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To investigate the effects of muscle fatigue on bioinspired robot learning quality in teaching by demonstration (TbD) tasks, in this
work, we propose to first identify the emergingmuscle fatigue phenomenonof the humandemonstrator by analyzing his/her surface
Electromyography (sEMG) recordings and then guide the robot learning curve with this knowledge in mind. The time-varying
amplitude and frequency sequences determining the subband sEMG signals have been estimated and their dominant values over
short time intervals have been explored as fatigue-indicating features. These features are found carrying muscle fatigue cues of the
human demonstrator in the course of robot manipulation. In robot learning tasks requiring multiple demonstrations, the fatiguing
status of human demonstrator can be acquired by tracking the changes of the proposed features over time. In order to model data
frommultiple demonstrations, Gaussian mixture models (GMMs) have been employed. According to the identified muscle fatigue
factor, a weight has been assigned to each of the demonstration trials in training stage, which is therefore termed as weighted
GMMs (W-GMMs) algorithm. Six groups of data with various fatiguing status, as well as their corresponding weights, are taken
as input data to get the adapted W-GMMs parameters. After that, Gaussian mixture regression (GMR) algorithm has been applied
to regenerate the movement trajectory for the robot. TbD experiments on Baxter robot with 30 human demonstration trials show
that the robot can successfully accomplish the taught task with a generated trajectory much closer to that of the desirable condition
where little fatigue exists.

1. Introduction

Muscle fatigue is a complicated phenomenon which is rel-
evant to the functionality of muscles. Generally speaking,
it is the decline in ability of a muscle to generate force,
which could be a result of excessive exercise. According
to the physiological mechanisms causing fatigue, there are
two classes of muscle fatigue; among them, neural fatigue is
due to the limitations in generating sustained signal by the
nerve, while the metabolic fatigue is caused by the falling
contraction capacity of muscle fibre. Fatigue limits the sport

performance of people. Research found that fatiguedmuscles
produce reduced voluntary force, throwing velocities, and
kicking power. Meanwhile, less accuracy and endurance
capacity in performing these activities has been reported by
Montgomery et al. [1] and Knicker et al. [2]. Pathologists
take fatigue assessment as crucial information source of
disease progression for diagnosis and treatment. In clinical
practice, nowadays qualitative measurements like subjective
questionnaires and clinical rating scales are taken as themain
protocols of assessing fatigue (Féasson et al. [3] andMcdonald
et al. [4]).
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The EMG is a bioelectricity generated bymuscle cells. It is
known to reflect the activation of neurons controlling muscle
contractions. sEMG signals can be collected by attaching
surface electrodes on the skin where the target muscle is just
beneath. Raw sEMG signals are usually first band filtered to
remove noises and retaining the useful information. sEMG
related features are characteristics describing the property
of the signal in various forms, for example, the amplitude
and frequency of the signal, which are computed within
a finite time segment of the signal (Wang et al. [5]), the
power spectrum (Phinyomark et al. [6]), and so on. Since
its noninvasive nature, sEMG has been applied as a research
technique to assess muscle recruitment in a variety of
scenarios for about three decades. Fatigue generally causes
increases in sEMG data, which relates to exercise/sport
performance degradation (Carneiro et al. [7] and Beneka
et al. [8]). The usefulness of mean frequency (MNF) and
median frequency (MDF) of the sEMG signal has beenwidely
investigated in clinical studies and engineering applications
(Phinyomark et al. [6] and Mugnosso et al. [9]). To estimate
the MNF and MDF of the sEMG signal, a Fourier transform
of the autocorrelation of the sEMG signal, that is, the power
spectrum or the power spectral density of the sEMG, is first
obtained, usually through Periodogrammethod.The average
frequency estimated from the power spectrum is defined as
the MNF of the signal. MDF is the frequency that divides the
total sum of the sEMG power spectrum into two segments
that are equal in amplitude (Oskoei et al. [10]). It has been
found that a decreasing MDF over time indicates fatigue
(Hollman et al. [11]). Besides these frequency-based features,
the other spectral variables which have been employed in
sEMG signal analysis include the power spectrum, root
mean square values, peak frequency, and the spectral indexes
(Farina and Merletti [12] and Phinyomark et al. [6]).

With the advance of robot control strategies under vari-
ous dynamic scenarios or with even uncertain manipulators,
robots nowadays play more proactive roles in coordinat-
ing and collaborating with human beings in accomplishing
complicated tasks, with skills such as haptic identification
(Yang et al. [13]) and human-robot interaction (HRI) (Wolf
et al. [14]). Neural interfaces have been introduced for user
to control a robot or other intelligent systems through
neural commands, such as brain-computer interfaces (BCIs)
(Muelling et al. [15] and Yang et al. [16]) or via haptic inter-
action like teleoperation (Yin et al. [17]). These technologies
have been widely employed in complex dynamic scenarios
such as robot-assisted surgical operation (Taylor et al. [18])
and disability assistance and rehabilitation (Kaufmann et al.
[19]). For tasks requiring physical movements, for example,
in manufacturing, sEMG-based neural interface is widely
adopted in HRI scenarios (Zucker et al. [20] and Yang
et al. [21]). Knowledge and implementation skills transfer
by sEMG to telerobot makes it controllable in a remote
place and manageable when accomplishing hazardous jobs
(Artemiadis and Kyriakopoulos [22], Fukuda et al. [23], and
Yang et al. [24]). In our previous studies, sEMG signal has
been employed to estimate robot joint stiffness and related
muscle tensions (Wang et al. [5]).The sEMG amplitudes from
only the very high frequency band have been engaged in

impedance and force control, where desirable robot control
performance has been achieved. Nowadays, the development
of modern controllers has been employed in complex robotic
systems, including telerobots. Controller parameters have
been estimated to minimize the tracking errors in robot
manipulation (Na et al. [25] and Wang et al. [26]). Adaptive
methods like unknown input observer and time-varying
parameter estimation have also been proposed and applied
in complex systems such as vehicle engine system (Na et al.
[27]).

TbD is another important HRI research subject. A TbD
method is to teach a robot to perform specific tasks through
showing the operation by an experienced demonstrator, at
once or at multiple times. This flexible way of HRI enables
the robot to acquire human-like manipulation skills without
complicated steps and at the same time ensures the robot’s
adaptation to new working conditions (Calinon et al. [28]
and Peternel et al. [29]). Nowadays, the taught tasks become
more and more complex, for example, carrying on heavy
load and obstacles avoidance (Zhang et al. [30]). In these
dynamic scenarios, the demonstrator has to conductmultiple
demonstrations, where muscle fatigue might occur. Yang
et al. have made efforts to remove the tremor’s influences
on skills transfer when teleoperating a robot (Yang et al.
[31]). However, in current TbD research, there has little
fatigue-related information been considered. In the field of
HRI, fatigue phenomena widely exist, and the challenge of
investigating these effects lies in how to inspect and estimate
them in dynamic environments. Unlike in clinical studies
where fatigue could be measured by subjective ratings, for
an engineering application, a systematic method to quantify
one’s developing fatigue condition over time is essential. On
the other hand, the underlying fatigue mechanism is still
under research, and their effects in many scenarios are quite
subtle to detect, which increases the difficulty of examining
them precisely.

In this paper, we present a fatigue-aware robot learn-
ing method where the human muscle fatigue issues have
been taken into account in the human-robot interaction
process. The sEMG data from the human demonstrator
have been acquired through a MYO armband worn on
the forearm. Fatigue-related parameters have been gener-
ated from the collected sEMG recordings thereby. These
parameters are derived from the low frequency bands of the
sEMG signal where muscle fatigue is generally examined.
The instantaneous amplitude and frequency variables which
are time-varying sequences of the subband sEMG signal
have been estimated. These variables are viewed indicators
of the fatiguing status of the demonstrator and are taken
into consideration in the robot trajectory learning process.
In a complex robot learning application requiring multiple
human demonstrations, the detected muscle fatigue status
forms the basis of weighing among the different trials.
The final learning outcomes will then be generated from
the weighted training samples through model adaptation
techniques. This work delivers the early efforts of exploring
themuscle fatigue effects resulting from real-worldHRI tasks,
which has brought new perspectives into this research area.
With hand-free sEMGmeasurements, the proposed working
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approach will not cause any disturbance to the human
operator. Meanwhile, the computational costs required for
fatigue scrutiny are manageable in real time as well. With the
growing employment of HRI related techniques in a wider
social and industrial community nowadays, the efforts made
here are expected to inspire more future contributions.

2. Muscle Fatigue Assessment from sEMG

During multiple demonstrations, the human demonstrator
will feel tired. It is mainly reflected by the emerging muscle
fatigue, which will affect the quality of robot learning. The
changes in muscle electricity can describe the underlying
muscular activity. As a noninvasive method, sEMG has been
taken to measure the muscle fatigue. According to Petrofsky
et al. [32], muscle length change causes the amplitude and
frequency components of sEMG to vary throughout the
duration of fatiguing exercise. This section investigates the
intrinsic amplitude and frequency variables in sEMG and
how they connect with human muscle fatigue.

For a band-limited signal of a sufficiently small band-
width, for example, the subband sEMG signal, there is a dom-
inant frequency component assuming the majority of signal
power. The amplitude and frequency of this component are
viewed as the primary features of the signal. This amplitude-
frequency representation is defined as follows (Maragos et al.
[33]):

𝑥 (𝑛) = 𝐴 (𝑛) cos [Θ (𝑛)] + 𝜂 (𝑛)
= 𝐴 (𝑛) cos[Ω𝑐𝑛 + 𝑛∑

𝑟=1

𝑞 (𝑟)] + 𝜂 (𝑛) , (1)

where 𝐴(𝑛) and Θ(𝑛) stand for signal 𝑥(𝑛)’s amplitude and
phase sequence, respectively. The instantaneous frequency is
defined asΩ(𝑛) = Θ(𝑛) −Θ(𝑛 − 1) = Ω𝑐 + 𝑞(𝑛) = (2𝜋/𝑓𝑠)𝑓𝑐 +𝑞(𝑛), where 𝑓𝑠 and 𝑞(𝑛) denote the sampling frequency
(200Hz) and frequency modulation variable, respectively.𝜂(𝑛) delivers any noise and possible errors.

Figure 1 illustrates a segment of sEMG signal and its
subbands obtained from band-pass filtering. In each of these
subbands, the envelope sequence is estimated and presented
by magenta dashed line. Over a short time interval, the mean
value of the envelope sequence has been calculated to indicate
the dominant amplitude of the subband in green color.
Due to the sampling frequency limitation, we choose three-
band signal decomposition (<10Hz, 10–50Hz, and >50Hz).
We name the average instantaneous amplitude of subband
sEMG signal from the three bands as AIE[0,10]

𝑠b , AIE[10,50]sb , and
AIE[50,100]sb , respectively. The identified parameters in Figure 1
are AIE[0,10]sb = 39.55, AIE[10,50]sb = 22.29, and AIE[50,100]sb =16.81, respectively. In Figure 2, the instantaneous frequencies
of the subband sEMG signals have been tracked, and the
principal frequency components are identified as the mean
values of the instantaneous frequency sequences over time.
Likewise, they have been named as AIF[0,10]sb , AIF[10,50]sb , and
AIF[50,100]sb , respectively. The detected dominant frequencies
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Figure 1: The subband sEMG signals and their envelopes (in
magenta dash line). The green dot-dash line in each subband
indicates its dominant amplitude.

are 4.57Hz for band [0, 10Hz], 31.36Hz for band [10Hz,
50Hz], and 62.95Hz for band [50Hz, 100Hz].

Lower frequency sEMG signals have been found more
prominent in identifying muscle fatigue than the higher fre-
quency bands (Petrofsky et al. [32] and Venugopal et al. [34]).
The following exploration of fatiguing effects hereby only
involves the lower band of sEMG to avoid other irrelevant
factors.

3. Robot Movement Representation

Dynamic movement primitive (DMP) is to model the move-
ment streams of a system in discrete time, for example,
the trajectory of robot motions (Schaal [35]). DMPs are
motion elements or short segments, formed as nonlinear
dynamic systems. The robotic joint space can be formulated
by multiple DMPs, one per joint state. A DMP system is
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Figure 2: The instantaneous and dominant frequencies of subband
sEMG signals.

composed of a spring-damper system and an external forcing
component, which is defined as follows:

𝜏𝜔̇ = 𝑘 (𝑔 − 𝜃) − 𝑐𝜔 + (𝑔 − 𝜃0) 𝑠𝑓 (𝑠) ,
𝜏 ̇𝜃 = 𝜔, (2)

where the variables and constants are explained as follows:

𝜃 ∈ 𝑅: joint angle,
𝜔 ∈ 𝑅: angular velocity of the joint,
𝑔 ∈ 𝑅: system goal,
𝜃0 ∈ 𝑅: start angle,
𝜏 > 0: temporal scaling factor,
𝑘 > 0: spring constant,
𝑐 > 0: damping coefficient.

𝑓 : 𝑅 → 𝑅 is assumed as a nonlinear continuous bounded
function and 𝑠 ∈ 𝑅 is the state of a first-order dynamic system
formulated by

𝜏 ̇𝑠 = −𝛼𝑠𝑠, (3)

where 𝛼𝑠 > 0 is a time constant and the state 𝑠 is regarded
as a phase variable. This system is referred to as a canonical
system. Since it is not dependent on time, the described DMP
system in (2) is autonomous, which will finally converge to
zero. Empirically, the initial value of 𝑠0 is set to be 1.

DMP is found stable and robust in the presence of
external disturbances. It can also adjust the speed of the
discrete movement it represents by spatial and temporal
scaling.

The original DMPpredefines the nonlinear function𝑓(𝑠),
which can be expressed as

𝑓 (𝑠) = 𝑁∑
𝑖=1

𝛾𝑖𝜙𝑖 (𝑠) , (4)

where 𝛾𝑖 ∈ 𝑅 are the weights of 𝜙𝑖(𝑠) and 𝜙𝑖(𝑠) are normalized
radial basis functions defined by

𝜙𝑖 (𝑠) = exp (−ℎ𝑖 (𝑠 − 𝑐𝑖)2)
∑𝑁𝑗=1 exp (−ℎ𝑗 (𝑠 − 𝑐𝑗)2) , (5)

where 𝑐𝑖 > 0 are the centres and ℎ𝑖 > 0 are the widths of the𝑁 Gaussian basis functions, with 𝑖 = 1, . . . , 𝑁.

4. Robot Learning from Multiple
Human Demonstrations

In order to model data from multiple demonstrations,
Gaussian mixture models (GMMs) have been employed.
GMMs are a probabilistic model with unknown parameters,
consisting of a group of Gaussian distributions.

Each individual demonstration trial produces a set of
joint angles of the robot. Therefore, there are 𝑁 groups of
joint angles {𝜃𝑡,𝑖, ̇𝜃𝑡,𝑖, ̈𝜃𝑡,𝑖}𝑇𝑖 ,𝑁𝑡=0,𝑖=1 in our data set, where𝑁 is the
number of demonstration trials. For the 𝑖th trial, 𝜃𝑡,𝑖 ∈ 𝑅
is the joint angle and 𝑇𝑖 is the duration of demonstration.
Additionally, the 𝑠𝑡,𝑖 ∈ 𝑅 is the state of system (3) at time step𝑡, and a muscle fatigue factor from the corresponding sEMG
data has been calculated as MF𝑖, where 𝑖 = 1, . . . , 𝑁.

To learn from the data vector set {𝑠, 𝑓}, where𝑓 are values
of function 𝑓(𝑠) in system (2), GMMs have been applied to
formulate the joint distribution 𝑃(𝑠, 𝑓) as described by

𝑃 (𝑠, 𝑓) = 𝐾∑
𝑘=1

𝛼𝑘N (𝑠, 𝑓; 𝜇𝑘, Σ𝑘) . (6)

Given the dimension 𝑑 of the input data vector equal to
2, the probability distribution of a Gaussian component
N(𝑠, 𝑓; 𝜇𝑘, Σ𝑘) is elaborated as follows:

N (𝑠, 𝑓; 𝜇𝑘, Σ𝑘) = 𝑒−(1/2)([𝑠,𝑓]𝑇−𝜇𝑘)𝑇Σ−1𝑘 ([𝑠,𝑓]𝑇−𝜇𝑘)
(2𝜋)𝑑/2 󵄨󵄨󵄨󵄨Σ𝑘󵄨󵄨󵄨󵄨1/2

= 𝑒−(1/2)([𝑠,𝑓]𝑇−𝜇𝑘)𝑇Σ−1𝑘 ([𝑠,𝑓]𝑇−𝜇𝑘)
2𝜋√󵄨󵄨󵄨󵄨Σ𝑘󵄨󵄨󵄨󵄨

.
(7)

The GMMs are composed of 𝐾 Gaussian components here,
where the unknown parameters are 𝛼𝑘, 𝜇𝑘, and Σ𝑘, with 𝑘 =1, 2, . . . , 𝐾. 𝛼𝑘 ≥ 0 is the prior probability satisfying∑𝐾𝑘=1 𝛼𝑘 =1, while 𝜇𝑘 ∈ 𝑅2×1 andΣ𝑘 ∈ 𝑅2×2 are themean and covariance
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matrix of the 𝑘th Gaussian component referred as follows,
respectively:

𝜇𝑘 = [𝜇𝑠,𝑘𝜇𝑓,𝑘] ,

Σ𝑘 = [ Σ𝑠,𝑘 Σ𝑠𝑓,𝑘
Σ𝑓𝑠,𝑘 Σ𝑓,𝑘] .

(8)

These unknown parameters can be retrieved through
the Expectation-Maximization (EM) algorithm. We propose
to involve weighted Gaussian components rather than the
conventional Gaussians in this work in order to take the
muscle fatigue effects into account. Considering the fatiguing
status during the demonstration phase is varying, the weights
across all demonstration data have to vary accordingly.There-
fore, compared with the conventional GMMs algorithm, the
training data of weighted GMMs (W-GMMs) is scaled by the
fatigue factor first.Themodified EM algorithm forW-GMMs
is elaborated as follows:

(1) Initialization: set initial values of the parameters.

(2) 𝐸-step: calculate the response of the 𝑘th Gaussian
model, 𝑘 = 1, 2, . . . , 𝐾, over the upcoming data
points,

𝛾𝑗𝑘 = MF𝑗𝛼𝑘𝜙 (𝑥𝑗 | 𝜇𝑘, Σ𝑘)
∑𝐾𝑘=1MF𝑗𝛼𝑘𝜙 (𝑥𝑗 | 𝜇𝑘, Σ𝑘) , (9)

where 𝑥𝑗 = {𝑠𝑇𝑗 , 𝑓𝑇𝑗 } and MF𝑗, 𝑗 = 1, 2, . . . , 𝑁 are
data vectors and muscle fatigue factor from the 𝑗th
demonstration, respectively.

(3) 𝑀-step: update model parameters by maximum like-
lihood estimation at new round of iteration to be

𝜇𝑘 = ∑𝑁𝑗=1 𝛾𝑗𝑘𝑥𝑗
∑𝑁𝑗=1 𝛾𝑗𝑘 ,

Σ̂𝑘 = ∑𝑁𝑗=1 𝛾𝑗𝑘 (𝑥𝑗 − 𝜇𝑘)2
∑𝑁𝑗=1 𝛾𝑗𝑘 ,

𝛼̂𝑘 = ∑𝑁𝑗=1 𝛾𝑗𝑘𝑁 .

(10)

(4) Repeat the 𝐸-step and𝑀-step until convergence.

The 𝑓 function can be estimated through Gaussian mix-
ture regression (GMR) algorithm. In GMR, the conditional
probability 𝑃(𝑓 | 𝑠) is elaborated by

𝑃 (𝑓 | 𝑠) ∼ 𝐾∑
𝑘=1

𝛽𝑘N (𝜂𝑘, 𝜎̂2𝑘) , (11)

Figure 3: The Baxter robot.

where

𝜂𝑘 = 𝜇𝑓,𝑘 + Σ𝑓𝑠,𝑘 (Σ𝑠,𝑘)−1 (𝑠 − 𝜇𝑠,𝑘) ,
𝜎̂2𝑘 = Σ𝑓,𝑘 − Σ𝑓𝑠,𝑘 (Σ𝑠,𝑘)−1 Σ𝑠𝑓,𝑘,
𝛽𝑘 = 𝛼𝑘N (𝑠; 𝜇𝑠,𝑘, Σ𝑠,𝑘)∑𝐾𝑖=1 𝛼𝑖N (𝑠; 𝜇𝑠,𝑖, Σ𝑠,𝑖) .

(12)

According to the linear transformation property of Gaus-
sian distributions,𝑃(𝑓 | 𝑠) can be approximated as 𝑃(𝑓 | 𝑠) ∼
N(𝜂, 𝜎̂2), with 𝜂 = ∑𝐾𝑘=1 𝛽𝑘𝜂𝑘 and 𝜎̂2 = ∑𝐾𝑘=1 𝛽2𝑘𝜎̂2𝑘 , where 𝜂 is
the expectation.

Finally, the nonlinear function 𝑓(𝑠) is estimated by

𝑓 (𝑠) = 𝜂 = 𝐾∑
𝑘=1

𝛽𝑘 (𝜇𝑓,𝑘 + Σ𝑓𝑠,𝑘 (Σ𝑠,𝑘)−1 (𝑠 − 𝜇𝑠,𝑘)) , (13)

where 𝑓(𝑠) is bounded since 𝛽𝑘 ∈ [0, 1] and 𝑠 ∈ (0, 1].
5. Experiments

In this section, we setup our experimental platform and verify
the proposed method by a robot teaching by demonstration
experiment which consists of a demonstration phase, a
learning phase, and a reproduction phase.

5.1. Platform Setup. The Baxter robot has been employed
to verify the proposed method. Baxter is a semihumanoid
industrial robot developed by Rethink Robotics, whose head
is of 2-DOF and the two arms are of 7-DOF (shoulder joint:𝑆0 and 𝑆1; elbow joint: 𝐸0 and 𝐸1; wrist joint: 𝑊1, 𝑊2, and𝑊3). Figure 3 gives us a picture of the Baxter robot. Besides
industrial usage, it has been employed in HRI and human-
robot collaboration (HRC) research widely (Reddivari et al.
[36]). In the experiment, the human demonstrator will drag
the end effector of the robot to complete a demonstration
task, during which the robot joint angles will be recorded.

Figure 4 shows the way of sEMG data collection in
the experiments. During the manipulation, MYO armband
is worn on the arm of the demonstrator to record the
sEMG signals generated, where the movement of human
arm is mainly driven by biceps brachii. The MYO armband
is composed of 8 sEMG electrodes and a 9-axis inertial
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Biceps brachii
(long head)

Figure 4: Demonstrator wearing the MYO armband.
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Figure 5: A scene captured in the experiment.

measurement unit.These electrodes capture the bioelectricity
changes of the arm muscle of the human subject who wears
it.The default sampling frequency of sEMG signal acquisition
is 200Hz. The acquired sEMG recordings are transmitted to
the client computer through Bluetooth.

5.2. Demonstration Phase. As shown in Figure 5, there is a
pen fixed at the end effector of the Baxter robot.The rest place
of the pen is on the top of the obstacle (the stacked cylinder).
Dragged by the human demonstrator, the robot will complete
the following action: at first, the pen at the end effector pokes
the first circle (A); it then bypasses the obstacle and pokes the
second circle (B); and then it bypasses the obstacle again and
pokes the third circle (C), and finally it returns to its rest place.
In this way, the passing path of the pen is A → O → B →
O → C → O.

This demonstration is repeated 30 times. In the course
of each demonstration, the joint angles of the robot and
the sEMG signals of the human demonstrator are recorded.
Although the passing path is fixed, the trajectory of robot
motion and the duration of teaching in each trial vary.
However, all trajectories share the exact same starting and end
places.

5.3. Learning Phase and Reproduction Phase. The sEMG data
for fatigue investigation in this task is from the sensors
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Figure 6: The smoothed curve of the proposed fatigue-related
features (average instantaneous amplitude of sEMG signal) across
all trials during the human demonstration to robot.

attached to the biceps brachii, since the movement of human
arm is mainly driven by it. As described in Section 2,
we extract the instantaneous amplitude sequence of sEMG
subband [0, 10Hz] captured by the second channel of
MYO armband and compute the mean values of that time-
varying sequence at every 2 s time interval to acquire the
fatigue parameters across all 30 demonstrations. To reveal the
most significant trend and remove fluctuations, a 3rd-order
polynomial function has been used to fit the data samples
AIE[0,10]sb . Figure 6 shows the smoothed data samples over all
30 trials after curve fitting. We define an Onset of Fatigue
(OF) index as the flex point of the cubic function in the
figure. When training W-GMMs, six groups of data have
been chosen to learn the new robot trajectory; three of them
are from demonstrations before the OF, while the others
are from trails after the OF. Their muscle fatigue factors are
taken as weights in theW-GMMs training process, which are
calculated and normalized to be 0.9, 0.8, 0.7, 0.4, 0.3, and 0.2,
respectively.

Both the duration and the data amount recorded in each
demonstration vary from one to another. In Figure 7(a), we
randomly select three samples of data to observe, which are
the angles of shoulder joint 𝑆0. It is found that they are
different in duration and misaligned in time. Dynamic Time
Warping (DTW) algorithm is therefore applied to align the
data along the timeline. Figure 7(b) shows the aligned data
after the DTW processing.

As mentioned, six groups of data, including three before
the OF, and three after that, as well as their corresponding
weights are taken as training data to build the W-GMMs.
Figure 8 illustrates the learning process of the W-GMMs.
Figure 8(a) shows the training data samples in the joint space.
Figure 8(b) reveals the GMMs after training, which encodes
the joint distribution with sixteen Gaussian components.
Figure 8(c) demonstrates the learning results fromW-GMMs,
with the training samples depicted in dotted lines. It is
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Figure 7: (a) Three original samples of the joint angle 𝑆0. (b) The
processed samples after DTW time alignment.

observed that, by involving the fatigue-related weights in
GMMs training, the training data with larger weights counts
more in the training results, which means in this way the
demonstrations when less fatigue occur are more influential
in robot learning outcomes.

Angle data of all seven joints, including two shoulder
joints 𝑆0 and 𝑆1, two elbow joints 𝐸0 and 𝐸1, and three
wrist joints 𝑊1, 𝑊2, and 𝑊3, have been taken into account
in the robot learning experiment. Figure 9 illustrates the
learning results for each joint from theW-GMMs.The Baxter
robot then successfully accomplishes the taught task by the
human demonstrator after receiving these learned joint angle
data. Figure 10 demonstrates the trajectory of the Baxter end
effector in Cartesian space when accomplishing the task.

6. Conclusion

Robot learning manipulation skills from human demonstra-
tion is a straightforward yet effective way of knowledge trans-
fer. However, the manipulation, especially for complex tasks
with heavy loads, will make the human demonstrator feel
tired. The purpose of this study is to inspect the influences of
muscle fatigue on robot learning fromhumandemonstration.
We propose new fatigue-indicating sEMG features, which
have been explored from analyzing the varying amplitude
and frequency components within the sEMG during biceps
brachii muscle contractions. These newly presented features
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Figure 8: The learning process of the W-GMMs. (a) Training data
samples in the joint space 𝑆0. (b) Gaussian mixture components
formed by the training data. (c) Regenerated (learned) trajectory
from the W-GMMs.

have been employed to identify the fatigue onset in the
process of a fatiguing TbD task, which has been further taken
to guide the learning curve of the robot. A weighted GMM
has been employed to learn the robot joints angle from data
of multiple demonstration trials, where the muscle fatigue
factors identified in each of these trials have been considered.
In this way, the regenerated movement trajectory shows its
closeness with the ideal condition when less fatigue detected.
In the TbD experiments carried out, the Baxter robot suc-
cessfully completes the task taught by the human demon-
strator with desirable performance. This work describes the
efforts on investigating the muscle fatigue effects under the
environments of HRI manipulation. With growing interests
and needs of applying HRI techniques in various working
conditions, it is expected that the efforts made here would
bring new perspectives into relevant research areas.
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