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Abstract
We address the problem of damage identification in complex civil infrastructure with an integrative modular Bayesian 
framework. The proposed approach uses multiple response Gaussian processes to build an informative yet computation-
ally affordable probabilistic model, which detects damage through inverse updating. Performance of structural components 
associated with parameters of the developed model was quantified with a damage metric. Particular emphasis is given to 
environmental and operational effects, parametric uncertainty and model discrepancy. Additional difficulties due to usage 
of costly physics-based models and noisy observations are also taken into account. The framework has been used to identify 
a reduction of a simulated cantilever beam elastic modulus, and anomalous features in main/stay cables and bearings of 
the Tamar bridge. In the latter case study, displacements, natural frequencies, temperature and traffic monitored throughout 
one year were used to form a reference baseline, which was compared against a current state, based on one month worth of 
data. Results suggest that the proposed approach can identify damage with a small error margin, even under the presence 
of model discrepancy. However, if parameters are sensitive to environmental/operational effects, as observed for the Tamar 
bridge stay cables, false alarms might occur. Validation with monitored data is also highlighted and supports the feasibility 
of the proposed approach.

Keywords Bayesian inference · Damage detection · Long suspension bridge · Gaussian process · Structural health 
monitoring

1 Introduction

To be practically useful, a structural health monitoring 
(SHM) system must be able to identify the performance 
of complex physical systems. Noteworthy examples of 

structural failure, such as the 2018 collapse of the Morandi 
viaduct in Genoa, Italy, justify the development and deploy-
ment of SHM in civil infrastructure.

There are two common pathways for damage identifica-
tion, depending on the type of model that is used to inter-
pret monitored data. These are known as the data-based and 
physics-based approach. A common ground problem to both 
pathways, is their coarse misinterpretation of the structural 
behaviour due to numerous uncertainties. With the advent of 
powerful statistical sampling techniques, e.g., Markov Chain 
Monte Carlo methods, various probabilistic inference meth-
ods were developed and applied to surpass this challenge.

The Bayesian approach gathered considerable inter-
est [10, 15, 45]. Its conceptual simplicity and consistent 
treatment of uncertainties contributed to its wide dissemi-
nation. Some notable research milestones are attributed to 
Sohn and Law [36] and Beck et al. [3–5]. Application of 
their frameworks for damage identification was illustrated 
in a seven-story full-scale building [28, 33] and a labora-
tory reduced scale steel bridge [29]. Overall, two main fac-
tors contribute to the methods poor performance. One is 
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the environmental/operational effects—also known as con-
founding influences—which mask the presence and extent of 
damage. This is a well known and extensively documented 
problem [11, 16, 17, 35]. A second factor is large model 
discrepancy, i.e. the epistemic misfit between predictions 
and monitored data, caused by modelling assumptions and 
simplifications. Unless the effects of model discrepancy are 
small, assuming them as a zero-mean uncorrelated Gauss-
ian [37, 43] (as in the traditional Bayesian methods) results 
in biased identifications.

For these reasons, the broad influence of environmental 
variations, and in particular temperature, lead to the devel-
opment of several temperature-based damage identification 
methods. Some examples can be seen in Cross et al. [13], 
Yarnold and Moon [42] or others [26, 41, 44]. State of the 
art Bayesian methods adopt hierarchical models to account 
for these variations, such as the frameworks from Huang 
et al. [20] or Behmanesh et al. [8]. Relatively to model dis-
crepancy, only a handful of studies developed a more func-
tional form, such as a multivariate normal distribution [8] or 
correlated errors [30, 34]. The model falsification method by 
Goulet and Smith [18, 19] is an extreme alternative, which 
does not assume any particular form. Applications are illus-
trated in benchmark ASCE structures [20], a footbridge in 
the Tufts university campus [6–8] and a nine-story build-
ing [9]. Results still indicate unidentifiable or potentially 
biased identifications, and in some of the case studies, cer-
tain mode shapes or seasonal fluctuations had to be removed 
to improve results.

Based on the above remarks, the current paper proposes 
a hybrid modular Bayesian approach (MBA) to address the 
damage identification problem. Jesus et al. [22, 23] origi-
nally developed and applied the methodology for structural 
identification (st-id) problems. The MBA explicitly consid-
ers environmental/operational effects with multiple response 
Gaussian processes (mrGp). More importantly, the MBA 
multivariate normal discrepancy function and ability for 
data fusion [2] counters many of the problems of traditional 
Bayesian methods. Thus, the current work highlights the 
extension and application of the MBA to damage detec-
tion. The present paper is divided into a description of the 
methodology, Sect. 2; an application to a simulated cantile-
ver beam, Sect. 3; and to the Tamar bridge, Sects. 4 and 5. 
Finally, major conclusions are presented in Sect. 6.

2  Modular Bayesian damage detection

2.1  Modelling assumptions

The current section gives a short overview of the model-
ling assumptions underlying the MBA. As commonly seen 

in Bayesian approaches, the parameters which we wish to 
learn from, � , are treated as random variables. The ‘ran-
domness’ in these variables is associated with our ability to 
estimate the parameters’ true values �∗ , and these true val-
ues are assumed constant throughout the monitoring period. 
Bayes’ theorem provides a way to synthesise two sources of 
information of these parameters, the prior distribution and 
the likelihood function, into an update posterior distribution.

In the present work, the prior probability density function 
(PDF) of the parameters is assumed as uniform or Gaussian. 
More details will be given in the following sections. The likeli-
hood function is based on the following equation:

where Ye are observations, dependent on design variables 
X
e ; Ym is the model response function, dependent on the 

design variables and a vector of unknown structural param-
eters �∗ ; �(Xe) is a discrepancy function that translates the 
misfit between the model and the true process; and � is an 
observation error term, which is assumed to follow a Gauss-
ian distribution  (O,�).

Given the above assumptions, the next step requires approx-
imating the computer model and the discrepancy function with 
multiple response Gaussian processes (mrGp) [2, 12]. MrGps 
efficiently account for the uncertainties of Eq. (1), but require 
estimation of a set of parameters (known as hyperparameters) 
from observed and simulated data. The MBA separates such 
process into two modules, for the computer model and the dis-
crepancy function. A short description of the mrGp formula-
tion will be demonstrated next, to present the hyperparameters 
and showcase the advantages of the proposed approach.

The mrGp formulation is a natural expansion of the single 
response case [32], which aims to fit q responses, dependent of 
d design variables at N sampled time histories. Its description 
is based on a mean and covariance prior structure. The mean 
is assumed to have the following form:

where Iq is the q-dimensional identity matrix, ⊗ stands for 
the Kronecker product, H ∈ ℝ

N×p is a regression matrix, and 
� ∈ ℝ

p×q is a matrix of regression coefficients. Matrix H 
contains N polynomial functions which are assumed to have 
a linear form hj(x) = [1 x1 … xd] ∶ j = 1,… , p of degree 
p = d + 1.

In a similar manner, the covariance structure is formulated 
as

where �2 ∈ ℝ
q×q is a spatial variance matrix, and R ∈ ℝ

N×N 
is a correlation matrix. This equation is interpreted as a sepa-
ration of a spatial variance between q responses that are 
being approximated and a temporal correlation between the 
N time histories. The latter matrix R contains inside each of 

(1)Y
e(Xe) = Y

m(Xe,�∗) + �(Xe) + �,

(2)m(X) = Iq ⊗H(X)�,

(3)V(X,X�) = �2 ⊗ R(X,X�),
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its entries a correlation function which needs to be assumed. 
Currently, a linear form has been adopted

where �j j = 1,… , d are called roughness parameters. 
These parameters represent how roughly the responses 
change from point x to point x′ . A final parameter that has 
to be considered and concludes the description of the mrGp 
is the variance � of the observation error, which can be 
simply added to Eq. (3) as �⊗ IN.

Thus in short, the hyperparameters which have to be 
estimated are denoted as �m = {�m,�

2
m
,�m} for the model, 

and �� = {�� ,�
2
�
,�� ,�} for the discrepancy function error 

term. Note that when m(X) = 0 and matrix R is the iden-
tity matrix, the mrGp reduces to a zero-mean uncorrelated 
Gaussian, which is the common trend of traditional Bayesian 
frameworks applied in SHM. After estimating the hyperpa-
rameters, Bayes’ theorem is applied to obtain the parameter 
posterior distribution. For additional details of the modelling 
assumptions, considered uncertainties and application of the 
methodology for st-id, the reader is referred to previous lit-
erature [1, 2, 22–24].

2.2  Damage identification

In this section, the MBA framework is extended for damage 
identification. In the current context, damage is defined as 
changes introduced into a structural system which adversely 
affect its current or future performance. The proposed dam-
age evaluation can be classed as probabilistic, parametric, 
and supervised. Essentially a reference state (when the struc-
tural system is assumed healthy) is established, and subse-
quently compared against an estimate for a current state. 
The two elements of Eq. (1) which assess structural change 
are the structural parameters and the discrepancy function. 
However, the current work is limited to the analysis of the 
parameters’ influence. Ideally, considered parameters should 
represent the structural system integrity, e.g. soil perme-
ability, initial strain of prestress cables or stiffness of other 
key components.

The algorithm flowchart can be seen in Fig. 1, with the 
original MBA algorithm on the left side, and its expansion 
for damage identification on the right side. Further details 
of the MBA modules can be found in [2] and will not be 
detailed here. Referring to Fig. 1, Task 1 trains a mrGp 
with simulated data from a computer model, identically to 
the original MBA. The estimated hyperparameters of this 
mrGp, �m , uniquely determine its behaviour. Subsequently, 
Task 2 and 3 determine information relative to the refer-
ence and current state of the structural system, including a 

(4)R(�, x, x�) =

d∏
j=1

max{0, 1 − �j|xj − x�
j
|},

trained mrGp of the discrepancy function and the param-
eters posterior. Each task iterates over module 2 and 3 from 
the original MBA, with prior and monitored data De

r
 or De

c
 

inputs for each state. It is recalled that the module 2 of the 
MBA, approximation of the discrepancy function, requires 
marginalisation of the computer model mrGp with respect 
to the parameters prior. Although the priors differ for Tasks 
2 and 3, the computer model remains the same as computed 
in Task 1. Finally, in Task 4 the samples of the parameters 
posteriors are used to propagate the uncertainty to a damage 
metric DF, defined as follows

where �r and �c represent the parameters in the reference and 
current health state, respectively.

Specifically, two distribution functions can be computed 
based on this damage metric: the probability of damage 
exceeding a given damage factor df, and the probability 
distribution for the most probable damage factor DF. The 
former is defined as

provided that the probability of �r becoming negative is 
small. The density in Eq. (6) can be further developed as

where (�r
�
, �r

�
) and (�c

�
, �c

�
) are the mean and standard devia-

tions for the structural parameters posteriors in the reference 
and current health state, respectively; CDF is the cumula-
tive Gaussian density function; and erf is the Gaussian error 
function.

On the other hand, the probability distribution for the 
most probable damage factor corresponds to a 50% confi-
dence level of Eq. (7). Furthermore, on the basis that the 
reference and current state are independent, the variance 
formula [27] allows to calculate DF’s variance as

Associated with the selection of the confidence level, two 
statistical errors become an integral part of the detection 
test. Selecting a larger or smaller level would affect the 

(5)DF =
�c − �r

�r
,

(6)

p(DF ≥ df) = p

(
�c − �r

�r
≥ df

)
= p(�c − �r ≥ df × �r),

(7)

p(�c − �r ≥ df × �r)

= 1 − CDF

�
df × �r − (�c

�
− �r

�
),
�

(�r

�
)2 + (�c

�
)2
�

=
1

2
−

1

2
erf

⎛⎜⎜⎜⎝

df × �r − (�c

�
− �r

�
)

�
2((�r

�
)2 + (�c

�
)2)

⎞⎟⎟⎟⎠
,

(8)�2
DF

=

(
�r
�
�c
�

(�r
�
)2

)2

+

(
�c
�

�r
�

)2

.
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occurrence of type I or II errors, respectively. A type I error, 
or a missed detection, occurs when damage is present but is 
not detected. A type II error, or false alarm, occurs when the 
test incorrectly flags the structural component as damaged.

Finally, it is worth detailing some aspects of the current 
framework. Note for example, that during task 2 it is advis-
able to supply a reference data set De

r
 which is as informa-

tive as possible, i.e. including a large range of environmental 
and operational variations, ideally in a one year time frame, 
acquired at the earliest possible stage of the structure life-
cycle. In addition, Eq. (5) metric assumes that an increase of 
the parameter is associated with loss of its current or future 
performance, which might not necessarily be the case, e.g. if 
the parameter represents the stiffness or area of a structural 
element. However, a similar metric can be developed for 
the alternative case. Lastly, note that damage which occurs 
at a location, other than the one modelled by the identified 

parameters, would not be readily detected. One possible way 
to overcome this last limitation is to also analyse the variability 
of the discrepancy function between the current and reference 
state, using for example the Kullback–Leibler divergence.

3  Numerical example of a cantilever beam

In the current section, the MBA is used to detect damage on 
a simulated cantilever beam. Damage is considered as a 5% 
reduction of the beam’s original Young’s modulus E∗ . Note 
that this example requires a small change to the damage 
metric shown in the previous section, so that a decrease of 
the parameter represents damage.

The cantilever beam is subjected to a point load F at its 
free end, and its tip deflection and rotation are considered as 
responses for identification (calculated from beam theory). 

Simulation Data

(Xm,Θm), Y m

Output: Hyperparameters φm

Output: Posterior of θ

Output: Hyperparameters φδ

Update knowledge p(θ) = p(θ|De
r)

Prior calibration parameters p(θ|De
r)

Module 1: Gaussian Process for numerical model

Replace the numerical model with a mrGp model

Module 3: Posterior of the calibration parameters

Use Bayes’ theorem to calculate the posterior

p(θ|D, φ̂) = p(D|θ, φ̂)p(θ)/
∫
p(D|θ, φ̂)p(θ)dθ

distribution for the calibration parameters

Module 2: Gaussian Process for discrepancy

function. Replace the discrepancy function with a

mrGp model.

Compute and store reference state

Current data De
c

Discrepancy function δ(x)

Posterior p(θ|De
r)

Reference data De
r

Prior calibration parameters p(θ)

Compute current state

Input:

Output:

Discrepancy function δ(x)

Posterior p(θ|De
c )

Output:

Input:

Compute and store structural model

Input:

Output:

Computer model Y m(X, θ)

1- DetectionDamage evaluation

2- Location

3- Extent

DF = θc−θr
θr

Task 3

Task 2

Task 1

Task 4

Fig. 1  Flowchart of the MBA original approach (left) and the proposed damage detection framework (right)
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The discrepancy between the model and the actual beam is 
a rotational spring, of stiffness K∗ , located at the fixed end 
of the beam, as shown in Fig. 2. Additionally, numerical 
values of the beam properties are shown in Table 1, with A, 
I and L as the cross-sectional area, second moment of area 
and length, respectively. The intervals over F and E repre-
sent uniform sampling regions for training of the mrGps. 
For each state, two datasets with 90 and 60 samples have 
been generated to train the model and discrepancy func-
tion mrGps, respectively. The amount of samples were 

determined on the basis of an evaluation of the mrGps’ 
accuracy, with partition of 80% training and 20% testing 
data. Finally, for both the current and reference state, prior 
information of E is set as a uniform PDF in the same interval 
as shown above.

After propagating the uncertainty of the resulting 
posteriors to the damage metric DF, a distribution with 
E[DF] = 5.12% and V[DF] = 9.33%2 is obtained, as shown 
in Fig. 3a, b. Therefore, the MBA identified the presence, 
location and extent of the exact damage level (5%) with a 
small error margin, despite the model discrepancy induced 
by the rotational spring. If the model discrepancy had been 
assumed as a zero-mean uncorrelated Gaussian, �� = 0 , 
�2

�
= diag(�2

1
,… , �2

q
) and R = I , the identification would 

be biased and lose precision. This is shown in Fig. 3c, d, 
with E[DF] = 3.07% and V[DF] = 18.00%2 . Assuming a 
confidence level different from 50% leads to a shift of the 
distribution in Fig. 3b, according to the cumulative density 

Fig. 2  Cantilever beam exam-
ple. Actual (a) and idealised 
cantilever beam (b)

E∗ F

x

K∗

(a)

FE

x

(b)

Table 1  Parameters of the cantilever beam

Parameter Numerical value Parameter Numerical value

K
∗

10 × 1011 Nmm/rad L 3000 mm

E
∗

70 × 103 MPa E [20, 100] × 103 MPa

F [1, 10] × 103 N I 6.75 × 108 mm4

A 300 × 300 mm2

Fig. 3  Probability of damage 
exceeding a given damage 
factor df and PDF for the most 
probable damage factor DF for 
Young’s modulus of cantilever 
beam. a, b correspond to a dis-
crepancy function approximated 
with a linear correlation func-
tion, and c, d with an uncorre-
lated zero-mean function

(a) (b)

(c) (d)
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function shown in Fig. 3a, which would increase the prob-
ability of type I or type II errors.

4  The Tamar bridge reference and current 
state datasets

The current section frames the application of the MBA for 
damage detection in the Tamar bridge, highlighting major 
challenges and relevant details of the two states which are 
used for health assessment.

The Tamar bridge is a long suspension bridge, which con-
nects Saltash and Plymouth over the Tamar river in south 
west England. Its construction was finalised in 1961, but its 
deck has been rebuilt in 1999–2001, with sixteen stay cables 
added to support the additional loading. Its concrete towers 
reach an height of 67 m, and it supports three roadway lanes 
over a span of 335 m. The deck stiffness is increased via 
supporting steel cables and a truss bridge under the deck. 
The cables arrangement is subdivided into main, stay and 
suspension cables. New bearings have also been installed 
in the Saltash tower, to improve the bridge thermal expan-
sion. Thus, the bridge load history has changed consider-
ably across time, and much research has been developed to 
understand its behaviour.

The components under scrutiny are the suspension and 
stay cables shown in Fig. 4, and the friction of the bearings 
at the Saltash tower. The cables will be assessed on the basis 
of their initial strain, that is, the strain containing all the 
load history supported since installation. On the other hand, 
the friction in the bearings is the stiffness which develops 
between the bridge moving parts, i.e. the thermal expansion 
joints. Both the initial strain and stiffness are represented as 
input parameters of the Tamar bridge FE model. Lastly, it 
should be noted that the initial strains have been assumed as 

single parameters for each type of cable (main or stay) and 
across their length. It is believed that for the stay cables the 
latter assumption is not very strong, due to their constant 
cross-sectional area and linear geometry (cf. Fig. 4b).

Furthermore, it is worth mentioning some available 
information related to the behaviour of the above compo-
nents. One important point are vertical plane oscillations 
which have been registered in the stay cables. To avoid 
public concern/ensure durability of the cable sockets, these 
vibrations have been eliminated with water-butt dampers 
in April 2006 [25]. Another point stems from measure-
ments of temperature and extension data in the bearing 
arrangement, obtained in July 2010, which revealed that 
the gap extension against temperature is perfectly adjusted 
to a linear relation, and therefore, does not indicate any 
relevant frictional force (see Fig. 15 of Battista et al. [14] 
for clarification). The bearings and the string gauge sensor 
used for such assessment are shown in Fig. 5.

In the current analysis, we consider the joint influ-
ence of temperature and traffic in the natural frequencies 
and mid-span displacements of the bridge. Temperature 
has been obtained from a thermocouple sensor (D062) 
installed on one of the main cables. Traffic influence is 
based on vehicle counts obtained from toll gates on the 
Plymouth side. The natural frequencies of the structure 
were determined with a Stochastic Subspace Identification 
(SSI) technique [31], based on a real time modal parameter 
identification system installed in June 2007. Lastly, the 
displacements have been measured with a total positioning 
system (TPS) reflectors/camera, which were installed in 
2009. To put into perspective the time scale of the afore-
mentioned points and highlight the location of the sensors, 
see a timeline in Fig. 6, and a diagram of the Tamar bridge 
SHM system in Fig. 7. As it can be observed, the reference 
and current data were obtained from 24 May 2009 to 1 
March 2010 and between 9 March 2010 to 27 March 2010, 

Fig. 4  Main (a) and stay cables (b) of the Tamar bridge
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Fig. 5  New bearings at the Saltash tower (a) and setup of string gauge for measurement of the expansion joint thermal dilation (b)

Fig. 6  Timeline of SHM instal-
lations, building work and tests 
performed on the Tamar bridge 
during 1999–2013, plus refer-
ence and current states

4002 8002 21020002 2002 6002 2010

Stay cables vibrations

Tests at bearingBridge deck expansion.
Installation of stay cables arrangements

have been controlled

Installation of real time

SHM system installation Installation of TPS system

modal parameter

and bearings
identification system show no signals

of frictional force
reference state

current state

Deck

Main Cable

Towers

SALTASH PLYMOUTH

E

N

E

HH

N

S2NS[H,V] V[S,N]
H P4[N,S][H,V] P1NS[H,V]

Accelerometer

Temperature (Level Station)

Stay Cables

TS026NC1
D062

Displacement (TPS)

2P4S1S P3S2S3 P4 P1

Fig. 7  Diagram of Tamar bridge SHM system—cable temperature sensor, displacement reflector and accelerometers from whose natural fre-
quencies/mode shapes are estimated. There are 16 stay cables on North/South and Saltash/Plymouth sides
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respectively. The “H” and “v” labels of the accelerometers 
represent vertical and lateral channels of accelerometers 
on the North or South side of the deck.

Finally, it should be noted that there are other sources of 
uncertainty which affect the damage identification task and 
have not been considered, e.g. wind or soil settlements. 
Up to a certain extent, combining the MBA’s ability to 
consider model discrepancy and the detailed FE model 
developed by Westgate [38] accounts for these effects. A 
detailed analysis of the Tamar bridge FE model discrep-
ancy is shown in Jesus et al. [22].

4.1  Analysis of temperature and traffic 
effects on modal properties and mid‑span 
displacements

In the current section, the monitored data are thoroughly 
examined, to justify the assumptions detailed in Sect. 2.1 
placed over the mrGp of the MBA for damage detection.

After cleansing and synchronising the whole datasets, 
2419 and 270 common points were obtained for the ref-
erence/current state, respectively. Beforehand, the rela-
tions of the temperature/traffic against the natural fre-
quencies/mid-span displacement are shown in Fig.  8. 
Frequency labels follow the convention: L is a lateral 
mode shape, V is vertical mode shape, T is a torsional 
mode shape, TRANS is a longitudinal translation mode, 

S is symmetric, A is asymmetric, SS is side span and the 
numbers are their relevant order. Note that for the sake 
of clarity only three out of five natural frequencies are 
shown; the temperature axis refers to the thermocouple 
sensor (D062); and the traffic mass is based on the toll 
gates counts and nominal UK vehicle size classes.

Thus, it can be observed that most of the trends in 
Fig. 8 are linear; the dependency of the mid-span dis-
placements on traffic is not as noticeable as for the other 
relations; and the LS1a and Northern displacement chan-
nels have the highest noise. These factors justify the lin-
ear correlations of the mrGp which approximate the dis-
crepancy function. Furthermore, a larger search interval 
was assumed to estimate the variance hyperparameter � 
of the North mid-span displacement. Usually this estima-
tion is performed by maximisation of the mrGp likelihood 
function with genetic algorithms.

The dataset for the current state follows similar pat-
terns as the ones shown above. During this period no 
negative temperatures were registered, and the maximum 
temperature was 17.4 ◦C.

4.2  Simulation of thermal and traffic effects 
in the Tamar bridge and mrGp emulation

Although not mentioned previously, it is important that the 
responses which are used for damage identification (natural 

Fig. 8  Post-processed data—
May of 2009 to March of 2010 
time period—natural frequen-
cies against temperature (a) 
and traffic (b) and mid-span 
displacements against tempera-
ture (c) and traffic (d)

(a) (b)

(c) (d)
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frequencies/displacement) are sensitive to changes of the 
structural components under analysis (cables’ initial strain 
and bearings’ stiffness). One way to select appropriate out-
put responses is by performing a sensitivity analysis with 
the bridge FE model. Westgate and Brownjohn [40] analysis 
indicates that the Tamar bridge natural frequencies are sensi-
tive to the cables initial strain; justifying the responses cho-
sen in the current publication. Similarly, Westgate et al. [39] 
has shown that the mid-span displacement is sensitive to 
the stiffness of the thermal expansion gap bearings. These 
analyses are based on a complex full-scale FE model of the 
Tamar bridge which has been developed using ANSYS para-
metric design language (APDL). The model has approxi-
mately 45,000 elements, from which expansion joints are 
modelled with linear spring elements; truss members with 
fixed-rotation beam elements; deck/towers with shells and 
the cables and hangers with uniaxial tension only beam ele-
ments. The FE model scale, complexity and computational 
cost fully justify the use of surrogate modelling.

Subsequently, it is necessary to highlight how tempera-
ture and traffic effects are considered. Westgate [38] estab-
lished a simplified temperature, based on monitored data, 
which is adopted in the present work. In essence, a uniform 
temperature is applied across all the finite elements, pro-
vided that the temperature of the main cable (D062 sensor) 
is below a notable value �c ≤ 15 ◦C . If the cable temperature 
is above this value, different temperatures are applied on two 
groups of elements, hereby denoted as lighted and shaded 
elements, as follows:

(9)
𝜏S =

{
0.433𝜏c + 7.877 𝜏c > 15

𝜏c 𝜏c ≤ 15

𝜏L =

{
1.544𝜏c − 8.798 𝜏c > 15

𝜏c 𝜏c ≤ 15
,

where �S and �L represent the temperature of shaded (truss 
bridge under deck), and lighted (deck and pylons) elements, 
respectively. Eq. (9) represents a temperature fork, occur-
ring at 15 ◦C , where lighted and shaded structural elements 
attain a higher/lower temperature than cables. These linear 
relations and the elements groups are displayed in Fig. 9a, 
b, respectively.

The adopted traffic model is based on Westgate et al. [39], 
although our analysis considered only the traffic from the 
Plymouth to Saltash direction. The effects of traffic are 
assumed as a set of distributed mass nodes, evenly spread 
longitudinally across the bridge deck, and asymmetrically in 
the lateral direction, as shown by the top diagram in Fig. 7. 
An alternative and more comprehensive vehicular load case 
could be implemented on the basis of appropriate modelling 
ratios as presented by Jamali et al. [21].

Subsequently, we consider the approximation of the FE 
model with a mrGp structure as described in the previous 
sections. Let us denote the cable temperature at the location 
of the D062 sensor as �c and consider its influence in the 
[ −5 , 30] ◦ C range. Similarly, the traffic mass is denoted as 
mt in [0, 2.5 × 106 ] kg, the initial strain in the main and stay 
cables as �iMC [36.5, 2700]�� , �iSC [36.5, 3700]�� , and the 
stiffness of the bearings as Kd in [0, 10] kN/mm. The prior 
PDF for the reference state is a uniform prior with the same 
range as the influence interval of the structural parameters. 
On the other hand, the prior PDF for the current state is 
multivariate normal, with the same mean and covariance as 
the posterior PDF of the reference state. Hence, the model 
mrGp has five input arguments and five output responses, 
and its training simulated data has been generated in a Latin 
hypercube space within the above ranges. The resulting 1028 
simulations are shown in Fig. 10. Note that to avoid mixtures 

Fig. 9  Linear bifurcation temperature model between cable, shaded and lighted groups (a) represented in cyan, blue and red components, respec-
tively, in the ANSYS FE model (b). a is reproduced from [38] and includes monitored data
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between mode shapes while running the simulations, a com-
parison against reference mode shapes has been performed 
using the modal assurance criterion (MAC) at 80%.

Finally, the reliability of the model mrGp is highlighted. 
A testing data set of 256 points has been used to calculate 
the relative error against predictions of the mrGp, as follows:

where ym
t

 is a testing data point, and �m
p

 , �m
p

 are the corre-
spondent mrGp predicted mean and standard deviation, for 
a particular input ( xm, �m ). The histogram of the resulting 
relative error (in %) between the posterior predictions and 

(10)�r =
�m
p
− ym

t

�m
p

,

the testing dataset is shown in Fig. 11. Although the largest 
error was 6.3%, using more training data would probably 
overfit the mrGp beyond what is strictly necessary to ade-
quately represent the FE model, and therefore, the current 
approximation was adopted throughout the rest of this work.

5  Bridge cables/bearings damage 
identification

The previous sections have detailed the enhancement of the 
MBA framework for damage detection, field experiment 
aspects of the Tamar bridge SHM system and its FE model. 
Now it is possible to present the results of the actual appli-
cation for each of the structural components under analysis. 
The validation is based on monitored forces from existent 
stay cables strain gauge load cells, and the already men-
tioned Battista’s tests.

Beforehand, all the parameters posterior moments for 
the current and reference states are shown in Table 2. It 

Fig. 10  Simulated data—natural 
frequencies (a, b) and mid-span 
relative displacements (c, d)

(a) (b)

(c) (d)

Fig. 11  Histogram of posterior relative error of the Tamar bridge FE 
emulator, based on a testing dataset

Table 2  Posterior PDF moments for the reference and current health 
state

Mean Variance

Reference Current Reference Current

Main cables 0.0012 0.0012 0.25 × 10−6 0.14 × 10−6

Stay cables 0.0024 0.0029 1.17 × 10−6 0.13 × 10−6

Bearings (kN/mm) 8.3290 6.8365 5.39 4.11
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is noticeable that the variances are smaller for the current 
state, despite the smaller amount of data which was used 
for its identification. In particular, the stay cables variance 
decreased by 89%. More details for each individual compo-
nent will be detailed in the next sections.

5.1  Stiffness of bearings arrangements

Starting off with the stiffness of the bearings Kd , the samples 
for the current state prior, likelihood function and posterior 
are shown in Fig. 12. By visual inspection, the posterior 
PDF has a pronounced left tail, which indicates low fric-
tion, despite that its density decays to zero for a frictionless 
bearing.

Next, the uncertainty associated with the posteriors is 
propagated into the damage metric DF, and the probability 
of damage exceeding a given damage factor df and the PDF 

of DF are shown in Fig. 13a, b, respectively. The considered 
interval for df is [− 40 80]%, and the moments are E[DF] 
= − 17.9% and V[DF] = 37.4%2 . Despite the high uncer-
tainty associated with the current estimate, visible in the 
PDF of DF, the mean value indicates a lower, and therefore 
safer, value of stiffness. Such result is in agreement with 
the conclusions from Battista et al. [14], whose tests were 
performed 3 months after the time period of the current state 
(cf. Fig. 6).

5.2  Initial strain of main suspension cables

The second structural component under analysis is the 
bridge’s main suspension cables. The procedure is analo-
gous to what has been described above, with a damage 
identification based on the cables initial strain. The initial 
strain is considered in the FE model as a prestressing force 
which loads and deforms the cables before any analysis is 

Fig. 12  Likelihood function, prior and posterior PDFs for the stiff-
ness of bearings, conditioned by the current state data

(a) (b)

Fig. 13  Probability of damage exceeding a given damage factor df (a), and PDF for the most probable damage factor DF (b) for the bearing 
arrangement

Fig. 14  Likelihood function, prior and posterior PDFs for main sus-
pension cables, conditioned by the current state data



212 Journal of Civil Structural Health Monitoring (2019) 9:201–215

123

run. Since the main cables extend along a nonlinear profile, 
with different values of force/strain along its length, there is 
a considerable amount of uncertainty associated with esti-
mation of this parameter. As can be seen in Fig. 14, the cur-
rent state’s prior and posterior PDFs are very similar, except 
for two peaks, visible in the region of highest density. Such 
shape indicates a bimodal distribution, plausibly associated 
with each of the two main cables. The moments of this dis-
tribution have been presented in Table 2.

Correspondingly, the probability that the damage factor 
DF of Eq. (5) exceeds a certain threshold value df and the 
PDF of DF for the main cables initial strain are shown in 
Fig. 15a, b. In contrast to the results shown in the previous 
section, the current probability distribution has an expected 
value E[DF] = − 2.4% and variance V[DF] = 50.3%2 . Once 
more, the negative expected value indicates an estimate 
below the reference state for the main cables, and its rela-
tively low value is also reassuring. Although such results are 
encouraging, unfortunately it is not possible to validate them 
with any field data, since the Tamar bridge main cables have 
never been monitored directly.

5.3  Initial strain of stay cables

The final component under analysis is the sixteen stay cables 
which support the bridge deck. Similar to the previous sec-
tions, the distributions of the current state for the stay cables 
initial strain are shown in Fig. 16. As noted before, this 
parameter registered a considerable shrinkage of its uncer-
tainty from the reference to the current state. It is believed 
that the informative prior and relatively low modelling 
assumptions contributed to such improvement.

Accordingly, the distributions of the most probable dam-
age factor can be seen in Fig. 17. Its moments are E[DF] 
= 18.60% and V[DF] = 54.5%2 for the mean and variance, 

respectively. Similar to the previous example, the identified 
metric has a considerable uncertainty associated with its 
identification. However, oppositely to the previous results 
a non-negligible increase of the initial strain was obtained, 
which is associated with loss of performance of the struc-
tural element. Therefore, it is necessary to investigate the 
cause of such deviation.

As described in Sect. 2.1, one assumption of the MBA is 
that the parameters do not change because of environmen-
tal/operational effects. Although these effects are considered 
in the response output Y(X) , the same cannot be said for the 
parameters � . This stands in contrast to Behmanesh’s hierar-
chical Bayes approach, which is able to characterise a param-
eter’s randomness due to long-term monitoring, i.e. its inherent 
variability. To assess if the current deviation occurred because 
of damage, or if it can reasonably be explained by the param-
eters inherent variability, we consider a dataset from the stay 
cables, monitored with strain gauge load cells.

(a) (b)

Fig. 15  Probability of exceeding a certain damage factor df (a) and PDF of DF (b) for main suspension cable initial strain

Fig. 16  Current state likelihood function, prior and posterior PDFs 
for stay cable initial strain
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For the current assessment, seven of the eight stay cables 
from the Saltash side of the bridge are considered. The last 
cable was not included because its sensor was found to be 
faulty. From previous literature, it is known that an increase 
of temperature decreases the stay cable forces. Such relation is 
shown in Fig. 18, where in addition to monitored data, seven 
linear functions of first-order polynomials which have been 
fitted to the data, are shown. These functions follow the form:

where F is the cable force, T is the temperature in the D062 
sensor, and �1 and �2 are the coefficients from the polyno-
mial functions. The numerical value of the � coefficients is 
displayed in Table 3.

The final step is to use these functions to cal-
culate the relative force deviation that each cable 

(11)F(T) = �1T + �2,

experiences from its mean value. This is calculated easily 
as (F(30) − �F)∕�F × 100 , where F(30) is the cable’s force 
function at an extreme temperature of 30 ◦ C, and �F is the 
mean value of the cable force. The results are also displayed 
in the last column of Table 3.

As it can be noted, two of the analysed stay cables, S1S 
and S4S, have a deviation due to temperature which is 
superior to the value identified by the MBA 18.6%, and can 
therefore reasonably explain the increase of its value. These 
values are typeset in bold. Furthermore, it should be noted 
that the data from the current state belong to a colder month 
(March), which is associated with higher cable force values. 
In reality, during long-term monitoring almost all param-
eters often experience some variability. In summary, what 
the current analysis highlights, is that the MBA performs 
optimally when external factors do not affect the structural 
components under evaluation. If instead the components 
have some inherent variability, the MBA can develop type 
II errors.

(a) (b)

Fig. 17  Probability of exceeding a certain damage factor df (a) and PDF of DF (b) for stay cables initial strain

Fig. 18  Stay cable forces during reference period and the correspond-
ing linear regression functions

Table 3  Coefficients of linear polynomial function fitted to stay cable 
monitored data, and percentual deviation of the stay cable force rela-
tive to its mean

Cable �
1

�
2

F(30)−�
F

�
F

(%)

S1N − 5.1 993.6 10.1
S1S − 12.6 1245.6 21.1
S2N − 6.9 1136.2 12.0
S2S − 6.4 1197.8 10.5
S3N − 3.4 1087.6 5.9
S4N − 7.1 1478.1 9.3
S4S − 9.9 1036.7 19.8
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6  Conclusions

The current work has highlighted the first implementation of 
the MBA for damage identification in SHM. The methodol-
ogy uses supervised learning, comparing information which 
is separated into a reference and current state. Additionally, 
to the presentation of the methodology, health assessments 
of a simulated cantilever beam and the Tamar long suspen-
sion bridge have been detailed. Specifically, the beam’s 
Young’s modulus, and the Tamar bridge’s main, stay cables 
and its bearings have been examined, and their probability 
of damage has been computed.

As shown in the simulated example, the MBA is able 
to detect damage under the presence of model discrepancy 
and operational variations. The resulting unbiased estimate 
is attributed to the correlated structure of the mrGp which 
approximates model discrepancy. However, further inves-
tigation is required to reduce the considerable estimation 
uncertainty, which stems from the assumption of independ-
ence between the reference and current states.

Additionally, the MBA is capable of assessing complex 
civil infrastructure using full-scale FE models, as shown for 
the Tamar bridge case study. Effects due to environmental 
and operational effects, noise and model discrepancy were 
taken into account. Results indicate that the bridge main 
cables and bearings did not indicate any signs of structural 
anomalies. In situ tests corroborate the latter conclusion. 
On the other hand, the bridge stay cables indicated a con-
siderable increase of its initial strain, which was, however, 
attributed to temperature. Therefore, it is important to note 
that the MBA does not consider the inherent variability of 
identified structural parameters.

Lastly, the current study presented a local damage detec-
tion through the effect of structural parameters. Although 
not shown, it should be noted that the MBA formulation also 
allows to assess damage at a global level (through the model 
discrepancy). With this work, the authors hope to motivate 
further developments of the MBA for damage detection, and 
to enhance the state of the art of the SHM community.
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