
An Analytical Framework for High-Speed Hardware
Particle Swarm Optimization

Issam Damaja,∗, Mohammed El-Shafeib, Mohammed El-Abdc, Mehmet Emin
Aydind

aElectrical and Computer Engineering Department, American University of Kuwait,
Salmiya, Kuwait, idamaj@auk.edu.kw

bDepartment of Computer Science and Software Engineering, Concordia University,
Montreal, Canada, m lshafe@encs.concordia.ca

cElectrical and Computer Engineering Department, American University of Kuwait,
Salmiya, Kuwait, melabd@auk.edu.kw

dComputer Science and Creative Technologies Department, University of the West of
England, Bristol, United Kingdom, Mehmet.Aydin@uwe.ac.uk

Abstract

Engineering optimization techniques are computationally intensive and can chal-

lenge implementations on tightly-constrained embedded systems. Particle Swarm

Optimization (PSO) is a well-known bio-inspired algorithm that is adopted in

various applications, such as, transportation, robotics, energy, etc. In this pa-

per, a high-speed PSO hardware processor is developed with focus on outper-

forming similar state-of-the-art implementations. In addition, the investigation

comprises the development of an analytical framework that captures wide char-

acteristics of optimization algorithm implementations, in hardware and soft-

ware, using key simple and combined heterogeneous indicators. The framework

proposes a combined Optimization Fitness Indicator that can classify the perfor-

mance of PSO implementations when targeting different evaluation functions.

The two targeted processing systems are a Field Programmable Gate Arrays for

hardware implementations and a high-end multi-core computer for software im-

plementations. The investigation confirms the successful development of a PSO

processor with appealing performance characteristics that outperforms recently

presented implementations. The proposed hardware implementation attains

∗Corresponding Author

Preprint submitted to Journal of ... December 6, 2019

23300 improvement ratio of execution times with an elliptic evaluation func-

tion. In addition, an speedup of 1777 times is achieved with a Shifted Schwefels

function. Indeed, the developed framework successfully classifies PSO imple-

mentations according to multiple and heterogeneous properties for a variety of

benchmark functions.

Keywords: Particle Swarm Optimization, Hardware, Software, Performance

Indicators, Analysis, Gate Arrays

1. Introduction

Optimization is an important concept in the engineering domain [1, 2, 3, 4].

Indeed, all engineering applications involve some sort of optimization in order to

realize the final product. Optimization involves reducing cost, power consump-

tion, time delay or increases the yield, profit, quality of solution, etc. As engi-5

neering problems became more challenging; with properties such as large size,

discontinuity, non-differentiability, non-linearity, multi-objectiveness, and mixed

variable types; it becomes essential to develop new optimization paradigms that

can reach acceptable solutions in less time.

Meta-heuristics is a substantial and considerably important optimization10

paradigm that can be used to tackle nowadays engineering problems. A major

class of meta-heuristics is Population-based algorithms, which update a popu-

lation of solutions over a number of iterations until some stopping condition is

satisfied. Population-based algorithms are categorized based on the inspiration

behind their population update scheme. These categories include Evolutionary15

Algorithms and Swarm Intelligence algorithms. Due to the heavy computa-

tional workload constituting of optimization with population-based algorithms,

computational speed matters for solving many dynamic and real-time problems

with Evolutionary Algorithms and Swarm Intelligence algorithms. For exam-

ple, radio resource scheduling for recent generations of wireless communication20

networks requires a decision to be made within nano-seconds level, which is not

viable with conventional computing infrastructures [5, 6]. Further research has

2

been conducted over the past two decades in order to speed up the execution of

such algorithms, whether by manipulating parameters, developing multiple/dis-

tributed versions or implementing them on specific hardware.25

In this paper, we investigate the implementation of one Swarm Intelligence

algorithm, namely Particle Swarm Optimization (PSO) [7, 8], on Field Pro-

grammable Gate Arrays (FPGAs) [9, 10, 11, 12]. The investigation benefits from

the advancements in FPGA capabilities and aims at developing high-speed hard-

ware cores. Such a hardware implementation enables embedding optimization30

algorithms in application to assist, or completely replace, a central processing

component. The investigation is driven by the need for appealing performance

characteristics, and the reliable operation within real-time applications, that

hardware implementations can provide. Furthermore, the investigation com-

prises the development of a statistical analysis framework that captures wide35

characteristics of optimization computations. The proposed framework statis-

tically combines the mathematical properties of optimization algorithms and

their evaluation function complexities, besides, their implementations in HW

and SW. To that end, the developed PSO implementations are employed to

validate the proposed framework and verify its effectiveness in application. In-40

deed, limited work in the literature is found to analyze the performance of PSO

implementations based on heterogeneous properties as in the proposed analysis

framework. The general contribution of the paper is summarized as follows; a

detailed discussion on the motivation, contributions, and objectives is presented

in Section 2:45

• Develop efficient hardware cores for the PSO algorithm on FPGAs.

• Develop an analytical framework that evaluates the fitness of optimization

implementations based on heterogeneous performance indicators.

The rest of the paper is organized so that Section 2 present the motivation,

research questions, and the paper contribution. In Section 3, a survey of the50

literature is presented. In Section 4, the processor design and implementation

are presented. Section 5 introduces the statistical analysis model. A thorough

3

performance evaluation is presented in Section 6. Section 7 concludes the paper

and sets the ground for future work.

2. Research Objectives55

Challenges to optimization algorithms, including PSO, comprise performance

characteristics (time, speed, efficiency, and complexity), storage requirements,

reliability and accuracy, and first and foremost the dealing with the intrinsic

sequential behavior of the algorithm. As related to PSO, the following research

opportunities are highlighted:60

• Identify and investigate the performance aspects of SW implementations
of PSO while targeting high-performance multi-core processors.

• Develop efficient hardware cores for PSO under FPGAs.

• Identify and investigate the performance aspects of the HW implementa-
tions.65

• Identify a set of performance indicators that aids the evaluation of HW
and SW PSO implementations with different benchmark evaluation func-
tions.

• Develop combined performance indicators for PSO that capture the qual-
itative and quantitative characteristics, and enables the classification of70

different implementations based-on combined HW, SW, and mathematical
properties.

• Identify the type of problems that can be efficiently optimized using PSO
based on heterogeneous HW, SW, and algorithmic properties.

The proposed investigation has several research objectives. The investiga-75

tion aims at developing a high-speed hardware core for PSO on FPGAs. To this

end, the focus is on outperforming similar state-of-the-art implementations re-

ported in the literature under the same implementation environment, algorithm

specifications, and the targeted set of Benchmark Evaluation Functions (BEFs).

The hardware development includes the identification of effective implementa-80

tion specifics and best practices. In addition, the investigation comprises the

development of a statistical analysis model that captures wide characteristics of

PSO implementations in HW and SW. Accordingly, the investigation includes

4

the development of high-speed SW implementations on high-end multi-core

processors. The analysis model comprises simple and combined performance85

indicators including a main indicator called the Optimization Fitness Indica-

tor (OFI). The developed indicators analyze PSO implementations in terms

of performance, hardware size, throughput, success rate, and combined forms.

The aim of the OFI is to classify the performance of PSO implementations

when targeting different BEFs. Therefore, the type of problems that can be90

best solved using PSO can be identified. The evaluation confirms the success-

ful implementation of an FPGA core for the PSO with accelerated processing

throughput for different BEFs. The developed combined indicators successfully

classified implementations using a variety of benchmark functions according to

desired properties.95

In relation to the similar work presented in Section 3, the proposed devel-

opments enable the following comparisons:

• Compare the performance of partitioned versus nonpartitioned FPGA
implementations. The comparison is done between the proposed all-in-
hardware FPGA core with the partitioned implementation in [13]. Given100

that the same implementation environment, algorithm specifications, and
the targeted set of BEFs are adopted in our investigation.

• Compare the performance of the proposed sequential core with parallel
hardware versions of the PSO. The comparison includes the parallel-PSO
version in [14] at a swarm population size of 8 particles. Besides, present-105

ing a wider analysis than that presented in [14] to include populations of
16 and 32 particles. In addition, the comparison includes the multi-swarm
parallel hardware implementation in [15].

• Present classifications of PSO implementations based on heterogeneous
performance characteristics. The classifications enable straightforward110

identifications of the type of problems that can be best solved using a
PSO implementation. Such straightforward identifications are proposed
to replace tedious, intuitive, and multifaceted evaluations based on several
single indicators—as usually adopted in the literature [16, 17, 18, 19, 20,
15, 14, 20, 21, 22, 13].115

5

3. Related Work

The emergence of high-performance FPGAs enabled their use in computationally-

intensive applications, such as optimization. Many recent investigations are

identified in the literature to target implementing the PSO algorithm on FP-

GAs. In this section, state-of-the-art related work is identified and presented,120

while closely-related work is thoroughly addressed in Section 6.2. In presenting

similar work, we focus on a variety of implementation-specific aspects, such as,

target devices, the used metrics to analyze the attained performance, and the

main achievement of each investigation. Table 1 accompanies the discussion and

provides a summary of findings.125

Several attempts to achieve high processing speeds are presented in the lit-

erature [19, 14, 15, 20, 23]. Calazan et al. [14] propose a HW implementation

of a parallel version of the PSO to run on a Xilinx Virtex-6 as a co-processor.

The approach aims to improve the execution of PSO so that the performance

can be optimized for solving benchmark problems. The results demonstrate a130

significant speedup achieved through solving benchmark functions. In addition,

Tewlode et al. [23, 20, 15] develop a direct HW implementation of PSO to solve

the problem of emission source localization within the context of environment

monitoring in [23], and extended with two more numerical benchmark functions

in [20] to achieve significant speedups. The speedup is studied with respect135

to execution time as well as the number of cycles, where the level of achieve-

ment is clearly indicated. The authors published further details of the study

in [15], where parallel HW implementations under Xilinx Spartan 3E FPGA is

compared to MicroBlaze-based SW implementations.

Improving accuracy using hardware implementations is the target of different140

investigations. Karakuzu et al. [17] present an implementation of neuro-fuzzy

system trained with PSO to improve the learning and prediction performances.

The implementation provides efficiency with avoiding some steps through the

process in comparison to using look-up tables (LUTs). The proposed approach

and implementation, using Xilinx Virtex-5, is tested with two scenario-based145

6

benchmark system identifications and a realistic number-plate recognition. The

implemented neuro-fuzzy system model was trained with swarm intelligence

algorithms including ABC and ordinary PSO alongside the proposed PSO ap-

proach. The proposed HW implementation achieves the expected level of solu-

tion quality using significantly less HW resources. Furthermore, Li et al. [22]150

introduce a HW /SW co-design approach for PSO based-on SOPC technique

and pipeline design, where the algorithm is partitioned between SW and HW

to possibly improve the performance when solving various numerical benchmark

functions. The algorithm is partitioned so that the fitness evaluation is devel-

oped in SW, while particle updating is implemented in HW and referred to as155

Particle Updating Accelerator. The proposed implementation is created to run

the SW part on a Nios II CPU, while the HW part to run on a Cyclone II

FPGA. The results demonstrate that a speedup of 20 times is achieved over a

SW implementation.

A variety of investigations, on performance evaluation of PSO implementa-160

tions, is presented in the literature. Common investigations include comparing

the performance of Genetic Algorithms and PSO, optimizing HW /SW parti-

tioned implementations, and integrating hardware PSO in engineering appli-

cations. Ben Ameur and Sakly [16] present parallel HW implementations for

PSO and Genetic Algorithms. The implementations are formulated with finite165

state machines and target a Xilinx Spartan-3 FPGA. The implementations are

tested with a number of benchmark functions to compare PSO with Genetic

Algorithms; the reported results are in favor of the PSO algorithm. In addi-

tion, Abdelhalim et al. [24] present constrained and unconstrained HW /SW

partitioning problem with SW -based PSO implementations. Optimizing the170

intended system is done using various heuristic algorithms including Genetic

Algorithms and PSO. The results and comparative analysis suggest that the

proposed PSO, so-called Re-exited PSO, help achieving near-optimum results.

The Re-exited PSO algorithm is used in [18] to solve partitioning problems

for the JPEG encoding system introduced by [25]. The developed embedded175

system is implemented under a Cyclone FPGA as the co-processor of a main

7

Nios-II CPU. The results are compared with findings of [25] to demonstrate the

success of the proposed approach. The work presented in [26] proposes different

approaches to implement PSO on FPGAs. To this end, the investigation tar-

gets an FPGA and an ARM processor in a Xilinx Zynq-7000 system on chip.180

The analysis includes testing three benchmark functions. Moreover, Ettouil et

al. present a PSO implementation that targets an extended set of evaluation

functions [27]; the investigation includes thorough analyses of hardware area uti-

lization and the attained clock period. Applications of hardware PSO include

training neural networks [28], implementing Multiple-Input Multiple-Output185

(MIMO) detection systems [29], to name but a few.

8

T
a
b

le
1
:

S
u

m
m

a
ry

o
f

re
la

te
d

w
o
rk

s.

R
e
f.

Y
e
a
r

Im
p
le
m

e
n
t
a
t
io

n
H

a
r
d
w
a
r
e

M
e
t
r
ic
s

M
a
in

A
c
h
ie
v
e
m

e
n
t

[2
6
]

2
0
1
8

P
S
O
;
H
W

a
n
d

S
W

A
R
M

a
n
d

X
il
in
x

F
P
G
A

Z
e
d
B
o
a
rd

H
a
rd

w
a
re

sp
e
e
d
u
p
;
a
re
a
u
ti
li
z
a
ti
o
n
;

e
x
e
c
u
ti
o
n

ti
m
e
;
p
e
ri
o
d

Im
p
ro
v
in
g
m
u
lt
ip
le

in
d
ic
a
to

rs
in
c
lu
d
in
g
h
a
rd

w
a
re

sp
e
e
d
u
p

p
e
r

H
W

/
S
W

im
p
le
m
e
n
ta

ti
o
n

[1
6
]

2
0
1
7

P
S
O

a
n
d

G
e
n
e
ti
c

A
lg
o
ri
th

m
s

X
il
in
x
S
p
a
rt
ra

n
-3

A
re
a

S
m
a
ll
-s
iz
e
d

h
a
rd

w
a
re

a
re
a

[1
7
]

2
0
1
6

N
e
u
ro

-F
u
z
z
y
sy

st
e
m

w
it
h

P
S
O

X
il
in
x
V
ir
te
x
-5

P
re
c
is
io
n
;
a
c
c
u
ra

c
y
o
f
p
re
d
ic
ti
o
n

Im
p
ro
v
e
d

a
c
c
u
ra

c
y

[1
9
]

2
0
1
4

P
S
O

X
il
in
x
V
ir
te
x
-5

E
x
e
c
u
ti
o
n

ti
m
e

H
ig
h

p
ro

c
e
ss
in
g
sp

e
e
d

[1
4
]

2
0
1
4

P
a
ra

ll
e
l
P
S
O

X
il
in
x
V
ir
te
x
-6

E
x
e
c
u
ti
o
n

ti
m
e
;
sp

e
e
d
u
p
;
a
re
a

H
ig
h

p
ro

c
e
ss
in
g
sp

e
e
d

[1
5
]

2
0
1
2

P
a
ra

ll
e
l
P
S
O

X
il
in
x
S
p
a
rt
ra

n
-3

N
o
.
o
f
it
e
ra

ti
o
n
s;

e
x
e
c
u
ti
o
n

ti
m
e

H
ig
h

p
ro

c
e
ss
in
g
sp

e
e
d

[1
8
]

2
0
1
1

R
e
-e
x
it
ed

P
S
O

A
lt
e
ra

C
y
c
lo
n
e

A
re
a
;
d
e
la
y
;
p
o
w
e
r
c
o
n
su

m
p
ti
o
n
;

c
o
m
m
u
n
ic
a
ti
o
n

ti
m
e
b
e
tw

e
e
n

H
W

a
n
d

S
W

O
p
ti
m
iz
in
g
p
e
rf
o
rm

a
n
c
e
p
e
r

H
W

/
S
W

p
a
rt
it
io
n
s

[2
2
]

2
0
1
1

C
o
re

o
f
P
S
O

a
n
d

o
th

e
r
c
o
m
p
o
n
e
n
ts

A
lt
e
ra

C
y
c
lo
n
e

E
x
e
c
u
ti
o
n

ti
m
e
;
a
n
d

n
o
.
o
f

e
v
a
lu
a
ti
o
n
s

Im
p
ro
v
e
d

a
c
c
u
ra

c
y

[2
0
]

2
0
0
9

P
S
O

X
il
in
x
S
p
a
rt
ra

n
-3

N
o
.
it
e
ra

ti
o
n
s;

e
x
e
c
u
ti
o
n

ti
m
e
;
c
lo
ck

c
y
c
le
s

H
ig
h

p
ro

c
e
ss
in
g
sp

e
e
d

[2
3
]

2
0
0
8

P
S
O

X
il
in
x
S
p
a
rt
ra

n
-3

N
o
.
It
e
ra

ti
o
n
s,

e
x
e
c
u
ti
o
n

ti
m
e
;
c
lo
ck

c
y
c
le
s

H
ig
h

p
ro

c
e
ss
in
g
sp

e
e
d

[2
4
]

2
0
0
7

P
S
O
;
H
W

/
S
W

p
a
rt
it
io
n
in
g

N
/
A

A
d
e
v
e
lo
p
e
d

c
o
st

e
q
u
a
ti
o
n

th
a
t

c
a
p
tu

re
s
re
su

lt
q
u
a
li
ty

;
d
e
la
y
;
p
o
w
e
r

O
p
ti
m
iz
in
g
re
su

lt
q
u
a
li
ty

p
e
r

H
W

/
S
W

P
a
rt
it
io
n

9

4. Hardware Design

An informal and systematic approach is adopted to develop hardware cores

for the PSO algorithm [1, 30]. The approach is informal in the sense that it

does not rely on engineering formal methods [31]. In addition, the approach190

is systematic in the sense that its procedure can be reused to develop similar

hardware solutions, however, the method is not yet automatic and does not

include any code generations, compilations, or rapid prototyping of hardware

circuits. Furthermore, the methodology is unified in the sense that it uses

common software engineering techniques, such as flowcharts and state machines,195

to model the algorithm; accordingly, HW and SW designs are derived and

implemented.

The development steps of the HW and SW implementations of the PSO are

as follows:

1. Depict the algorithm using flowcharts.200

2. Develop the software version.

3. Design the processor Datapath by identifying, allocating, and binding
hardware resources at the register-transfer level [32].

4. Develop the Finite State Machine (FSM) of the control unit based on the
flowchart.205

5. Describe the developed hardware using a description language and syn-
thesize the implementation for FPGAs.

The approach can be used to design partitioned hardware and software im-

plementations of the PSO algorithm. However, the current use aims at devel-

oping independent hardware implementation for FPGAs. The adopted PSO is210

described in Algorithm 1 in pseudocode.

Figure 1 depicts the abstract behavior of the PSO algorithm. The main

actions in the algorithm are (i) generate random numbers, (ii) initialize particles

positions and velocities, (iii) evaluate a benchmark function to calculate the

fitness value of a particle, (iv) update the particle’s record with the best fitness215

value attained yet, and (v) update the swarm’s global record with the best fitness

value reached yet. At this point, update the particle’s velocity and position with

10

Algorithm 1 The adopted PSO algorithm
1: Initialize particles
2: do
3: for i = 1 to Number of Particles do
4: if f(xi) ≤ f(pbesti) then
5: pbesti = xi

6: if f(xi) ≤ f(gbest) then
7: gbest = xi

8: end if
9: end if

10: for j = 1 to Number of Dimensions do
11: vt+1

ij = wvtij + c1r1(p
t
bestij

− xt
ij) + c2r2(gbestj − xt

ij) (1)

12: if vt+1
ij > vmax then

13: vt+1
ij = vmax

14: end if
15: if vt+1

ij < vmin then

16: vt+1
ij = vmin

17: end if
18: xt+1

ij = xt
ij + vt+1

ij (2)

19: if xt+1
ij > xmax then

20: xt+1
ij = xmax

21: vtij = 0

22: end if
23: if xt+1

ij < xmin then

24: xt+1
ij = xmin

25: vtij = 0

26: end if
27: end for
28: end for
29: while maximum iterations or minimum error is not reached
30:
31: where,
32: c1 and c2 are the acceleration constants.
33: r1 and r2 are random numbers between 0 and 1.
34: xi(t) is the position of the ith particle at iteration t.

35: vi(t) is the velocity of the ith particle at iteration t.
36: w is the inertia weight factor.
37: gbest is the best position among all particles.
38: pbesti is the ith particle best position.

39: Equation (1) is the velocity update of the ith particle.

40: Equation (2) is for position update of the ith particle.

11

Figure 1: An abstract flowchart for the PSO algorithm

12

Figure 2: The developed datapath for the PSO algorithm

newly calculated values plays the main role. The procedure is repeated until a

target number of iterations or a minimum error value is reached.

Based on to the PSO algorithm description, the datapath development in-220

cludes the allocation of several computational hardware resources (See Figure 2).

The main allocated hardware units are a Fitness unit, pbest Update unit, gbest

Update unit, Velocity Update unit, Position Update unit, Random Number

Generator (RNG), and three delay registers for the particle position x. Sam-

ple internal organizations of PSO computational units are shown in Figures 3225

and 4. In Figure 3, the hardware structure is for the Velocity Update Unit,

while Figure 4 presents a Fitness Unit depicting the Rosenbrock function. In

both figures, the computational components run in parallel. Moreover, Fig-

ure 2 includes standard components, such as, registers and memory elements;

the units Position, Global, and Particle Updates are implemented using simple230

selection statements, variable assignments, or include a single operation. In the

presented datapath, the Random Number Generator core is imported from the

work presented in [33].

The behavior of the processor control unit is described in the FSM shown

in Figure 5. States S0 through S6 are responsible for the position and velocity235

13

Figure 3: The hardware structure of the Velocity Update Unit

x0


-

+

x1 – x0
2

fitness

x1



100


+

-
 1

x0 – 1

x8


-

x9 – x8
2

x9



100


+

-
 1

x8 – 1

...
...

Figure 4: The hardware structure of the Fitness Unit depicting a Rosenbrock function.

14

Figure 5: The developed FSM of the PSO Algorithm and its correspondence to the flowchart
steps.

initialization of particles, preparation for the random number generation, and

the forwarding of the position values through the three delay registers. State S7

is the main execution procedure that includes benchmark function evaluation,

best positions updates, and velocity and position updates. In addition, state S7

repeats unit the stoppage criterion is satisfied.240

5. Analytical Model Development

To present the proposed performance analysis model, we adopt the Generic

Benchmark Model (GBM) of Damaj et al. [34]. The GBM comprises six el-

ements that define the Goal, Inputs, Activities, Output, Outcomes, and the

15

desired Performance profile of the performance analysis framework. The model245

captures the relationships among the resources, implementation, mathematical

formulation, and the obtained results. The Goal defines the aim of the analysis

framework. Moreover, the Input identifies the algorithms under study, imple-

mentation environments, reference algorithm, performance metrics, etc. Fur-

thermore, Activities present the algorithm implementations and the obtained250

results. The Output is the formulation of the key indicators and development

of their rubrics—if needed. The Outcomes are the formulations of the statis-

tical assessment as combinations of the Output. In addition, the Performance

is the application of the developed assessment framework to profile and classify

algorithms according to the obtained results.255

5.1. Goal

Analyze the performance of a PSO implementations in HW and SW, and

enable its comparison to similar work in the literature.

5.2. Input

The input identifies the targeted algorithms, computing systems, and the260

performance metrics. The analysis model targets a set of benchmark evaluation

functions of different complexities and characteristics (See Tables 2 and 3).

Moreover, the targeted HW development board is the DE2-70 by Altera. The

board has a Cyclone II FPGA with a total of 68,416 Logic Elements (LEs)

and a maximum frequency of 300 MHz. SW implementations are done on Dell265

Precision T7500 with its dual quad-core Xeon processors and 24 GB of RAM.

The identified performance metrics of the PSO are classified into general al-

gorithmic profile (GAP), hardware profile (HWP), and software profile (SWP).

The general algorithmic profile includes the complexity of the benchmark eval-

uation functions. The HWP includes the number of benchmark evaluations,270

resource utilization, maximum frequency, throughput, etc. Moreover, the SWP

comprises the number of benchmark evaluations, throughput, execution time,

etc.

16

Table 2: The targeted Benchmark Evaluation Functions.
BEF
Index

Function Variable
No.

Search Do-
main

Optimal
Solution

F1 B2 2 [-100, 100] 0
F2 Branin 2 [-4, 4] 0.397887
F3 Goldstein–Price 2 [-2, 2] 3
F4 Rosenbrock 2 [-9, 11] 0
F5 Zakharov 2 [-10, 10] 0
F6 Sphere 3 [-5.12, 5.12] 0
F7 Hartmann 3 [0, 1] -3.863433
F8 Variably–dimensioned 4 [-9, 11] 0
F9 Shifted Sphere 32 [-100, 100] 0
F10 Shifted Rosenbrock 32 [-100, 100] 0
F11 Shifted Schwefel 1.2 32 [-100, 100] 0
F12 Shifted Rastrigin 32 [-100, 100] 0
F13 Shifted Rotated High Conditioned Elliptic 32 [-100, 100] 0

Table 3: Properties of the target Benchmark Evaluation Functions in terms of separability,
scalability, and whether the function is unimodal or multimodal.
BEF Index Function Separable Scalable Unimodal
F1 B2 Yes No No
F2 Branin No No No
F3 Goldstein-Price No No No
F4 Rosenbrock No Yes No
F5 Zakharov Yes Yes Yes
F6 Sphere Yes Yes Yes
F7 Hartmann No No No
F8 Variably-dimensioned Yes Yes Yes
F9 Shifted Sphere Yes Yes Yes
F10 Shifted Rosenbrock No Yes Yes
F11 Shifted Schwefel 1.2 No Yes Yes
F12 Shifted Rastrigin Yes Yes No
F13 Shifted Rotated High Conditioned Elliptic No Yes Yes

17

5.3. Activities

The activities include hardware implementations under VHDL. The Soft-275

ware tools used for hardware implementation and profiling are Quartus and

ModelSim. Software implementations are done under MATLAB.

5.4. Output

The outputs of the analysis framework are three sets of indicators that cor-

respond to the proposed GAP, HWP, and SWP. The main KI of the GAP is280

the Benchmark Evaluation Function Complexity (BEFC), which is defined as

follows:

• Benchmark Evaluation Function Complexity (BEFC): an asymp-
totic complexity analysis using the Big-O, small-ω, and Θ notations.

To analyze the complexity of the evaluation functions, we study their asymp-285

totic behavior. The asymptotic behavior classifies algorithms according to their

rate of growth with respect to the increase in input size. The following standard

complexity analysis classification is adopted from [35, 34]:

• O(f(n)): The rate of growth of an algorithm is asymptotically no worse
than the function f(n) but can be equal to it.290

• ω(f(n)): The rate of growth of an algorithm is asymptotically no better
than the function f(n).

• Θ(f(n)): The rate of growth of an algorithm is asymptotically equal to
the function f(n).

Here, n is the size of input.295

To facilitate the assessment of the studied ciphers, we adopt the rubric from

[34] as shown in Table 4. In preparation for the statistical formulation, we map

this qualitative properties onto quantities. For every point in the scale, we map

it onto a fixed number. Hence, each point in the scale is mapped onto the values300

20%, 40%, 60%, 80%, and 100% [34].

The hardware profile includes the following indicators:

18

Table 4: The rubric of the Complexity Analysis indicator
General Scale
Indicator Logarithmic

Low
Logarithmic
High

Linear Almost
Quadratic

Higher than
Quadratic

Complexity
Analysis

O(logn) ω(logn) but
better than
Linear

Θ(n) O(n2) but worse
than Linear

ω(n2)

• Number of Benchmark Function Evaluations (NBFE): the total
number of calls of the benchmark function; equals the number of iterations
times the total number of benchmark function calls per iteration. In this305

investigation, we report the average NBFE required for optimizing the
benchmark functions.

• Execution Time (ET): the time between the start and the completion
of a task.

• Throughput (TH): the total amount of work done in a given time. In310

this investigation, we calculate TH as the NBFE divided by ET ; the
results are represented in Kilo BFE per Seconds (KBFEps).

• Logic Elements (LE): the number of combinational logic elements re-
quired to implement an algorithm in hardware. The number of LEs is an
indicator of the size of hardware in Altera devices.315

• Logic Register (LR): the total number of logic registers in the design.

The Software profile includes three indicators, namely, NBFE, ET, and

TH.

5.5. Outcomes

The Outcomes element is the formulation of Combined Measurement In-320

dicators CMIs as function of KIs. Four CMIs are developed to analyze the

performance of the PSO implementation, namely, Success Rate (SR), Per-

formance Rate (PR), Success Rate Density (SRD), and the Optimiza-

tion Fitness Indicator (OFI). The definitions of the SR, PR, and SRD are

as follows:325

• SR: The percentage number of runs that successfully converges to the
minimum which is below the specified error divided by the total number
of runs.

• PR: The average NBFE divided by the percentage SR.

19

• SRD: The number of LEs divided by SR. SRD captures the size of hard-330

ware used per 1% SR.

The OFI is the main CMI calculation in the presented statistical analysis

model. A higher OFI is achieved through a higher throughput, a lower execu-

tion time, with less resource utilization, and at a higher performance rate; while

targeting the evaluation function with a higher complexity. The combination of335

indicators is done using the Geometric Mean of KI ratios. The generic equation

of CMIs from [34] is as follows:

CMI = n
√
ratio1 × ratio2 × ...ration

340

Where ratioi =
KIi.j

KIrefi.j

KIi.j is the ith KI of the jth profile,

i ∈ {1..n} and j ∈ {1..2},

and KIrefi.j is the reference measurement of the indicator KIi.j345

To calculate a CMI, the Geometric Mean is used as it is able to measure

the central tendency of data values that are obtained from ratios. The attrac-

tion for using the Geometric Mean is that its ratio is equal to the Geometric

Mean of performance ratios; which implies that when comparing two different350

implementations’ performance, the choice of the reference implementation is ir-

relevant [34, 36]. In the current investigation, the reference measurements are

considered as an evaluation function that attains an average performance as

compared to the targeted BEFs. In other words, the reference measurement is

calculated as the arithmetic average of results achieved by the targeted BEFs.355

The OFI enables the classification of PSO algorithm according to its fitness

in application. The OFI is either directly or inversely proportional to the in-

dicators. The master OFI formula, using the developed indicators, is shown in

Equation 1. The indicators that are common to the Software (sw) and Hardware

20

(hw) profiles are labeled with the profile name.360

OFI =
9
√
GAP ·HWP · SWP (1)

where,

GAP =
BEFC

BEFCref
(2)

HWP =
EThw,ref
EThw

· THhw

THhw,ref
· LEref
LE

· LRref
LR

· SRhw
SRhw,ref

(3)

SWP =
ETsw,ref
ETsw

· THsw

THsw,ref
· SRsw
SRsw,ref

(4)

Besides the main OFI, two additional CMIs are proposed in Equations 5

and 6 to separately capture the optimization fitness of HW and SW :

OFIhw =
6
√
GAP ·HWP (5)

and,

OFIsw =
4
√
GAP · SWP (6)

5.6. Performance365

The analysis based on the OFI Output and Outcomes provides measure-

ments for all KIs and enables the calculation of the defined CMIs. The results

enable classifying the targeted evaluations. The six elements of the OFI are

summarized in Figure 6.

6. Analysis and Evaluation370

The analysis of the developed PSO implementations are produced to serve

for several evaluation purposes. Important implementation aspects are pre-

sented in Section 6.1. In addition, a set of thirteen BEFs, namely F1 through

21

Figure 6: The six elements diagram of the PSO performance analysis model

Goal

 Analyze the performance of an on-chip PSO processor.

 Identify the class of BEFs that can be optimized using PSO and attain the highest

performance characteristics based on evaluation function complexity, and HW and SW

implementations.

Input

 Targeted evaluation functions: B2, Branin RCOC, Goldstein-Price, Rosenbrock,

Zakharov, De Joung, Hartmann, Variably dimensioned, Shifted sphere, Shifted

Rosenbrock’s, Shifted Schwefel’s, Shifted Rastrigin’s, and Shifted rotated high

conditioned elliptic.

 Computing systems: Cyclone II FPGA; Dell Precision T7500 (Quad-core Xeon processors

and 24 GB of RAM)

 Performance metrics: Complexity, execution times, throughputs, resource utilization,

maximum frequency, etc.

Activities

 Implementation tools: VHDL under Quartus and Matlab

 Analysis tools: Altera Quartus, Altera ModelSim, and Matlab

Output

 Key measures: General algorithmic profile and hardware profile

 Key indicators: NBFE, BEFC, EThw, THhw, LE, LR

 Rubrics: Qualitative and quantitative

Outcomes

 Analysis equations: SR, PR, SRD, and the geometric mean of ratios of key indicator to

calculate the main combined measurement indicator OFI, and OFIhw and OFIsw.

Performance

 Analysis results: Measurements for all key indicators and calculations for all combined

indicators.

 Rankings and classifications:

 - The shortest EThw is achieved when targeting F4

 - The highest THhw is achieved when targeting F11

 - The smallest hardware area is achieved when targeting F4

 - The highest PRhw is achieved when targeting F11

 - SRhw above 90% are achieved when targeting F1 through F6, F9, F12, and F13

 - The best SRD is achieved when targeting F3

 - The highest OFIhw, OFIsw, and OFI are achieved when targeting F4

 - PSO targeting Problems similar to F4 can attain the highest performance characteristics

L
IS

 S
ix

 E
le

m
en

ts

22

Table 5: PSO execution parameters.

Parameter Values

Particle Coding Binary
No. of Bits of Variables 8
Population Size 8, 16, 32
No. of Independent Runs 100
Maximal Function Evaluations 10,000 for F1–F8

200,000 for F9–F13
c1.r1 0–2
c2.r2 0–2
Inertia Weight w 0.25
Termination Error Threshold < 10−4

F13, is targeted to perfectly match the test-cases of the work presented in [13]

and enable comparisons with similar work. To that end, the HW analysis is pre-375

sented in Section 6.2 with comparisons to similar findings from closely-related

work in the literature. A second set of six BEFs; namely F1, F3, F4, F5, F6,

and F8 ; is targeted to compare the HW and SW implementations and evalu-

ate the effectiveness of the proposed CMIs (See Sections 6.3). The analysis is

done using the developed KIs and CMIs. The values of the execution parame-380

ters are shown in Table 5. In addition, Section 6.4 presents a thorough general

evaluation of achievements of the research objectives.

6.1. Implementation Aspects

A variety of tools is used to develop, validate, and analyze the hardware

implementations. The targeted FPGA is Cyclone II by Altera. The tools used385

for hardware syntehsis and analysis are Quartus and ModelSim. The hard-

ware implementations are done under VHDL. The adopted VHDL style mixes

structural and behavioral implementations. The units Fitness Module, pbest

Update, gbest Update, Velocity Update, Position Update, RNG, and the three

delay registers are implemented as separate VHDL components. The RNG is390

implemented using neighborhood-of-four cellular automata for FPGAs [33]. In

the proposed hardware implementation, the fixed-point package from [37] is

used to express floating-point numbers; the implementation varies in widths

23

among the different computational entities. The ieee proposed.fixed pkg.ALL

and ieee proposed.math utility pkg.ALL VHDL libraries are employed, where395

the highest utilized width is of 64 bits and the highest adopted precision is with

a fraction part of 9 bits. The adopted fixed-point representation provides a set

of efficient operations that can replace an intrinsically complex floating-point

alternative at a compromised but adequate accuracy per context.

6.2. Hardware Performance Analysis400

6.2.1. Partitioned versus Nonpartitioned Hardware Implementations

Li et al. in [13] adopt a HW /SW co-design approach to improve the execu-

tion performance of PSO for embedded applications. The investigation targets

the DE2-70 board from Altera with its Cyclone II FPGA for HW implementa-

tions, and Nios II processor for SW implementations. The main features of the405

presented approach comprise partitioned HW and SW implementations of the

PSO. The main proposed system components are a partitioned HW and SW

evaluation, and a HW particle updating accelerator. The HW and SW subsys-

tems communicate through the board interfaces and use an on-board SDRAM.

Furthermore, the features include the design of a HW RNG. Experimental re-410

sults demonstrate that the proposed HW design attains adequate efficiency and

accuracy. The reported results, of the partitioned implementations, are com-

pared with SW implementations.

In our investigation, exactly the same development board, FPGA, BEFs,

and the execution parameters of [13] are targeted—to enable a sound compari-415

son. However, we provide a fully-autonomous HW implementation on FPGAs

and adopt a different RNG algorithm (See Section 4). Tables 6 and 7 present

the results of the developed HW implementation. Here, thirteen BEFs are tar-

geted to enable the comparison with the work reported in [13]. Table 6 shows

that the shortest EThw of 2.31 msec is achieved when targeting F4, and the420

highest THhw of 1777.48 KBFEps is attained when targeting F11. The small-

est attained hardware area is for targeting F4 with 6055 LEs and 74 LRs. On

the other hand, the longest EThw is taken by F13 with a maximum value of

24

302.99 msec for a population size of 32. Moreover, the lowest THhw is attained

by targeting F5 with a population size of 32. The largest HW areas are required425

by F13. The highest PRhw of 3561.84 is reached when targeting F11 ; here, the

smallest is attained by F2 with a value of 1.42. To that end, the function that

reached the highest SRD is F11 with a maximum of 1418.19 at a population

size of 8.

In this investigation, adopting the same FPGA board and execution param-430

eters as in [13] supports the conclusion that the achieved performance gains

are due to the differences in the proposed HW system architectures. With

no doubt, the communication cost between the partitioned HW and SW sub-

systems affects the overall performance as reported in [13]. In addition, the

communication cost increases with the increase in NBFE ; such an increase in435

communication further degrades the performance of the developed system. A

replacement all-HW system is proposed by the authors that targets F9. The

all-HW achieves an ET of 13.4673 ms with a performance improvement ratio of

12115 over their partitioned implementation and 4.29 over our implementation.

Table 6: Hardware Profile: ET and TH ; BEFs F1 through F13 are included to enable the
comparison with the work presented in [13].

ET(msec) per Population Size TH(KBFEps) per Population Size

BEF 8 16 32 8 16 32

F1 14.04 28.84 59.27 8.83 5.89 4.57
F2 5.41 10.37 22.46 23.66 26.52 14.16
F3 8.29 16.14 34.77 23.88 17.29 8.86
F4 2.31 3.89 9.23 477.49 287.15 103.47
F5 20.87 42.64 88.35 6.76 3.94 3.62
F6 25.31 51.91 107.28 9.25 5.82 4.25
F7 29.63 60.93 125.69 8.07 5.58 4.18
F8 32.82 67.55 139.2 27.79 18.76 12.22
F9 57.85 119.81 245.9 909.96 452.55 227.11
F10 66.01 136.85 280.68 506.70 251.74 126.42
F11 62.12 128.73 264.12 1777.48 883.48 443.52
F12 66.99 138.89 284.86 523.20 259.92 130.53
F13 71.24 147.77 302.99 380.81 189.10 94.99

In Tables 8 and 9, the SRhw, PRhw, and SRD are shown. Targeting the440

evaluation functions F2, F9, F12, and F13 enables the achievement of the best

SR value of 100%; while F7, F8, and F11 achieve the smallest values with a

25

Table 7: Hardware Profile: LE with Percent Hardware Utilization and LR. The Percent
Hardware Utilization is calculated as the ratio of measured LEs divided by 68416, which is
the total number of LEs available in the target FPGA. BEFs F1 through F13 are included to
enable the comparison with the work presented in [13]

LE per Population Size LR per Population Size

BEF 8 16 32 8 16 32

F1 1034015.1% 1153416.9% 1277018.7% 239 278 309
F2 975314.3% 1088215.9% 1204817.6% 217 254 282
F3 994814.5% 1109816.2% 1228818% 224 262 291
F4 60558.9% 67749.9% 750011.0% 74 95 105
F5 1094316.1% 1220317.8% 1351219.7% 262 304 338
F6 1248618.3% 1391720.3% 1540922.5% 322 370 412
F7 1417120.7% 1578923.1% 1748225.6% 387 443 493
F8 1575623.1% 1754925.7% 1943228.4% 448 510 569
F9 4229561.8% 4702268.7% 5207576.1% 1472 1647 1838
F10 4560866.7% 5070274.1% 5615081.1% 1599 1788 1996
F11 4396464.3% 4887671.4% 5412779.1% 1536 1718 1918
F12 4705668.8% 5231076.5% 5793184.7% 1655 1850 2065
F13 4872571.2% 5416479.2% 5998487.7% 1719 1921 2145

minimum of 24% for F8 with a population size of 8. Indeed, the results show

that the best SRhw and PRhw are achieved, in most cases, at a population size

of 32. Furthermore, the evaluation function F4 achieves the lowest SRD score;445

this reflects the smallest hardware area utilization per percent success among

all populations.

The results achieved by the proposed hardware implementation show signifi-

cant improvements, in terms of the measured indicators, over the work reported

in [13]. BEFs F9 through F13 achieve the best EThw improvement ratios that450

reached 23300, 11233, and 5478 times better than the work reported in [13] for

F13 (See Figure 7). In terms of THhw, functions F4 and F9 through F13 sig-

nificantly outperform the implementation in [13] with a maximum speedup of

1777 for F11 (See Figure 8). The best SR improvement ratio is achieved when

targeting F11 with a maximum of 195 (See Figure 9).455

6.2.2. Sequential versus Parallel Hardware Implementations

In [14], Calazan et al. present a parallel co-processor for PSO on FPGAs.

In the proposed implementation, all-particles computations are executed simul-

taneously until finding the gbest. To well-synchronize the computations, and

26

Figure 7: ETs performance improvement ratio of the achieved execution time over the results
reported in [13].

0

5000

10000

15000

20000

25000

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13

Pop. Size = 8 Pop. Size = 16 Pop. Size = 32

Figure 8: TH speedup ratio of the achieved throughput over the results reported in [13].

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

1800.00

2000.00

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13

Pop. Size = 8 Pop. Size = 16 Pop. Size = 32

27

Table 8: Hardware CMIs: SRhw and PRhw; BEFs F1 through F13 are included to enable
the comparison with the work presented in [13].

SRhw% per Population Size PRhw per Population Size

BEF 8 16 32 8 16 32

F1 84 98 96 1.48 1.73 2.82
F2 90 91 100 1.42 3.02 3.18
F3 77 89 95 2.57 3.13 3.24
F4 56 83 95 19.7 13.46 10.05
F5 92 95 89 1.53 1.77 3.60
F6 76 93 90 3.08 3.25 5.07
F7 45 77 87 5.31 4.42 6.05
F8 24 81 93 38 15.64 18.29
F9 100 100 100 526.41 542.20 558.47
F10 62 69 83 539.47 499.28 427.52
F11 31 45 59 3561.84 2527.33 1985.46
F12 100 100 100 350.49 361.00 371.83
F13 100 100 100 271.29 279.43 287.81

prevent racing in the values of gbest, the velocity and position computations460

can only start once gbest is identified among all particles. The execution re-

sults are obtained under Xilinx MicroBlaze and a high-end Virtex 6 FPGA. In

addition, the execution parameters are comparable to the ones adopted in this

investigation; with the exception to that the authors did not specify the termi-

nation error threshold of the stoppage criterion. For a population size of 8, the465

reported ETs attain performance ratios that are between 2.4 and 67.27 times

better than those achieved by the hardware implementation proposed in this

investigation. However, the proposed implementation outperforms the reported

ET under the Xilinx MicroBlaze; the performance improvement is between 3 to

85 times (See Figure 10). Virtex 6 is a high-end FPGA by Xilinx, while Cyclone470

II is presented as a low-end FPGA by Altera.

In [23], Tewlode et al. present HW architectures that significantly acceler-

ates execution performance of PSO over SW implementations. The proposed

HW implementation targets a Xilinx Spartan 3E FPGA, while SW implemen-

tations are done using a Xilinx MicroBlaze and a Freescale MC9S12DP256B475

microcontroller. The authors also present a multi-swarm parallel HW imple-

mentation. The parallel implementation achieves a maximum speedup of 3.89

for F4 and 6.96 for F9 over the sequential HW implementation—with 30 parti-

28

Figure 9: SR improvement ratio of the achieved success rates over the results reported in [13].

0

20

40

60

80

100

120

140

160

180

200

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13

Pop. Size = 8 Pop. Size = 16 Pop. Size = 32

Figure 10: Improvement ratios of the achieved ET in HW as compared with the results
reported in [14]. The results achieved by the Virtex 6 FPGA are represented in the negative
range as they outperform the Cyclone II implementation proposed in this investigation.

-80.00

-60.00

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

F4 F6 F9 F11 F12

MicroBlaze Spartan-3E Virtext 6 FPGA

29

Table 9: Hardware CMIs: SRD ; the BEFs F1 through F13 are included to enable the
comparison with the work presented in [13].

SRD per Population Size

BEF 8 16 32

F1 123.10 117.69 133.02
F2 108.37 119.58 120.48
F3 129.19 124.70 129.35
F4 108.13 81.61 78.95
F5 118.95 128.45 151.82
F6 164.29 149.65 171.21
F7 314.91 205.05 200.94
F8 656.50 216.65 208.95
F9 422.95 470.22 520.75
F10 735.61 734.81 676.51
F11 1418.19 1086.13 917.41
F12 470.56 523.10 579.31
F13 487.25 541.64 599.84

cles divided among 5 sub-swarms. However, the HW implementation presented

in this paper outperforms the sequential core in [23] by 30.34 times for F4 and480

1.59 times for F9.

6.3. Analysis of Combined Indicators

To enable the calculation of OFI as a main combined indicator, Tables 10

and 11 present the implementation results of the general algorithmic and SW

profiles. Table 10 presents the the complexity of the targeted BEFs that are485

needed for the OFI calculations and comparisons. Table 11 presents the KI re-

sults for the SW implementation. Moreover, Table 12 shows the measurements

of the developed CMIs for the SW implementations. The calculated results of

OFIhw, OFIsw, and OFI are shown in Figures 11, 12, and 13. The results

confirm that F4 attains the best OFIhw, OFIsw, and OFI ranking with values490

of 3.04, 3.15, and 3.04—for the three different population sizes of 8, 16, and

13. Accordingly, the proposed PSO HW and SW implementations can best

perform when targeting the types of problems that are similar to F4.

Closely-related work in the literature, including [16, 17, 18, 19, 20, 15, 14,

20, 21, 22, 13], relies on an almost identical patterns of simple KIs to analyze495

and evaluate their implementations. The adopted analysis patterns can success-

30

Table 10: General Algorithmic Profile

BEF BEFC
Mapped BEFC

F1 AQ 0.8
F3 AQ 0.8
F4 HQ 1
F5 HQ 1
F6 AQ 0.8
F8 AQ 0.8

Table 11: Software Profile: ET and TH.
ET(msec) per Population Size TH(KBFEps) per Population Size

BEF 8 16 32 8 16 32

F1 2.879 2.915 2.651 94.98 145.92 270.75
F3 2.377 2.285 1.96 85.07 142.60 265.31
F4 23.11 11.438 6.301 97.54 198.62 358.70
F5 2.402 2.033 1.845 60.88 115.14 210.73
F6 2.752 2.09 1.909 66.02 129.15 241.38
F8 106.86 8.015 6.199 8.35 144.75 253.87

Figure 11: The OFIhw classification

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

F1 F3 F4 F5 F6 F8

OFI (Pop. Size = 8) OFI (Pop. Size = 16) OFI (Pop. Size = 32)

31

Figure 12: The OFIsw classification

0.00

0.50

1.00

1.50

2.00

2.50

F1 F3 F4 F5 F6 F8

OFI (Pop. Size = 8) OFI (Pop. Size = 16) OFI (Pop. Size = 32)

Figure 13: The OFI classification

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

F1 F3 F4 F5 F6 F8

OFI (Pop. Size = 8) OFI (Pop. Size = 16) OFI (Pop. Size = 32)

32

Table 12: Software CMIs: SRsw and PRsw.

SRsw% per Population Size PRsw per Population Size

BEF 8 16 32 8 16 32

F1 94 100 100 2.91 4.25 7.18
F3 87 99 100 2.32 3.29 5.20
F4 71 100 100 31.75 22.72 22.60
F5 100 100 100 1.46 2.34 3.89
F6 100 100 100 1.82 2.70 4.61
F8 60 100 100 14.87 11.60 15.74

fully classify implementations with-respect-to a single or a limited set of KIs.

For example, the investigations in [14, 20, 13] successfully rank implementations

per ET. However, combined indications and evaluative conclusions can hardly

be made due to the absence of formal representations of CMIs. For instance, it500

is not straightforward to identify the evaluation function that can best perform

in terms of a compromise that includes ET, TH, SR, etc. Our investigation con-

firms that classifications of implementations based on heterogeneous properties

is limitedly addressed in the literature. With no doubt, the identification of the

type of problem that can be effectively performed per algorithm implementation505

is an important evaluation. Such identifications can soundly identify suitable

implementation options per application.

6.4. General Evaluation

The current investigation can be evaluated as related to the developed hard-

ware processor, and analysis framework development and application. The de-510

veloped processor fully maps the PSO algorithm onto an FPGA. As compared

with similar work, the proposed processor attains higher-speeds than similar im-

plementations in the literature. In addition, the results show that, when using

partitioned HW and SW implementations on FPGA boards, communication

between the FPGA and other on-board components can significantly reduce the515

processing throughput.

The developed framework is unique in combining algorithmic, hardware, and

software characteristics to provide unified performance evaluation criteria and

useful performance indicators. The investigation proposes the creation of uni-

33

fied indicators that can capture specific qualities in terms of a wide range of520

heterogeneous key performance indicators, such as the OFI. The OFI serves

as a master CMI while an indicator like the BEFC is developed with focus

on evaluation function complexity. Indeed, the framework is scalable and up-

gradeable without changing the statistical computation or the structure of the

measurement. For instance, an additional profile can be incorporated into the525

calculations of the OFI to include the performance characteristics of Graphics

Processing Units.

At the application level, the developed framework can be used to examine

qualities of importance and interest to optimization specialists. For example,

the developed OFI successfully identifies the type of evaluation function that530

can be best solved by PSO and achieve the highest overall performance in terms

of the identified KIs. The OFI enables classifying the PSO algorithm perfor-

mance as targeting a heterogeneous set of evaluation functions. In addition, the

framework produces a rich and comprehensive set of reference KIs. KIs, such

as ET, TH, LE, and LR, are independent of the context of application and thus535

highly reusable. Other KIs, such as NBFE, SR, PR, and SRD are specific to

optimization algorithms including the PSO.

The proposed framework aims at capturing the HW and SW properties.

The current investigation doesn’t include partitioned HW and SW implemen-

tations. However, partitioned implementations can be analyzed, based on the540

proposed framework, by enabling measurements of KIs under the HW and

SW subsystems. The proposed partitioned KI measurements can capture sub-

systems’ characteristics. In addition, well-defined CMIs can classify different

partitioning strategies per optimization target, such as, area, speed, power con-

sumption, etc.545

7. Conclusion

Optimization is a key approach in engineering that enables effective solu-

tions. PSO is a current and widely used heuristic; it is well-known for its

34

effectiveness in application. In this paper, an on-chip PSO implementation is

developed and mapped onto an FPGA. The developed processor significantly550

outperform the partitioned HW and SW implementations of [13] that target

the same development board, FPGA, BEFs, and the execution parameters. Our

proposed HW implementation achieves an EThw improvement ratio of 23300

for F13, a THhw speedup of 1777 for F11, and the best SR improvement ra-

tio of 195 for F11 over the results reported in [13]. This paper includes the555

development of a statistical framework that enables thorough analysis and eval-

uation of optimization algorithms, such as PSO. The proposed indicators include

NBFE, BEFC, ET, TH, LE, LR, SR, PR, SRD, OFIhw, OFIsw, and OFI. The

analysis of results confirms that, when targeting F4, PSO achieves the highest

performance characteristics with the highest OFI value of 3.15. The presented560

framework enjoys being reusable in the wider optimization context. Future

work includes the development of pipelined, parallel, and multi-swarm PSO

processors. The statistical framework can be expanded to capture partitioned

implementations and to consider additional processing systems, such as Graph-

ics Processing Units. Furthermore, the statistical framework can be applied to565

other metaheuristic algorithms for a wider study. The proposed framework is

applicable outside the context of optimization [34, 38].

Appendix

35

Acronym Definition

BEF Benchmark Evaluation Function

CMI Combined Measurement Indicator

ET Execution Time

FPGA Field Programmable Gate Arrays

FSM Finite State Machine

HW Hardware

GBM Generic Benchmark Mode

GAP General Algorithmic Profile

HWP Hardware Profile

KI Key Indicator

BEFC Benchmark Evaluation Function Complexity

LE Logic Element

LR Logic Register

LUT Look-up Table

NBFE Number of Benchmark Function Evaluations

OFI Optimization Fitness Indicator

PSO Particle Swarm Optimization

PR Performance Rate

RNG Random Number Generator

SR Success Rate

SRD Success Rate Density

SW Software

SWP Software Profile

TH Throughput

36

References

[1] S. J. Kasbah, I. W. Damaj, R. A. Haraty, Multigrid solvers in reconfigurable570

hardware, J. Comput. Appl. Math. 213 (1) (2008) 79–94. doi:10.1016/j.

cam.2006.12.031.

URL http://dx.doi.org/10.1016/j.cam.2006.12.031

[2] S. J. Kasbah, I. W. Damaj, The jacobi method in reconfigurable hardware.,

in: World Congress on Engineering, 2007, pp. 823–827.575

[3] J.-S. Chou, A.-D. Pham, Nature-inspired metaheuristic optimization in

least squares support vector regression for obtaining bridge scour informa-

tion, Information Sciences 399 (2017) 64–80.

[4] M. El-Abd, Performance assessment of foraging algorithms vs. evo-

lutionary algorithms, Information Sciences 182 (1) (2012) 243 –580

263, nature-Inspired Collective Intelligence in Theory and Practice.

doi:https://doi.org/10.1016/j.ins.2011.09.005.

URL http://www.sciencedirect.com/science/article/pii/

S0020025511004555

[5] M. E. Aydin, R. Kwan, J. Wu, Multiuser scheduling on the lte downlink585

with meta-heuristic approaches, Physical Communication 9 (2013) 257 –

265. doi:https://doi.org/10.1016/j.phycom.2012.01.004.

URL http://www.sciencedirect.com/science/article/pii/

S1874490712000134

[6] M. E. Aydin, R. Kwan, C. Leung, C. Maple, J. Zhang, A hy-590

brid swarm intelligence algorithm for multiuser scheduling in

hsdpa, Applied Soft Computing 13 (5) (2013) 2990 – 2996.

doi:https://doi.org/10.1016/j.asoc.2011.12.007.

URL http://www.sciencedirect.com/science/article/pii/

S1568494611004911595

[7] M. Clerc, Particle swarm optimization, Vol. 93, John Wiley & Sons, 2010.

37

http://dx.doi.org/10.1016/j.cam.2006.12.031
http://dx.doi.org/10.1016/j.cam.2006.12.031
http://dx.doi.org/10.1016/j.cam.2006.12.031
http://dx.doi.org/10.1016/j.cam.2006.12.031
http://dx.doi.org/10.1016/j.cam.2006.12.031
http://dx.doi.org/10.1016/j.cam.2006.12.031
http://dx.doi.org/10.1016/j.cam.2006.12.031
http://www.sciencedirect.com/science/article/pii/S0020025511004555
http://www.sciencedirect.com/science/article/pii/S0020025511004555
http://www.sciencedirect.com/science/article/pii/S0020025511004555
http://dx.doi.org/https://doi.org/10.1016/j.ins.2011.09.005
http://www.sciencedirect.com/science/article/pii/S0020025511004555
http://www.sciencedirect.com/science/article/pii/S0020025511004555
http://www.sciencedirect.com/science/article/pii/S0020025511004555
http://www.sciencedirect.com/science/article/pii/S1874490712000134
http://www.sciencedirect.com/science/article/pii/S1874490712000134
http://www.sciencedirect.com/science/article/pii/S1874490712000134
http://dx.doi.org/https://doi.org/10.1016/j.phycom.2012.01.004
http://www.sciencedirect.com/science/article/pii/S1874490712000134
http://www.sciencedirect.com/science/article/pii/S1874490712000134
http://www.sciencedirect.com/science/article/pii/S1874490712000134
http://www.sciencedirect.com/science/article/pii/S1568494611004911
http://www.sciencedirect.com/science/article/pii/S1568494611004911
http://www.sciencedirect.com/science/article/pii/S1568494611004911
http://www.sciencedirect.com/science/article/pii/S1568494611004911
http://www.sciencedirect.com/science/article/pii/S1568494611004911
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2011.12.007
http://www.sciencedirect.com/science/article/pii/S1568494611004911
http://www.sciencedirect.com/science/article/pii/S1568494611004911
http://www.sciencedirect.com/science/article/pii/S1568494611004911

[8] J. L. Awange, B. Paláncz, R. H. Lewis, L. Völgyesi, Particle swarm opti-

mization, in: Mathematical Geosciences, Springer, 2018, pp. 167–184.

[9] I. Damaj, J. Hawkins, A. Abdallah, Mapping high-level algorithms onto

massively parallel reconfigurable hardware, in: IEEE International Confer-600

ence of Computer Systems and Applications, 2003, pp. 14–22.

[10] S. M. Trimberger, Three ages of FPGAs: A retrospective on the first thirty

years of fpga technology, Proceedings of the IEEE 103 (3) (2015) 318–331.

[11] J. de Fine Licht, M. Blott, T. Hoefler, Designing scalable FPGA architec-

tures using high-level synthesis, in: Proceedings of the 23rd ACM SIG-605

PLAN Symposium on Principles and Practice of Parallel Programming,

ACM, 2018, pp. 403–404.

[12] X. Zou, L. Wang, Y. Tang, Y. Liu, S. Zhan, F. Tao, Parallel design of intel-

ligent optimization algorithm based on FPGA, The International Journal

of Advanced Manufacturing Technology (2018) 1–14.610

[13] S.-A. Li, C.-C. Hsu, C.-C. Wong, C.-J. Yu, Hardware/software co-design

for particle swarm optimization algorithm, Information Sciences 181 (20)

(2011) 4582 – 4596, special Issue on Interpretable Fuzzy Systems.

doi:https://doi.org/10.1016/j.ins.2010.07.017.

URL http://www.sciencedirect.com/science/article/pii/615

S002002551000335X

[14] R. M. Calazan, N. Nedjah, L. M. Mourelle, A hardware accelerator for

particle swarm optimization, Applied Soft Computing 14 (2014) 347 – 356.

doi:https://doi.org/10.1016/j.asoc.2012.12.034.

URL http://www.sciencedirect.com/science/article/pii/620

S1568494613000033

[15] G. S. Tewolde, D. M. Hanna, R. E. Haskell, A modular and ef-

ficient hardware architecture for particle swarm optimization algo-

rithm, Microprocessors and Microsystems 36 (4) (2012) 289 – 302.

38

http://www.sciencedirect.com/science/article/pii/S002002551000335X
http://www.sciencedirect.com/science/article/pii/S002002551000335X
http://www.sciencedirect.com/science/article/pii/S002002551000335X
http://dx.doi.org/https://doi.org/10.1016/j.ins.2010.07.017
http://www.sciencedirect.com/science/article/pii/S002002551000335X
http://www.sciencedirect.com/science/article/pii/S002002551000335X
http://www.sciencedirect.com/science/article/pii/S002002551000335X
http://www.sciencedirect.com/science/article/pii/S1568494613000033
http://www.sciencedirect.com/science/article/pii/S1568494613000033
http://www.sciencedirect.com/science/article/pii/S1568494613000033
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2012.12.034
http://www.sciencedirect.com/science/article/pii/S1568494613000033
http://www.sciencedirect.com/science/article/pii/S1568494613000033
http://www.sciencedirect.com/science/article/pii/S1568494613000033
http://www.sciencedirect.com/science/article/pii/S014193311200018X
http://www.sciencedirect.com/science/article/pii/S014193311200018X
http://www.sciencedirect.com/science/article/pii/S014193311200018X
http://www.sciencedirect.com/science/article/pii/S014193311200018X
http://www.sciencedirect.com/science/article/pii/S014193311200018X

doi:https://doi.org/10.1016/j.micpro.2012.02.001.625

URL http://www.sciencedirect.com/science/article/pii/

S014193311200018X

[16] M. S. Ben Auemur, A. Sakly, Fpga implementation of parallel particle

swarm optimization algorithm and compared with genetic algorithm, In-

ternational Journal of Advanced Computer Science and Applications 7 (8).630

doi:10.14569/IJACSA.2016.070809.

URL http://dx.doi.org/10.14569/IJACSA.2016.070809

[17] C. Karakuzu, F. Karakaya, M. A. Çavuşlu, Fpga implementation of neuro-

fuzzy system with improved pso learning, Neural Netw. 79 (C) (2016) 128–

140. doi:10.1016/j.neunet.2016.02.004.635

URL http://dx.doi.org/10.1016/j.neunet.2016.02.004

[18] M. B. Abdelhalim, S. E.-D. Habib, An integrated high-level hardware/soft-

ware partitioning methodology, Design Automation for Embedded Systems

15 (1) (2011) 19–50. doi:10.1007/s10617-010-9068-9.

URL https://doi.org/10.1007/s10617-010-9068-9640

[19] N. Nedjah, L. de Macedo Mourelle, A Reconfigurable Hardware for Particle

Swarm Optimization, Springer International Publishing, Cham, 2014, pp.

29–42. doi:10.1007/978-3-319-03110-1_3.

URL https://doi.org/10.1007/978-3-319-03110-1_3

[20] G. S. Tewolde, D. M. Hanna, R. E. Haskell, Accelerating the performance645

of particle swarm optimization for embedded applications, in: 2009 IEEE

Congress on Evolutionary Computation, 2009, pp. 2294–2300. doi:10.

1109/CEC.2009.4983226.

[21] X.-H. Yan, F.-Z. He, Y.-L. Chen, A novel hardware/software partitioning

method based on position disturbed particle swarm optimization with in-650

vasive weed optimization, Journal of Computer Science and Technology

32 (2) (2017) 340–355. doi:10.1007/s11390-017-1714-2.

URL https://doi.org/10.1007/s11390-017-1714-2

39

http://dx.doi.org/https://doi.org/10.1016/j.micpro.2012.02.001
http://www.sciencedirect.com/science/article/pii/S014193311200018X
http://www.sciencedirect.com/science/article/pii/S014193311200018X
http://www.sciencedirect.com/science/article/pii/S014193311200018X
http://dx.doi.org/10.14569/IJACSA.2016.070809
http://dx.doi.org/10.14569/IJACSA.2016.070809
http://dx.doi.org/10.14569/IJACSA.2016.070809
http://dx.doi.org/10.14569/IJACSA.2016.070809
http://dx.doi.org/10.14569/IJACSA.2016.070809
http://dx.doi.org/10.1016/j.neunet.2016.02.004
http://dx.doi.org/10.1016/j.neunet.2016.02.004
http://dx.doi.org/10.1016/j.neunet.2016.02.004
http://dx.doi.org/10.1016/j.neunet.2016.02.004
http://dx.doi.org/10.1016/j.neunet.2016.02.004
https://doi.org/10.1007/s10617-010-9068-9
https://doi.org/10.1007/s10617-010-9068-9
https://doi.org/10.1007/s10617-010-9068-9
http://dx.doi.org/10.1007/s10617-010-9068-9
https://doi.org/10.1007/s10617-010-9068-9
https://doi.org/10.1007/978-3-319-03110-1_3
https://doi.org/10.1007/978-3-319-03110-1_3
https://doi.org/10.1007/978-3-319-03110-1_3
http://dx.doi.org/10.1007/978-3-319-03110-1_3
https://doi.org/10.1007/978-3-319-03110-1_3
http://dx.doi.org/10.1109/CEC.2009.4983226
http://dx.doi.org/10.1109/CEC.2009.4983226
http://dx.doi.org/10.1109/CEC.2009.4983226
https://doi.org/10.1007/s11390-017-1714-2
https://doi.org/10.1007/s11390-017-1714-2
https://doi.org/10.1007/s11390-017-1714-2
https://doi.org/10.1007/s11390-017-1714-2
https://doi.org/10.1007/s11390-017-1714-2
http://dx.doi.org/10.1007/s11390-017-1714-2
https://doi.org/10.1007/s11390-017-1714-2

[22] S.-A. Li, C.-C. Wong, C.-J. Yu, C.-C. Hsu, Hardware/software co-design

for particle swarm optimization algorithm, in: 2010 IEEE International655

Conference on Systems, Man and Cybernetics, 2010, pp. 3762–3767. doi:

10.1109/ICSMC.2010.5641826.

[23] G. S. Tewolde, D. M. Hanna, R. E. Haskell, Hardware pso for sensor net-

work applications, in: 2008 IEEE Swarm Intelligence Symposium, 2008,

pp. 1–8. doi:10.1109/SIS.2008.4668308.660

[24] M. B. Abdelhalim, A. E. Salama, S. E.-D. Habib, Constrained and uncon-

strained hardware-software partitioning using particle swarm optimization

technique, in: A. Rettberg, M. C. Zanella, R. Dömer, A. Gerstlauer, F. J.

Rammig (Eds.), Embedded System Design: Topics, Techniques and Trends,

Springer US, Boston, MA, 2007, pp. 207–220.665

[25] T.-Y. Lee, Y.-H. Fan, Y.-M. Cheng, C.-C. Tsai, R.-S. Hsiao, Enhancement

of hardware-software partition for embedded multiprocessor fpga systems,

in: Intelligent Information Hiding and Multimedia Signal Processing, 2007.

IIHMSP 2007. Third International Conference on, Vol. 1, IEEE, 2007, pp.

19–22.670

[26] M. Ettouil, H. Smei, A. Jemai, Particle swarm optimization on fpga, in:

2018 30th International Conference on Microelectronics (ICM), IEEE, 2018,

pp. 32–35.

[27] M. Ettouil, H. Smei, A. Jemai, M. Ghazel, Codesign of an iot using a

metaheuristic ip, in: 2018 International Conference on Internet of Things,675

Embedded Systems and Communications (IINTEC), IEEE, 2018, pp. 153–

157.

[28] T. L. Dang, Y. Hoshino, Hardware/software co-design for a neural net-

work trained by particle swarm optimization algorithm, Neural Processing

Letters 49 (2) (2019) 481–505.680

40

http://dx.doi.org/10.1109/ICSMC.2010.5641826
http://dx.doi.org/10.1109/ICSMC.2010.5641826
http://dx.doi.org/10.1109/ICSMC.2010.5641826
http://dx.doi.org/10.1109/SIS.2008.4668308

[29] A. Trimeche, A. Sakly, A. Mtibaa, Implementation of pso algorithm for

mimo detection system in fpga, International Journal of Electronics 105 (1)

(2018) 42–57.

[30] I. Damaj, M. Imdoukh, R. Zantout, Parallel hardware for

faster morphological analysis, Journal of King Saud University685

- Computer and Information Sciences 30 (4) (2018) 531 – 546.

doi:https://doi.org/10.1016/j.jksuci.2017.07.003.

URL http://www.sciencedirect.com/science/article/pii/

S1319157817301611

[31] I. W. Damaj, Parallel algorithms development for programmable logic de-690

vices, Advances in Engineering Software 37 (9) (2006) 561–582.

[32] I. Damaj, High-Level Synthesis, Wiley, 2008, pp. 1–10. arXiv:https://

onlinelibrary.wiley.com/doi/pdf/10.1002/9780470050118.ecse177,

doi:10.1002/9780470050118.ecse177.

URL https://onlinelibrary.wiley.com/doi/abs/10.1002/695

9780470050118.ecse177

[33] B. Shackleford, M. Tanaka, R. J. Carter, G. Snider, Fpga implementation

of neighborhood-of-four cellular automata random number generators, in:

Proceedings of the 2002 ACM/SIGDA Tenth International Symposium on

Field-programmable Gate Arrays, FPGA ’02, ACM, New York, NY, USA,700

2002, pp. 106–112. doi:10.1145/503048.503064.

URL http://doi.acm.org/10.1145/503048.503064

[34] I. Damaj, S. Kasbah, An analysis framework for hardware

and software implementations with applications from cryptogra-

phy, Computers & Electrical Engineering 69 (2018) 572 – 584.705

doi:https://doi.org/10.1016/j.compeleceng.2017.06.008.

URL http://www.sciencedirect.com/science/article/pii/

S0045790617315653

41

http://www.sciencedirect.com/science/article/pii/S1319157817301611
http://www.sciencedirect.com/science/article/pii/S1319157817301611
http://www.sciencedirect.com/science/article/pii/S1319157817301611
http://dx.doi.org/https://doi.org/10.1016/j.jksuci.2017.07.003
http://www.sciencedirect.com/science/article/pii/S1319157817301611
http://www.sciencedirect.com/science/article/pii/S1319157817301611
http://www.sciencedirect.com/science/article/pii/S1319157817301611
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470050118.ecse177
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470050118.ecse177
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470050118.ecse177
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470050118.ecse177
http://dx.doi.org/10.1002/9780470050118.ecse177
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470050118.ecse177
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470050118.ecse177
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470050118.ecse177
http://doi.acm.org/10.1145/503048.503064
http://doi.acm.org/10.1145/503048.503064
http://doi.acm.org/10.1145/503048.503064
http://dx.doi.org/10.1145/503048.503064
http://doi.acm.org/10.1145/503048.503064
http://www.sciencedirect.com/science/article/pii/S0045790617315653
http://www.sciencedirect.com/science/article/pii/S0045790617315653
http://www.sciencedirect.com/science/article/pii/S0045790617315653
http://www.sciencedirect.com/science/article/pii/S0045790617315653
http://www.sciencedirect.com/science/article/pii/S0045790617315653
http://dx.doi.org/https://doi.org/10.1016/j.compeleceng.2017.06.008
http://www.sciencedirect.com/science/article/pii/S0045790617315653
http://www.sciencedirect.com/science/article/pii/S0045790617315653
http://www.sciencedirect.com/science/article/pii/S0045790617315653

[35] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, et al., Introduction

to algorithms, Vol. 2, MIT press Cambridge, 2001.710

[36] J. L. Hennessy, D. A. Patterson, Computer architecture: a quantitative

approach, Elsevier, 2011.

[37] D. Bishop, Vhdl support library, online; accessed 26 October 2019 (2008).

URL https://github.com/FPHDL/fphdl

[38] I. W. Damaj, A. M. El Hajj, H. T. Mouftah, An analytical framework for715

effective joint scheduling over tdd-based mobile networks, IEEE Access 7

(2019) 144214–144229. doi:10.1109/ACCESS.2019.2945849.

42

https://github.com/FPHDL/fphdl
https://github.com/FPHDL/fphdl
http://dx.doi.org/10.1109/ACCESS.2019.2945849

	Introduction
	Research Objectives
	Related Work
	Hardware Design
	Analytical Model Development
	Goal
	Input
	Activities
	Output
	Outcomes
	Performance

	Analysis and Evaluation
	Implementation Aspects
	Hardware Performance Analysis
	Partitioned versus Nonpartitioned Hardware Implementations
	Sequential versus Parallel Hardware Implementations

	Analysis of Combined Indicators
	General Evaluation

	Conclusion

