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Abstract
This article presents a probabilistic structural identification of the Tamar bridge using a detailed finite element model.
Parameters of the bridge cables initial strain and bearings friction were identified. Effects of temperature and traffic were
jointly considered as a driving excitation of the bridge’s displacement and natural frequency response. Structural identifi-
cation is performed with a modular Bayesian framework, which uses multiple response Gaussian processes to emulate
the model response surface and its inadequacy, that is, model discrepancy. In addition, the Metropolis–Hastings algorithm
was used as an expansion for multiple parameter identification. The novelty of the approach stems from its ability to
obtain unbiased parameter identifications and model discrepancy trends and correlations. Results demonstrate the
applicability of the proposed method for complex civil infrastructure. A close agreement between identified parameters
and test data was observed. Estimated discrepancy functions indicate that the model predicted the bridge mid-span dis-
placements more accurately than its natural frequencies and that the adopted traffic model was less able to simulate the
bridge behaviour during traffic congestion periods.
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Introduction

Critical civil infrastructure, such as long suspension
bridges, represents a capital investment from commu-
nities and local governments. Therefore, its serviceabil-
ity fully justifies dedicated long-term monitoring
systems. structural health monitoring (SHM)1 concerns
the design, deployment, maintenance of structural
monitoring systems and subsequent data interpretation.

Relative to data interpretation, the actual structural
behaviour is often grossly misinterpreted when com-
pared against the input–output relation of a physics-
based computer model.2 In other words, structural
identification (st-id) is very susceptible to uncertainties.
These uncertainties stem from experimental and con-
ceptual factors, such as the high heterogeneity of moni-
tored data or model discrepancy, that is, modelling
assumptions and simplifications.

Several probabilistic st-id methodologies,3,4 such as
Kalman filters5 or fuzzy logic,6 have been used to
address these uncertainties. Another example is
Bayesian methods, which have been introduced to the
SHM community by Sohn and Law,7 Beck and

Katafygiotis,8 and Beck and Au.9 Unfortunately, the
frameworks proposed by these authors are not well sui-
ted to address the confounding influences due to envi-
ronmental (temperature, wind) and operational (traffic,
pedestrians) actions.10–13 Recently, Behmanesh et al.
presented a hierarchical Bayesian framework,14,15
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which, in the absence of noise or model discrepancy,
accurately identifies parameters subjected to external
actions.16

Thus, in addition to environmental/operational
effects, model discrepancy is the main challenge hinder-
ing these methodologies. According to the principle of
maximum entropy,17 this source of uncertainty has
recurrently been assumed as a zero-mean uncorrelated
Gaussian.18–22 Such assumption is reasonable as a con-
servative upper limit, but it brings considerable short-
comings. Namely, it introduces parameter inference
bias and negates the possibility of finding patterns and
correlations, which are vital for model updating and
performance assessment. Authors, such as Goulet and
Smith3 or Papadimitriou and Lombaert,23 have high-
lighted the benefits of weakening such assumptions for
st-id and measurement system design, respectively.

The main alternative to physics-based models is an
interpretation with data-based models,24,25 which is not
bound by physical laws and thus can approximate data
patterns more efficiently without model discrepancy.
Examples include clustering26 or Gaussian mixture27

models, which are used for damage identification using
Bayesian inference. However, data-based models have
a limited ability for extrapolation and thorough expla-
nation of data trends. Finally, hybrid models gather
both, a descriptive coherency of a structural system,
and adaptability for identification of unusual data
patterns.

Consequently, the current contribution applies a dif-
ferent approach to the problem of st-id. The framework

under focus is a hybrid modular Bayesian approach
(MBA) developed based on the method proposed by
Kennedy and O’Hagan.28 Previous work by Jesus
et al.29 highlighted an application of the MBA to a
reduced-scale aluminium bridge (under temperature
variation only). The work however was restricted to the
identification of a single parameter. If model discre-
pancy is approximated with a multiple response
Gaussian process (mrGp), then probabilistic st-id in
SHM is expected to improve. Therefore in this article,
encouraged by the previous work, an expansion of the
MBA using the Metropolis-Hasting algorithm for mul-
tiple parameters identification is presented. This article
also details the first application of the method to a full-
scale structure, the Tamar long suspension bridge,
under temperature and traffic loading.

Enhanced MBA

In this section, a short summary of the MBA and rele-
vant details of its enhancement for multi-parameter
identification are presented. For the remainder of this
work Table 1 is to be used as a nomenclature table.

The original MBA formulation was developed for a
single response case,28,30 that is, only considering pre-
dictions of one model output function. Arendt et al.31

proved that, unless under some specific conditions, the
single response case fails to identify the true structural
parameters. Instead, a multiple response formulation
which allows for a more informative data model has
been proposed.32

Table 1. Table of notation.

Nomenclature applicable to the MBA

e Observation error Xe Experimental dataset of X
d Discrepancy function Xm Model dataset of X
X Design variables Xe Dataset of measured response
u Structural parameters Ym Dataset of simulated response
f mrGp hyperparameters Θm Model dataset of u

Nomenclature applicable to the Tamar bridge

tc Cables temperature eiMC Main cables initial strain
tS Shaded elements temperature eiSC Stay cables initial strain
tL Lighted element temperature Kd Bearings stiffness
mt Traffic mass

Tamar bridge natural frequencies labels

‘L’ Lateral ‘S’ Symmetric
‘V’ Vertical ‘A’ Asymmetric
‘T’ Torsional ‘SS’ Side span
MBA Modular Bayesian approach MCMC Markov chain Monte Carlo
TPS Total positioning system FE Finite element

mrGP: multiple response Gaussian process.

The numbers in natural frequencies labels represent the relevant order of the associated mode shape.
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General workflow of the MBA

The MBA aims to solve an equation of model calibra-
tion, which can be written as follows

Ye(Xe) =Ym(Xe, u�) + d(Xe) + e ð1Þ

where Ye are observations, dependent on design vari-
ables Xe; Ym are simulations of a model, dependent on
the design variables and a vector of unknown structural
parameters u�; d(Xe) is a discrepancy function that
translates the inadequacies between the model and the
true process; and e is an observation error, which is
assumed to follow a Gaussian distribution N (O,L).
Equation (1) is analogous to the formulations of the
classical and hierarchical Bayesian frameworks,
although it features the design variables Xe to allow to
consider temperature, wind, loads and other external
effects which influence the structural response.

There are an infinite number of solutions of equa-
tion (1). For different values of the parameters , there
will always be a discrepancy function that matches that
particular model instance with Ye(Xe). However, the
goal is to calibrate the model with parameters set at
their true values u� and obtain a discrepancy function

which reflects the actual deficiencies of the model. By
definition, a parameter is said to be true u� if set at a
value which corresponds to its physical interpretation.

Finally, Bayes’ theorem can be used to update the
belief on the structural parameters as follows

p(YjD) =
p(Dju)p(u)R
p(Dju)p(u)du

ð2Þ

where p(ujD) is the posterior distribution of u, p(u) its
prior, p(Dju) is the likelihood function based on equa-
tion (1), and the denominator is called the marginal
likelihood. Finally, D represents available simulated
fXm,Θm,Ymg and monitored fXe,Yeg data. Note that
Θm represents an input dataset used to build the likeli-
hood function, oppositely to the identified structural
parameters u.

The MBA breaks the complete process described
above into four modules, hence the name MBA. For a
flowchart of the algorithm, see Figure 1. In modules 1
and 2, the model response surface and the discrepancy
function are fitted by statistical models, known as
mrGp, whose parameters (hyperparameters f) have to
be estimated. See a definition in the Supplemental
Material. The main assumption associated with fitting

Figure 1. Flowchart of the modular Bayesian algorithm.
Adapted from Jesus et al.29
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a mrGp to a process is for its behaviour to be smooth
and continuous.

In module 3, the estimated hyperparameters of the
mrGps become fixed and are used to set up a global
data model, the likelihood function, that explains both
simulations and observations for a set of given struc-
tural parameters u. The posterior distribution is esti-
mated through equation (2). The final module 4 predicts
the observed process, by updating the mrGps previ-
ously determined with the posterior probability density
function (PDF) of u.

Note that such a modular separation will greatly
reduce the computational effort required to solve equa-
tion (1), comparatively to other Bayesian frameworks.
It implies that the uncertainty effects are not considered
fully. As a drawback, identification of true parameters
is more challenging. However and as established by
Arendt et al., considering multiple responses consider-
ably improves the identifiability of the MBA.

The next section presents an enhancement over the
above described formulation.

Markov chain Monte Carlo sampling of posterior
distribution

Previous implementations of the MBA are limited to
identification of a single structural parameter. This sec-
tion discusses a Markov chain Monte Carlo (MCMC)
routine which allows to identify multiple parameters
with the MBA. The Gauss–Legendre has been used for
the single-parameter case, whereas our implementation
includes a routine based on the Metropolis–Hastings
(MH) algorithm.33,34 MCMC methods are commonly
used to address multi-dimensional integrals which occur
in fields such as Bayesian inference.9

Since the likelihood of the MBA is multivariate nor-
mal and analytically untractable, numerical methods
are required to perform its integration. The MH

algorithm is known to converge to a target distribution
for an increasing number of samples. Specifically, the
target distribution has been assumed as symmetric and
sampled with a 3000 burn-in period for a total of
100,000 samples. A standard multivariate normal dis-
tribution N (O, I) was assumed as a proposal distribu-
tion. This choice is reasonable, because the input data
are standardised for numerical convenience. Finally,
obtained samples were post-processed in order to ana-
lyse the likelihood PDF and estimate the marginalised
posterior.

Although it is acknowledged that the MH algorithm
has its limitations, and an alternative such as the adap-
tive Metropolis algorithm would be more suitable,35 the
aim is to showcase the potential of the MBA to identify
multiple parameters and motivate further develop-
ments. In the following sections, its performance shall
be illustrated with an application to the Tamar long
suspension bridge.

Tamar bridge experimental and simulated
dataset

This section presents the Tamar bridge’s SHM system,
the monitored data under consideration and the finite
element (FE) model developed to study its behaviour.

Tamar bridge is a 335-m-long suspension bridge,
built in 1959 and reconstructed between 1999 and 2001,
where a larger side deck and stay cables have been
added, see Figure 2 for a reference. Two long-term
monitoring systems have been installed and several
localised expeditions have been carried out through
time for reliability assessment.

In addition, an FE model was developed by
Westgate37 to study environmental and operational
effects on its structural performance. It is worth men-
tioning the following excerpt ‘In fact, Tamar Bridge has
so far presented a challenging case study for model

Figure 2. Tamar suspension bridge (a) before (1978)36 and (b) after (2018) its reconstruction in the late 1990s. Note the larger
deck and stay cables added in 2001.
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calibration, lending support to the view that no single
model provides a perfect representation of a structure
when matched to provided experimental data’.38

On the basis of the present methodology and data/
model, three key properties relevant for stake holders
will be estimated. One is the friction in the thermal
expansion bearings of Saltash tower, which can lead to
deck cracks and further structural anomalies. The
remaining two properties are the initial strain in the
main and stay cables of the bridge. The initial strain is
defined as the strain relative to when the bridge cables
have been installed initially, that is, containing all the
load-history that the cables have supported since instal-
lation. Its increase could indicate internal damage, such
as broken wires, corrosion, cracks and wear.

Monitored data and post-processing

It is important to establish which design variables are
relevant to study Tamar bridge’s dynamic behaviour. A
study from Cross et al.39 indicates that traffic, tempera-
ture and wind have the most influence on Tamar bridge
natural frequencies, by decreasing order of relevance.
However, this study will be limited to the effects of traf-
fic and temperature.

In the absence of the above information, a normal
procedure would include the following:

� Monitor the structural behaviour for a certain
period of time, preferably at least for a year period;

� Analyse existent correlations between environmen-
tal/operational effects and the structural output,
displacements, vibration data, and so on;

� Select the effects which have the highest influence
on the structural output and consider them during
the modelling process.

Several sensors have been installed through time on
Tamar bridge, but for the purpose of this study, we
considered data which were monitored from a set of
accelerometers, a total positioning system (TPS) reflec-
tor and thermocouples, which are shown in Figure 3.
The available data also include vehicle counts from toll
gates of the Plymouth side.

The monitoring period ranged from May 2009 to
March 2010, where synchronised temperature, traffic
and modal data were found to be richer. Furthermore,
a year time-frame was assumed as a good reference for
calibration/validation of the FE model, since it covers
seasonal variations. Relevant post-processing opera-
tions will now be detailed.

First, the natural frequencies of the structure were
determined with a stochastic subspace identification
(SSI) technique,40 based on available acceleration data.
Specifically, at each half-hour, 10-min acceleration
recordings were post-processed to determine the natu-
ral frequencies and mode shapes of the infrastructure.
Second, displacements at the middle span of the bridge
in three directions, vertical, East and North, were
obtained from the TPS.

After the above-mentioned operations, a 2419 points
dataset was obtained, which is visualised in Figure 4.
Visible trends indicate linear correlations, except for the
traffic/displacement relation in Figure 4(d). Therefore,
a linear correlation function (or kernel) was assumed
for the mrGps that fit the discrepancy function and the
FE model.41 Furthermore, the zero displacements at
highest temperatures in Figure 4(c) and (d) occur
because the data have been offset relative to the highest
peak of temperature 3 traffic load. Frequency labels
follow the convention: ‘L’ is a lateral mode shape, ‘V’ is
vertical mode shape, ‘T’ is a torsional mode shape,
‘TRANS’ is a longitudinal translation mode, ‘S’ is

Figure 3. Diagram of Tamar bridge SHM system – cable temperature sensor, displacement reflector and accelerometers from
whose natural frequencies/mode shapes are estimated. There are 16 stay cables on North/South and Saltash/Plymouth sides.
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symmetric, ‘A’ is asymmetric, ‘SS’ is side span and the
numbers are their relevant order.

For future reference, it is worth mentioning some rel-
evant information related to the bridge main and stay
cables. Namely, the main suspension cables are made
from 31 locked coil wire ropes, each 60 mm in diameter,
and the overall diameter of the main cable is 380 mm,
resulting in a cable cross-sectional area of 882.36 cm2.
The stay cables indicated in Fig. 3 have areas of
87.01 cm2 for S2 and P2 (110 mm diameter strands)
and 70.74 cm2 for the remaning cables (102 mm dia-
meter strands).

Modelling of thermal and traffic effects

In this section, Tamar bridge FE model will be briefly
described, along with to-be-identified structural para-
meters, and modelling aspects of its dynamic behaviour
in the presence of traffic and thermal variations.

The FE bridge model has been developed using
ANSYS Parametric Design Language (APDL) source
code42 and consists of approximately 45,000 elements,
from which expansion joints have been modelled with
linear spring elements, truss members with fixed-
rotation beams, deck/towers with shells and the cables
and hangers with uniaxial tension only beam elements.

First, it is important to discriminate the three para-
meters which will be identified. One is the stiffness of
linear springs Kd , as seen in Figure 5(b) and (c), which
represents friction in the thermal expansion bearings of
Saltash tower. The remaining two parameters are the
initial strain ei in the two main and 16 stay cables of the
bridge.

For each cable type (main or stay), the initial strain
is assumed constant along the cable length and across
all cables. The Young’s modulus of the cables was
assumed as 155 GPa, and the initial strain ei affects the
axial tensile force N of the cables according to trivial
constitutive laws, that is, N = EcAcei, where Ec, Ac repre-
sent the cables Young’s modulus and cross-sectional
area, respectively. It is known that the simulated natu-
ral frequencies are sensitive to the cables initial strain
parameters, as noted in Westgate and Brownjohn37

analysis. In turn, the mid-span displacements are sensi-
tive to the stiffness of the thermal expansion gap, as
shown in Westgate et al.38

Second, after having detailed the model parameters,
it is now necessary to highlight how temperature effects
have been considered. For the present work, a regres-
sion was used to establish a simplified relation between
temperature trends of the truss, deck, and cable

(a) (b)

(c) (d)

Figure 4. Post-processed data – May of 2009 to March of 2010 time period: (a, b) natural frequencies and (c, d) mid-span relative
displacements.
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temperatures of the bridge (sensor location can be seen
in Figure 3). Subsequently, temperature effects are con-
sidered as a static steady-state thermal analysis, with
three different temperature sets: shaded elements,
which represent the truss structure under the deck; the
elements that represent suspension cables; and other
lighted elements excluding cables. Monitored data of
these parts have been used to develop the regressive
model, as can be seen in Figure 6.

Thus, the relation between the temperatures of the
shaded, lighted and cable groups is

tS =
0:433tc + 7:877 tc.15

tc tc<15

�
ð3Þ

tL =
1:544tc � 8:798 tc.15

tc tc<15

�
ð4Þ

where tc, tS and tL represent the temperature in the
cable, shaded, and lighted elements, respectively.

It must be stressed that the linear relations of equa-
tions (3) and (4) will only be applied when tc.158C,
otherwise to be applied as a uniform temperature tc

across all elements. This is interpreted as a notable
change of cable temperature, where the temperature
trends of the bridge fork.

Third, the effects of traffic load are also detailed.
The traffic is assumed as a set of distributed mass
points, evenly spread longitudinally across the bridge
deck, and asymmetrically in the lateral direction. The

average number of vehicles on the bridge in the tolled
direction can be assumed as approximately 1/43rd of
the available half-hourly count. Hence, traffic effects
were monitored as a function of a half-hourly total
mass mt, which was retrieved from the available toll-
gate count. In the FE model, the total mass is being
fractioned into an half-hourly on bridge mass ms, as
ms = mt=43.

Figure 5. Tamar bridge FE model and detail of imposed constraints simulated as linear spring elements. (a) Perspective view, (b)
expansion gap at Saltash tower and (c) bridge boundary conditions diagram.

Figure 6. Assumed temperature relations between cable,
shaded and lighted groups for Tamar bridge FE model and
associated monitored data.
Reproduced from Westgate.43
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Finally, and gathering all the above-mentioned
information, the simulations of the FE model have been
performed in a Latin hypercube space, where values of
temperature, traffic mass, and structural parameters
were uniformly generated and the corresponding natu-
ral frequencies/displacements stored. A flowchart of the
whole process is shown in Figure 7. First, a single
modal analysis was run with default values of structural
parameters and without traffic or temperature loading.
In the second phase, multiple analyses were run for
each combination of the input dataset Xm and Θm.
Finally, the natural frequencies/displacements of each
run were classified and stored using the modal assur-
ance criterion (MAC) with a fit of at least 80 %.

Parameter identification and discrepancy
function prediction

MBA input dataset

Table 2 presents a summary of all the MBA input data,
and the to-be-identified structural parameters
u = feiMC, eiSC,Kdg. The mean and correlation functions
of the mrGps are set as a polynomial regression
H( � ) = 1 and a linear correlation, respectively. Prior
information of the structural parameters is considered
as a uniform PDF, bounded by the intervals where the
dataset ½Xm,Θ� has been generated. The lower bounds

of the intervals were chosen to truncate non-physical
values, whereas the upper limits are based on heuristics
and reference values from previous literature.

In order to sample the likelihood PDF with the MH
algorithm, four Markov chains have been generated,
with a standard multivariate normal distribution set as
the proposal distribution. Trace plots of accepted sam-
ples are shown in Figure 8, and their acceptance ratio
was 39%.

Prediction of model discrepancy

Beforehand, it is important to predict a discrepancy
function, whose information can be used to update the
model, or added to the model output to compensate
for inevitable modelling inadequacies. In the current
section, some of the obtained discrepancy function pre-
dictions will be presented and commented. Since the
outputs depend of temperature/traffic and mrGps are
used for visualisation, the results assume the form of
three-dimensional (3D) statistical response surfaces,
that is, a mean 3D surface and a prediction interval
cloud. However, for the sake of clarity, the prediction
intervals surrounding the mean surface have been
omitted. Finally, it is important to mention that when
the predictions of the model agree more closely to the
monitored data, for example, because the model has

Figure 7. Simulation flowchart.

Table 2. MBA input dataset for Tamar bridge.

Description

u Initial strain of main eiMC and stay cables eiSC and stiffness of linear springs at thermal expansion gap Kd

Xe Bridge cable temperature and total mass due to traffic load from Plymouth-to-Saltash direction
Ye Natural frequencies determined by SSI and mid-span displacement from TPS
½Xm,Θ� combination set of ½tc,mt, eiMCeiSCKd� generated in a Latin hypercube space with

tc [25, 30]�C, mt [0, 2.5 3 106] kg, eiMC [36.5, 2700] me, eiSC [36.5, 3700] me and Kd [0, 10] kN/mm
Ym simulations of natural frequencies/displacements for the ½Xm,Θ� input
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been fine-tuned and updated continuously, the closer
the discrepancy function will be to a zero-mean uncor-
related Gaussian.

A first example of the mean discrepancy function of
the natural frequencies of the Tamar bridge is shown in

Figure 9. The first thing to observe is that none of the
mean surfaces is close to zero, and all display a corre-
lated behaviour. As noted before, wind also affects the
natural frequencies of the Tamar bridge, so it is plausi-
ble to assume that the visible correlation is due to wind.
Second, some patterns are visible in the lateral sway
modes in Figure 9(a) and (d), where the discrepancy
increases smoothly with traffic mass up to a localised
peak at 1400 tonnes. Note that the same peak occurs,
irrespective of temperature, which indicates that it
depends only of the modelled traffic effects and predo-
minantly during rushing hours. Thus, it is reasonable
to assume that it occurs because our model does not
consider traffic from the Plymouth to Saltash direction.

Summarily, the results highlight the limitations of
not considering a two-way traffic model and assuming
an asymmetric distribution of traffic mass. Equipped
with this information, an analyst could integrate it in
its model predictions or carry out further updates.

Other example is shown in Figure 10, where the
model discrepancy of the mid-span displacements is
being predicted by the MBA. The results indicate a bet-
ter performance, since the shown surface resembles a

Figure 8. Trace plot of identified structural parameters.

Figure 9. Prediction of the Tamar bridge natural frequency (a) LS1a, (b) VA1, (c) LS1b and (d) TS1 discrepancy function for varying
temperature (grayscale lines) and traffic (abscissa) conditions.
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zero mean uncorrelated Gaussian, particularly visible
for the displacement in the lateral North direction.

A final example is shown in Figure 11. The shown
plots are equivalent to Figure 9(c) and (d) but with
temperature in the abscissa. The model discrepancy for
the two modes, LS1b and TS1, exhibits a temperature/
traffic interaction, since recurrent peaks occur at differ-
ent temperatures and traffic values. It is important to
always identify such patterns, and in which responses
they become more proeminent, in order to ensure that
the model predictions can be properly interpreted.

Validation of identified structural parameters

In this section, identified structural parameters are pre-
sented and validated. Whereas the results of the previ-
ous section are useful for model updating, identifying
the true value of structural parameters is essential for

damage detection or reliability analyses. It should be
noted that compared to the hierarchical Bayes from
Behmanesh et al., the MBA is unable to capture the
inherent variability of structural parameters. Therefore,
note that the variance shown in the following results is
associated with the estimation uncertainty of the
parameters.

Sample histograms of the prior likelihood are dis-
played in Figure 12, and moments of the posterior dis-
tribution are shown in equations (5) and (6). Since an
uninformative prior has been assumed, the posterior
distribution and the maximum a posteriori (MAP) are
proportional/equivalent to the values obtained from
the likelihood

E½ujD�=
0:0012

0:0024

8:3290

2
4

3
5 ð5Þ

Figure 10. Prediction of the Tamar bridge mid-span (a) vertical and (b) Northern displacement discrepancy function for varying
temperature (abscissa) and traffic (grayscale lines) conditions.

Figure 11. Prediction of the Tamar bridge natural frequency (a) LS1b and (b) TS1 discrepancy function for varying temperature
(abscissa) and traffic (grayscale lines) conditions.
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V½ujD�=
0:25 �0:081 �168:47

�0:081 1:17 519:28

�168:47 519:28 5394863:84

2
4

3
5310�6

ð6Þ

Subsequently, validation of the identification of the
stay cables and the thermal expansion gap will be pre-
sented. Opportunely, expeditions and other estimates
are available from past literature. The only exception
are the main cables, which have never been monitored,
and since its strains vary along its length, their results
will be ommited.

The above estimates shall now be compared against
an st-id confidence interval reported by Laory et al.44

and Goulet.45 An estimate of the cables internal forces
was obtained based on the initial strain MAP and the
FE model predictions for each cable. Results are

displayed in Table 3. For the stay cable forces, there is a
reasonable agreement between the two methodologies,
since the MBA MAP falls near the upper limits of the
model falsification (MF) confidence interval. However,
for the stiffness of the thermal expansion gap, the MBA
estimate is considerably less than the MF interval. A
high value of this parameter would indicate that the
bridge deck is prone to develop cracks. In order to
investigate which estimate is closer to the true friction
value, and to further analyse the stay cables behaviour,
a comparison against monitored data will be detailed
next.

The predicted stay cable forces are plotted along
with monitored forces from existent strain gauge load
cells, as shown in Figure 13. It is also important to
stress that these monitored forces have not been used
to estimate the posterior PDF. Both histograms have

(a) (b)

(c)

Figure 12. Inference of structural parameters: (a) main and (b) sway cables initial strain and (c) stiffness of thermal expansion gap.

Table 3. Identification of cable forces, stiffness of thermal expansion gap and comparison against model falsification.

kN kN kN/mm

Year SC (2) SC (1,3,4) Kd

(MF) [674, 4045] [548, 3289] [104, 1011]
(MBA) 3236 2631 8.32

MF: model falsification; MBA: modular Bayesian approach; SC: stay cables.

1320 Structural Health Monitoring 18(4)



been normalised in the coordinate axis by an estimate
of probability density.

First, it can be seen that the P3S cable has three to
four times larger forces, and as reported in Koo et al.,46

has a stronger dependency on temperature, than other
stay cables. It is not certain why such behaviour occurs.
Second, it can be observed that the posterior obtained
by the MBA falls between the P3S and the other cables
histograms. Two reasons might aid to clarify this result:

1. Since the parameter is assumed constant across all
cables, its posterior distribution falls between the
two other histograms, acting as an average value.

2. The offset might occur because the parameter rep-
resents an initial strain, that is, the strain relative to
when the bridge cables have been installed on the
bridge, and not relative to the strain existent when
the strain gauge load cells have been installed.

Note that point number 1 assumes that the P3S
cables force is genuine, in which case the posterior dis-
tribution would have to be shifted towards lower values
(since there are much more cables in the lower cable
forces region). Thus, it is more plausible to believe that
point 2 is the underlying reason for the posterior posi-
tion, and that the values it indicates are closer to the
true structural behaviour of the cables.

Finally, Battista et al.47 recorded temperature and
extension data in the thermal expansion gap, starting
2 months after the timeframe of data used for the
MBA identification, that is, in July 2010. Results from
Battista’s work revealed that the gap extension against
temperature is perfectly adjusted to a linear relation
(see Figure 15 of the above work for clarification) and
does not indicate any relevant frictional force. Hence, a
lower value of stiffness, such as the one identified by
the MBA, suggests a better agreement with in situ tests.

Conclusion

In this work, the MBA has been applied for st-id of the
Tamar long suspension bridge. The methodology has
been expanded to identify multiple structural para-
meters, including the bridge’s cables initial strain and
the stiffness of its thermal expansion gap. A detailed
FE model of the bridge, on which environmental and
operational effects were considered, has been calibrated
and its performance has been assessed by a predicted
model discrepancy.

Results suggest that

� The developed methodology is able to identify mul-
tiple parameters using the MH and a multi-
dimensional Monte Carlo integration.

� Compared against work from previous authors, the
MBA provides an identification which agrees more
reasonably with monitored data, particularly for
the friction of the thermal expansion gap. This has
been validated with in situ tests.

� The current analysis is conditioned by the ability of
its user to model environmental/operational effects.
However, in contrast with other Bayesian meth-
odologies, it is capable of performing st-id on large-
scale infrastructure, highlighting trends and pat-
terns of model discrepancy.

� In general, the Tamar bridge FE model performs
better at predicting the mid-span displacements
than natural frequencies. In addition, the limita-
tions of the developed traffic model and its interac-
tions with temperature have been presented and
discussed.

� The calibrated FE model can be used as a reference
baseline, for further investigations/health assess-
ments, for example, damage detection.

In conclusion, the application of the MBA for st-id
for large-scale civil structures has been comprehensively
detailed in this work, and although this study presented
some limitations, the authors believe that it is a reliable
tool for the SHM community.
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