
Digital Expression and Representation of Rhythm
Nathan Renney

Computer Science Research Centre (CSRC)
Department of Computer Science and Creative Technology

University of West of England, Bristol UK
nathan.renney@uwe.ac.uk

Benedict R. Gaster
Computer Science Research Centre (CSRC)

Department of Computer Science and Creative Technology
University of West of England, Bristol UK

benedict.gaster@uwe.ac.uk

ABSTRACT
Music provides a means to explore time by sequencing mu-
sical events in a seemingly endless and expressive way. This
potential often far exceeds the ability of digital systems to
enable composers and performers to explore musical time,
perhaps due to the influence of Western music on imple-
mentation or maybe due to the challenges involved in the
notation of music itself. In this paper we look at ways to
explore time within a musical context, looking to create tan-
gible examples and methods for exploring complex rhythmic
relationships using digital systems.We draw on the approach
for describing sequences in terms of cycles, inspired by the
live coding language Tidal Cycles.
A simple Domain Specific Language (DSL) is described,

in order to realize a Digital Musical Instrument (DMI) that
facilitates performing with polyrhythm in a intuitive and
tactile way. This highlights the use of DSLs for the design of
DMIs. Further, an abstraction for representing sequences of
musical events on a digital system is provided, which facili-
tates complex rhythmic relationships (namely, polyrhythm
and polymeter) and extends to handle modulation of time
itself.

CCS CONCEPTS
•Applied computing→ Sound andmusic computing; •
Software and its engineering→ Functional languages.

KEYWORDS
Sequencing, Rhythm, Music, Time, Polyrhythm, Polymeter,
DSL, DMI

1 INTRODUCTION
Rhythm is the sequencing of musical events in time. These
events are set apart by a time step dictated by our sensory
threshold to synchronize with these events. Repp suggests
this interonset interval is between 100-120ms [16]. Varia-
tions around this duration contribute ornaments and nu-
anced variation, such as grace notes and the fluctuation in
meter commonly referred to as ’feel’ [14]. Western music
theory describes music at a rate of beats per minute (BPM),

as an isochronous sequence with an equally spaced, peri-
odic pulse [5]1. Beyond the periodic groupings referred to
as meter, the emergence of pulse, the feeling of strong and
weaker beats, is implied within the time signature of a musi-
cal piece and as such leans towards certain, almost idiomatic
approaches to notating rhythm in traditional Western nota-
tion. Whilst traditional notation is expressive and informa-
tion dense, looking towards more complex manipulations
of musical time, digital systems tend to struggle to manage
and represent this well. Most notably, this is a challenge in
a number of software notation programs, where express-
ing two time signatures in parallel (polymeter) or working
with concurrent time (polyrhythm) is not generally well sup-
ported and so requires undesirable ’work-arounds’ in order
to express these ideas, hindering the creative process.
In this paper, we build upon the notion of cyclic time as

described by Tagg [18], looking at alternative ways cycles
can be expressed, drawing inspiration from Tidal Cycles [12],
a DSL for Live Coding of musical patterns.

There are many examples of DSLs used in music creation
and performance, see for example Magnusson [11], and for
the processing of audio, e.g. PD [15] and Faust [13]. However,
to date these DSLs have not been widely applied to the design
of Digital Musical Instruments, particularly in the context
of the complete instrument, which Magnusson calls the In-
strument Model [10]. Expanding on Magnusson’s definition
of a DMI, an instrument can be viewed through the lenses
of different domains, each with their own nuances. The de-
sign of these instruments can, therefore, be composed over
these domains, avoiding being tied down with or hindered
by implementation details.
In this paper we introduce a small functional Domain

Specific Language for manipulating musical patterns and
sequences. This use of a DSL for musical patterns provides
the building blocks for working with sequence based musical
constructs, encapsulated in cycles, while retaining a high
level of abstraction. We go on to provide abstractions that
apply polyrhythmic and polymetric rhythms to our repre-
sentation of time.

1Though there are examples of non isochronous music, which can be iden-
tified by the clapping test, described by Arom [2].

Nathan Renney and Benedict R. Gaster

Figure 1: A 3 against 4 polyrhythm with cycles represented
with circles.

To demonstrate the practical benefits of our system, we de-
scribe a DMI designed for the exploration of polyrhythm, uti-
lizing tools from the Muses Project2. The DSL, pat, described
in Section 3, is used to create a tangible, interactive instru-
ment that applies an approach similar to Varney’s ’Wheel
Method’3 to spread polyrhythms around a circle. This allows
polyrhythms to be expressed using physical rings, as seen in
Figure 1.
We conclude this introduction with a brief summary of

the remaining sections of this paper:

• Section 2 Briefly demonstrates the music theory sur-
rounding polyrhythm and polymeter, discussing mo-
tivations for facilitating more expressivity for com-
posers when working with relatively complex rhyth-
mic ideas on digital systems;

• Section 3 introduces a notation for describing musical
patterns as influenced by Tidal Cycles;

• Section 4 provides our abstraction for representing se-
quences aswell asmanipulations that capture polyrhythm
and polymeter;

• Section 5 introduces pat a small DSL for expressing
patterns;

• Section 6 provides a brief overview of two instruments
designed using pat and implemented to provide con-
crete examples of the ideas discussed in this paper;
and

• Finally, Section 7 concludes with pointers to future
work.

More details about the project, our implementation, and ex-
amples are publicly available from https://muses-dmi.github.
io/.

2https://muses-dmi.github.io/pat/overview/
3https://ed.ted.com/lessons/a-different-way-to-visualize-rhythm-john-varney

2 TRADITIONAL EXPRESSION OF RHYTHM
Whilst comprehensively covering the music theory relating
to rhythm is beyond the scope of this paper, we briefly in-
troduce and illustrate the topics we will focus on in order to
demonstrate the incorporation of these concepts, which are
often difficult to express in computer notation packages and
digital instruments.
Musical notation is an information dense medium that

lends itself well to transferring musical information to a per-
former. Whilst superficially a mathematical equivalence can
be shown between two methods for notating a rhythm, the
choice of notation contains inferred information concerning
meter and pulse for a performer to act upon.

As such it may be useful to notate work using concurrent
notions of time, to cleanly portray the intended pulse of the
piece. This can be viewed from two perspectives; ideally
in one respect; allowing a composer to effectively express
how a rhythm should ’feel’ (where the pulses/strong beats
of different instrumental parts should be and how to they
line up against other parts) to the performers in order to
fully realize the piece. Alternatively, in some performance
situations, the composers realization may be compromised in
order to notate a piece in a way that reads more idiomatically,
allowing players that may be sight reading to read a more
familiar part.
The result of these differences are subtle, constituting

minor fluctuations from the strict subdivision that is notated
or articulations of a musical event based on the position
within the bar, but we argue for the former, which facilitates
the expression of intention.

In order to avoid overly quantized playback of sequences,
a digital system requires an implementation that balances
a representation that is comprehensible, with a playback
system that is capable of applying the more nuanced varia-
tions eluded to in this paper. As an important facet of per-
formance, an abstraction that allows expression over this is
desirable and factors into the design considerations of the
approach presented in this paper, though deeper consider-
ation of rhythmic feel and microtiming will be deferred to
future work.

Beyond the musical feel embedded in a rhythm, there are
also other concepts that are typically not well presented to
users of digital systems. Both polyrhythm and polymetric
rhythms are concepts that are incorporated in many special-
ized devices and applications, however, many mainstream
digital systems do not typically facilitate their use in an ex-
pressive idiom.
In the following sections, these concepts are presented

using short meters, allowing the concepts to be clearly dis-
played and fit well on the page, however, these principles
extend for other values.

https://muses-dmi.github.io/
https://muses-dmi.github.io/
https://muses-dmi.github.io/pat/overview/
https://ed.ted.com/lessons/a-different-way-to-visualize-rhythm-john-varney

Digital Expression and Representation of Rhythm

Figure 2: Polymetric passage of 3/4 over 4/4, notated in 4/4
with accents indicating the first beat.

Figure 3: Polymetric passage of 3/4 over 4/4, notated in with
dual time signature.

Polymetric Rhythms
Consider a simple example that notates a polymetric phrase.
Phrases are constructed using note durations rooted in the
same tempo, but using different rhythmic meters (time signa-
tures). This concept is often expressed by notating the parts
in a common time signature, perhaps providing articulations
that are suggestive of the ’feel’ of a different meter. This is
demonstrated in Figure 2, where the first beat of a phrase is
accented.
In some cases, a composer may wish to work directly in

the time signatures that the work was intended to be in,
producing a notation similar to that shown in Figure 3. This
allows idiomatic writing for both parts and implies the feel of
each part individually. Despite, fairly common use, this is not
supported by many mainstream digital systems, and often
when it is, there are restrictions that prevent a complete
sense of expressibility.

Polyrhythmic Rhythms
Figure 4, shows two approaches to expressing a polyrhythm.
In the firstmeasure,a four over three polyrhythm is expressed
as a 4/4measure, at a tempo of 100BPM. This is demonstrated
as being equivalent to the second measure, notated in a
different meter and tempo.
Using traditional notation, these phrases are expressed

quite well indicating how these rhythms anchor against each

Figure 4: A polyrhythm of 4 against 3,demonstrating a nota-
tional equivalence

Figure 5: 4 against 3 polyrhythm simplified to quarter notes
at related tempo and time signature.

other. In more complex examples, however, it may be ben-
eficial to conceptually work with tempo and time signa-
tures applied against each other rather than having some
parts entirely in tuplets4. This is particularly, the case where
polyrhythms form the basis for an entire piece, and further,
the intention may be to apply both different tempo and pulse.
Figure 5 demonstrates how this may be notated, where the
implied pulse from each time signature should be considered.

Rate
In Western notation, the rate at which a rhythm is performed
is represented in a relative manner, with durations for notes
given as subdivisions of a measure of time (a bar). This mea-
surement is made absolute by providing the number of beats
per minute (BPM). While BPM allows a performer to approxi-
mate tempo in relation to seconds, the approach described in
Section 4 assumes rate to be given as the duration of the se-
quence. It is therefore important to consider this relationship
where duration (in seconds) of a measure can be calculated
from beats per minute (BPM) with the following equation,
with B representing the number of beats in the measure.

60
BPM × B

As mentioned previously, traditional notation leaves per-
turbations in tempo to be inferred based on the notation
(time signature, articulation and style), but it is recognized

4In practise this may require musicians to perform using individual
metronomes, in order to realize the intention effectively.

Nathan Renney and Benedict R. Gaster

that variation of the interonset interval between notes also
significantly contributes to the ‘feel’ [6]. This is typically con-
textual, with proficient performers modulating the tempo
based on the style of piece being performed.

Limitations in Expression
Many electronic instruments and software do facilitate ex-
pression of these rhythmic ideas, however, it is observable
that there are often hurdles in expressing complex rhythmic
relationships that require working against the functionality
of the application or device. Further, a common complaint
levied against digital systems is the lack of ’feel’. This is due
to many implementations notions of metre and pulse lacking
the continuous modulation added by a human performer.
While there are systems that aim to capture this, we consider
there a lack of work that abstracts these ideas in a way that
is transferable and expressive. This therefore motivates the
approach laid out in this paper.

These issues are beginning to be addressed in different sys-
tems, but a consolidated approach that affords expressivity
to the composer or performer is missing.

3 DESCRIBING TIMEWITH TIDAL INFLUENCED
PATTERNS

Programming languages, particularly those from the live
coding movement [4] offer another method for exploring
sequences, with a focus on sequencing being a staple part of
many ‘live coding languages’ [1, 11]. Within these languages,
code is used to express a sequence during performance. The
ideas presented in this paper draw from and are influenced
by these languages, later drawing on themwithin the context
Digital Musical Instrument design.
Whilst there are a number of programming languages

that have been built to express musical ideas, Tidal Cycles
captures rhythmic expression in a way that is transparent
when working with rhythmic sequences and is syntactically
light.

Due to the density of musical information that traditional
notation presents, it is difficult to provide a rich and expres-
sive representation of music as a text based programming
language. Focusing on music based on patterns in time, Tidal
Cycles excels. Sequences are expressed as cycles, analogous
to bars or measures, though they do not inherently suggest
a meter. A single cycle is a length of time into which some
number of events may be distributed. Musical events are dis-
tributed equally throughout a cycle and any single event may
be further subdivided by providing subdivisions (described
as nested lists) of musical events.
For describing patterns, we derive a variation of Tidal

cycles syntax, where a pattern is a string, delimited by white
space. Further subdivisions are expressed using a notation
for nested lists, incorporating the most fundamental ideas

Figure 6: An example pattern featuring subdivisions down
to 16th notes.

of Green’s cognitive dimensions for notating lists [7] 5. This
syntactically allows, for example, expressing the pattern of
two sixteenth notes, one eighth note and three quarter notes
as seen in Figure 6, using the following pattern6:

[[bd bd] bd] bd bd bd

Whilst Figure 6 notates the pattern above in 4/4 we should
consider that the pattern, unlike the notation, has no impli-
cation of how the pulse of the part should feel. In the context
of this work, pulse and meter may be considered functions
that act on a pattern and as such are not represented in the
pattern itself which will be built upon in future work.

4 NOTIONS OF TIME
This section describes an abstraction for musical time, provid-
ing an underlying data structure that can be used by digital
systems for performance and playback, termed sequences.
Further, constructs for the manipulation of patterns are pro-
vided. The notation described in Section 3 is used for patterns,
showing how they are translated to ‘flattened’ sequences.

The approach presented here is intended as a conceptual
model, rather than a strict format specification. As such, it
may be extended with front matter/meta data for each se-
quence in order to encode the articulation and phrasing that
is applied to the sequence, as well as other implementation
specific requirements.

A complete implementation based on the ideas presented
in this section can be found on the project’s Github page7.

Representing Sequences
A sequence is a series of events, taking the form of a data
structure that approximates Schaeffer’s definition of a sound
object [17], with a collection of functions which are able to
manipulate them.

A sequence of events in time is represented as an ordered
list8, where each element represents the onset of a given set
of events:
5We use Haskell’s list notation, [] for empty lists and [x1 ,..., xn] for lists
containing n elements, where xi could also be a list.
6Technically this should have been written " [[bd bd] bd] bd bd bd", but
we emit the quotes when clear from context.
7https://github.com/muses-dmi/pat/
8As already noted we use Haskell’s list notation, [x1 ,..., xn], to represent
an ordered set.

https://github.com/muses-dmi/pat/

Digital Expression and Representation of Rhythm

Figure 7: Sequence structure

E = [e1 , e2 , . . . , en]

Events at a given point in time happen simultaneously and,
therefore, do not require ordering.
Specific representations of events are undefined and left

to a particular implementation, examples include MIDI9 or
OSC10 messages. This structure, called a sequence, is as-
signed the following type, where τ is the type for events
and is supplied by an implementation11:

s equence : [[τ]]

The position of events in the list represent events in time,
with the gaps between considered the interonset interval,
analogous to the interval explored by Madison, for the per-
ception around intertap interval [9]. The sequence can be
naively played by stepping between each element of the
list with a fixed time interval. Modulation of this playback
interval remains an exciting opportunity for future work.
In order for a sequence to be played, the interonset in-

terval must be supplied as a function of the patterns used
to generate it. Therefore, an implementation requires a se-
quence and an interonset interval, derived from some notion
of rate (cycle duration or tempo) in order to operate. Figure 7,
provides a visual representation this12.

Tempo calculations
Devices utilizing this representation are required to calcu-
late and manage tempo. Separating the management of in-
teronset intervals from the sequence of events, such that the
tempo is free to be modulated without the need to operate

9https://www.midi.org/
10http://opensoundcontrol.org/
11A expression of the form x : τ , states that x has type τ .
12Observe that if MIDI or a similar mechanism is used and a sequence is
being used as a loop, the note off will be required to be on the starting note
of the ‘next conceptual cycle’, meaning an unpaired note off will be sent on
the first beat of the first playback of the cycle, as seen in this case.

Figure 8: The process of expanding a pattern’s subdivisions.

on the sequence itself. This provides a opportunity to re-
flect real world variations in time such as those described by
Barton [3].

Given a target cycle duration, the interonset interval can
be calculated as follows, where T is the length of time a
cycle lasts and N is the number of cycles. These values are
then divided by the total number of steps in the sequence to
provide the interonset interval, defined as follows:

i n t e r v a l = T×N
Steps

Translating Patterns to Sequences
As described above patterns form an ordered list, where sub-
lists represent nested subdivisions. Non list elements, i.e.
elements that are not subdivisions, represent musical events
in time.
Translating patterns to sequences, with explicit quanti-

zation, is the process of ‘flattening’ a pattern such that it
contains no subdivisions and is correctly spaced with respect
to time. This process is straightforward in the case of a single
pattern, but requires a different approach for polyrhythmic
and/or polymetric composition of multiple patterns. We first
consider the case of ‘flattening’ a single pattern to a sequence
and then use this to account for multiple patterns, including
polyrhythmic and/or polymetric composition.

Flattening Subdivisions
In order to create the ordered list of events that represents
a sequence the subdivisions of the input patterns must be
‘flattened’, such that each step between elements represents
the smallest possible interonset interval that can represent
the list.

Consider as an example the notation from Figure 6, which
is described by the following pattern:

[[bd bd] bd] bd bd bd

The smallest subdivision used is a sixteenth note, which
implies that the sequence must be flattened to the following:

https://www.midi.org/
http://opensoundcontrol.org/

Nathan Renney and Benedict R. Gaster

The expansion of subdivisions is a function from a pattern
to a sequence (i.e. pattern → sequence). This translation
results in a sequence that has a length equal to the least
common multiple of every subdivision in a pattern, multi-
plied by the length of the pattern itself. This operation is
demonstrated over a pattern in Figure 8.

Handling Polyrhythmic and Polymetric
We now consider the creation of sequences that combine
patterns in either a polyrhythmic or polymetric manner,
utilizing the previously discussed method for expanding sub-
divisions.

Polyrhythmic Merge
Polyrhythmic merge is the process of first expanding the
subdivisions for both sequences and then creating a new list
that is n elements in length, where n is the least common
multiple of the ‘flattened’ pattern’s length, e.g.:

lcm (f l a t t e n l) (f l a t t e n r)

where l and r are short for left and right, respectively. Each
element is then inserted into the new list, at intervals of i ,
calculated for left and right independently as:

i L e f t = n / (l e ng t h (f l a t t e n l))
i R i g h t = n / (l e ng t h (f l a t t e n r))

The process is shown diagrammatically in the following
example:

Polymetric Merge
The process of merging a polymetric phrase creates a new
sequence that extends to the point that the input sequences
synchronize. This is calculated by multiplying the length
of both sequences prior to flattening, which is achieved by
repeating the list.

This is demonstrated in the following diagram:

The resulting sequences are then combined such that each
element becomes a list of lists, where the nested list con-
tains the events on that subdivision, as demonstrated in the
following diagram:

Patterns can then be be subdivided as described previously.

5 AN EXAMPLE DSL FOR EXPRESSING NOTIONS
OF TIME

To demonstrate the use of our representation this section
explores using DSLs (as described by Hudak [8]) in the con-
text of Digital Musical Instrument Design. A tiny DSL, called
pat, for creating patterns in time’ with a syntax inspired by
Tidal Cycles is presented, whose grammar is specified in
Figure 9. We assume a symbolic representation for events,
e.g. alpha numeric sequences such as bd and snare, etc. The
binary operations |:| and −:− represent polyrhythmic and
polymetric merge, respectively.

pat can express sequences with a light touch. For example,
consider the following, terse, description producing a 3 : 4 : 7
polyrhythmic pattern:

[a c e] a a | : | a c a c | : | g g g g g g g

Further, these combinators can be used together to cre-
ate complex, evolving patterns. The following expression
generates twenty four steps of evolving musical material13:

[a c e] a a [a c e] a a
−|− a c a c
| : | g [g c] g [g c] g [g c] g

13This example can be heard on https://muses-dmi.github.io/pat/listen

https://muses-dmi.github.io/pat/listen

Digital Expression and Representation of Rhythm

⟨event⟩ ::= identifier

⟨pattern⟩ ::= ⟨event⟩
| [⟨pattern⟩ { , ⟨pattern⟩ }]
| ⟨pattern⟩ |:| ⟨pattern⟩
| ⟨pattern⟩ -:- ⟨pattern⟩

Figure 9: Pattern grammar

Figure 10: Screen shot of Muses Audio Application.

Apractical realization, as given on the project’s Github and
outlined in Section 6, must provide concrete representations
for events and other implementation details omitted here,
for ease of presentation.

6 APPLICATIONS FOR DMI
Given the DSL pat, we now briefly discuss how it might be
utilized in the design of a novel instrument that facilitates the
ability to both describe constraints (in the form of rhythmic
sequences) and also the ability to perform. We provide an
example of two instruments, one virtual and one physical.

The Muses Synth and Pat
A combination of the Muses Synth14 and pat can be used to
describe a virtual instrument.
In order to operate with the Muses Synth we transpile

from our representation into a JSON file representing a se-
quence. TheMuses Synth implements the ability to parse and
perform a sequence as described in Section 4. This provides
the ability to define a rhythmically complex Virtual DMI
using pat expressions. This instrument can be downloaded
and explored at the project’s website.
14https://muses-dmi.github.io/pat/synth

Figure 11: A novel instrument for polyrhythmic expression
with marbles.

Polyrhythmic Ring Sequencer
This instrument provides exploration of polyrhythm that
features desirable qualities for a pedagogic DMI. Namely:

• Accessible - requiring little technical proficiency
• Playable - can be played in real time, constituting a
performance that requires input from a performer.

• Visually represents polyrhythm in an intuitive manner.
The instrument produced for this purpose is shown in

Figure 11. This instrument is a circular step sequencer with
three channels, represented by three concentric rings. It is
implemented using a Sensel Morph15, a touch pad capable
of measuring force, and uses marbles to represent musical
events. A cycle is represented from 12 o’clock, around 360◦.

pat is used for the description of the rings with a set of
functions that use ImplicitCAD16 to produce an STL, a 3D
model format for 3D printing. We allow the | : | combinator
to be used but restrict the use of polymetric merge (−|−) due
to limitations of the system. This implementation is provided
on project the website, alongside tools to generate new rings
based on pat.

7 CONCLUSION
This paper presented a method for representing musical
sequences as an ordered set, containing musical events. An
event may be considered analogous to Schaeffer’s definition
of a sound object [17], where some representation describing
a musical event is provided.
This method is motivated by a desire to be able to ma-

nipulate the sequence to represent complex notions of time
such as polyrhythm and polymeter. A process for merging
sequences inline with these concepts is provided, producing

15https://sensel.com/pages/the-sensel-morph
16http://www.implicitcad.org/

https://muses-dmi.github.io/pat/synth
https://sensel.com/pages/the-sensel-morph
http://www.implicitcad.org/

Nathan Renney and Benedict R. Gaster

a sequence of events that represents merging the provided
sequences.

A conceptual overview of how sequences may be merged
both polyrhythmically and polymetrically is demonstrated as
alongside how time is represented within this context. This
is presented at a high level in anticipation of further work,
where this method produces a suitable digital representation
to explore more complex and expressive manipulations of
time.
In order to explore this concept, a small language was

presented to express patterns in time, inspired by the lan-
guage Tidal Cycles [11]. This facilitates the expression of a
polyrhythmic pattern of seven snare hits over a ‘four on the
floor’ bass drum pattern, in the following manner:

bd bd bd bd | : | sn sn sn sn sn sn sn

To provide real world examples, and to position future
work on the topic, two digital musical instruments were
introduced, that incorporate the use of our pattern language
in their design. These instruments are made available for
further exploration of how this overall approach may be
implemented in a digital system. Additionally they provided
a foundation for future work, where we intend to develop
a variety of small Domain Specific Languages in the design
of Digital Musical Instruments, to create abstractions that
allow for expressivity in the design phase, without requiring
concern for implementation.

REFERENCES
[1] Samuel Aaron and Alan F. Blackwell. 2013. From Sonic Pi to overtone:

Creative musical experiences with domain-specific and functional lan-
guages. Vol. 12. Taylor & Francis. 35–46 pages. https://doi.org/10.
1145/2505341.2505346

[2] Simha Arom. 2004. African polyphony and polyrhythm: musical struc-
ture and methodology. Cambridge university press.

[3] Scott Barton, Laura Getz, and Michael Kubovy. 2017. Systematic
Variation in Rhythm Production as Tempo Changes. Music Perception:
An Interdisciplinary Journal 34, 3 (2 2017), 303–312. https://doi.org/
10.1525/mp.2017.34.3.303

[4] Nick Collins, Alex McLean, Julian Rohrhuber, and Adrian Ward. 2003.
Live coding in laptop performance. Organised Sound 8, 3 (2003), 321–
330. https://doi.org/10.1017/s135577180300030x

[5] W. Tecumseh Fitch. 2013. Rhythmic cognition in humans and ani-
mals: distinguishing meter and pulse perception. Frontiers in Systems
Neuroscience 7 (10 2013), 68. https://doi.org/10.3389/fnsys.2013.00068

[6] Fabien Gouyon. 2007. Microtiming in "Samba de Roda" Preliminary
experiments with polyphonic audio. Brazilian Symposium on Computer
Music January 2007 (1 2007).

[7] T R G Green. 1989. Cognitive Dimensions of Notations. In Proceedings
of the Fifth Conference of the British Computer Society, Human-Computer
Interaction Specialist Group on People and Computers V. Cambridge
University Press, New York, NY, USA, 443–460. http://dl.acm.org/
citation.cfm?id=92968.93015

[8] Paul Hudak. 1996. Building domain-specific embedded languages.
Comput. Surveys 28, 4es (12 1996), 196–es. https://doi.org/10.1145/
242224.242477

[9] Guy Madison. 2001. Variability in isochronous tapping: Higher order
dependencies as a function of intertap interval. Journal of Experimental
Psychology: Human Perception and Performance 27, 2 (4 2001), 411–422.
https://doi.org/10.1037/0096-1523.27.2.411

[10] Thor Magnusson. 2010. Designing Constraints: Composing and Per-
forming with Digital Musical Systems. Computer Music Journal 34, 4
(12 2010), 62–73. https://doi.org/10.1162/COMJ{_}a{_}00026

[11] Thor Magnusson and Alex McLean. 2018. Chapter 14: Performing
with Patterns of Time. Oxford University Press (2 2018), 1–17. https:
//doi.org/10.5281/ZENODO.1193251

[12] Alex McLean. 2014. Making programming languages to dance to.
Proceedings of the 2nd ACM SIGPLAN international workshop on Func-
tional art, music, modeling & design - FARM ’14 (2014), 63–70. https:
//doi.org/10.1145/2633638.2633647

[13] Yann Orlarey, Dominique Fober, and Stephane Letz. 2009. FAUST: An
Efficient Functional Approach to DSP Programming. New Computa-
tional Paradigms for Music 290, May 2015 (6 2009), 65–97.

[14] Rainer Polak. 2010. Rhythmic Feel as Meter: Non-Isochronous Beat
Subdivision in Jembe Music from Mali. Society for Music Theory 16, 4
(12 2010), 1–26. http://www.mtosmt.org/issues/mto.10.16.4/mto.10.16.
4.polak.html

[15] Miller Puckette. 1996. Pure Data. In Proceedings of the 1996 Inter-
national Computer Music Conference. International Computer Music
Association, San Francisco, 269–272.

[16] Bruno H Repp. 2003. Rate Limits in sensorimotor Synchronization
With Auditory and Visual Sequences. Journal of Motor Behavior 35, 4
(2003), 16.

[17] Pierre Schaeffer. 2017. Treatise on musical objects : an essay across
disciplines. Vol. 20. Univ of California Press. 569 pages.

[18] P Tagg. 1997. Understanding Musical Time Sense: Concepts, Sketches
and Consequences. http://tagg.org/articles/xpdfs/timesens.pdfwww.
tagg.org

https://doi.org/10.1145/2505341.2505346
https://doi.org/10.1145/2505341.2505346
https://doi.org/10.1525/mp.2017.34.3.303
https://doi.org/10.1525/mp.2017.34.3.303
https://doi.org/10.1017/s135577180300030x
https://doi.org/10.3389/fnsys.2013.00068
http://dl.acm.org/citation.cfm?id=92968.93015
http://dl.acm.org/citation.cfm?id=92968.93015
https://doi.org/10.1145/242224.242477
https://doi.org/10.1145/242224.242477
https://doi.org/10.1037/0096-1523.27.2.411
https://doi.org/10.1162/COMJ{_}a{_}00026
https://doi.org/10.5281/ZENODO.1193251
https://doi.org/10.5281/ZENODO.1193251
https://doi.org/10.1145/2633638.2633647
https://doi.org/10.1145/2633638.2633647
http://www.mtosmt.org/issues/mto.10.16.4/mto.10.16.4.polak.html
http://www.mtosmt.org/issues/mto.10.16.4/mto.10.16.4.polak.html
http://tagg.org/articles/xpdfs/timesens.pdf www.tagg.org
http://tagg.org/articles/xpdfs/timesens.pdf www.tagg.org

	Abstract
	1 Introduction
	2 Traditional Expression of Rhythm
	Polymetric Rhythms
	Polyrhythmic Rhythms
	Rate
	Limitations in Expression

	3 Describing Time with Tidal influenced Patterns
	4 Notions of Time
	Representing Sequences
	Tempo calculations
	Translating Patterns to Sequences
	Flattening Subdivisions
	Handling Polyrhythmic and Polymetric
	Polyrhythmic Merge
	Polymetric Merge

	5 An example DSL for expressing notions of time
	6 Applications for DMI
	The Muses Synth and Pat
	Polyrhythmic Ring Sequencer

	7 Conclusion
	References

