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Abstract—  An exposition of standardized effect for two 
independent samples (under an assumption of normality) is given 
along with an insight into interpretation and reporting.   
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I. INTRODUCTION  

     A common misunderstanding in null hypothesis 

significance testing is the incorrect reasoning that a p-value 

[1] quantifies the strength of a relationship or the strength of 

a difference.  This is not true.  When a relationship or 

difference exists, the p-value is a joint function of both the 

strength of the relationship (i.e. effect size) and sample size. 

     In a correlation study, the effect size is quantified by the 

(usually unknown) true correlation coefficient and may be 

estimated by the sample derived correlation coefficient, r. 

    In a difference study, the effect size is quantified by the 

(usually unknown) true difference between the means, and 

may be estimated by the sample derived difference, 𝑥̅1 − 𝑥̅2.  

For instance, in a weight loss study, suppose a particular 

intervention showed a statistically significant weight loss of 

5kg.  The estimated, or sample derived, effect size would be 

5kg.   

     In certain studies, the outcome of interest might not be 

measured on a ratio scale with meaningful units of 

measurement (unlike height, or weight) but may be measured 

on interval-like scales of measurement (such as anxiety, or 

depression, or body image).  In these latter situations, it might 

not be meaningful to talk about (say) a change of 5 without 

any units of measurement.  For this reason, it is preferable to 

consider a scaled measurement of effect size known as a 

standardized effect size (𝛿).  For two populations, with an 

assumed common variance (𝜎2), the population standardised 

effect size may be defined as 

𝛿 =  
𝜇1 −  𝜇2

𝜎
 

where 𝜇1 and 𝜇2 are the respective population means. 

     To motivate matters this brief note will consider the 

standardised effect size for two idealised normal distributions 

with a common variance (𝜎2).  Section III will then consider 

the two-sample situation where the standardised effect size is 

quantified using Cohen’s d.             

II. STANDARDISED EFFECT FOR IDEALISED NORMAL 

DISTRIBUTIONS  

     Consider two normal distributions (Distribution A with 

mean 𝜇𝐴  and Distribution B with mean 𝜇𝐵 ) and with a 

common variance 𝜎2. 

    To simplify matters, and without any loss of generality, 

let’s further assume the common variance is equal to 1.  

Figure 1 gives an example in which Normal Distribution A 

has a mean of 0 and standard deviation 1, and Normal 

Distribution B has a mean of 0.8 and a standard deviation of 

1. In this example situation it may be verified that the effect 

size and the standardized effect size is 𝛿 = 0.8. 

 

 

 

Figure 1 Standardized effect size = 0.8. 

 

     Now suppose we were to take a single random sample 

from Distribution B (as shown in Figure 1) and a single 

random sample from Distribution A (as shown in Figure 1).  

What is the probability that the observed sample value from 

Distribution B would have a value greater than the observed 

sample value Distribution A?  The answer to this question is 

0.66.   

     Note that with Distribution A held fixed (mean zero, 

standard deviation 1) we could consider the above question 

for different mean values for Distribution B.  These type of 

calculations are summarized in Table 1 for standardized 

effect size 0(0.1)2 (i.e. 0 to 2 in steps of 0.1).  Table 1 gives 
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the mapping between the standarised effect size, 𝛿, and the 

probability that a randomly selected observation from 

Distribution B will be greater in value than a randomly 

selected observation from Distribution A and this mapping 

holds for any two normal distributions with constant 

variance.   

 

Table 1 Probability (𝝅) of a randomly selected observation 

from a normal distribution (𝝁𝑩, 𝝈) being greater in value than 

a randomly selected observation from a normal distribution 

(𝝁𝑨, 𝝈) for given standardized effect, 𝜹 

     𝛿   𝜋 𝛿 𝜋     𝛿 𝜋 

0.0 0.50 0.7 0.64 1.4 0.76 

0.1 0.52 0.8 0.66 1.5 0.77 

0.2 0.54 0.9 0.67 1.6 0.79 

0.3 0.56 1.0 0.69 1.7 0.80 

0.4 0.58 1.1 0.71 1.8 0.82 

0.5 0.60 1.2 0.73 1.9 0.83 

0.6 0.62 1.3 0.74 2.0 0.84 

 

     In a similar way, we could ask the question, “what is the 

probability that a randomly selected observation from 

Distribution B would be above the mean value of Distribution 

A?”  For 𝛿 = 0.8 the answer to this question is 0.79.  These 

type of calculations are summarized in Table 2 for 

standardized effect size 0(0.1)2.    Table 2 gives the mapping 

between the standardized effect size (𝛿), and the probability 

that a randomly selected observation from Distribution B will 

be greater in value than the mean value from Distribution A 

and this mapping holds for any two normal distributions with 

constant variance.  Also note that these probabilities when 

multiplied by 100 represent the percentile of Distribution A 

at the position of the mean of Distribution B. 

 

Table 2 Probability (𝝅) of a randomly selected observation 

from a normal distribution (𝝁𝑩, 𝝈) being greater in value than 

the mean of a normal distribution ( 𝝁𝑨, 𝝈 ) for a given 

standardized effect, 𝜹 

 

     𝛿   𝜋 𝛿 𝜋     𝛿 𝜋 

0.0 0.50 0.7 0.76 1.4 0.91 

0.1 0.54 0.8 0.79 1.5 0.93 

0.2 0.58 0.9 0.82 1.6 0.95 

0.3 0.62 1.0 0.84 1.7 0.96 

0.4 0.66 1.1 0.86 1.8 0.96 

0.5 0.69 1.2 0.88 1.9 0.97 

0.6 0.73 1.3 0.90 2.0 0.98 

 

Inspection of Figure 1 shows that there is distributional 

overlap between Distribution B and Distribution A.  For the 

situation in Figure 1 (𝛿 = 0.8) the degree of overlap is 0.526 

and hence the degree of nonoverlap is 0.474.  These type of 

calculations are summarized in Table 3 for standardized 

effect size 0(0.1)2.  Table 3 gives the mapping between the 

standardized effect size (𝛿) and the degree of nonoverlap or 

separation and this mapping holds for any two normal 

distributions with constant variance.  

 

Table 3 Degree of non-overlap (separation) between two 

normal distributions with common variance for given 

standardized effect, 𝜹 

 

𝛿 Separation 𝛿 Separation 𝛿 Separation 

0.0 0.000 0.7 0.430 1.4 0.681 

0.1 0.077 0.8 0.474 1.5 0.707 

0.2 0.147 0.9 0.516 1.6 0.731 

0.3 0.213 1.0 0.554 1.7 0.754 

0.4 0.274 1.1 0.589 1.8 0.774 

0.5 0.333 1.2 0.622 1.9 0.794 

0.6 0.382 1.3 0.653 2.0 0.811 

 

     Relatedly, suppose there is an observed value of -1 and 

based on Figure 1 we had to guess whether the observation 

was from Distribution A or Distribution B.  In this case we 

hedge our bets and guess an observation of -1 would have 

come from Distribution A as an observation of -1 is far 

removed from Distribution B and relatively closer to the 

mean of Distribution A.  In general, given an observed value 

we would “guess” that the observation would come from the 

distribution with the closer mean.  If we used this rule, then 

we could ask “what is the probability of getting the decision 

correct?”  Table 4 summarises these probabilities for delta 

0(0.1)2.     

 

Table 4 Probability (𝝅) of a correct guess in allocating an 

observation to one of two normal curves with equal variance 

for given standardized effect, 𝜹 

𝛿 𝜋 𝛿 𝜋 𝛿 𝜋 

0.0 0.50 0.7 0.64 1.4 0.76 

0.1 0.52 0.8 0.66 1.5 0.77 

0.2 0.54 0.9 0.67 1.6 0.79 

0.3 0.56 1.0 0.69 1.7 0.80 

0.4 0.58 1.1 0.71 1.8 0.82 

0.5 0.60 1.2 0.73 1.9 0.83 

0.6 0.62 1.3 0.74 2.0 0.84 

 

In summary, for two normal distributions with constant 

variance, any value of 𝛿 can be interpreted in terms of the 

probability that a randomly selected observation from 

Distribution B has a larger value than a randomly selected 

observation from Distribution A;   that a randomly selected 

observation from Distribution B will exceed the mean of 

Distribution A; mapped to the degree of non-overlap 

(separation) or overlap between the two distributions; 

mapped to the probability of correctly guessing group 

membership.  So, for instance, if 𝛿  = 1.2, then the probability 

that a randomly selected observation from Distribution B 

being greater in value than a randomly selected observation 
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from Distribution B is 0.73; if 𝛿 = 1.2, then there is an 88% 

chance a randomly selected observation will exceed the mean 

of Distribution A;  if 𝛿 = 1.2 then the degree of distributional 

separation is 0.622; if delta = 1.2 then there is a 73% chance 

of correctly guessing group membership.  

 

III. COHEN’S D  

     The foregoing has considered  

𝛿 =  
𝜇1 −  𝜇2

𝜎
 

as a measure of effect size for two normal distributions.  

Cohen [2] proposed a sample estimate effect size for two 

independent groups to be    

𝑑 =  
𝑥̅1 − 𝑥̅2

𝑠
 

where 𝑥̅1, and  𝑥̅2 are the sample means, and 𝑠 is the sample 

estimate of the population standard deviation, 𝜎 .  In 

experimental research there is an argument to use the standard 

deviation from the control group (because the intervention 

might affect both the mean and standard deviation in the 

experimental arm).   However, in practice, the standard 

deviation in the denominator of  

𝑑 =  
𝑥̅1 − 𝑥̅2

𝑠
 

is typically obtained by pooling the sample standard 

deviations i.e.  

𝑠2 =  
(𝑛1 − 1)𝑠1

2  + (𝑛2 − 1)𝑠2
2

𝑛1 +  𝑛2 − 2
  

and then by taking the square root. 

     Table 1, Table 2, Table 3 and Table 4 can be used to help 

interpret 𝛿 and therefore give some insight into interpreting 𝑑.  

Table 5 is an attempt to give a less abstract way of visualising 

the magnitude of Cohen’s d.  Table 5 gives estimated d 

derived for comparing the heights of females for different age 

groups (data sourced from the World Health Organisation).  

For instance, height would be an excellent discriminator 

between girls aged 5 and girls aged 8 (d = 3.20), but height 

would not be a good discriminator between girls age 15 and 

girls aged 16 (d = 0.05).   

    For social science research, Cohen tentatively suggested 

that values of d > 0.8 be considered a large effect (i.e. one in 

which an effect should be reasonably obvious to a reasonable 

person just by viewing the data); that values of at least d = 0.5 

be considered to be a medium sized effect (i.e. one which other 

knowledgeable researchers would consider to be important 

but not necessarily obvious);  that d between 0.2 and 0.5 be 

classed as small (i.e. with diminished practical utility); and 

non-zero values below 0.2 to be potentially of theoretical but 

not necessarily of practical interest.   

Table 5 Cohen’s d for height by age groups  

Age groups  d  Age groups d 

16 and 17  0.05  9 and 10 0.98 

15 and 16  0.12  8 and 9 1.00 

14 and 15  0.27  7 and 8 1.00 

13 and 14  0.50  6 and 7 1.10 

12 and 13  0.75  5 and 6 1.11 

11 and 12  0.93  5 and 7 2.19 

10 and 11  0.97  5 and 8 3.20 

  

     The thresholds given by Cohen are at best a guide and not 

viewed as hard and fast ways of interpreting the magnitude of 

d.  The values for what might be considered good thresholds 

for d will vary from one subject discipline to another and are 

very much context dependent.  Despite this, others have 

proffered a more granular interpretation for d such as  

d = 0    indicates the absence of an effect 

and for statistically significant effects,  

0 < d < 0.1   indicates a trivial effect,  

0.1 < d < 0.2   indicates a small effect,  

0.2 < d < 0.5   indicates a moderate effect,  

0.5 < d < 0.8   indicates a medium size effect,  

0.8 < d < 1.3   indicates a large effect,  

1.3 < d < 2.0  indicates a very large effect  

d  > 2.0   huge!! 

     Of course the same caveats apply; specifically 

interpretation of Cohen’s d is context dependent and the above 

thresholds are simply meant to be a guide while 

acknowledging they do not hold in all circumstances. 

     

IV. RELATIONSHIP WITH AND CONFIDENCE INTERVALS 

     Often in the case of two independent groups, the 

independent samples t-test is used to test 𝐻0 𝜇1 =  𝜇2 .  The t-

test statistic, 𝑡𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡, is functionally related to d by  

𝑑 =   𝑡𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡

(𝑛1 +  𝑛2)

√𝑛1𝑛2  √(𝑛1 +  𝑛2 − 2)
 

       Hence, d can be derived directly from t and vice versa [3].  

The statistics d is just that; a statistic.  Hence, d is subject to 

sampling error and an approximate formula for the standard 

error of d is given by  
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𝑠. 𝑒. (𝑑) =   √(
𝑛1 +  𝑛2

𝑛1𝑛2

+
𝑑2

2(𝑛1 +  𝑛2 − 2)
) 

and hence an approximate 95% CI for 𝛿 would be  

𝑑  ± 1.96 𝑠. 𝑒. (𝑑) 

    Note that this interval is an approximate interval.  Precise 

intervals (under a precise assumption of normality) can be 

calculated using software which uses the non-central t-

distribution (and closed formulae do not exist for these 

procedures).     

     A 95% confidence interval for 𝛿 , which excludes 0,  

indicates a value for d significantly different from zero.  The 

approximate nature of the above formula means that the result 

of a t-test (significant or not) might not always perfectly align 

with the conclusion drawn from the confidence interval for d 

when using the approximation.   Other calculators which use 

the non-central t-distribution would produce exact 

confidence intervals (under an assumption of perfect 

normality) which would not give logical inconsistencies 

between the results of a t-test and confidence intervals for  .  

     It turns out that the formula  

𝑑 =  
𝑥̅1 − 𝑥̅2

𝑠
 

provides a biased estimate for 𝛿.  For instance suppose two 

independent samples of sizes 𝑛1 and 𝑛2 are taken from two 

Normal distributions (e.g. Distribution A with mean 𝜇𝐴 and 

Distribution B with mean 𝜇𝐵) and with a common variance 

𝜎2 , and d is calculated.  Conceptually, this process of 

sampling using sample sizes 𝑛1  and 𝑛2 each time can be 

repeated indefinitely and the sampling distribution for d 

obtained under these idealized conditions.  The average value 

of d under this procedure would not perfectly reproduce the 

value of 𝛿; if it did then d would be an unbiased estimator of  

𝛿; however it does not and d  is a biased estimator of 𝛿.  

     For an unbiased estimator for 𝛿 , Hedges and Olkin [4] 

have proposed the statistic  

 

𝑑𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 = 𝑑 [1 −  
3

4(𝑛1 + 𝑛2 − 2) − 1
] 

 

     For large sample sizes, the numeric value of d and 

𝑑𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑  will be close to one another, but there could be 

substantial differences if sample sizes are small.   𝑑𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑  

is also known as Hedges’ d.   

V. SUMMARY   

     This note has considered one way of quantifying effect size 

for two independent samples using a standardised effect.  It 

should be noted that this is only one way of quantifying effect 

size and many other indices exist for other situations (e.g. 

correlation coefficients, odds ratios and so on).  The 

development and understanding of d has been predicated on 

an assumption of normality.  It turns out that many of the 

properties discussed will not hold if the samples are severely 

non-normal. 

     When the results of a t-test are reported, and when 

normality has not been grossly violated, then d should be 

routinely reported preferably with its supporting 95% 

confidence derived using exact methods if possible.  It should 

be specified whether Hedges’ or Cohen’s d is being reported.   
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