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Remote Sensing for Drought Monitoring & Impact Assessment: Progress, Past 24 

Challenges and Future Opportunities 25 

 26 

Abstract  27 

Drought is a common hydrometeorological phenomenon and a pervasive global hazard. As 28 

our climate changes, it is likely that drought events will become more intense and frequent. 29 

Effective drought monitoring is therefore critical, both to the research community in 30 

developing an understanding of drought, and to those responsible for drought management 31 

and mitigation. Over the past 50 years remote sensing has shifted the field away from 32 

reliance on traditional site-based measurements and enabled observations and estimates of 33 

key drought-related variables over larger spatial and temporal scales than was previously 34 

possible. This has proven especially important in data poor regions with limited in-situ 35 

monitoring stations.  Available remotely sensed data products now represent almost all 36 

aspects of drought propagation and have contributed to our understanding of the 37 

phenomena. In this review we chart the rise of remote sensing for drought monitoring, 38 

examining key milestones and technologies for assessing meteorological, agricultural and 39 

hydrological drought events. We reflect on challenges the research community has faced to 40 

date, such as limitations associated with data record length and spatial, temporal and 41 

spectral resolution. This review then looks ahead to the future in terms of new technologies, 42 

such as the ESA Sentinel satellites, analytical platforms and approaches, such as Google 43 

EarthEngine, and the utility of existing data in new drought monitoring applications. We 44 

look forward to the continuation of 50 years of progress to provide effective, innovative and 45 

efficient drought monitoring solutions utilising remote sensing technology.  46 
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 51 

1.0 Introduction  52 

Drought is a common hydrometeorological phenomenon (Hayes et al., 2012), and a 53 

pervasive hazard, second only to flooding in its impact on social and economic security 54 

(Nagarajan, 2009). Since the turn of the century, several socio-economically significant 55 

regional droughts have occurred, for example in Australia (2000-2009), USA (2000-2016), 56 

Southern and Sub-Saharan Africa (2015-2017), China (2007-2012) and Europe (2007-2010) 57 

(Ummenhofer et al., 2009; Ault et al., 2016; Chao et al., 2016; Cook et al., 2016; Baudoin et 58 

al., 2017). There is no universal definition of a drought (Lloyd-Hughes, 2014), but in its 59 

simplest form a drought event represents a deficit of water relative to normal conditions. 60 

Unlike floods which have a clear and sudden start and end (Wang et al., 2016), droughts can 61 

be characterised by slow development and prolonged impacts. How spatio-temporally 62 

variable rainfall deficits propagate through the land surface to register deficits in soil 63 

moisture, runoff and recharge is complex and heterogeneous. While droughts can be ended 64 

by sudden extreme precipitation, how to precisely identify the termination point of a 65 

drought event is contested (Parry et al., 2016). These attributes mean that drought is a 66 

phenomenon that is challenging to quantify and analyse. Impacts from recent droughts 67 

reveal high levels of exposure and vulnerability of both natural and human systems (Van 68 

Loon et al., 2016). This is significant as with future climate change it is likely that many areas 69 

will start to experience more frequent and intense dry conditions, with irreversible impacts 70 
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for people and ecosystems (IPCC, 2014). Consequently, drought monitoring and mitigation 71 

have become urgent scientific issues (Liu et al., 2016).  72 

 73 

Historically drought monitoring approaches have focused on in-situ station-based 74 

measurements, for example the Palmer Drought Severity Index (PDSI) (Palmer, 1965). 75 

Towards the end of the 20th century a paradigm shift in drought monitoring approaches 76 

occurred, concurrent with advances in remote sensing and earth observation technologies 77 

such as the launch of the NASA Landsat series in 1972. In addition to providing 78 

meteorological data, remote sensing-based approaches also monitor conditions at the 79 

Earth’s surface such as vegetation health and water levels, providing a rich mix of contextual 80 

data for drought monitoring. Remote sensing has consequently revolutionised the field, 81 

allowing observations and monitoring of key drought-related variables over larger temporal 82 

and spatial scales than was previously possible using conventional methods (Choi et al., 83 

2013; Sur et al., 2015). The role of remote sensing technologies for effective water 84 

management has been highlighted as of particular importance in developing ‘data-poor 85 

regions’ (Sheffield et al., 2018).  86 

 87 

This paradigm shift in drought monitoring approaches is marked in the number of drought-88 

related papers appearing in Remote Sensing of Environment; from less than 5 per year in 89 

1982, to more than 70 per year since 2014 (Figure 1). Other journals (e.g. Remote Sensing, 90 

International Journal of Applied Earth Observation and Geoinformation and International 91 

Journal of Remote Sensing), have also seen a significant increase, and this is the case in 92 

hydrology and water management research journals too (Lettenmaier et al., 2015).   93 

 94 
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 95 

Figure 1: Number of papers relating to drought (in both paper titles and keywords) in 96 

Remote Sensing of Environment and Web of Science since 1982. Search terms included 97 

various versions of ‘Drought’ and ‘Remote Sensing’.  98 

 99 

Although droughts are complex phenomena which propagate in different ways with varied 100 

characteristics, they are commonly classified into one of four types, namely meteorological 101 

drought, agricultural drought, and hydrological drought (which represent the 102 

natural/environmental impacts), and socio-economic drought (which represents the impact 103 

on human population and society) (Van Loon, 2015; Liu et al., 2016). These types are not 104 

independent but refer to different approaches of measurement and identification (Wilhite 105 

& Glantz, 1985) (Figure 2).  106 
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 107 

Figure 2: Different types of drought, their interactions and associated impacts (Adapted 108 

from Van Loon, 2015)  109 

 110 

Drought propagation is the process whereby a precipitation deficit (i.e. below average 111 

rainfall) progresses through the hydrological cycle, starting with meteorological drought and 112 

developing into hydrological drought if conditions persist (Van Loon, 2015). Factors 113 

influencing the nature of drought propagation include regional climate and local catchment 114 

characteristics, such as geology, vegetation cover and type, soils, topography and human 115 

influence (Van Loon & Laaha, 2015; Baker et al., 2016). Given the complex characteristics of 116 

drought, event heterogeneity, and various propagation pathways and influences, remote 117 

sensing can provide a valuable tool in the monitoring of a range of drought-related 118 

variables.   119 

 120 

This review will focus on the remote sensing-based monitoring of ‘environmental drought’, 121 

that is events that can be classified as being either meteorological, agricultural or 122 

hydrological drought and the relationships between them. Since the start of remote sensing 123 
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application in the field of drought monitoring active and passive sensors, recording 124 

measurements across the electromagnetic spectrum, have been used to improve 125 

understanding and inform environmental management decisions. Recent years have seen 126 

rapid evolution in remote sensing technologies which can be applied in drought monitoring, 127 

such as the launch of the ESA Sentinel satellites and the development of new indicators and 128 

analytical platforms. Given the rate of technological evolution it is important to 129 

continuously review and reflect upon historic and recent developments and look ahead to 130 

new opportunities.  131 

 132 

2.0 Precipitation Monitoring  133 

Meteorological drought typically results from the presence of continuously high 134 

atmospheric pressure over a region, representing a significant negative deviation from 135 

mean precipitation (Sheffield & Wood, 2011). Meteorological droughts tend to occur over 136 

relatively short time scales, usually days/weeks but possibly extending into months/seasons 137 

(Pal et al., 2000), and the associated precipitation deficit is the propagation trigger for 138 

agricultural and hydrological drought. Unlike the other drought types, a meteorological 139 

drought will typically have few direct impacts (Sen, 2015). Nonetheless, given 140 

meteorological drought is often an early indicator of more impactful and significant dry 141 

events, effective monitoring is still critical.  142 

 143 

Historically, site-based precipitation measurements were essential for meteorological 144 

drought monitoring, but the introduction of remote sensing precipitation products changed 145 

the efficiency and spatio-temporal coverage of rainfall mapping and drought monitoring 146 

(e.g. Islam & Uyeda, 2005; Islam & Uyda, 2007; Almazroui, 2011; Du et al., 2013; Zhang et 147 
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al., 2017a). The first of these was the TRMM (Tropical Rainfall Measuring Mission), a joint 148 

collaboration between NASA and the Japan Aerospace Exploration Agency (JAXA). Launched 149 

in 1997 and decommissioned in 2015, TRMM measured tropical and subtropical rainfall 150 

(35°S - 35°N) and was the first satellite to carry a specific microwave precipitation radar 151 

(Kummerow et al., 1998). Due to its restricted orbital cycle TRMM completed 16 cycles per 152 

day, with a measurement swath of 878km and spatial resolution of 0.25 degrees at the time 153 

of decommissioning. The 17-year legacy dataset represents a significant benchmark in 154 

global rainfall measurement and is still routinely used in assessing global rainfall patterns 155 

and atmospheric drivers of drought (e.g. Zhang & Jia, 2013; Sahoo et al., 2015; Forootan et 156 

al., 2016; Yan et al., 2018). The successor to TRMM is the Global Precipitation Measurement 157 

(GPM) mission (Hou et al., 2014). The GPM Core Observatory was launched in February 158 

2014. This also operates in a non-polar, low inclination orbit completing 16 cycles per day, 159 

however with a wider coverage than TRMM (65°S - 65°N). Along with a constellation of 160 

other satellites this gives a revisit time for GPM products of 1-2 hours, with an improved 161 

spatial resolution (0.1-0.25 degrees). Studies have assessed the accuracy of GPM retrievals 162 

at various scales through correlation with in-situ gauged data and TRMM data (Tang et al., 163 

2016; Libertino et al., 2016; Caracciolo et al., 2018), with results suggesting high levels of 164 

agreement. Consequently, GPM and coupled TRMM/GPM datasets have become important 165 

products in drought monitoring research (e.g. Zhang et al., 2017b; Alizadeh & Nikoo, 2018).   166 

 167 

Studies have used a range of analytical approaches when employing remotely sensed 168 

precipitation in drought monitoring, including the calculation of long-term rainfall anomalies 169 

(e.g. Toté et al., 2015; Bayissa et al., 2017; Cattani et al., 2018) and indices, such as the 170 

Precipitation Condition Index (PCI) (Zhang et al., 2017a). One of the most commonly used 171 
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indices that can be derived from remote sensing data is the Standardised Precipitation Index 172 

(SPI). Developed by McKee et al. (1993), the SPI is calculated using precipitation alone, 173 

which meant at the time it was far more data efficient than the PDSI for many applications. 174 

The main advantage of the SPI is that the values have the same probability of occurrence, 175 

no matter the time period, location, or scale, and equally represent both flood/wet and 176 

drought/dry events along a continuum. Until recently, its use has been limited in remote 177 

sensing studies, due to the need for a long-term precipitation record for calculation 178 

(traditionally ~30 years). However, with long-term records now becoming available it is 179 

possible to calculate SPI using remotely sensed data alone, enabling detection of 180 

meteorological droughts over large spatial scales (e.g. Sahoo et al., 2015; Winkler et al., 181 

2017; Elhang & Zhang, 2018; Zhao et al., 2018). 182 

 183 

3.0 Evapotranspiration Monitoring 184 

As discussed above, the onset of meteorological drought is often a key predictor of 185 

agricultural/hydrological drought. Consequently, it is common for research to attempt to 186 

integrate meteorological drought-related variables into studies which aim to assess and 187 

improve the monitoring of these other drought types. A key factor of both meteorological 188 

and agricultural drought is the increase in evapotranspiration rates (Figure 2). Reliable 189 

estimation of evapotranspiration is essential for effective drought monitoring and the 190 

development of hydrologic models (Fisher et al., 2017). As with precipitation, a key benefit 191 

of using remotely sensed products is the ability to assess evaporation/evapotranspiration 192 

over large areas, and in the absence of in-situ monitoring stations. Calculation of 193 

evaporation/evapotranspiration requires additional variables relating to vegetation 194 

condition and type and/or soil properties (Narasimhan & Srinivasan, 2005) and these can be 195 
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estimated through remote sensing. As such, various evapotranspiration remote sensing data 196 

products now exist - derived from observations from a range of satellite families, such as the 197 

MODIS and Landsat satellites. 198 

 199 

The Global Land Evaporation Amsterdam Model (GLEAM) (Miralles et al., 2011) is a set of 200 

algorithms for estimating terrestrial evaporation and soil moisture. The approach was 201 

revised in 2014 (Miralles et al., 2014) and is currently on its third iteration (Martens et al., 202 

2017). The current GLEAM product consists of a series of microwave (C- and L-band) 203 

measurements of vegetation, soil moisture and precipitation and thermal observations of 204 

land surface temperature (LST), from sensors such as MODIS (Moderate Resolution Imaging 205 

Spectroradiometer) and the SMOS (Soil Moisture Ocean Salinity) mission (Martens et al., 206 

2017). The uniqueness of GLEAM is that it is the only global scale evaporation product 207 

designed to be driven by remotely sensed data alone (Miralles et al., 2011). Given that 208 

GLEAM uses data from sensors which have a long operational history, Version 3.3 of the 209 

product is available for the period 1980-2018.  210 

 211 

Many drought-related studies using remotely sensed precipitation or evapotranspiration 212 

products have been at global or continental scales (Sahoo et al., 2015; Xia et al., 2018), and 213 

necessarily at coarse spatial resolution (Huffman et al., 1997; Martens et al., 2017). This may 214 

be because many of the earlier earth observation satellites prioritised temporal over spatial 215 

resolution (Lettenmaier et al., 2015). However, attempts have recently been made to 216 

increase the spatial resolution of meteorological remotely sensed data. For example, van 217 

Dijk et al. (2018) used MODIS observations of surface water extent, vegetation, and LST, 218 

assimilated into a landscape hydrological model, to derive a 5km resolution global scale 219 
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dataset of secondary evaporation (i.e. evaporation from floodplain/wetland storage and 220 

irrigation systems).  221 

 222 

Passive sensor derived datasets have also been re-analysed to represent 223 

evaporation/evapotranspiration. For example, the Landsat satellites have been used in the 224 

development of new, higher resolution, monitoring approaches (Wulder et al., 2019). With 225 

the addition of the thermal band on Landsat 3 (launched in 1978), which was later enhanced 226 

on Landsat 4 (1982) onwards, high resolution (30m visible and 120m thermal) retrievals of 227 

land classifications and LST were made possible. These observations have led to the retrieval 228 

of relatively high-resolution estimates of evapotranspiration (Vinukollu et al., 2011). Recent 229 

work has been undertaken using the Google EarthEngine (Gorelick et al., 2017) to calculate 230 

key meteorological/hydrological variables using the thermal capabilities of space-borne 231 

sensors. EEFlux (EarthEngine Evapotranspiration Flux) was developed based on the METRIC 232 

(Mapping Evapotranspiration at High Resolution with Internalized Calibration) model (Allen 233 

et al., 2007) and applies a series of algorithms to produce evapotranspiration estimates 234 

using Landsat 5 TM (1984-2013), Landsat 7 ETM+ (1999-Present) and Landsat 8 OLI-TIRS 235 

(2013-Present) imagery.  236 

 237 

4.0 Vegetation & Soil Moisture Monitoring  238 

Sustained meteorological drought over a region will begin to impact upon local hydrology 239 

and agriculture (Dutra et al, 2014). Agricultural drought (also referred to as soil moisture 240 

drought) represents a deficit in soil moisture available to vegetation driven by a 241 

precipitation deficit (meteorological drought) (Liu et al., 2016). Agricultural droughts tend to 242 
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occur over medium to long term time scales and associated impacts include crop yield 243 

reductions or failure, and eventually food demand/supply disequilibrium.  244 

 245 

Remotely sensed agricultural drought monitoring can be via measurement of soil moisture 246 

content, usually through microwave radar (active) and radiometers (passive) such as SMOS 247 

or SMAP (Soil Moisture Active Passive) (e.g. Martínez-Fernández et al., 2016; Mishra et al., 248 

2017; Rajasekaran et al., 2018), or through the assessment of vegetation using passive 249 

multispectral sensors such as Landsat or more recently Sentinel-2/-3 (e.g. Gu et al., 2008: 250 

Zhang et al., 2017a; Myoung-Jin et al., 2018). The former represents a direct measurement 251 

of soil moisture, while the latter infer this by assessing vegetation condition or productivity.   252 

 253 

4.1 Passive Multispectral Remote Sensing Approaches  254 

In the late 20th and early 21st century various multispectral indices, applicable in drought 255 

monitoring, were developed. These include the Normalised Difference Vegetation Index 256 

(NDVI) (Tucker, 1979), the Normalised Difference Water Index (NDWI) (Gao, 1996), the Soil 257 

Adjusted Vegetation Index (SAVI) (Huete, 1988), and the Vegetation Condition Index (VCI) 258 

(Kogan, 1995a) and the Temperature Condition Index (TCI) (Kogan, 1995b), which were later 259 

combined into the Vegetation Health Index (VHI) (Kogan, 1997).  260 

 261 

Of these, the most well-established approach to agricultural drought monitoring is the 262 

NDVI. The NDVI’s success derives from its exploitation of the ‘red-edge’ (the sharp increase 263 

in vegetation reflectance across the red and near-infrared regions of the electro-magnetic 264 

spectrum) to detect photosynthetically active plant material, from which plant stress can be 265 

inferred as the available moisture within the root zone is depleted (Wang et al., 2007; Chen 266 
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et al., 2014; Ahmed et al., 2017; West et al., 2018). The NDVI is calculated using the near-267 

infrared (NIR) and visible red bands of a multispectral sensor (Equation 1). 268 

 269 

𝑁𝐷𝑉𝐼 = 	'()*)+,
'()-)+,

    (Equation 1) 270 

 271 

The logic for the use of the NDVI for agricultural drought monitoring is that soil moisture 272 

plays a significant role in the sustained growth and healthiness of vegetation (Lavender & 273 

Lavender, 2016). Should soil moisture drop below a certain threshold vegetation will 274 

respond by wilting, lowering the NDVI due to a weakening of the leaf tissue structure and 275 

reduced chlorophyll content.  276 

 277 

One of the first applications of NDVI based drought monitoring used the NOAA (National 278 

Oceanic & Atmospheric Administration) AVHRR (Advanced Very High-Resolution 279 

Radiometer). Launched in 1979, AVHRR enabled global scale vegetation mapping with a 280 

frequent revisit period (Tucker et al., 1983). This was followed by numerous studies which 281 

aimed to refine the AVHRR NDVI products by accounting for atmospheric conditions, cloud 282 

masking, scale, temporal lags, amongst other variables (Holben & Fraser, 1984; Gatlin et al., 283 

1984; Townshend et al., 1985; Holben, 1986; Loveland et al., 1991; Gutman, 1991; Eastman 284 

& Fulk, 1993; Stone et al., 1994).  285 

 286 

As of September 2018, the combined search of NDVI and drought using Scopus returns 983 287 

scientific journal articles published since 1979. In a literature review of drought-related 288 

papers, the NDVI is featured as a key index in more than 30% of the 300 agricultural drought 289 

related papers reviewed (Figure 3).  290 
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 291 

 292 

Figure 3: Treemap of monitoring approaches used in agricultural drought monitoring of the 293 

papers reviewed. Papers were sourced from a range of journals including Remote Sensing of 294 

Environment, Remote Sensing, and the International Journal of Remote Sensing.  295 

 296 

NDVI-based drought monitoring has been conducted using a broad range of sensors over 297 

global, continental, regional and catchment scales (e.g. Park et al., 2004; Bayarjargal et al., 298 

2006; Neigh et al., 2008; Rojas et al., 2011; Nicolai-Shaw et al., 2017). Drought assessment 299 

and monitoring using NDVI has been undertaken across North America (e.g. Hwang et al., 300 

2017), South America (e.g. Sayago et al., 2017), Europe (e.g. Zribi et al., 2016), the Middle 301 

East (e.g. Pervez et al., 2014), Australia (e.g. Chen et al., 2014), Asia (e.g. Yu et al., 2003) and 302 

Africa (e.g. Funk & Brown, 2006). Few studies using these sensors have successfully 303 

attempted to assess vegetation at finer more local scales, in particular when vegetation is 304 

highly heterogeneous or sparse, due to sensor spatial/spectral resolution limitations (e.g. 305 

Assal et al., 2016). 306 

 307 
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More recently, studies using hyper-spatial/-spectral imagery (captured using very high 308 

spatial and spectral resolution satellites, aircraft, or ground-based/tram sensors) have also 309 

applied the NDVI to examine agricultural drought. For example, the Quickbird and RapidEye 310 

satellite sensors have shown great potential for high spatial resolution (~1m) assessment of 311 

drought impacts on vegetation (Garrity et al., 2013; Krofcheck et al., 2014), with results 312 

suggesting that vegetation dynamics closely reflect precipitation deficits at the field scale 313 

(Laliberte et al., 2004). The majority of this high-/hyper-resolution research has been based 314 

in North America and Europe (e.g. Calaudio et al., 2006; Mänd et al., 2010; Coates et al., 315 

2015), most likely due to the expense of obtaining such imagery, or the instalment of 316 

ground-based sensor systems, which cannot as easily be met in less developed regions.  317 

 318 

NDVI based approaches do however have limitations. For example the NDVI only represents 319 

conditions on one specific date and does not show condition relative to longer term change, 320 

is easily influenced by soil brightness in areas of low-density vegetation (Huete, 1988; 321 

Jasinski, 1990), and, at the other end of the spectrum, is limited in its sensitivity in high 322 

density biomass environments (Mutanga et al., 2012; Galidaki et al., 2016). The Vegetation 323 

Health Index (VHI) (Kogan, 1997) was seen to offer notable improvements over standalone 324 

NDVI-based monitoring as it provides a representation of vegetation condition relative to 325 

long term change. The VHI is a weighted average of two sub-indices: the VCI (Kogan, 1995a) 326 

and the TCI (Kogan, 1995b)  327 

 328 

𝑉𝐶𝐼 = (',0(*	',0(123)	5	677
',0(189*	',0(123

   (Equation 2) 329 

𝑇𝐶𝐼 = 	 677	(;<189	*	;<)
;<189	*	;<123

  (Equation 3) 330 
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𝑉𝐻𝐼 = 	𝛼	𝑥	𝑉𝐶𝐼 + (1 − 	𝛼)	𝑥	𝑇𝐶𝐼	 (Equation 4) 331 

 332 

Where max/min represent the maximum and minimum values of that variable over the 333 

study period and BT is Brightness Temperature recorded from a thermal sensor. The VCI 334 

pixel-based normalisation minimises any spurious or short-term signals in the data and 335 

amplifies the long-term trend (Anyamba & Tucker, 2012). Studies assessing the VCI have 336 

found that both NDVI anomalies and the VCI are correlated with rainfall deficits, but the VCI 337 

offers a more robust comparison of seasonal drought conditions (Liu & Kogan, 1996). The 338 

VCI is commonly used, with results suggesting the index is effective in monitoring vegetation 339 

change and agricultural drought at continental scales (Jiao et al., 2016; Winkler et al., 2017). 340 

 341 

The TCI makes use of thermal remote sensing technologies and measurements of LST. LST 342 

computed from thermal infrared bands, from sensors such as AVHRR and Landsat (Landsat 3 343 

onwards), has been found to provide valuable information on surface moisture conditions 344 

(Gutman, 1990). As a result, efforts have been made to merge multispectral vegetation 345 

indices with measurements from thermal-equipped sensors, such as the Temperature 346 

Vegetation Drought Index (TVDI) (Sandholt et al., 2002) or the Vegetation Supply Water 347 

Index (VSWI) (Haboudane et al., 2004). Compared to NIR-based vegetation indices alone, 348 

temperature/brightness indices have been found to be more sensitive to soil water stress 349 

(Wang et al., 2004). 350 

 351 

By the time of its publication (1997) the VHI had successfully been used in research in parts 352 

of Asia, Europe, North America and Africa (Kogan, 1994a; 1994b; 1995a; 1995b). The VHI 353 

has been used in applications of drought management (e.g. San Miguel-Ayanz et al., 2000; 354 
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Qu et al., 2019), in the development of more complex remote sensing monitoring 355 

approaches (e.g. Brown et al., 2008), and in vegetation health and crop studies (e.g. Rahman 356 

et al., 2009). The VCI/VHI have also been used in combination with other indices such as the 357 

NDWI and Enhanced Vegetation Index (EVI) (Huete et al., 2002). The value of a multi-index 358 

approach is that different indices have been found to have differing sensitivities to factors 359 

including vegetation type/density/biomass and soil brightness (Prabhakara et al., 2015). 360 

 361 

Given the main socio-economic impact of agricultural drought is the potential disequilibrium 362 

between the demand and supply of food/crops, being able to accurately monitor crop 363 

growth and productivity is of particular importance. A commonly used method to assess 364 

vegetation growth and productivity is to calculate gross primary productivity (GPP) (Figure 365 

3). GPP represents the rate at which vegetation converts light into energy via 366 

photosynthesis (Gilabert et al., 2015). New sensors and analytical approaches have meant 367 

that traditional hydrological methods of calculating GPP have been revisited (Rossini et al., 368 

2012). Many approaches now use satellite data in combination with models and other 369 

datasets (Song et al., 2013; Anav et al., 2015; Joiner et al., 2018). In the papers reviewed it 370 

was common for GPP to be based on the light-use efficiency (LUE) method of Monteith 371 

(1972) (Equation 5).  372 

 373 

GPP = LUE	𝑥	𝐹𝐴𝑃𝐴𝑅LMN	𝑥	𝑃𝐴𝑅OP (Equation 5)  374 

 375 

Where PARin is top of canopy photosynthetically-active radiation and FAPARchl is the fraction 376 

of PARin absorbed by chlorophyll. The inclusion of remotely sensed data has largely been to 377 

provide a value for FAPARchl. The NDVI is one of the most commonly used proxies of 378 
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FAPARchl (e.g. Zhang et al., 2009; Rossini et al., 2012; Joiner et al., 2018). Therefore, a 379 

revision to Equation 5 would be:  380 

 381 

GPP = S	𝑥	𝑉𝐼	𝑥	𝑃𝐴𝑅OP	 (Equation 6) 382 

 383 

Where VI is the selected vegetation index to represent FAPARchl and S is a constant 384 

representing LUE (Sims et al., 2008). A range of satellites and sensors have been used to 385 

calculate the VI element of Equation 6 (Nightingale et al., 2007; Zhang et al., 2014; Dong et 386 

al., 2015; Bayat et al., 2018). This includes some hyper-resolution sensors (Krofcheck et al., 387 

2014; Gitelson et al., 2018). Findings suggest that GPP is an important variable for 388 

monitoring drought and is more sensitive to non-typical dry conditions than traditional VIs 389 

such as the NDVI and EVI (Wagle et al., 2014). Sims et al. (2008) also note the non-linear 390 

relationship between GPP and LST under extreme drought conditions (compared to a linear 391 

relationship under normal conditions). This is likely due to the low values and highly variable 392 

nature of VIs under drought conditions (owing to poor quality/stressed vegetation or sparse 393 

coverage). GPP has also proved useful in the detection of irrigated/non-irrigated fields in 394 

droughty southern USA (Peng et al., 2013; Doughty et al., 2018).  395 

 396 

Beyond calculation of GPP, some drought monitoring studies have further calculated the 397 

Water Use Efficiency (WUE) of crops (e.g. Lu & Zhang, 2010; Ahmadi et al., 2019). WUE is 398 

defined as the ratio of leaf carbon uptake to water loss (Morison & Morecroft, 2006). WUE 399 

can be calculated using Equation 7  400 

 401 

𝑊𝑈𝐸 =	 0UNVWX	UY	Z[\X]	V^X_	`]U_VL\OaXNb
0UNVWX	UY	Z[\X]	`U\XP\V[NNb	[a[ON[cNX

  (Equation 7) 402 
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 403 

The volume of water used productively is taken as GPP, and the volume of water available 404 

as evapotranspiration (Huang et al., 2015; Yang et al., 2016). MODIS GPP and 405 

evapotranspiration products have been used to calculate WUE with results showing similar 406 

patterns to GPP under drought conditions. For example, Lu & Zhuang (2010) show non-407 

linear trends between WUE and drought intensity; with WUE increasing under moderate 408 

conditions but decreasing sharply under severe drought.  409 

 410 

While the development of multispectral and thermal indices from passive sensors has been 411 

of interest to the research community for some time, Kogan (1997) noted that while 412 

technology was advancing indices such as the NDVI and VHI, at the time, had not yet been 413 

ground-truthed or validated against traditional monitoring techniques. To an extent this is 414 

still true today, with issues around accuracy and uncertainty in remotely sensed data still a 415 

challenge (Liu et al., 2016). However, as demand has grown for continuous and reliable 416 

data, studies have examined the relationship between traditional approaches/ground 417 

measurements and remote sensing observations. Wang et al. (2007) found that MODIS 418 

derived NDVI at 16km spatial resolution produced statistically significant correlations  419 

between NDVI and measured soil moisture. Gu et al. (2008) conducted similar analysis also 420 

using MODIS derived NDVI, finding that correlation between NDVI and measured soil 421 

moisture was dependent on landcover heterogeneity and soil type. Areas with homogenous 422 

vegetation cover and silt loams produced the highest correlations, while areas with 423 

heterogenous vegetation cover and loam soils produced the lowest correlations. The 424 

correlation between remote sensing and traditional meteorological/ground-based indices 425 

and data is significant in the field of remote sensing-based drought monitoring. Remote 426 
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sensing indices offer a multi-scaled approach, and do not rely on site-based climatic 427 

datasets which are sparse in many parts of the world (Choi et al., 2013; Sur et al., 2015). As 428 

satellites are able to observe areas of the Earth where such ground-based datasets do not 429 

exist, effective drought monitoring and management can still take place.  430 

 431 

4.2 Microwave Remote Sensing Approaches 432 

Both active and passive sensors which record measurements in the microwave segment of 433 

the EMS have been applied in agricultural drought monitoring research. Active microwave 434 

sensors (radar/scatterometers) use backscatter strength to determine moisture conditions. 435 

Retrievals of soil moisture content from active microwave sensors can characterise key 436 

drought variables, including the intensity, frequency and spatial extent of soil moisture 437 

deficit. A key benefit of microwave sensors is they can provide continuous coverage over 438 

large geographic extents, and do not suffer the same limitations associated with light 439 

availability and cloud coverage as their multispectral counterparts.  440 

 441 

However, active microwave sensors are limited in their ability to penetrate deep soil 442 

horizons. Typically, sensors can monitor moisture at a depth equal to about 1/10th to half of 443 

the sensor’s wavelength. Longer wavelengths result in deeper penetration, with L-band 444 

sensors (around 1.4GHz) offering the deepest measurements at around 1-5cm. Microwave 445 

sensors tend to have coarse spatial resolution (often kilometres, rather than metres) 446 

resulting in studies having a global or continental scale; unlike passive sensors which have 447 

much finer spatial resolution allowing analysis to be undertaken at more local scales. This is 448 

often due to a trade-off between antenna size (affecting wavelength size and spatial 449 

resolution) and orbital geometry (which affects satellite revisit time) (Pan et al., 2017). In 450 
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comparison to multispectral sensors, the number of microwave sensors in orbit is smaller, 451 

as the former usually have a broader range of applications. Nonetheless, global coverage, 452 

long-term records and often short revisit times (daily/weekly) make microwave sensor 453 

derived soil moisture estimates valuable for drought monitoring and impact assessment 454 

over global, continental and regional scales.  455 

 456 

The SMAP (Soil Moisture Active Passive) mission launched in 2015 was well positioned to 457 

revolutionise soil moisture remote sensing (Entekhabi et al., 2010). The goal was a product 458 

which merged high spatial resolution active radar and coarse-resolution, but highly 459 

sensitive, passive radiometer observations (Entekhabi et al., 2010; Das et al., 2014), to 460 

produce relatively high spatial (3km, 9km and 36km) and temporal resolution (2-3 days) 461 

data products. Early SMAP data was assessed for accuracy and validity and satisfied all 462 

standards (Colliander et al., 2017). However, only 9 months into the mission the on-board 463 

radar equipment failed and was deemed unrepairable. However, there have been successful 464 

attempts to downscale and produce higher spatial resolution datasets using in-situ field 465 

observations and available active-passive algorithms (Das et al., 2018; Wei et al., 2019. 466 

There have also been attempts to compare and merge available SMAP products with 467 

observations from other active microwave sensors such as ASCAT (Advanced 468 

SCATterometer) (Kim et al., 2018), SMOS (Al-Yaari et al., 2017) and Sentinel-1 SAR data (Das 469 

et al., 2016) with varying results depending on local conditions. Despite the loss of the on-470 

board radar, recent studies suggest SMAP products have potential for large scale 471 

agricultural drought monitoring. Eswar et al. (2018) compared SMAP estimates of soil 472 

moisture with modelled USDM (US Drought Monitor) and SPI data. Results indicated that 473 

SMAP data over 13-26 week intervals was able to accurately capture changing drought 474 



 22 

intensity levels. Bai et al. (2018) used SMAP estimates to calculate the Soil Water Deficit 475 

Index (SWDI) for mainland China and concluded that SMAP derived SWDI has good overall 476 

performance under drought conditions.  477 

 478 

Launched in 2009, SMOS was the first mission to provide global measurements of L-band 479 

brightness temperature. Its microwave radiometer allows for remotely sensed estimation of 480 

soil moisture (and ocean salinity) with a spatial resolution of approximately 43-50km and a 481 

revisit time of less than three days (Kerr et al., 2010). Like SMAP, studies using SMOS soil 482 

moisture retrievals suggest that the satellite is well suited to support the monitoring of 483 

agricultural drought, through both direct sensor observations or the data product’s utility in 484 

calculating agricultural drought indices (e.g. Sánchez et al., 2016; Pablos et al., 2017; 485 

Tagesson et al., 2018). The SMOS mission is reported to be in excellent technical condition 486 

(Mecklenburg et al., 2016), so it is likely that the sensors role in agricultural drought 487 

monitoring will continue to grow.  488 

 489 

The AMSR-E (Advanced Microwave Scanning Radiometer - Earth Observing System), also 490 

equipped with a passive microwave radiometer, has shown similar potential for effective 491 

drought monitoring (e.g. Rao et al., 2019). The AMSR-E observation record is made up of 492 

daily 25km (resampled) soil moisture products from 2002-2011. AMSR-E historic products 493 

have been reanalysed to calculate various agricultural drought indices and results show that 494 

the data record has good potential for the representation of long-term drought events over 495 

large spatial scales (Champagne et al., 2011; Abelen et al., 2015; Draper & Reichle, 2015; 496 

Zhang et al., 2017a; Liu et al., 2017). As with multispectral sensors, a range of active and 497 

passive microwave sensors, including those discussed above, have been evaluated against 498 
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in-situ measurements with generally positive results, although this is dependent on 499 

analytical procedures and local characteristics (Al-Yaari et al., 2019; Zhang et al., 2019).  500 

 501 

5.0 Integrated Approaches to Drought Monitoring  502 

Zhang et al. (2017a) highlight the importance of a multi-/integrated index approach to 503 

drought monitoring. Many studies use various remote sensing products to simultaneously 504 

explore multiple drought types. Nicolai-Shaw et al. (2017) used GLEAM data as an additional 505 

factor for agricultural drought monitoring, by exploiting the link between evaporation and 506 

vegetation condition. The delay in the response of vegetation to peaks in evapotranspiration 507 

was of particular interest; which the authors attribute to a potential limitation of GLEAM 508 

data - the underestimation of water availability in deeper soil horizons which supports plant 509 

growth. In a similar study, Orth & Destouni (2018) used various remote sensing data 510 

products to assess water balance disequilibrium during droughts across mainland Europe. In 511 

particular, they focused on the relationship between various hydrological cycle stages, such 512 

as precipitation, evapotranspiration (GLEAM), vegetation condition (vegetation index 513 

based), and runoff. GLEAM data was incorporated to reveal patterns in evapotranspiration, 514 

which lagged significantly behind variations in runoff following drought onset in southern 515 

Europe, suggesting that agricultural drought reduces runoff faster than it reduces 516 

evapotranspiration.  517 

 518 

Remotely sensed data products have also been used to calculate new integrated monitoring 519 

indices designed to monitor various drought types. For example, Du et al. (2013) propose 520 

the Synthesized Drought Index (SDI) – a principal components product combining the 521 

Vegetation Condition Index (VCI) (Kogan 1995a), the Temperature Condition Index (TCI) 522 
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(Kogan 1995b) and the PCI. The uniqueness of the SDI is the integration of remote sensing 523 

data products derived from MODIS and TRMM, allowing an integrated assessment of 524 

precipitation deficit, soil moisture depletion and vegetation stress as drought propagates. 525 

The integration of indices and different remote sensing derived data products is an 526 

important development in effective drought monitoring across multiple drought ‘types’. 527 

This is highlighted by Zhang et al. (2017a) who found that shorter-term dry events are not 528 

fully represented in many agricultural or hydrological drought indices; which are better 529 

suited for longer-term drought monitoring. Therefore, there is a need to use some form of 530 

meteorological index alongside these measures to fully examine drought propagation and 531 

short-term meteorological droughts. 532 

 533 

Even when monitoring a small number of drought-related variables it is important to 534 

consider a range of comparable datasets from different sensor types (Hao et al., 2015). For 535 

agricultural drought monitoring, Zhang et al. (2017a) show how different soil moisture 536 

datasets and indices are correlated with different length accumulation periods of SPI data 537 

(which represent different drought severity levels). Passive microwave remotely sensed 538 

data from AMSR-E, in the form of the Soil Moisture Condition Index (SMCI) (Zhang & Jia, 539 

2013), correlated well with short-term SPI in regions with low vegetation cover, while 540 

multispectral indices, such as the VCI and TCI, were better correlated with 3-month SPI. The 541 

use of multiple remotely sensed soil moisture products is clearly valuable in agricultural 542 

drought monitoring as different indices and sensors have particular strengths and 543 

weaknesses. However, the relationship will be highly dependent on the characteristics of 544 

the land surface variables under observation, for example some vegetation parameters may 545 

respond more slowly to drought onset than soil moisture at the same location due to 546 
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resilient vegetation biophysical characteristics. Other local land surface characteristics will 547 

also affect this relationship such as terrain and landcover (Zhang et al., 2017a).  548 

 549 

The development of integrated indices combining traditional meteorological datasets and 550 

remote sensing approaches has been of interest in drought monitoring research more 551 

recently (Liu et al., 2016). The integration of local field measurements, such as those from 552 

soil moisture probes, potentially offers a significant improvement over using remotely 553 

sensed data alone. Even with recent advances in remote sensing, it is only possible to 554 

measure the soil moisture content of the surface material (1-5cm). This is problematic given 555 

that crop roots are usually 10-20cm deep, and consequently root zone soil moisture deficits 556 

cannot be determined directly. This could be resolved by incorporating in-situ 557 

measurements at deeper depths into drought monitoring techniques, alongside satellite 558 

observations. The benefit of such approaches is that the spatial and temporal benefits of the 559 

remote sensing approaches are retained, while localised data for soil moisture, precipitation 560 

and other variables are also incorporated. 561 

 562 

Brown et al. (2008) developed one of the first and most widely applied integrated drought 563 

monitoring indices – VegDRI (Vegetation Drought Response Index). VegDRI was developed 564 

to exploit the strengths of both remote sensing and climate-based drought monitoring 565 

techniques. The remote sensing component provides spatial information about the 566 

distribution and general condition of vegetation from NDVI data. VegDRI produces drought-567 

related vegetation stress/condition data at 1km resolution which is updated weekly (Brown 568 

et al., 2008). Initially VegDRI was compared against the USDM model and results suggested 569 

that VegDRI offered significant advancements. As of 2015, VegDRI features as a part of the 570 
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new USDM model to enhance the spatial resolution of modelled drought patterns (Hao & 571 

Singh, 2015). Since its development VegDRI has been used in the development of new 572 

models (e.g. Tadesse et al., 2010) and to contribute to drought assessment at a national 573 

scale (e.g. Wu et al., 2013). As new sensors are launched, and datasets developed, it is likely 574 

that remotely sensed data will be incorporated into national scale models and early warning 575 

systems in a similar way (Roy et al., 2014).  576 

 577 

While the benefits of integrating field measurements and traditional meteorological indices 578 

with remote sensing techniques are clear, many studies are still focusing on developing 579 

solely remote sensing-based approaches. Since VegDRI (Brown et al., 2008) was published, 580 

many remote sensing only based techniques have been proposed, such as the Temperature-581 

Vegetation-Soil Moisture Dryness Index (TVMDI) which utilises LST, soil moisture and NDVI 582 

observations (Amani et al., 2017). This is likely due to newer and more advanced satellites 583 

and sensors having been launched in the interim, such as Sentinel-2 and SMAP. As a result, 584 

recent research has been characterised by the parallel development of both remote sensing 585 

and integrated approaches (Figure 4).  586 

 587 

Figure 4: Key milestones and a chronological view of the development of agricultural 588 

drought monitoring indices 589 
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 590 

As evidenced previously, a review of the remote sensing literature relating to agricultural 591 

drought monitoring found that the NDVI is by far the most commonly applied monitoring 592 

method. This is significant given that since its development, many more sophisticated and 593 

potentially more representative indices have been developed, including pure remote 594 

sensing approaches, and integrative remote sensing and field-based indices. In relation to 595 

sensor type, passive sensors/approaches outnumber active in the papers reviewed. This is 596 

likely due to a number of factors relating to data availability/resolution/timeliness, ease of 597 

application and interpretation, awareness of methods, and what is perceived as ‘standard 598 

practice’ (Bachmair et al., 2016).  599 

 600 

6.0 Streamflow Monitoring  601 

Agricultural droughts can trigger positive feedback loops in the hydrologic cycle (Teuling et 602 

al., 2005). Soil moisture will continue to be lost during a drought via evapotranspiration, 603 

which will be enhanced due to increased radiation and temperature (Van Loon, 2015). This 604 

loss will not be offset with precipitation, reducing the percolation and throughflow of water 605 

to recharge groundwater and streamflow (Ivanov et al., 2008). This triggers a hydrological 606 

drought, characterised by a deficit in the supply of surface and subsurface water (Sheffield 607 

& Wood, 2011). Hydrological drought is often quantified by reduced 608 

streamflow/groundwater and low levels in lakes and reservoirs (Tallaksen & Van Lanen, 609 

2004). Hydrological droughts occur over long time scales and socio-economic impacts can 610 

be severe (Figure 2) (Isaak et al., 2012).   611 

 612 
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In comparison with meteorological and agricultural drought, the development of remote 613 

sensing-based approaches to hydrological drought has been more limited. In particular, 614 

research into the role of remote sensing in providing estimates of river discharge has been 615 

minimal due to the lack of sensors/satellites dedicated to this purpose (Lettenmaier et al., 616 

2015). Some studies have used basic fluvial geomorphological theory and supplementary in-617 

situ data (river flow gauges) to estimate discharge via remote sensing. Landsat and SAR 618 

datasets have been used in this context to provide estimates of channel width to calculate 619 

hydraulic geometry relationships (e.g. Smith et al., 1996; Gleason & Smith, 2014; Gleason et 620 

al., 2014). However, there are no studies to date which apply this within the context of 621 

hydrological drought.  622 

Through remote sensing technologies it has been possible however to monitor change in 623 

Earth’s total water storage in association with hydrological/groundwater drought. The 624 

Gravity Recovery & Climate Experiment (GRACE) (Tapley et al., 2004) mission launched in 625 

2002 was operated by NASA and the German Aerospace Center. The mission originally had a 626 

lifespan of 5 years, however due to its successes, the mission was extended until 2017. The 627 

GRACE mission consisted of two satellites in tandem orbit. On-board instruments measured 628 

the distance between the satellites, which fluctuated at around 200km as a result of Earth’s 629 

changing gravitational field. These measurements were used to produce monthly 630 

representations of changes in the Earth’s gravity field. The main drivers being the shifting 631 

oceanic/atmospheric/terrestrial distribution of water within the hydrological cycle. GRACE 632 

therefore observed terrestrial water storage (TWS) variations in all water storage locations 633 

(soil moisture, surface water, and groundwater). GRACE was unique in its non-dependence 634 
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on surface conditions and being able to provide measurements below the first five 635 

centimetres of the surface.   636 

GRACE data has been successfully applied in numerous hydrological drought monitoring 637 

studies, for example in the analysis of drought event signatures and propagation (Hirschi et 638 

al., 2006; Yirdsaw et al., 2008; Thomas et al., 2014; Ma et al., 2017), examining regional 639 

differences in drought severity (Xavier et al., 2010; Frappart et al., 2013), and monitoring 640 

groundwater depletion (Rodell et al., 2009; Zhong et al., 2018). GRACE has also been used 641 

to calculate indices which can be applied in large scale hydrological drought monitoring, 642 

such as the Drought Severity Index (DSI) (Zhao et al., 2017), the Total Storage Deficit Index 643 

(TSDI) (Narasimhan & Srinivasan, 2005; Yirdaw et al., 2008) and the Multivariate 644 

Standardised Drought Index (MSDI) (Forootan et al., 2019); most being applied in order to 645 

show spatio-temporal changes in drought severity (e.g. Voss et al., 2013; Zhao et al., 2015; 646 

Forootan et al., 2016). Recent work has also sought to incorporate GRACE data into complex 647 

hydrological and groundwater models (e.g. Schumacher et al., 2018) and in the USDM, 648 

GRACE was used to monitor hydrological/groundwater drought.  649 

Under drought conditions GRACE data has been used alongside in-situ measurements and 650 

other sensors (Forootan et al., 2016), and assessed against climate models (Xia et al., 2016) 651 

and established hydrological drought indices. Results suggest that GRACE significantly 652 

improved our ability to monitor hydrological/groundwater drought over large spatial and 653 

temporal scales (Long et al., 2014; Thomas et al., 2017; Sun et al., 2017). For example, 654 

Forootan et al. (2019) used GRACE TWS data to assess the global distribution of hydrological 655 

drought events and their relationship with atmospheric/oceanic teleconnections. They 656 

found that droughts in the Middle East, America and South Asia have increased in intensity 657 
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in recent years, and that in Asia and Australia hydrological drought events are largely 658 

associated with the El Niño Southern Oscillation (Forootan et al., 2019).  659 

 660 

7.0 Snow Monitoring 661 

Accurate monitoring of snow cover and depth is important for the characterization of 662 

hydrological droughts due to snow’s role in ensuring constant water supply in many parts of 663 

the world (Shaban, 2009; Kumar et al., 2014). A lower than normal winter snowfall could 664 

lead to a hydrological drought through reduced streamflow supply later in the water year 665 

(AghaKouchak et al., 2015). As with other drought variables, long records and current 666 

observations of spatio-temporal consistent snow cover measurements, especially in 667 

mountainous upland areas, are not always readily available. Therefore, remote sensing 668 

plays an important role in providing these measurements.   669 

Multispectral based snow monitoring approaches rely on snow’s strong spectral 670 

reflectance/signature and discernibility from surrounding landcovers (Pepe et al., 2005; 671 

Dozier et al., 2009). Satellites and sensors such as AVHRR, MODIS and ENVISAT have been 672 

routinely used in multispectral-based snow cover assessments (Romanov et al., 2000; Pepe 673 

et al., 2005) and indices such as the Normalised Difference Snow Index (NDSI) have been 674 

proposed (Hall et al., 2002). Validation of multispectral snow cover datasets against in-situ 675 

measurements suggests high levels of accuracy, although this is heavily influenced by 676 

underlying and neighbouring landcovers (Hall & Riggs, 2007; Simic et al., 2004). A significant 677 

limitation however of multispectral snow monitoring is the potential spectral signature 678 

confusion between snow cover and clouds, which can lead to notable snow cover 679 

overestimation (Wang et al., 2005). Alternatively microwave sensors, which are not limited 680 
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by cloud cover, can provide estimates of both snow cover and depth (Durand et al., 2008). 681 

However, the longer microwave wavelengths, and associated antenna size required to 682 

achieve high spatial resolution data (or at least data comparable to that observed by 683 

multispectral sensors), has been a technological limitation (Kongoli et al., 2012).  684 

In specific relation to drought monitoring, studies have used remotely sensed snow 685 

cover/depth estimates in numerous land surface/hydrological models in order to improve 686 

streamflow estimates, and therefore monitor hydrological drought events (e.g. Dong et al., 687 

2007). Multispectral snow cover estimates have also been used alongside ancillary datasets, 688 

such as soil moisture, in more general agricultural and hydrological drought monitoring 689 

(Kumar et al., 2012)  690 

 691 

8.0 Past Challenges & Future Opportunities  692 

The key challenge in the remote sensing of drought in the past has revolved around 693 

resolution (spatial, spectral and temporal). Kogan (1997) noted that AVHRR data was used in 694 

many of the index development studies that took place at the close of the 20th Century. 695 

AVHRR allowed for the development of drought monitoring indices based on a 1-month 696 

data publication period. A month, however, could be considered too long a period to assess 697 

variation in vegetation condition during a drought, as the water deficit related change in leaf 698 

structure occurs between 3 and 7 days (Anyamba & Tucker, 2012). Additionally, weather 699 

patterns typically change at an even faster rate which can significantly affect the creeping 700 

nature of drought onset and recession (Sen, 2015). Kogan (1997) therefore suggests that 701 

one of the key limitations of remote sensing approaches at the time was that the monthly 702 
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publication interval of data was inadequate. Studies conducted using MODIS and Landsat 703 

have also encountered temporal resolution limitations.  704 

 705 

As well as challenges associated with temporal resolution, a recurring limitation of many 706 

remote sensing approaches has been the spatial and spectral resolution of sensors. In 707 

agricultural drought monitoring, for example, datasets derived using both active and passive 708 

sensors have encountered limitations associated with resolution (Becker, 2006; Davies et 709 

al., 2008; Rao et al., 2019). Often researchers have had to trade-off spatial and spectral 710 

resolution when selecting data products (Lavender & Lavender, 2016; West et al., 2018). For 711 

example, when using multispectral sensors, it is common for either the spatial resolution 712 

not to be high enough to observe low density/dispersed vegetation, or the spectral 713 

resolution to be limited in its sensitivity to change in NIR reflection. These technological 714 

issues have limited the potential detection of changes in key environmental variables under 715 

drought conditions. Davies et al. (2016) attempted to use Landsat 8 derived NDVI (at 30m 716 

spatial resolution) to assess soil moisture recharge in semi-arid Rajasthan, India. While the 717 

results of this study were statistically inconclusive, they add to the body of evidence 718 

suggesting a role for remotely sensed NDVI products in providing proxy information for 719 

changes in moisture condition when sensors have appropriate spatial and spectral 720 

resolutions.  721 

 722 

Following more recent technological advancements and the launch of new satellites/sensors 723 

there is renewed potential to address the limitations of previous studies with regard to 724 

resolution. The launch of the ESA (European Space Agency) Sentinel-2 multispectral imaging 725 

mission has provided a significant improvement in the spatial, spectral and temporal 726 
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resolution of global coverage freely available multispectral imagery (Drusch et al., 2012). 727 

Sentinel-2A was launched in June 2015 and Sentinel-2B in March 2017. From June 2017 728 

both satellites have been fully operational giving a revisit time of around 10 days at the 729 

equator and 2-3 days towards the poles (with the number of available images for analysis 730 

depending on latitude and cloud cover). Each Sentinel-2 satellite is equipped with a single 731 

MultiSpectral Instrument (MSI) with a ground-tracked swath of 290km and 13 spectral 732 

bands (ranging from 10-60m spatial resolution), including four high spectral resolution 733 

bands positioned at the red-edge region of the EMS designed to provide spectrally precise 734 

measurements of vegetation condition and leaf chlorophyll content (Gitelson et al., 2005; 735 

Delegido et al., 2011; Clevers & Gitelson, 2013; Frampton et al., 2013). Because of its 736 

enhanced resolution, initial studies have suggested that the mission has potential for 737 

considerable advances in the remote sensing of vegetation (Hill, 2013; Korhonen et al. 2017; 738 

Sadeghi et al., 2017; Clevers et al., 2017; Lambert et al., 2018; Vanino et al., 2018), which 739 

may in turn provide improvements in agricultural drought monitoring. 740 

 741 

West et al. (2018) correlated NDVI derived from each NIR band from Sentinel-2 and the 742 

standard NIR band from Landsat 8, against ground measured soil moisture in extreme 743 

drought conditions and sparse vegetation. While Sentinel-2 NDVI produced significant 744 

correlations (variation was found across the different NIR bands and spatial resolution), no 745 

significant results were found with NDVI derived from Landsat 8. The spatial dispersion of 746 

vegetation may well explain the lack of significant results with Landsat 8 data due to the 747 

30m resolution being too coarse too detect the vegetation signal (West et al., 2018). The 748 

improved temporal resolution of Sentinel-2 was also noted in this study. As well as NDVI, 749 

GPP estimates derived from Sentinel-2 have been explored with promising results 750 
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(Sakowska et al., 2016). Most research suggests a key role for Sentinel-2 in future drought 751 

monitoring. A key research challenge remains however in assessing the relative importance 752 

of spatial and spectral resolution in drought monitoring (Dotzler et al., 2015; Lepine et al., 753 

2016; Chemura et al., 2017).  754 

 755 

As well as comparative studies, recent research has also sought to combine datasets from 756 

Sentinel-2 and Landsat 8. The MSI on-board Sentinel-2 and the OLI (Operational Land 757 

Imager) of Landsat 8 have partially overlapping spectral characteristics, and their differing 758 

spatial resolutions can be addressed through resampling (e.g. Li et al., 2017). Therefore, 759 

there is potential for data from the two to be integrated through data fusion or 760 

transformation (e.g. Zhang et al., 2018). Data fusion of Sentinel-2 and Sentinel-3 has also 761 

been explored (Korosov & Pozdnyakov, 2016). Given that key drought-related variables such 762 

as LST and NDVI can be derived from Sentinel-3’s OCLI (Ocean Land and Colour Instrument) 763 

and SLSTR (Sea and Land Surface Temperature Radiometer) sensors (Donlon et al., 2012), 764 

there may also be significant drought monitoring opportunities using combined Sentinel-2 765 

and Sentinel-3 data that have yet to be fully explored (Guzinski & Nieto, 2019).  766 

 767 

Issues around spatial/spectral resolution may also be addressed with the continued rise in 768 

number of hyper-spatial/-spectral sensors being launched in the coming years. For example, 769 

the planned NASA HyspIRI (Hyperspectral InfraRed Imager), which will be equipped with 770 

10nm bands from the visible to short wave infrared segments of the EMS (see Lee et al., 771 

2015), should be able to provide valuable measurements for agricultural drought-related 772 

monitoring.  773 

 774 
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Beyond resolution-related limitations, a key challenge historically has been the shorter-term 775 

availability of remotely sensed data for inclusion in drought monitoring practices when 776 

compared to traditional in-situ measurements (Liu et al., 2016). For example, the SPI has a 777 

conventional requirement of a long-term precipitation record for calculation (Sen, 2015), 778 

which until fairly recently has not been available solely from remotely sensed data (e.g. the 779 

CHIRPS rainfall dataset). The availability of a long data record is what gives the Landsat 780 

series satellites and sensors a particular advantage over newer missions; having a 40-year 781 

record comprised of observations from 7 satellites (Roy et al., 2014). With the launch of 782 

Landsat 9 (currently scheduled for late 2020) this record will continue to expand allowing 783 

new opportunities for long term agricultural drought monitoring practices. The continuation 784 

of the Landsat record may also help in tackling limitations associated with Landsat 8’s 785 

frequency of observation (e.g. West et al. 2018). Given the success of the GRACE mission, in 786 

hydrological drought monitoring and beyond, the remote sensing community also awaits 787 

measurements from the GRACE-FO (Follow On) mission which was successfully launched in 788 

May 2018 and will extend the data record of its predecessor.  789 

 790 

As noted above, accurate estimate of river discharge from solely remotely sensed data is 791 

still a major ambition (Lettenmaier et al., 2015). The proposed 2020 launch of the ESA SWOT 792 

(Surface Water Ocean Topography) mission may well achieve this goal. SWOT is expected to 793 

provide estimates of water surface slope, elevation and width for large river systems 794 

globally (i.e. those with a minimum width of 100m). Research using synthetic SWOT 795 

observations of channel slope and elevation suggest great potential of the mission to 796 

reliably estimate river discharge (Andreadis et al., 2007; Biancamaria et al., 2011). While no 797 
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research has been conducted relating SWOT to hydrological drought monitoring, the above 798 

studies suggest the sensor may have potential in this field.  799 

 800 

As well as new sensors, opportunities for effective drought monitoring will continue to 801 

expand with new approaches to ‘blend’ data products, such as the fusion of Landsat, 802 

Sentinel-2 and Sentinel-3 discussed above. A key example of a sensor blended data product 803 

is the ESA CCI (Climate Change Initiative) SM (Soil Moisture) dataset. The CCI SM dataset 804 

combines various active and passive soil moisture datasets into three products: a merged 805 

ACTIVE and merged PASSIVE, and a COMBINED active and passive product (Dorigo et al., 806 

2017). The current version of the dataset covers the period 1978-2016. The CCI SM dataset 807 

has been used in agricultural drought-related research (e.g. Chen et al., 2014; Sawada, 808 

2018), with the authors noting the value of the long CCI SM data record. As the data 809 

continues to expand temporally and improve in accuracy, it is expected that its utility in the 810 

field of drought monitoring will be core to examining long term soil moisture trends. Recent 811 

comparisons of CCI SM data and GLDAS (Global Land Data Assimilation) simulated soil 812 

moisture show that the two are significantly correlated; showing similar severity and spatial 813 

extents of drought events. However, the research concluded that the ESA CCI SM dataset is 814 

more effective in drought monitoring, except in highly vegetated areas (Liu et al., 2019); 815 

further demonstrating the high potential of this dataset. 816 

 817 

As well as new sensors and data products, new applications of existing datasets and 818 

analytical platforms are becoming available as technology continues to advance. For 819 

example, recent work has seen SMAP data used to improve estimates of evapotranspiration 820 

(Purdy et al., 2018). The utility of the Google EarthEngine in rapidly calculating 821 
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evaporation/evapotranspiration for meteorological drought monitoring has already been 822 

highlighted in this review. The platform allows for analysis of key remote sensing data 823 

products, including the full Landsat record from Landsat 4 onwards, Sentinel-2A, MODIS 824 

(including VI’s, GPP estimates and thermal anomalies), and TRMM and GPM precipitation 825 

estimates (Gorelick et al., 2017). However, the platform has still yet to be fully utilised for 826 

wider/integrated drought monitoring approaches at a global scale.  827 

 828 

With increased research on the effects of climate change and human activities, the role of 829 

anthropogenic influences on drought event propagation and termination is now becoming 830 

ever more apparent, suggesting that drought is not only a phenomenon induced by solely 831 

natural processes (Van Loon & Van Lanen, 2013; Van Loon et al., 2016). Various methods to 832 

assess the role of human activity on drought have been proposed (Rangecroft et al., 2019; 833 

Van Loon et al., 2019), however no such research has yet considered the role of remote 834 

sensing and earth observation in assessing anthropogenic activity and the association with 835 

drought propagation/termination.  836 

 837 

9.0 Summary  838 

Since, 1970 there has been a fundamental shift in how we approach drought monitoring; 839 

moving away from traditional site-based measurements which are often limited in temporal 840 

and spatial resolution to the deployment of remote sensing technologies. In 2005 Wilhite & 841 

Pulwarty noted four key issues in drought monitoring. These challenges are still relevant 842 

today; however we suggest that the application of remote sensing has, and will continue to, 843 

help the research community address these:  844 

 845 
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1. Spatial resolution and coverage: Remote sensing has significantly improved the 846 

coverage and spatial resolution of drought-related variables and has allowed for 847 

effective water management in data-poor regions (Sheffield et al., 2018). Sensors 848 

have large swaths and high temporal resolution, giving frequent global scale 849 

coverage. While in the past there have been limitations around spatial resolution 850 

(Brown et al., 2008; Davies et al., 2016), as technology advances this will become 851 

less of an issue in drought monitoring, particularly as advances are made in the 852 

development and deployment of hyper-resolution sensors.  853 

2. Temporal frequency of observations: Due to the complex nature of drought events, 854 

in both their development and termination (Parry et al., 2016), regular observations 855 

of key variables are required. Through remote sensing a range of daily to weekly 856 

observations are available, such as (sub-)daily rainfall from GPM and weekly/bi-857 

weekly vegetation condition indices from MODIS, Landsat and now Sentinel-2. 858 

Frequent observation, in combination with enhanced spatial coverage, of drought-859 

related variables has provided data in what were traditionally data-sparse regions, 860 

particularly in the developing world.  861 

3. A need for a range of drought indicators: There are a large number of remote 862 

sensing data products covering almost all phases of drought propagation, the 863 

exception being accurate and frequent observations of river discharge. The 864 

combined uses of these datasets to calculate drought monitoring indices has allowed 865 

for integrated studies monitoring drought propagation to be undertaken at scales 866 

previously unavailable to researchers (e.g. Nicolai-Shaw et al., 2017; Orth & 867 

Destouni, 2018).  868 
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4. A lack of understanding of extreme events: Wilhite & Pulwarty (2005) noted this 869 

challenge in relation to the monitoring of both floods and droughts. Remote sensing 870 

technologies, through the wide range of sensors and data products, have allowed for 871 

greater understanding and better-informed decision making across a range of scales. 872 

For example, remote sensing is now commonly used to monitor irrigation systems in 873 

many very droughty and dry regions, allowing for scarce water resources to be 874 

effectively and efficiently managed to support crop growth (e.g. Vanino et al., 2018) 875 

 876 

In the field of drought monitoring the increasing detail, reliability and accuracy of remote 877 

sensing data products will enhance our capacity to forecast and monitor all forms of 878 

drought and its impacts at a range of spatial and temporal scales. As we move into the 879 

future and technology advances, we must extend the use of remote sensing in drought 880 

monitoring (Andela et al., 2013). This may be through the launch of new satellites/sensors 881 

or developing  new approaches and methodologies to reanalyse existing data. We conclude 882 

this paper by thanking Remote Sensing of Environment for its role as a key platform for 883 

dissemination, and the research community for the advances in the field over the last 50 884 

years, and now look forward to the continued application of remote sensing for effective, 885 

innovative and efficient drought monitoring solutions.  886 
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Figure Captions  1888 

Figure 1: Number of papers relating to drought (in both paper titles and keywords) in 1889 

Remote Sensing of Environment and Web of Science since 1982. Search terms included 1890 

various versions of ‘Drought’ and ‘Remote Sensing’.  1891 
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Figure 2: Different types of drought, their interactions and associated impacts (Adapted 1893 

from Van Loon, 2015)  1894 
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Figure 3: Treemap of monitoring approaches used in agricultural drought monitoring of the 1896 

papers reviewed. Papers were sourced from a range of journals including Remote Sensing of 1897 

Environment, Remote Sensing, and the International Journal of Remote Sensing.  1898 

 1899 



 83 

Figure 4: Key milestones and a chronological view of the development of agricultural 1900 

drought monitoring indices 1901 


