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Abstract

Introducing the approach by Masanao Aoki (1981) to time series econometrics, we show that the
dynamics of symmetric linear possibly cointegrated two-country VAR models can be separated into
two autonomous subsystems: the country averages and country differences, where the latter includes
the exchange rate. The symmetric two-country cointegrated VAR model is synchronized, i.e., the
two countries are driven by the same common trends, if and only if the country-differences sub-
system is stable. It is shown that separability carries over even under mild asymmetries such as
difference in the size of the countries’ economies. The possibilities of a recursive structural VECM
representation under symmetry is evaluated. The derived conditions for symmetry and separabil-
ity are easily testable and applied to nine-dimensional quarterly cointegrated VAR models for five
different country pairs in the post-Bretton-Woods era. We find evidence for the symmetry of the
cointegration space, which is of practical importance as it allows for the identification of the cointe-
gration vectors in much smaller systems, and for the exchange rate equation in general.

Keywords: Multi-country modelling; Cointegration; Common trends; Structural VAR; Synchroniza-
tion; Exchange rate; International Economics.

JEL classification: C32; C51; F41.

1 A generalization of Aoki (1981)

In this paper we investigate the applicability of the approach by Aoki (1981) frequently used in economic

theory (see, inter alia, Turnovsky, 1986) for the construction and analysis of dynamic macroeconometric

two-country models. Masanao Aoki showed that for a two-country model consisting of a system of

stable linear differential equations, the assumption of country symmetry allows to separate the dynamics

of the system into two autonomous subsystems of country averages and country differences.

This paper will explore the applicability of Aoki’s approach to dynamic macroeconometric mod-

elling, particularly with regard to its contribution to tackling the curse of dimensionality imminent in
∗Corresponding author, email: hm.krolzig@gmail.com We are grateful to Ralf Brüggemann, David F. Hendry and the

seminar audience at the University of Konstanz, DIW Macroeconometric Workshop, Berlin, ESEM 2013, Gothenburg, EC2

Meeting, Maastricht, SNDE 2013 Conference, Mailand, VfS Annual Congress 2013, Dusseldorf, NBER-NSF Time Series
Workshop, Washington DC, for useful suggestions. The usual disclaimer applies.
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multi-country models due to the large number of variables. The vector autoregressive (VAR) model, the

most commonly used modelling approach in empirical macroeconomics, is associated with an inherent

problem that is the curse of dimensionality. With every additional variable, the number of parameters

in the model to be estimated increases quadratically, leading to an inflation of estimation uncertainty.

In practice, this problem is usually avoided by restricting the number of macroeconomic variables in

the model. This, however, is not a viable strategy in the two-country context requiring the inclusion of

time series for both countries as well as the exchange rate. The cointegrated VAR (CVAR) model offers

the advantage of separating the long-run and the short-run dynamics of the macroeconomic system, but

further highlights the limitation with regard to the number of variables due to the common problem of

identifying the cointegration vectors in high-dimensional models.

From a methodological econometric view point, our approach of separating the analysis of high-

dimensional systems into a set of tractable subsystems is most closely related to the integrated CVAR

modelling approach of Juselius (2006), the G(lobal) VAR approach of Pesaran et al. (2004) and the

infinite-dimensional VAR of Chudik and Pesaran (2011). In the integrated model of Juselius, the long-

run structures are analysed separately for different sectors of the economy with the results then feeding

into a large macroeconomic system. In the modelling of inflation, the subsystems included are the money

market, an external sector and the labour market. This is extended in Tuxen (2007) by the addition of

the public sector. In the GVAR approach, cointegrated VAR models are estimated for a large number

of countries conditional on some country-specific global variables. The country models are then linked

together, usually via a trade matrix. The validity of the GVAR approach crucially depends on the weak

exogeneity of those global variables, an assumption that would be incompatible with the two-country

system considered in this paper. Aoki’s modelling approach could offer an alternative way to overcome

the problem of dimensionality in multi-country models.

In the following we seek to develop a theory generalizing Aoki (1981) to the class of symmetric

possibly cointegrated two-country linear vector autoregressive (VAR) processes: We generalize Aoki’s

approach to a stochastic setup in discrete time and demonstrate how it could be utilized for macroecono-

metric multi-country model building. While the transition from continuous to discrete time is straight-

forward as far as the concept of symmetry is concerned, the stochastic nature of the model adds a new

dimension to the problem. A further major step forward is the consideration of non-stationarities in the

system as well as the possible presence of cointegration.

The structure of the paper is as follows. In the next section we discuss the symmetry concept for

two-country Vector Autoregressive (VAR) models, which is extended in §3 to two-country cointegrated

VAR (CVAR) models and their Vector Equilibrium Correction Mechanism (VECM) representation. For

the class of symmetric two-country CVAR models, we introduce in §4 the concept of synchronization,

which requires not only symmetry of the parametric model structure of the two economies but also

additional common features in form of cotrending. §5 investigates the existence of a recursive structural

representation of the symmetric possibly cointegrated VAR model. In §6 the existing framework is

extended for weak asymmetries in form of countries of different and possibly time-varying weights

in the world economy. §7 then illustrates how the approach developed in the earlier sections can be

utilized as a testing strategy for discovering symmetry features, which is applied to small two-country

macroeconometric models for five different country pairs. Finally §8 concludes.

2



2 Symmetry in two-country VAR models

2.1 A balanced two-country VAR model

Suppose we have two countries and our focus is on a balanced set of K key macroeconomic variables for

both economies, respectively, and their exchange rate. Let yt be the K×1 vector of domestic variables,

y∗t the K×1 vector of the same variables for the foreign country, and et denotes the exchange rate. The

full system vector xt = (yt ,y
∗
t ,et)

′ is hence 2K +1 dimensional.

Assuming linearity, the evolution of the two-country macroeconometric model is given by the fol-

lowing system of linear stochastic difference equations constituting a p-th order vector autoregressive

process: yt

y∗t

et

 =

ν1

ν2

ν3

+ p

∑
i=1

A11,i A12,i a13,i

A21,i A22,i a23,i

a′31,i a′32,i a33,i


yt−i

y∗t−i

et−i

+
ε1t

ε2t

ε3t

 , (1)

where the one-step prediction error εt is a Gaussian vector white noise process:ε1t

ε2t

ε3t

∼ NID


0

0

0

 ,
Σ11 Σ12 σ13

Σ′12 Σ22 σ23

σ′13 σ′23 σ33


 .

For the following analysis, the NID assumption could be relaxed to a more general one such as that of a

martingale difference sequence.

2.2 Country-averages-differences representation

With help of the isomorphic transformation of yt and y∗t into country averages, ya
t = 1

2yt +
1
2y
∗
t and

country differences, yd
t = yt − y∗t , the linear VAR(p) in xt = (yt ,y

∗
t ,et)

′ can always be rewritten

in its country-averages-differences representation, which is the system of stochastic linear difference

equations for country-averages, ya
t , country-differences, yd

t , and the exchange rate, et :

Proposition 1 Due to its linearity, the system xt = (yt ,y
∗
t ,et)

′ of equation (1) can be mapped to an

isomorphic system in x̃t = (ya
t ,y

d
t ,et)

′. The VAR(p) process governing x̃t is then given by:

x̃t =Kxt = ν̃+
p

∑
i=1
Ãix̃t−i + ε̃t , with ε̃t ∼ NID

(
0,Σ̃

)
, (2)

where ν̃ =Kν, Ãi =KAiK
−1, ε̃t =Kεt and Σ̃ =KΣK ′. 2

PROOF The result follows from x̃t being a linear isomorphic transform of xt :

x̃t = (ya
t ,y

d
t ,et)

′ =K(yt ,y
∗
t ,et)

′ =Kxt , (3)

where the (2K +1)× (2K +1) communication matrixK is of full rank:

K =


1
2I

1
2I 0

I −I 0

0′ 0′ 1

 , with its inverse beingK−1 =

 I 1
2I 0

I −1
2I 0

0′ 0′ 1

 . (4)
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The representation in (2) then results from substituting xt =K
−1x̃t in (1) and premultiplying byK. �

While the representation above is in general of limited interest on its own, it becomes crucially

important when the two-country model is symmetric, which will be considered in the next section.

2.3 Symmetric two-country model

Definition 1 The two-country VAR model in (1) is called symmetric if and only if the following con-

ditions are satisfied with regard to the dynamic,

A11,i = A22,i = Ai, (5a)

A12,i = A21,i = A∗i , (5b)

a13,i = −a23,i = ai, (5c)

a31,i = −a32,i = hi; (5d)

and contemporaneous properties of the VAR,

Σ11 = Σ22 = Σ, (6a)

Σ12 = Σ′12 = Σ∗, (6b)

σ13 = −σ23 = σ. (6c)
2

Remark 1 Note that the definition of symmetry does not impose restrictions on the deterministic terms.2

Lemma 1 The symmetric two-country VAR model is characterized by the following parametric struc-

ture: yt

y∗t

et

 =

ν1

ν2

ν3

+ p

∑
i=1

 Ai A∗i ai

A∗i Ai −ai

h′i −h′i hi


yt−i

y∗t−i

et−i

+
ε1t

ε2t

ε3t

 , (7)

where

ε1t

ε2t

ε3t

∼ NID


0

0

0

 ,
 Σ Σ∗ σ

Σ∗ Σ −σ
σ′ −σ′ σ2


 .

2

PROOF The Lemma follows directly from imposing the restrictions in (5)-(6) on the system in (1)-(2).�

The next proposition confirms that the result of Aoki (1981) derived for a system of linear differential

equations holds for a system of linear stochastic difference equations: Under symmetry of the two

economies and the feedbacks of the exchange rate, the laws of motion of the 2K + 1 dimensional two-

country model can be studied in two separate autonomous dynamic subsystems of lower dimension:

the K dimensional subsystem of country averages, x̃a
t ≡ ya

t , and the K + 1 dimensional subsystem of

country differences and the exchange rate, x̃d
t ≡ (yd

t
′
,et)

′.
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Proposition 2 The symmetric two-country VAR model in (7) is given by:y
a
t

yd
t

et

 =


1
2(ν1+ν2)

ν1−ν2

ν3

+ p

∑
i=1

Ai +A
∗
i 0 0

0 Ai−A∗i 2ai

0′ h′i hi


y

a
t−i

yd
t−i

et−i

+
ε̃1t

ε̃2t

ε3t

 , (8)

where

ε̃1t

ε̃2t

ε3t

∼ NID


0

0

0

 ,


1
2 (Σ+Σ∗) 0 0

0 2(Σ−Σ∗) 2σ

0′ 2σ′ σ2


 ,

where ε̃1t =
1
2ε1t +

1
2ε2t and ε̃2t = ε1t −ε2t . 2

PROOF The result follows straightforwardly from the representation theorem in Proposition 1 with

Σ̃ = KΣK ′ =


1
2 (Σ+Σ∗) 0 0

0 2(Σ−Σ∗) 2σ

0′ 2σ′ σ2

 ,

Ãi = KAiK
−1 =

Ai +A
∗
i 0 0

0 Ai−A∗i 2ai

0′ h′i hi

 . �

The block-diagonal structure of Σ̃ and Ãi, i = 1, . . . , p, leads directly to the separability result stated

in Corollary 1:

Corollary 1 For the symmetric two-country VAR model in (7), the dynamics of the corresponding x̃t

can be separated in two autonomous dynamic subsystems of x̃a
t = y

a
t and x̃d

t = (yd
t
′
,et)

′ :

x̃a
t = νa +

p

∑
i=1
Aa

i x̃
a
t−i + ε̃

a
t , ε̃a

t ∼ NID(0,Σa) , (9)

x̃d
t = νd +

p

∑
i=1
Ad

i x̃
d
t−i + ε̃

d
t , ε̃d

t ∼ NID
(
0,Σd

)
, (10)

with ε̃a
t =

1
2(ε1t +ε2t) and ε̃d

t = (ε′1t −ε′2t ,ε3t)
′ being mutually independent. 2

PROOF The corollary follows directly from Proposition 2 with

νa =
1
2
(ν1+ν2), A

a
i =Ai +A

∗
i , Σa =

1
2
(Σ+Σ∗) ,

νd =

[
ν1−ν2

ν3

]
, Ad

i =

[
Ai−A∗i 2ai

h′i hi

]
, Σd =

[
2(Σ−Σ∗) 2σ

2σ′ σ2

]
. �

Remark 2 If the two-country model is symmetric with regard to the deterministic terms, all variables

in the country-difference system except the exchange rate have zero mean: ν̃d = 0. 2

3 Two-country cointegrated VAR model

With Proposition 2 and Corollary 1 we have extended the results of Masanao Aoki to a system of

now stochastic linear differential equations. However, to confront the non-stationarities inherent in

5



capitalistic economies, we allow in the following for common stochastic trends. For sake of simplicity,

we will restrict our analysis on processes where xt is integrated of order 1, xt ∼ I(1), such that ∆xt is

stationary while xt is nonstationary. The focus is on the presence of cointegration relationships, which

can be interpreted as the long-run equilibrium of the system.

3.1 Vector Equilibrium Correction Mechanism Representation

The VAR(p) in (1) can be rewritten as a VECM(p−1), which decomposes the dynamics of the system

into adjustments towards the long-run equilibrium and short-run momentum:

∆xt = ν+Πxt−1 +
p−1

∑
i=1

Γi∆xt−i +εt , (11)

where Π = ∑
p
i=1Ai−I , Γi = −∑

p
j=i+1A j for i = 1, . . . , p−1, and εt is the innovation process in (1).

The VECM has the following parametric structure:∆yt

∆y∗t

∆et

=

ν1

ν2

ν3

+
Π11,i Π12,i π13,i

Π21,i Π22,i π23,i

π′31,i π′32,i π33,i


yt−1

y∗t−1

et−1

+ p−1

∑
i=1

Γ11,i Γ12,i γ13,i

Γ21,i Γ22,i γ23,i

γ ′31,i γ ′32,i γ33,i


∆yt−i

∆y∗t−i

∆et−i

+
ε1t

ε2t

ε3t

 . (12)

The number of cointegrating relations is given by the rank r of the matrix Π, where it is assumed that

0 < r < 2K +1.

3.2 Symmetry conditions

The symmetry conditions on Π and Γi are equivalent to those imposed onAi in (5):

Definition 2 The two-country VECM(p− 1) model in (11) is called symmetric if and only if the fol-

lowing conditions are satisfied with regard to all its three features:

(i) Equilibrium correction:

Π11 = Π22 = Π, (13a)

Π12 = Π21 = Π∗, (13b)

π13 = −π23 = πye, (13c)

π31 = −π32 = πey. (13d)

(ii) Short-run dynamics (i = 1, . . . , p−1):

Γ11,i = Γ22,i = Γi, (14a)

Γ12,i = Γ21,i = Γ∗i , (14b)

γ13,i = −γ23,i = γye,i, (14c)

γ31,i = −γ32,i = γey,i. (14d)

(iii) Contemporaneous structure: restrictions as defined in (6). 2
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Remark 3 Under the symmetry conditions in (13), the long-run matrix has the following design:Π11 Π12 π13

Π21 Π22 π23

π′31 π′32 π33

=

 Π Π∗ πye

Π∗ Π −πye

π′ey −π′ey πee

 . (15)
2

3.3 Cointegration under symmetry

For the symmetric two-country model, the cointegration properties of the system are directly linked to

that of its country-averages-differences representation.

Lemma 2 As stated by Corollary 1, the dynamics of the x̃t can be separated in two autonomous dynamic

subsystems of x̃a
t = y

a
t and x̃d

t = (yd
t
′
,et)

′. For the corresponding VECM(p−1) representation we get:[
∆x̃a

t

∆x̃d
t

]
=

[
νa

νd

]
+

[
Πa 0

0 Πd

][
x̃a

t−1

x̃d
t−1

]
+

p−1

∑
i=1

[
Γa 0

0 Γd

][
∆x̃a

t−i

∆x̃d
t−i

]
+

[
ε̃a

t

ε̃d
t

]
, (16)

where ε̃a
t =

1
2(ε1t +ε2t) and ε̃d

t = (ε′1t −ε′2t ,ε3t)
′. 2

The system in (16) determines the cointegration rank and cointegration space of the two-country

model. Let ra = rank(Πa)≤K and rd = rank(Πd)≤K+1 with 0< ra+rd < 2K+1 . Then Πa =αaβa′

and Πd = αdβd ′, where αa and βa are K× ra matrices of rank ra and αd and βd are (K + 1)× rd

matrices of rank rd .

Proposition 3 For the symmetric two-country CVAR model, the cointegration rank r is determined by

the sum of the number of stable long-run relations in the country-average subsystem, ya
t , and in the

country-differences subsystem x̃d
t = (yd

t
′
,et)

′: r = rank(Π) = ra + rd . 2

PROOF The rank of the block-diagonal long-run matrix associated with x̃t ,

Π̃ =

[
Πa 0

0 Πd

]
=

[
αa 0

0 αd

][
βa′ 0

0 βd ′

]
= α̃β̃′, (17)

is given by the sum of the ranks of the matrices on the diagonal: rank(Π̃) = rank(Πa)+ rank(Πd) =

ra + rd . Furthermore, since Π = K−1Π̃K = K−1α̃β̃′K with K being of full rank, we have that

rank(Π) = rank(Π̃) = r. �

Cointegration relations are invariant to linear transformation, allowing to rewrite βd ′ as in the fol-

lowing proposition.

Proposition 4 Suppose that the exchange rate cointegrates with the country differences, so that βd ′ can

be normalized as follows with αd being partitioned accordingly:

βd ′ =

[
βd

yy
′

0

βd
ey
′ 1

]
and αd =

[
αd

yy αd
ye

αd
ey αd

ee

]
. (18)

7



Then the loading matrix, α, and cointegration matrix, β′, of the symmetric two-country VAR model are

given by:

α=

α
a 1

2α
d
yy

1
2α

d
ye

αa −1
2α

d
yy −1

2α
d
ye

0 αd
ey αd

ee

 , β′ =


1
2β

a′ 1
2β

a′ 0

βd
yy
′ −βd

yy
′

0

βd
ey
′ −βd

ey
′ 1

 , (19)

and the long-run matrix Π =αβ′ results as:

Π =


1
2α

aβa′+ 1
2

(
αd

yyβ
d
yy
′
+αd

yeβ
d
ey
′
)

1
2α

aβa′− 1
2

(
αd

yyβ
d
yy
′
+αd

yeβ
d
ey
′
)

1
2α

d
ye

1
2α

aβa′− 1
2

(
αd

yyβ
d
yy
′
+αd

yeβ
d
ey
′
)

1
2α

aβa′+ 1
2

(
αd

yyβ
d
yy
′
+αd

yeβ
d
ey
′
)
−1

2α
d
ye

αd
eyβ

d
yy
′
+αd

eeβ
d
ey
′ −

(
αd

eyβ
d
yy
′
+αd

eeβ
d
ey
′
)

αd
ee

 . (20)
2

PROOF The results follow straightforwardly from the design of matrices α̃ and β̃ as defined in (17) and

(18) with the usual mapping from x̃ to x:

Π = K−1Π̃K = K−1α̃β̃′K =
(
K−1α̃

)(
β̃′K

)
=αβ′. (21)

�

It is worth noting that the Π matrix in (20) is consistent with the the symmetry conditions in (13)

and the structure of the Π matrix in Remark 3. Also note that the derivation delivers as a byproduct the

loading and cointegration matrix of the two-country model, which are unique conditional on the usual

normalization constraints.

Remark 4 If the exchange rate does not cointegrate with the country differences, βd ′ collapses to:

βd ′ =
[
βd

yy
′

0
]
,

and the long-run matrix Π simplifies to:

Π =


1
2

(
αaβa′+αd

yyβ
d
yy
′
)

1
2

(
αaβa′−αd

yyβ
d
yy
′
)

0

1
2

(
αaβa′−αd

yyβ
d
yy
′
)

1
2

(
αaβa′+αd

yyβ
d
yy
′
)

0

αd
eyβ

d
yy
′ −αd

eyβ
d
yy
′ 0

 . (22)
2

4 Synchronisation under symmetry

The theoretical analysis undertaken in this paper has so far focussed on the VAR and VECM represen-

tations of the two-country model. The results derived in the previous section for the properties of the

two autonomous subsystems x̃a
t and x̃d

t , have strong but straightforward implications for the Granger

representation of cointegrated two-country VAR under symmetry:

Proposition 5 For the symmetric two-country CVAR model, the common stochastic trends of the sub-

systems x̃a
t and x̃d

t , τ a
t =αa′

⊥∑
t
s=1 ε̃

a
s and τ d

t =αd′
⊥∑

t
s=1 ε̃

d
s , are orthogonal to each other. 2
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PROOF The orthogonality of the stochastic trends follows from the orthogonality of the error processes

under symmetry:

E
[
τ a

t τ
d′
t

]
= E

[
αa′
⊥

(
t

∑
s=1
ε̃a

s

)(
t

∑
s=1
ε̃d

s

)′
αd
⊥

]

= E

[
αa′
⊥

(
t

∑
s=1

t

∑
k=1
ε̃a

s ε̃
d′
k

)
αd
⊥

]
(23)

= αa′
⊥

(
t

∑
s=1

t

∑
k=1

E
[
ε̃a

s ε̃
d′
k

])
αd
⊥ = 0,

where we use the result from Proposition 2 that E
[
ε̃a

s ε̃
d′
k

]
= 0. �

Based on Proposition 5, we can now introduce the concept of synchronisation, which – based on

the Granger moving-average representation of the system – offers additional insight into the symmetry

of the two-country system with regard to its common stochastic trends. Synchronization in symmetric

two-country cointegrated VAR models requires not only symmetry of the parametric model structure of

the two economies but also additional common features in form of cotrending. The technical analysis

is most closely related to the work of Konishi et al. (1993) and Granger and Haldrup (1997) for the

one-country case.

Under symmetry, the home and foreign country are governed by the same law of motion. The para-

metric equivalence, however, does not guarantee that the two economies will share the same common

trends, i.e. growing along each other.

Example 1 Suppose that βo is a cointegration vector of the country-average subsystem, such that

β′oy
a
t ∼ I(0), but that

[
βo 0

]′
xd

t lies not in the cointegration space of the country-differences sub-

system. Then the two economies are diverging, i.e. β′oy
d
t ∼ I(1), due to their stochastic trends drifting

in opposite directions. 2

Note that the notion of synchronisation refers to the case where the two countries, yt and y∗t , share

the same common trends such that the country differences are converging: yt −y∗t ∼ I(0).

Definition 3 The symmetric two-country cointegrated VAR model is called synchronized when the two

countries share the same common trends. 2

The definition above does not require the exchange rate dynamics to be stable, though it could be

extended accordingly. For cotrending, the country-differences subsystem, yd
t , needs to be I(0), while

the country averages, ya
t , may be I(1). Thus, the two economies yt and y∗t are I(d) with 0≤ d ≤ 1.

Proposition 6 The symmetric two-country cointegrated VAR model is synchronized if and only if the

country-differences subsystem is stable, rd = K + 1, or it exhibits a single unit root isolated to the

exchange rate equation, rd = K and αd
⊥ =

[
0′ αd

ee⊥

]′
, where αd

⊥ is the orthogonal complement of

αd . 2

PROOF The symmetry of the stochastic trends in stochastic two-country models depends on the stability

of the subsystem in country differences, x̃d
t . Let βd have full rank, rd =K+1. Thenαd has full rank and

9



there does not exist a stochastic trend in the country-differences subsystem, x̃d
t . For country-averages-

differences system, x̃t , we then have

β̃′ =
[
βa′ 0′

]′
and α̃′⊥ =

[
αa′
⊥ 0′

]′
(24)

The stochastic trends in x̃t are given by:

z̃t = α̃′⊥

t

∑
s=1
ε̃s

=
[
αa′
⊥ 0′

][
∑

t
s=1 ε̃

a
s

∑
t
s=1 ε̃

d
s

]
(25)

= αa′
⊥

t

∑
s=1
ε̃a

s .

For the two-country system we then have K− ra common trends affecting the two countries equally:

zt = α′⊥

t

∑
s=1
εs = α̃′⊥K

t

∑
s=1
εs

=
[

1
2α

a′
⊥

1
2α

a′
⊥ 0

] ∑
t
s=1ε1s

∑
t
s=1ε2s

∑
t
s=1 ε3s

 (26)

=
1
2
αa′
⊥

t

∑
s=1

(ε1s +ε2s) .

Suppose now that the rank(βd) < K + 1. Then there exists a linear combination of xd
t that is non-

stationary, i.e. βd
⊥y

d
t ∼ I(1). Furthermore, if αd

⊥ 6=
[

0′ αd
ee⊥

]′
then the stochastic trend lies in the

space of yd
t , driving yt and y∗t in opposite directions. �

5 Structural VECM representation

Since Sims (1980) it is common to represent the reduced-form VAR model with its correlated prediction

errors as a structural VAR with orthogonal errors, which allow a structural interpretation. For the two-

country VECM in (11) we get:

B∆xt = φ+Ψxt−1 +
p−1

∑
i=1

Φi∆xt−i +ηt , (27)

with the innovation process η ∼ NID(0,Ω), where the variance-covariance matrix Ω is diagonal and

Σ =BΩB′ holds. Furthermore, φ=Bν, Ψ =BΠ and Φi =BΓi for i = 1, . . . , p−1.

When B is a triangular matrix, the SVECM in equation (27) can be considered a particular simul-

taneous equation model in the spirit of the Cowles approach. Particularly, it is a recursive system of the

sort proposed by Wold (1949) and Strotz and Wold (1960) and closely related to the concept of causal

ordering introduced by Simon (1953).

For a symmetric two-country model, the matrixB is of a particular design:

10



Proposition 7 For a symmetric two-country VECM model, there exists a recursive structural VECM

representation if and only if the following conditions are met:

(i) both countries have identical contemporaneous structures;

(ii) there are no instantaneous spill overs from one country to another;

(iii) the country differences instantaneously affect the exchange rate or vice versa but not simultane-

ously. 2

PROOF The first condition follows directly from the definition of symmetry. The second and third

condition can be shown by contradiction: If yt were affecting y∗t , symmetry would require that y∗t also

affects yt . But this violates the recursive contemporaneous structure of the SVECM. This also excludes

the possibility of simultaneity of country differences and the exchange rate. �

Remark 5 The two-country recursive SVECM representation only exits if the off-diagonal matrix Σ∗

in (7) is equal to zero. 2

Lemma 3 Suppose the recursive structural VECM representation of symmetric two-country VECM

model exists, then the structure of the contemporaneous triangular contemporaneous matrix B is char-

acterized by one of following two designs:

B(1) =

 Byy . .

By∗y By∗y∗ .

bey
′ bey∗

′ 1

 =


B

(1)
yy . .

0 B
(1)
yy .

b
(1)
ey
′
−b(1)ey

′
1

 , (28)

B(2) =

Byy Byy∗ bye

. By∗y∗ by∗e

. . 1

 =

B
(2)
yy 0 b

(2)
ye

. B
(2)
yy −b(2)ye

. . 1

 , (29)
2

where the ordering of the variables in yt and y∗t is identical for both countries, and can be conveniently

chosen to reflect the causal chain y1t → . . .→ yKt forB(1)
yy and in reversed order forB(2)

yy .

PROOF The lemma follows from Proposition 7. �

The types of instantaneous causality consistent with Proposition 7 are illustated in Table 1, which

depicts the directed acyclic graph for the three blocks of variables: yt , y∗t , and et .

6 Separability under mild asymmetries

So far we considered the relationship between symmetry and separability within a framework where

the structure of one country is the mirror image of the other. In the following we introduce some mild

asymmetries to the two-country model, which preserve the separability of the model dynamics into

country averages and differences.

11



Figure 1 Types of contemporaneous causal structure in symmetric two-country
recursive SVECMs.

Directed Acyclic Graph

B(1) B(2)

yt

��

y∗t

��
et

et

�� ��
yt y∗t

6.1 Asymmetries in the size of the countries’ economies

Suppose now that the countries are symmetric only to scale. So that the two countries are of a different

size and consequently enter with different weights into the construction of the world economy:

ya
t = λyt +(1−λ )y∗t , where 0 < λ < 1. (30)

The definition of country differences, yd
t = yt−y∗t , and the exchange rate, et , remain unchanged. Obvi-

ously this definition nests our previous assumption for λ = 1
2 .

Lemma 4 Suppose the corresponding country-averages-differences representation in (2) is separable.

Then the parameter matrices can be partitioned as follows:

Ãi =

 A
a
yy,i 0 0

0 Ad
yy,i ad

ye,i

0′ ad
ey,i
′ ad

ee,i

 and Σ̃ =

 Σa
yy 0 0

0 Σd
yy σd

ye

0′ σd
ye
′

σd
ee

 . (31)
2

Proposition 8 Under the assumption in Equation 30, the dynamics of the resulting two-country model

can be separated into country averages and differences if and only if the countries are symmetric subject

to scale such that we have for each country j = 1,2:

y j
t = ν j +w j

p

∑
i=1

(
Aa

yy,i +
1−w j

w j
Ad

yy,i

)
y j

t−i

+(1−w j)
p

∑
i=1

(
Aa

yy,i−Ad
yy,i

)
y¬ j

t−i +(1−w j)
p

∑
i=1
ad

ye,iet−i +ε jt . (32)

For the exchange rate equation, the weights naturally have no impact:

et = ν3 +
p

∑
i=1
ad

ey,i
′ (
yt−i−y∗t−i

)
+

p

∑
i=1

ad
ee,iet−i + ε3t . (33)

The autoregressive matrices have the following design, which no longer exhibits the block-symmetry

found in (7):

Ai =

 Ai− (1−λ )A∗i (1−λ )A∗i (1−λ )ai

λA∗i Ai−λA∗i −λai

hi
′ −hi

′ hi

 for i = 1, . . . , p, (34)
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whereA∗i =A
a
yy,i−Ad

yy,i,Ai =A
a
yy,i, ai = a

d
ye,i, hi = a

d
ey,i, hi = ad

ee,i.

The variance-covariance matrix is given by:

Σ =

 Σ+(1−λ )2Σ∗ Σ−λ (1−λ )Σ∗ (1−λ )σ

Σ−λ (1−λ )Σ∗ Σ+λ 2Σ∗ −λσ

(1−λ )σ′ −λσ′ σ2

 , (35)

where Σ = Σa
yy,Σ

∗ = Σd
yy, σ = σd

ye, and σ2 = σd
ee. 2

PROOF Under the weighting scheme in 30, the communication matrix and its inverse are given by:

K =

 λI (1−λ )I 0

I −I 0

0′ 0′ 1

 and K−1 =

 I (1−λ )I 0

I −λI 0

0′ 0′ 1

 . (36)

Since the mapping from xt to x̃t is again isomorphic, Proposition 1 still applies and the parametric

structure of the untransformed system follows fromAi =K
−1ÃiK and Σ =K−1Σ̃K−1′:

Ai =

 (1−λ )Ad
yy,i+λAa

yy,i −(1−λ )Ad
yy,i+(1−λ )Aa

yy,i (1−λ )ad
ye,i

−λAd
yy,i+λAa

yy,i λAd
yy,i+(1−λ )Aa

yy,i −λad
ye,i

ad
ey,i
′ −ad

ey,i
′ ad

ee,i

 , (37)

Σ =

 (1−λ )2Σd
yy+Σa

yy −λ (1−λ )Σd
yy+Σa

yy (1−λ )σd
ye

−λ (1−λ )Σd
yy+Σa

yy λ 2Σd
yy+Σa

yy −λσd
ye

(1−λ )σd
ye
′ −λσd

ye
′

σd
ee

 . (38)
�

Remark 6 The smaller the country the greater the impact of the foreign economy and the foreign ex-

change rate, the lesser the dependency on its own economic record. 2

6.2 Time-varying country weights

For the aggregation of country time series to global or regional measures, the use of the Divisia index

has become increasingly popular. This continuous time aggregation of quantities with changing prices

was originally proposed by Divisia (1925). Discrete-time approximations were developed by Törnqvist

(1936) and Theil (1967). Bridging the gap of index number theory and aggregation theory by introduc-

ing the class of second-order ‘superlative’ index numbers, Diewert (1976) showed that the Divisia index

is a superlative index number, i.e., it is exact for a flexible aggregator functional form. For the construc-

tion of monetary aggregates, Barnett (1980) and various follow-up papers made a strong case for the

appropriateness of aggregation with the help of the Divisia index when compared to the traditional use

of simple sum of levels. So it is worth to consider the case of time-varying country weights.

Proposition 9 If the country weights in (30) are time-varying, the VAR representations of yt in (1) and

ỹt in (2) cannot both be time-invariant. 2

PROOF Time variation in the weights of the countries in ya
t results in the time-variation of the commu-

nication matrixKt . Now suppose the VAR representation of xt is time-invariant, especiallyAt =A for

all t, then Ãt =KtAK
−1
t is varying over time. On the other hand, suppose that the country-averages-

differences representation does not suffer from time-variation. ThenAt =K
−1
t ÃKt is time-varying. �
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The result of Proposition 9 is economically intuitive. Suppose, for example, the laws of the motion

of the US macroeconomy depend on total exports only and the Chinese economy is growing at faster

rate than the European one, then over time the dependency of the US economy on China will increase

mirroring a decrease of the importance of Europe.

Proposition 10 If the country-averages-differences system is structurally stable, the time-varying two-

country VAR is given by:

yt = ν(λt)+
p

∑
i=1
Ai(λt)yt−i +εt , with εt ∼ NID(0,Σ(λt)) , (39)

where the parameter matrices have the following design::

Ai(λt) =

 Ai− (1−λt)A
∗
i (1−λt)A

∗
i (1−λt)ai

λtA
∗
i Ai−λtA

∗
i −λtai

hi
′ −hi

′ hi

 for i = 1, . . . , p, (40)

whereA∗i =A
a
yy,i−Ad

yy,i,Ai =A
a
yy,i, ai = a

d
ye,i, hi = a

d
ey,i, hi = ad

ee,i.

The variance-covariance matrix is given by:

Σ(λt) =

 Σ+(1−λt)
2Σ∗ Σ−λt(1−λt)Σ

∗ (1−λt)σ

Σ−λt(1−λt)Σ
∗ Σ+λ 2

t Σ∗ −λtσ

(1−λt)σ
′ −λtσ

′ σ2

 , (41)

where Σ = Σa
yy,Σ

∗ = Σd
yy, σ = σd

ye, and σ2 = σd
ee. 2

7 Empirical illustration

For a short empirical illustration of the test of the symmetry conditions derived in the previous sections

of this paper, we investigate two-country VAR models for five country pairs: the US with the Euro

Area, with Japan, with the UK and with Canada, additionally the Euro Area with the UK. The nine

dimensional (9D) system for each country pair include the rates of inflation, output growth, short- and

long-term interest for each country as well as the nominal exchange rate. The sample consists of 157

quarterly observations for the post-Bretton-Woods era from 1972Q4 to 2011Q4. The aggregated Euro

area time series for the whole sample period including the years preceding the creation of the European

Monetary Union were drawn from the OECD data base for GDP and its deflator and from Reuters for

the short- and long-term interest rate. The pre-1986 short-term interest rates were constructed with a

Divisia index using the 3 month deposit rates of Germany, France, Italy and the Netherlands.

Commencing from a 9D possibly cointegrated VAR(3) model, with statistically significant constant

and restricted trend that were sufficient to capture the dynamics of the system, the Johansen trace test

results show a rank of 4 for all systems except US-Canada where the rank is 3. These model specifi-

cations were also used for the country-average and the country-difference subsytems. The results are

summarised in Table 1.

The tests for symmetry are performed separately for the long-run equilibrium, the adjustment to the

long-run, the short-run dynamics and the contemporaneous effects in terms of restrictions on the VECM

in the joint country-average-difference representation. The tests are formulated ignoring deterministic
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Table 1 Johansen likelihood ratio trace test results for 9D systems and for
subsystems, models with constant and trend

r ra rd

US−EA 4 3 3
US− JA 4 3 1
US−UK 4 3 3
US−CA 3 3 2
EA−UK 4 3 2

terms and normalising the last cointegrating vector on the exchange rate, we consider the following

system:1

∆ya
t

∆yd
t

∆et

 =

 αa
yy αad

yy αad
ye

αda
yy αd

yy αd
ye

αda
ey αd

ey αd
ee


 βa

yy
′ βad

yy
′

0

βda
yy
′
βd

yy
′

0

βda
ey
′
βd

ey
′

β d
ee
′


y

a
t−1

yd
t−1

et−1



+
p−1

∑
i=1

 Γa
yy,i Γad

yy,i Γad
ye,i

Γda
yy,i Γd

yy,i Γd
ye,i

Γda
ey,i Γd

ey,i Γd
ee,i


∆ya

t−i

∆yd
t−i

∆et−i

+
ε̃1t

ε̃2t

ε3t

 , (42)

where

ε̃1t

ε̃2t

ε3t

∼ NID


0

0

0

 ,
 Σa

yy Σad
yy Σad

ye

Σda
yy Σd

yy Σd
ye

Σda
ey Σd

ey Σd
ee


 .

First, we test whether the exchange rate is not part of the cointegration space, see Table 2, for H1
o : β̃′

has a zero column in et . For all systems this hypothesis has to be rejected. So the exchange rate is part of

a cointegrating space. Next, we test whether the exchange rate is not cointegrated with country average

variables. Zero restrictions on the country average variables in the cointegration relationship containing

the exchange rate are tested.2 Throughout Hypothesis H2
o can not be rejected. Thus, in the long-run, the

exchange rates are determined by the country differentials only.

Table 2 9D two-country CVAR(3) models:
Testing for symmetry of the cointegration space with regard to the
exchange rate (Likelihood ratio tests).
H1

o : et not in cointegration space, β d
ee = 0

H2
o : et not cointegrated with ya

t , βda
ey = 0.

Countries H1
o H2

o

US−EA χ2(4) = 15.22 [0.004] χ2(1) = 1.91 [0.167]
US− JA χ2(4) = 24.23 [0.000] χ2(1) = 1.24 [0.266]
US−UK χ2(4) = 24.25 [0.000] χ2(1) = 1.71 [0.192]
US−CA χ2(3) = 8.79 [0.032] χ2(2) = 1.68 [0.431]
EA−UK χ2(4) = 30.03 [0.000] χ2(1) = 3.45 [0.063]

A stronger test for long-run symmetry is Hypothesis H3
o , where we test whether there are any com-

1Hecq et al. (2002) suggest a similar multiple step procedure when testing for separation in VAR models.
2Due to (r−1) additional possibilities of normalising β̃, the number of degrees of freedom in this χ2test is k− (r−1).
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posite cointegration vectors involving country averages and differences. Since the ranks of the subsys-

tems do not add up all consistently to the rank of the full model, due to possibly latent asymmetries, we

consider all combinations of ra and rd consistent with the cointegration rank of the full system, from

one cointegration relationship with country-average variables and r−1 cointegration vectors in country

differences, to r−1 cointegration relationships lying within the country-average space and only one in

the country difference space. For all country pairs, full long-run symmetry has to be rejected, see Table

3, at the usual significance levels. Models with ra = 2 are closest to accepting symmetry of the long-run.

Table 3 9D two-country CVAR(3) models:
Testing for symmetry of the cointegration space (Likelihood ratio tests).
H3

o : (βad
yy ,β

da
yy ,β

da
ey ) = 0.

Countries ra = 1, rd = r− ra ra = 2, rd = r− ra ra = 3, rd = r− ra

US−EA χ2(11) = 32.88 [0.001] χ2(10) = 23.59 [0.009] χ2(13) = 62.26 [0.000]
US− JA χ2(11) = 62.63 [0.000] χ2(10) = 43.79 [0.000] χ2(13) = 62.27 [0.000]
US−UK χ2(11) = 46.53 [0.000] χ2(10) = 24.28 [0.007] χ2(13) = 49.71 [0.000]
US−CA χ2(9) = 34.68 [0.000] χ2(10) = 57.26 [0.000]
EA−UK χ2(11) = 54.96 [0.000] χ2(10) = 37.33 [0.000] χ2(13) = 70.37 [0.000]

For testing the symmetry of the adjustment process of the long-run equilibrium we use the symmetry

long-run specification with the highest p-val in Table 3. We consider three different test hypothesis on

α̃: H4
o tests whether the exchange rate is not adjusting in the long-run to country average cointegration

relationships, H5
o tests whether the country averages are not adjusting to the cointegration relationship

containing the exchange rate, and H6
o evaluates whether overall symmetry in the adjustment to the long-

run is present. Hypothesis H4
o can only be rejected for the US-Japan, for the other country pairs the test

shows there is some symmetry in the adjustment at least for the exchange rate. However H5
o and H6

o

have to be rejected for all models.

Table 4 9D two-country VECM(2) model with symmetric cointegration space:
Testing for symmetry in equilibrium correction (Wald tests).
H4

o : ∆et ⊥ βa′ya
t−1: αda

ey = 0

H5
o : ∆ya

t ⊥ (βd
ey
′
yd

t−1 +β
d
ee
′et−1): αad

ye = 0

H6
o :αad

yy = 0,αad
ye = 0,αda

yy = 0,αda
ey = 0.

Countries H4
o H5

o H6
o

US−EA χ2(2) = 3.82 [0.148] χ2(4) = 30.95 [0.000] χ2(18) = 57.71 [0.000]
US− JA χ2(2) = 10.97 [0.004] χ2(4) = 29.54 [0.000] χ2(18) = 75.04 [0.000]
US−UK χ2(2) = 3.94 [0.139] χ2(4) = 46.94 [0.000] χ2(18) = 106.78 [0.000]
US−CA χ2(1) = 1.99 [0.159] χ2(4) = 31.81 [0.000] χ2(13) = 66.49 [0.000]
EA−UK χ2(2) = 0.17 [0.920] χ2(4) = 34.32 [0.000] χ2(18) = 66.34 [0.000]

Analogue to the tests for the adjustment to the long-run on α̃, we perform three tests for the short-

run dynamics on Γ̃. The country average short-run dynamics have no direct effect on the exchange

rate, see Hypothesis H7
o in Table 5. Also the exchange rate short-run dynamics have no effect on the

country average variables, see Hypothesis H8
o . But overall symmetry for the short-run dynamics has to

be rejected according to Hypothesis H9
o .

Next we perform two Wald tests for symmetry on the variance-covariance matrix Σ̃ (see Lütkepohl,
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Table 5 9D two-country VECM(2) model with symmetric cointegration space:
Testing for symmetry in short-run dynamics (Wald tests).
H7

o : ∆et ⊥ {∆ya
t−i}

p−1
i=1 : Γda

ey,i = 0

H8
o : ∆ya

t ⊥ {∆et−i}p−1
i=1 : Γad

ye,i = 0

H9
o : (Γad

yy,i,Γ
ad
ye,i,Γ

da
yy,i,Γ

da
ey,i
′
) = 0.

Countries H7
o H8

o H9
o

US−EA χ2(8) = 4.49 [0.811] χ2(8) = 7.61 [0.473] χ2(80) = 121.38 [0.002]
US− JA χ2(8) = 12.35 [0.136] χ2(8) = 3.71 [0.882] χ2(80) = 187.96 [0.000]
US−UK χ2(8) = 13.10 [0.109] χ2(8) = 8.52 [0.384] χ2(80) = 193.73 [0.000]
US−CA χ2(8) = 6.51 [0.590] χ2(8) = 13.79 [0.088] χ2(80) = 176.93 [0.000]
EA−UK χ2(8) = 2.57 [0.958] χ2(8) = 4.08 [0.850] χ2(80) = 199.39 [0.000]

2005, p.104). Hypothesis H10
o tests whether there is no contemporaneous correlation between the ex-

change rate and country average variables. For three models, the US - Euro Area, the US - UK and the

Euro Area - UK, the absence of contemporaneous correlation of the exchange rate with country average

variables can not be rejected, which can be interpreted as a short-run version of symmetry with respect

to the exchange rate. Further our Wald tests of H11
o stating the lack of contemporaneous correlation

between country difference and country average variables is rejected for all models.

Table 6 9D two-country VECM(2) model with symmetric cointegration space:
Wald tests for symmetry in variance-covariance matrix.
H10

o : ∆et ⊥ ∆ya
t : Σda

ey = 0

H11
o : (Σad

yy ,Σ
ad
ye ,Σ

da
yy ,Σ

da
ey
′
) = 0.

Countries H10
o H11

o

US−EA χ2(4) = 5.88 [0.208] χ2(20) = 66.78 [0.000]
US− JA χ2(4) = 14.14 [0.007] χ2(20) = 112.77 [0.000]
US−UK χ2(4) = 6.66 [0.155] χ2(20) = 101.46 [0.000]
US−CA χ2(4) = 17.42 [0.002] χ2(20) = 114.83 [0.000]
EA−UK χ2(4) = 5.88 [0.208] χ2(20) = 155.07 [0.000]

Finally we perform tests on the structural contemporaneousB matrix of a recursive structural VECM

representation of the system. In Hypothesis H12
o , see Table 7, we test for the domestic-foreign repre-

sentation of the recursive structural model whether the exchange rate is symmetrically driven by yt and

y∗t . Contemporaneous symmetry of the exchange rate equation is only rejected for US - Japan and Euro

Area - UK models. In Hypotheses H13
o and H14

o , see Table 7, we test whether yt and y∗t is symmetrically

driven by the exchange rate. This has to be rejected for two models, US - Japan and US - Canada. Lastly

we test for full contemporaneous symmetry in the recursive structural VECM, by testing the zero restric-

tions in (28) and (29) in four different model specifications: H15
o to H18

o . Full symmetry is constantly

rejected.

To sum up our findings, there is strong support for symmetry as far as the exchange rate equation is

concerned. This is especially pronounced in the US - Euro Area and US - UK system, where all tests of

our stepwise procedure confirm, that exchange rates are driven by country differentials only. Asymmetry

is found for the Dollar/Yen exchange rate, which adjusts to the country-average cointegrating vectors.

Our tests for full symmetry of the two-country models are generally rejected for all country pairs of

our study. The concept of full symmetry is very demanding. The focus in practice has to be on the

17



Table 7 9D two-country recursive structural VECM(2) model with symmetric
cointegration space: Wald tests for symmetry of the contemporaneous
structure concerning et .
H12

o : bey =−bey∗ inB(1) of (28)
H13

o : bye =−by∗e inB(2) of (29) with y = (y,y∗,et)
′

H14
o : bye =−by∗e inB(2) of (29) with y = (y∗,y,et)

′.

Countries H12
o H13

o H14
o

US−EA χ2(4) = 5.74 [0.220] χ2(4) = 7.21 [0.125] χ2(4) = 5.74 [0.220]
US− JA χ2(4) = 12.39 [0.015] χ2(4) = 13.02 [0.011] χ2(4) = 11.95 [0.018]
US−UK χ2(4) = 3.86 [0.426] χ2(4) = 4.41 [0.353] χ2(4) = 5.36 [0.252]
US−CA χ2(4) = 4.39 [0.356] χ2(4) = 17.86 [0.001] χ2(4) = 18.43 [0.001]
EA−UK χ2(4) = 10.60 [0.031] χ2(4) = 5.21 [0.266] χ2(4) = 3.76 [0.439]

Table 8 9D two-country recursive structural VECM(2) model with symmetric
cointegration space: Wald tests for symmetry of the contemporaneous
structure.
H15

o :B(1) in (28) with y = (y,y∗,et)
′

H16
o :B(1) in (28) with y = (y∗,y,et)

′

H17
o :B(2) in (29) with y = (y,y∗,et)

′

H18
o :B(2) in (29) with y = (y∗,y,et)

′.

Countries H15
o H16

o H17
o H18

o

US−EA χ2(16) 101.49 [0.000] 94.88 [0.000] 110.86 [0.000] 108.89 [0.000]
US− JA χ2(16) 62.62 [0.000] 63.39 [0.000] 56.65 [0.000] 56.49 [0.000]
US−UK χ2(16) 62.81 [0.000] 62.24 [0.000] 61.56 [0.000] 61.50 [0.000]
US−CA χ2(16) 483.49 [0.000] 442.80 [0.000] 573.71 [0.000] 515.76 [0.000]
EA−UK χ2(16) 100.66 [0.000] 101.01 [0.000] 105.77 [0.000] 104.82 [0.000]

identification of symmetry features.

8 Conclusions

In this paper we investigated the applicability of Masanao Aoki’s approach of separating the dynamics of

a two-country model under symmetry into the autonomous subsystems of country averages and country

differences to dynamic macroeconometric modelling. We were able to develop a general theory for

the class of symmetric possibly cointegrated two-country linear vector autoregressive processes, and

demonstrated how the theory encompasses two-country systems with asymmetric and even time-varying

weights. Aoki’s approach is frequently used in economic theory. In order to make it work for empirical

modelling, it is essential to allow for only partial symmetry of the countries involved. For this purpose

we implemented a testing strategy for discovering symmetry features in econometric two-country CVAR

models.

Further advances are feasible. While the separation into two autonomous subsystems substantially

reduces the complexity of the two-country system, the subsystems themselves may still suffer from the

curse of dimensionality leading to imprecise parameter estimates and uninformative impulse responses.

Automatic model selection procedures to reduce the complexity further by eliminating insignificant

parameters without losing information such as general-to-specific approach proposed by Heinlein and

Krolzig (2013) for the selection of a congruent parsimonious structural two-country vector equilibrium
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correction models.
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