors staurosporine (3 
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nM) and Go6976 (2.3 nM), PKC activator PMA (200 nM) and/or 100 nM insulin, respectively, 

prior to subcellular fractionation.  

Effects of overexpressed BCATc on Aβ levels:  Cells were overexpressed with 0.5, 1.0, 1.5 

and 2.5 µg of BCATc with jetPRIME® following the manufacturers’ protocol (Polyplus 

Transfection, New York, NY) +/- insulin or leucine.  In brief, cells were seeded in 6-well plates 

at a density of 2 x 106 cells/well and allowed to attach overnight.  Transfection reagent and 

increasing concentrations of DNA plasmid (1:2 DNA to jetPRIME® ratio (w/v)) were prepared 

in reduced-serum media (Opti-MEM), incubated for 15 minutes at RT and subsequently added 

to wells.  Cells were incubated with transfection complex for 24 hours before medium change, 

and to a total of 72 h prior to extraction with RIPA buffer (10 mM Tris-HCl, 150 mM NaCl, 1 

mM EDTA, 1 x protease inhibitor, pH 7.5) and Western Blot analysis (Primary antibodies: 

BCATc 1:3000, LC3 1:1000, Aβ 1:1000). 

  



  Harris and El Hindy 2019 

 

12 

RESULTS  

The redox-active CXXC motif of BCAT regulates PKC phosphorylation. 

The BCAT proteins have various phosphorylation motifs as defined using the Motif Scan 

program (http://scansite.mit.edu) (Figure 1A), highlighting 3 structurally accessible consensus 

sequences for PKC, (BCATc) T24, T36 and T128 and (BCATm) S30, S31 and T59 (Figure 

1B).  Conventional and atypical isoforms of PKC were used to phosphorylate BCAT using the 

radioactive isotope ɣ32P-ATP and those that are calcium, diacyl glycerol and 

phosphatidylserine dependent show increased ɣ32P-ATP incorporation relative to δ, ε, θ and η 

(Figure 1C).  Reversible phosphorylation by PKCα and phosphatase 1, respectively changed in 

a time dependent manner and followed a bi-phasic pattern (Figure 1D (i-iv)), which may be 

explained by the accessibility of the phosphorylation sites.   

To assess the role of cysteine residues in regulating phosphorylation, the CXXC mutants 

(C335S, C338S and C335/8S for BCATc and C315S, C318S for BCATm) were tested for their 

ability to act as targets for PKC.  Mutation of the thiol groups of the CXXC motif Cys to Ser 

significantly reduced PKC phosphorylation (Figure 2A).  For both isoforms, the N-terminal 

cysteine residues appears to be more critical for phosphorylation, indicating that the redox 

sensor at position C315 or C335 is essential for phosphorylation.  The importance of the thiol 

groups to PKC phosphorylation was established using the thiol specific inhibitor NEM, which 

completely inhibited BCAT phosphorylation (Figure 2B).  Incubation of BCATc with the 

reducing agent DTT and the physiologically relevant reducing agent GSH resulted in an 

increase in phosphorylation (Figure 2B).  Conversely, incubation with GSSG and GSNO 

significantly reduced BCATc phosphorylation relative to reduced protein (Figure 2B).  

Interestingly, although NEM abolished phosphorylation of BCATm, supporting the role of 

these thiol groups in this mechanism, incubation with GSNO or GSSG did not prevent PKC 

phosphorylation, indicating that the underpinning mechanisms of redox-regulated 

phosphorylation differs between isoforms.  Treatment of human neuroblastoma (IMR32 cells) 

PMA resulted in the phosphorylation of target proteins (Figure 2C(i)).  Proteins were extracted 

from cells, and analysed by Western blot analysis using antibodies specific for phosphorylation 

and BCATc.  Phosphorylated protein at the expected molecular weight for BCATc was 

confirmed (Figure 2C(ii)).  Overlay of cellular phosphorylation with BCATc supports that 

BCATc is a target for PKC phosphorylation in cells (Figure 2C(iii)). 

Translocation of BCATc to the membrane through S-palmitoylation is regulated by changes in 

the cellular redox environment  

http://scansite.mit.edu/
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Previous studies demonstrated that it is the redox state of the BCAT proteins that supports 

binding of proteins involved in G-protein cell signalling (Coles et al, 2009).  PKC targets are 

often associated with the membrane, but BCATc is normally distributed in the cytosol.  

However, we showed using fractionation studies that pools of BCATc exist, in the membrane 

and nuclear fractions (Figure 3A).  Fraction purity was confirmed using subcellular specific 

proteins Na+, K+-ATPase and Hsp90.  BCATc has several palmitoylation sites (Figure 3B), 

which can undergo palmitoylation as evidenced by the Acyl-Biotin assay +/- tunicamycin 

(Figure 3C).  These pools of BCATc were found to be regulated in response to changes in the 

redox environment (Figure 3D).  In response to oxidation (Figure 3D(i)) the pool of BCATc at 

the membrane increased, whereas in response to DTT the accumulated pool was significantly 

decreased (Figure 3D(ii)).  Here, we propose that BCATc docks at the membrane in response 

to changes in cellular redox status.  Notably, an increase in nuclear BCATc was also observed.   

PKC activation and BCAT substrates regulate membrane localisation of BCATc  

Leucine is a key nutrient signal and works in synergy with insulin-mediated signalling.  

However, the role of BCATc in this pathway is not entirely clear.  We next evaluated if insulin 

or BCAA substrates effect BCATc trafficking through a PKC-mediated pathway.  In response 

to insulin there was an increase in BCAT recruited to the membrane (Figure 4A).  On the other 

hand, leucine and glutamate showed a dose-dependent decrease in membrane bound BCATc 

(Figure 4B (i and ii)) indicating that BCATc trafficking is regulated through hormonal triggers 

and nutrient status.  Moreover, inhibition of PKCα using staurosporine caused a significant 

increase in membrane BCATc that was further enhanced with insulin (Figure 4C).  This data 

indicates that BCATc translocation to the membrane is regulated through an insulin/PKCα-

mediated mechanism.   

BCAT regulates autophagy through PKC-mediated interactions. 

Leucine, the BCAT substrate, is known to activate mTORC1 and inhibit autophagy, however, 

less is known about the role of BCATc in this mechanism.  We first showed that the level of 

BCATc increased in response to nutrient-deprivation or rapamycin (Figure 5A (i and ii).  Not 

only did the level of BCATc increase but so too did its association with Vps34, in particular at 

the cell membrane where, based on the Mander’s correlation coefficient, these proteins 

colocalise.  Using other markers of autophagosome synthesis such as Beclin, and LC3, we 

confirm that in response to leucine deprivation (LD) that the level of BCATc significantly 

increased, as did Beclin and LC3I lipidation (Figure 5B (i)).  The increase in both of these 
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markers suggests that autophagosome synthesis is increased, which will impact flux dependent 

on clearance.  Using the inhibitors Bafilomycin (inhibits acidification and fusion) and 

chloroquine, (inhibits fusion) accumulation of LC3II and p62/Sequestosome1 (SQSTM1) was 

associated with increased levels of BCATc (Figure 5C), indicating that BCATc is integral to 

autophagosome synthesis.   

Knockdown of BCAT1 showed a related loss in both LC31 lipidation and levels, also observed 

for p62 (Figure 5D(i)).  Using whole cell extracts we then showed that knockdown of BCAT1 

increased the levels of pAkt, pmTORC1 and p4EBP1, dependent on the level of BCATc 

(Figure 5D (ii)).  This suggest that BCATc is not only important in regulating autophagy but 

may also play a role in the P13K/Akt/mTORC1 axis, potentially facilitating crosstalk between 

these signalling pathways.  We next examined the response of LC3I lipidation in cell fractions 

with overexpressed BCAT (as observed in AD brain) to treatment with insulin and PKC 

regulation.  Cells overexpressing BCATc showed increased levels of LC3I predominantly in 

the membrane and nuclear fraction relative to untransfected cells (Figure 5E).  Moreover, 

BCATc-induced autophagy was regulated by PKC activity, with increased lipidation observed 

when PKC was inhibited (Figure 5E(ii)).  This indicates that BCATc-induced autophagy is 

regulated through cycles of PKC activation and inhibition, serving as a regulatory switch in 

autophagy control.  In our studies we also show that overexpression of BCATc alone increased 

nuclear levels of LC3I, as did activation of PKCα (Figure 5E (iii)), indicating that BCATc 

regulates autophagy at several points of the autophagy pathway. 

Overexpressed BCATc regulates Aβ levels, which leucine controls. 

Our group have reported that BCATc is increased in AD brain (Hull et al., 2015).  To evaluate 

the impact of BCATc on Aβ processing we investigated if increased levels of BCATc regulated 

Aβ load through autophagy.  Here we show that sustained overexpression of BCATc resulted 

in a dose-dependent increase in autophagy with a concomitant increase in the levels of Aβ 

(Figure 6A).  However, as the level of BCATc and autophagosome formation increased, the 

amount of intracellular Aβ eventually decreased, indicating that Aβ processing, controlled 

through BCATc-mediated autophagy was compromised.  Our confocal microscopy analysis 

shows that cells with this increased BCAT expression are less uniform and subject to neuronal 

cell death (Figure 6B).  The observed increase in autophagy was sustained in response to insulin 

but reduced when incubated with leucine, together with a striking decrease in Aβ, indicating 
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that despite BCATc-induced autophagy, leucine signalling can over-ride BCATc-induced Aβ 

accumulation, offering a novel target to modify Aβ load.   
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DISCUSSION 

There is a regional increase in the BCAT proteins in AD brain, which correlated with an 

increase in Braak stage, supporting a role for BCAT in AD pathology (Hull et al., 2015).  

Whilst their role in regulating brain glutamate is well established (reviewed in Conway, 2019, 

in press) the importance of the CXXC regulatory switch has yet to be evaluated in this context.  

Based on affinity-tagged metabolic studies we have suggested that BCAT has multiple roles in 

the cell, dependent on its redox state (El Hindy and Conway, 2019 and Conway and Lee, 2015).  

Relevant to this discussion is the redox regulated association of BCATc with proteins involved 

in G protein cell signalling and autophagy (Conway et al., 2008).  Here, we show that calcium, 

diacyl glycerol and phosphatidylserine dependent PKC kinases (Dempsey et al., 2000) have 

increased ɣ32P-ATP incorporation relative to δ, ε, θ and η (Figure 1C).  PKCɣ, solely expressed 

in the brain and spinal cord, and restricted to neurons (Saito et al., 2002), significantly increased 

ɣ32P-ATP incorporation for BCATc (Hull et al., 2012).  While PKC isoforms in this group 

have conserved domains, there are slight differences in the tertiary structure, especially in the 

catalytic domain, which may account for various degrees of BCAT phosphorylation (Steinberg 

et al., 2008, Steinberg, 2015).  The phosphorylation sites in BCAT have one of the three basic 

amino acids, arginine (K), histidine (H) or lysine (R) that may also facilitate this binding as 

will the XX dipeptide of the CXXC motif (Yennawar et al., 2006; Goto et al., 2005).   

Here, initial phosphorylation may cause a conformational change that increases access to other 

sites or could be due to the basic residues adjacent to the target site, a pattern also described 

for PKCα activation of T cells (Houtman et al., 2004; Cruz-Orcutt et al., 2014).  For both 

isoforms, we show that the accessible thiols are critical for PKCα phosphorylation, more 

dominant with the N-terminal mutant (Figure 2A).  Incubation of BCATc with GSSG or GSNO 

reduced phosphorylation but had no impact on BCATm (Figure 2B).  This differential 

regulation of BCAT isoforms by GSNO and S-glutathionylation was previously reported 

(Coles et al., 2009) and may be in part due to the increased redox sensitivity of BCATc 

compared to BCATm, where their regulation through phosphorylation could point to different 

signalling roles in the cell (Cole et al., 2012).  In related studies, protein S-glutathionylation of 

neurogranin and neuromodulin through GSNO-mediated interactions showed that modification 

of the reactive thiols rendered neurogranin a poorer substrate for PKC (Li et al., 2001).  The 

reduced substrate specificity by oxidised BCAT for PKCα is most probably due a 

conformational shift and availability of the phosphorylation site, as described for rat brain 



  Harris and El Hindy 2019 

 

17 

neurogranin (Sheu et al., 1996; Miao et al., 2000).  Additionally, PKC has cysteine rich motifs 

that are also redox active (Gopalakrishna et al., 2000; Gopalakrishna et al., 2008), which 

indicates that redox control will be pivotal to the interplay between these two proteins.   

Translocation to membranes traditionally has been considered the hallmark of PKC activation, 

but typically, BCATc resides in the cytosol.  However, we showed using fractionation studies 

that pools of BCATc exist, in the membrane and nuclear fractions (Figure 3A).  Membrane 

association can occur through protein lipidation, which regulates cell response to nutrient 

signals such as those cited and not only modulates protein localisation but also enzyme activity 

and protein:protein interactions (Spinelli et al., 2018).  The main protein acylations include 

myristoylation, prenylation, and palmitoylation, the latter is the only reversible fatty acylation 

(specifically S-palmitoylation), regulated by palmitoyl acyltransferases (Linder and 

Deschenes, 2004).  BCATc has several palmitoylation sites (Figure 3B), which can undergo 

palmitoylation as evidenced by the Acyl-Biotin assay +/- tunicamycin (Figure 3C).  Moreover, 

BCATc was also identified as a binding partner to palmitoyl protein thioesterase (PPT, resides 

in lysosomes) and acyl CoA thioesterase (APT, resides in the cytoplasm) (Duncan and Gilman, 

2002; Kong et al., 2013), proteins which remove thioester-linked groups such as palmitate from 

modified cysteine residues in proteins or during lysosomal degradation (unpublished 

observation).  We propose that BCATc is a target for cycles of acylation and deacylation, which 

is linked to PKC-mediated phosphorylation either at the cell or lysosomal membrane.  These 

pools of BCATc were also found to be regulated in response to changes in the redox 

environment (Figure 2D) indicating that these posttranslational modifications are 

interdependent on PKC phosphorylation, which will be important in regulating the cellular 

roles of BCATc.  

Leucine and insulin are key nutrient signals important in regulating protein synthesis and 

autophagy.  Insulin is the most potent anabolic hormone known, with wide-ranging targets 

notably essential for maintaining glucose homeostasis through translocation of the glucose 

transporter GLUT4 isoform to the cell surface via a signalling cascade involving P13K/Akt 

(Pessin and Saltiel, 2000).  Insulin has also been shown to have novel S-palmitoylation targets 

such as platelet-activating factor acetyl hydrolase IB subunit gamma, which loses its role in 

cell migration once S-palmitoylated (Wei et al., 2014).  Here, we propose that BCATc docks 

at the membrane in response to changes in cellular redox status or insulin signalling through 

S-palmitoylation and is released through phosphorylation by PKCα (as PKCα activation 
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reduces the pool of membrane bound BCATc, Figure 4C).  As previously discussed, it is known 

that activation of PKCα promotes the production of the secretory form of sAPPα, which 

reduced the accumulation of pathogenic Aβ levels (Hung et al., 1993; Gabuzda et al., 1993).  

Moreover, overexpression of PKCε stimulates the activity of endothelin-converting enzymes 

that coincidentally have functions as Aβ-degrading enzymes beyond their vasomodulatory 

roles (Choi et al., 2006).  As the levels of PKC and phosphatases are decreased in AD brain, it 

could potentially increase the pool of membrane bound BCATc impairing its cycling to the 

cytosol.  Given the increased levels of BCAT in AD brain, this could alter other suggested 

moonlighting functions for BCAT such as regulation of the P13K/Akt/mTORC1 and 

autophagy-mediated pathways (Conway and Lee, 2015).  

Whilst autophagy is fundamental to maintaining brain health, excessive or imbalanced, 

autophagy can lead to autophagosome or aggregate accumulation contributing to 

neurodegenerative conditions such as AD (Button et al., 2017).  Accumulation of 

autophagosomes may result from an increase of autophagosome synthesis, disruption of 

autophagosome-lysosome fusion/clearance or both.  We first showed that the level of BCATc 

increased in response to nutrient-deprivation or rapamycin together with Vps34 (Figure 3A (i 

and ii)), a positive regulator of autophagy and inhibitor of mTORC1 (Chen et al., 2014).  Using 

other markers of autophagosome synthesis such as Beclin, important for nucleation (Itakura et 

al., 2008), and LC3, a key protein in autophagosome synthesis (Brier et al., 2019), we confirm 

that increased BCATc, in response to leucine deprivation, corresponds to an increase in these 

autophagy markers that are integral to autophagosome synthesis.  This was confirmed using 

the inhibitors bafilomycin, a vacuolar H+ ATPase-inhibitor (used to assess autophagic flux, 

Mauvezin et al., 2015) and chloroquine (inhibitor of autophagosome and lysosome fusion, 

Mauthe et al., 2018)), which show an accumulation of LC3II and an associated increase in 

BCATc (Figure 3C).  p62/Sequestosome1 (SQSTM1), a multifunctional scaffold protein that 

acts as a receptor that binds and delivers poly-ubiquitinated proteins to the UPS or to the 

autophagosome for degradation, was also elevated.  A role for BCAT in autophagy regulation 

was confirmed with knockdown of BCAT1, which showed a related loss in both LC31 

lipidation and levels, also observed for p62 (Figure 3D(i)).  The effect of BCAT1 knockdown 

also affected proteins important to the P13K/Akt/mTORC1 axis indicating that BCATc, 

facilitates crosstalk between these signalling pathways.  Conversely, overexpression of 

BCATc, as observed in AD brain, increased autophagy, regulated by PKC.  Collectively, these 

data suggest that BCATc is important to autophagosome synthesis and potentially flux, 
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dependent on the rat of clearance.  However, since a decrease in p62 is characteristically 

associated with enhanced degradation of the autolysosome (Flores-Bellver et al., 2014), a role 

for BCATc in autophagosome synthesis is likely.   

Although autophagy is largely reported as a cytoplasmic event, its role in transcriptional and 

epigenetic regulation in the nucleus is gaining support, in particular in situations of prolonged 

starvation (reviewed in Baek and Kim, 2017).  Several regulators of histone modification, 

which have the potential to activate or repress transcription factors have also been cited as key 

modulators of autophagy.  These include, but are not limited to coactivator-associated arginine 

methyltransferase 1 (CARM1, also called protein arginine methyltransferase 4 (PRMT4)), and 

H3R17 methyltransferase (Shin et al., 2016).  Notably, amino acid depletion or treatment with 

rapamycin, both of which increase BCATc and autophagy, stimulate activation of CARM1, 

which results in histone H3R17 dimethylation.  Interestingly, BCAT binds CARM1 and 

although the impact of this association is unknown, we propose that it might facilitate its 

activation in response to nutrient deprived conditions.  In our studies we show that 

overexpression of BCATc alone increased nuclear levels of LC3I, as did activation of PKCα 

(Figure 3E, lower panel).  Nuclear LC3 is abundant and considered to act as a reserve for the 

cytoplasmic pool during autophagy or is alternatively involved in non-autophagy events 

(Huang et al., 2015).  The increase in nuclear LC3 in response to overexpressed BCATc could 

be a signal to increase the residual stores for autophagy.  Our data points to several pools of 

activated BCATc where their cellular distribution, determined through their redox-regulated 

phosphorylation, can potentially contribute to autophagy regulation at several sites.   

A focus of this research was to better understand the impact of BCAT overexpression on AD 

pathology.  Overexpression of BCATc caused increased autophagy together with increased 

levels of Aβ, supporting a role for BCAT in regulating Aβ clearance.  Addition of leucine 

altered autophagic flux and prevented Aβ accumulation, highlighting the importance of nutrient 

signals in regulating metabolic pathways linked with Aβ processing.  Previously, we proposed 

that BCATc was initially increased in a neuroprotective capacity, however, sustained increase 

could lead to the protein shifting from neuroprotective to neurotoxic if glutamate levels 

accumulated (Hull et al., 2015).  However, the role of the CXXC motif was not considered in 

this model.  It is widely accepted that oxidative and nitrosative stress is a feature of 

neurodegenerative conditions (Nakamura and Lipton, 2009), which will alter the activity and 

function of BCAT, dependent on the modification and subsequent phosphorylation.  To add to 
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the complexity, one must also consider the nutrient and hormone signals, which are also 

perturbed in AD.  The BCAAs show significant changes in their profile between individuals 

with mild-cognitive impairment and AD patients relative to healthy age-related controls (Hudd 

et al., 2019), which based on our findings could contribute to ineffective clearance of Aβ.   

In summary, we propose that pools of BCATc exist and subcellular translocation is mediated 

through redox-regulated phosphorylation that alters autophagic flux (Figure 7).  First, in 

response to nutrient signals such as leucine deprivation or insulin, BCATc associates with the 

membrane through palmitoylation.  Association with the membrane is regulated through 

phosphorylation, where PKC phosphorylation at T24 or T36 signals BCAT to disengage.  

Second, the expression of BCATc is important for autophagosome synthesis, where increased 

or decreased levels of BCATc is associated with a corresponding increase or decrease in 

markers of autophagosome synthesis such as LC3 and Beclin.  Third, in response to increased 

levels of BCATc, as observed in AD, Aβ levels accumulate due to a shift in autophagic flux, 

which is attenuated when incubated with leucine.  In AD brain, we propose that as PKC 

activation decreases, regulation of BCATc-mediated autophagy is compromised leading to 

increased synthesis of autophagosomes that could contribute to Aβ accumulation.  Our data 

suggests a novel and exciting mechanism by which Aβ accumulation might be altered (through 

BCAAs like leucine), but subject to a better understanding of the role of nutrient signals such 

as the BCAAs.  
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FIGURE LEGENDS 

Figure 1.  PKC phosphorylation of BCAT.  For all phosphorylation reactions the BCAT 

proteins were incubated with the respective PKC isoform (under conditions described in 

materials and methods) at 30°C for 30 minutes and assessed for the incorporation of 32P-ATP 

using digital autoradiography.  Upper panel: BCAT stained with gelcode and Lower panel: 

Radiolabelling of BCAT with 32P-ATP catalysed by PKC.  Densitometry analysis: ImageJ 

(PANEL A) Putative phosphorylation sites for BCAT:  The BCAT protein sequence (accession 

# ECA39 (BCATc) and EC2.6.1.42 (BCATm) was analysed using the Motif Scan program 

(http://scansite.mit.edu).  (PANEL B) X-RAY crystallography analysis of BCAT PKC 

phosphorylation sites (PANEL C) Phosphorylation of the BCAT proteins with PKC isoforms 

(PANEL D) PKCα phosphorylation (i and ii) and phosphatase A dephosphorylation (iii and 

iv) of BCAT.  (Data are the mean ± SEM, N=3). 

Figure 2.  Interdependence of redox-regulated phosphorylation of BCAT.  

Phosphorylation of BCAT and their respective mutants by PKCα was carried out at 30°C for 

30 minutes and assessed for the incorporation of 32P-ATP using digital autoradiography.  

Upper panel: BCAT stained with gelcode and Lower panel: Radiolabelling of BCAT with 32P-

ATP (PANEL A) Mutation of the redox sensor abolishes phosphorylation: BCAT and their 

respective thiol mutant proteins (PANEL B) In parallel, the BCAT proteins were incubated 

with DTT (10 mM), NEM (8 mM), GSNO (1 mM), GSH (1 mM) and GSSG (1 mM), 

respectively.  The relative phosphorylation was analysed as described in Material and Methods 

(PANEL C) The proteins from IMR-32 cells were phosphorylated by native kinases under 

conditions described in materials and methods and analysed using 2D SDS PAGE and Western 

blot analysis (i) Cell protein phosphorylation using Phospho-(Ser) PKC Substrate Antibody 

(1/1000) (ii) Western blot analysis of BCATc (1/3000) (iii) Overlay of A and B (Data are the 

mean ± SEM, N=3). 

Figure 3:  Translocation of BCATc to the membrane through S-palmitoylation is 

regulated by changes in the cellular redox environment.  (PANEL A) Cellular pools of 

BCAT in IMR-32 and SH-SY5Y cells were established using subcellular fractionation: 

Western blot analysis of BCATc in nuclear, cytosolic and cell membrane (+/-lipid raft) 

fractions.  (PANEL B) Putative S-palmitoylation sites for BCAT:  The BCAT protein sequence 

was analysed using the Motif Scan program (http://scansite.mit.edu).  (PANEL C):  S-

palmitoylation of BCATc: The Acyl-Biotin assay +/- tunicamycin.  (PANEL D) Redox 

regulated trafficking of BCAT to membrane and nuclear fractions (i) Western blot analysis of 

http://scansite.mit.edu/
http://scansite.mit.edu/
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proteins from SH-SY5Y cells treated with 100 and1000 µM H2O2 or (ii) 10 µM DTT for 30 

mins prior to subcellular fractionation.  (iii) Using confocal microscopy, SH-SY5Y cells were 

treated with 100 and 1000 µM of hydrogen peroxide for 30 minutes, respectively, and fixed for 

immunostaining as described in materials and methods, using anti-BCATc (1/250 dilution) 

(Data are the mean ±SEM, N=3, (*) p ≤ 0.05, (**) p ≤ 0.001). 

Figure 4:  Regulation of BCATc translocations SH-SY5Y cells were grown in EBSS for one 

hour, and treated with 5 mM, 10 mM or 20 mM leucine or glutamate, respectively or 100 nM 

insulin and then analysed using subcellular fractionation followed by Western blot analysis.  

The effect of PKC activation and inhibition was also assessed.   (PANEL A) Insulin stimulation 

of SH-SY5Y cells: (i) Western blot analysis of membrane bound BCATc in response to insulin.  

(ii) In parallel, cells were fixed for immunostaining as described in methods using anti-BCATc-

1 (1/250 dilution). (PANEL B) Leucine and glutamate regulate the membrane pool of BCATc 

(i) Treatment with leucine. (ii) Treatment with glutamate. (PANEL C):  PKCα regulates 

trafficking of BCATc to the membrane:  SH-SY5Y cells were grown in EBBS for 1 hour and 

treated with either 100 nM insulin, 200 nM PMA (PKCα activator) +/- insulin or 2.3 nM 

Go6976 and 3 nM staurosporine (PKCα inhibitors) in EBSS +/- insulin, respectively for 3 hours 

followed by subcellular fractionation.  Western blot analysis of membrane and cytosolic 

BCATc (Data are the mean ±SEM, N=3, (*) p ≤ 0.05, (**) p ≤ 0.001).  

Figure 5:  BCATc regulates autophagy.  SH-SY5Y cells were nutrient deprived in EBSS for 

3 hours.  Cells were treated with 100 nM rapamycin, 100 nM bafilomycin or 50 μM chloroquine 

for 30 minutes, leucine deprived for 3 hours.  The effect of BCATc knockdown or 

overexpression on autophagy in whole cell fractions and subcellular fractions was also 

assessed.  Proteins were extracted and analysed by Western blot analysis (Primary antibodies 

(BCATc (1/3000), LC3 (1/1000), p62 (1/2000) and Beclin (1/1000) and confocal microscopy 

as described in Materials and Methods.  (PANEL A) (i) SH-SY5Y cells were grown on glass 

coverslips and treated with 100 nM rapamycin for 30 mins relative to nutrient deprived (ND) 

cells in EBSS for 3 hours.  The cells were fixed in 0.25% glutaraldehyde for immunostaining 

and probed with anti-BCATc (1:500) and anti-Vps34 (1:100) for 1.5 hours and then with anti-

mouse Alexa Fluor 488 (1:250) and anti-rabbit Alexa Fluor 568 (1:250) for 1.5 hours.  The 

coverslips were then mounted and imaged using a Zeiss Axiovert 200 confocal microscope.  

The Mander’s correlation coefficients (Mx) were derived using Volocity (Perkin-Elmer) Blue-

DAPI; Green-BCATc; Red-Vps34. (ii) As described above SH-SY5Y cells were nutrient 
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deprived for 3 hours and probed for BCATc (green) and 4EBP1 (red).  (PANEL B) (i) Western 

blot analysis of proteins from Leucine deprived (LD) cells probed for BCATc, Beclin and LC 

 

3, respectively.  (PANEL C) Western blot analysis of proteins extracted from SH-SY5Y cells 

treated with rapamycin (100 nM), bafilomycin (100 nM) and chloroquine (50 μM), 

respectively, and probed for BCATc, p62 and LC3. (PANEL D) Western blot analysis of 

BCAT1 knockdown (KD) relative to (i) LC3, p62 (ii) pAKT, p4EBP1 and pmTORC1 (all 

1/1000).  (PANEL E) SH-SY5Y cells (+/- overexpressed (OE BCATc) were grown in EBBS 

for 1 hour and treated with either 100 nM insulin, 200 nM PMA (PKCα activator) +/- insulin, 

2.3 nM Go6976 and 3 nM staurosporine (PKCα inhibitors) in EBSS =/- insulin, for 3 hours 

followed by subcellular fractionation.  Western blot analysis of (i) cytosolic, (ii) nuclear and 

(iii) membrane-bound BCATc relative to LC3.  (Data are the mean ±SEM, N=3, (*) p ≤ 0.05, 

(**) p ≤ 0.001).  

Figure 6:  Leucine reverses BCATc-induced autophagy.  SH-SY5Y cells were 

overexpressed with 0.5, 1.0, 1.5 and 2.5 µg of BCATc +/- insulin or leucine.  Proteins were 

extracted and analysed by Western Blot analysis (Primary antibodies: BCATc 1:3000, LC3 

1:1000, Aβ 1:1000) and confocal microscopy. (PANEL A) Western blot analysis of proteins 

from SH-SY5Y cells with overexpressed BCATc under insulin and Leucine treated conditions 

probed for BCATc, LC3, Aβ, respectively.  (PANEL B) (i) SH-SY5Y cells were grown on 

glass coverslips +/- overexpressed BCATc.  The cells were fixed in 0.25% glutaraldehyde for 

immunostaining and probed with anti-BCATc (1:500) and anti-LC3 (1:100) for 1.5 hours and 

then with anti-mouse Alexa Fluor 488 (1:250) and anti-rabbit Alexa Fluor 568 (1:250) for 1.5 

hours.  The coverslips were then mounted and imaged using a Zeiss Axiovert 200 confocal 

microscope.  Blue-DAPI; Green-BCATc; Red-LC3. (Data are the mean ±SEM, N=3). 

 

Figure 7 The role of BCATc in autophagy.  Inhibition of PKC activation, a change in redox or 

nutrient deprivation promotes translocation of BCATc to the membrane via palmitoylation.  

BCATc is important in regulating autophagosome synthesis affecting autophagic flux, either 

through nuclear regulation or autophagosome sequestration.  Activation of PKC releases 

BCATc from the membrane and disrupts autophagic flux.  Overexpression of BCATc increases 

autophagic flux and increases the level of intra-cellular Aβ.   
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