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ABSTRACT 
In recent years, the tremendous increase in the use of medical 
knowledge-discovery and decision-support applications has often 
required clinical researchers to write complex database queries. 
The users of these data analysis systems are normally unaware of 
the semantic relationships between the concepts stored in a 
database. In order to provide automated query formulation 
services, some mechanism for generating queries is required. In 
this regard, as reported in [1], domain ontologies can be used to 
formulate relational database queries in order to simplify the data 
access of the underlying data sources. However, the provision of 
such a query generation facility requires managing complex 
mappings between domain ontologies and relational data sources. 
In this regard, this paper discusses our approach to define 
mappings between domain ontologies and database schemas to 
support the ontology assisted relational query formulation 
process. This approach has been applied to the integrated medical 
database schema of the EU funded Health-e-Child (HeC) project. 
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1. INTRODUCTION 

1.1. The Problem in General 
In information management systems, structured query formulation 
languages are one of the means to retrieve information. 
Formulated queries allow the selection of data under particular 
constraints. In contrast to the menu driven (MD) or query by 
example (QBE) information access methods [2], writing 
structured queries is a powerful method to access data because it 
allows end-users to formulate complex database queries and this 
consequently forces end-users to learn specialised query 
languages. Thus structured query formulation, with the exception 
of a few visual query generation approaches, remains noticeably 

difficult for large classes of end users.  

Despite the variety of approaches presented so far, three major 
concerns can be raised when we request information extraction 
from available data: (1) what type of requests can a specific 
system handle? (2) how can visual interfaces be provided to 
generate data requests? and (3) how can the user be assisted in 
formulating queries in order to retrieve more accurate 
information? Information technology today has been widely 
adopted in resolving the first two problems by providing some 
theoretical and practical solutions using artificial intelligence 
techniques and graph theories, especially in providing visual tools 
to generate specific queries. However, little has been achieved in 
the use of computational techniques to provide users with ‘query 
formulation’ services using ‘domain ontologies’.  

For example, a clinical researcher may want to perform a study on 
patients’ ‘infections’. In doing so, an associated domain ontology 
based system should recognise that ‘bacterial’ and ‘viral’ are 
types of infections but ‘meningitis’, ‘rat bite fever’, and ‘scarlet 
fever’ etc. are sub-types of bacterial infection. Here, the system 
should also identify how the associated data are structured in the 
underlying database in order to transparently retrieve the resultant 
dataset. Similarly, for a particular clinical study of ‘female’ 
patients diagnosed with the medical disorder ‘double-vision’ and 
who were using ‘anti-depression drugs’, the associated domain 
ontology based system should recognise that ‘double vision’ is a 
type of clinical test with the possible values ‘true’ (to confirm the  
affliction) or ‘false’ (to disprove its existence) and also to  check 
for the medical history of female patients prescribed with 
‘antidepression drugs’ to retrieve the desired resultant dataset.  

1.2. Research Aims 
In relation to the above problem, this research aims: (1) to assist 
end users in formulating relational database queries without 
requiring a complete knowledge of the information structure and 
access mechanisms to the underlying data sources; and (2) to 
enable the developed query formulation methods to : (a) be 
flexible in terms of accommodating changes in the underlying 
database schema; and (b) provide access to existing relational 
database without manipulating or replicating the transactional 
data. These research aims have been achieved by building an 
ontology to be the repository for end user queries. Precisely, the 
emphasis has been put on exploiting the semantic relationships 
and assertion capabilities of OWL-DL domain ontologies to assist 
in generating relational database queries. In this regard, the 
ontology assisted query formulation architectural framework with 
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several heuristic based ontology to relational query translation 
algorithms have already been reported in [1] and [3]. This paper 
reports on further developments in this area and particularly 
focuses on (1) domain metadata representation from a relational 
model to an ontology model to enable ontology based query 
formulation; (2) storage and retrieval of ontology-database 
mappings to translate ontology statements into relational query 
statements as per the underlying schema structure; and (3) an 
ontology assisted query formulation case study in relation to the 
Health-e-Child [4] project. 

1.3. Semantic Query Formulation in Health-e-Child 
The Health-e-Child (HeC) project [5] aims to develop an 
integrated platform for European paediatrics, enabling data 
integration between spatially distributed clinicians and bringing 
together information produced in different departments or 
multiple hospitals. The emphasis of the HeC data integration 
process is on providing “universality of information”. Its 
cornerstone is the integration of information across biomedical 
abstractions, whereby all layers of biomedical information can be 
‘vertically integrated’ [6].  

 

 

Figure 1: The OntoQF architectural framework 

 

The provision of semantic query formulation services in HeC 
aims at the provision of semantics-driven query formulation 
services for the clinical researchers and medical knowledge 
discovery applications to access the HeC Integrated Data Model 
(IDM) [7]. This task of query formulation has been automated by 
the successive incremental development of algorithms to test the 
extent to which this procedure could be effectively automated. In 
order to test our query formulation system and the developed 
methodologies, a detailed case study has been implemented 
(reported in Section 7) using a large subset of the Health-e-Child 
(HeC)  patients’ medical data collected during the requirements 
gathering and data-collection phases of the HeC project. Figure 1 
shows the Ontology Assisted Relational Query Formulation 
(OntoQF) architectural framework as reported in [1]. 

2. RELATED WORK 

2.1. Ontology Based Information Retrieval 
In recent years, considerable work has been reported that supports 
ontology based information retrieval. Most of these approaches 
use RDF [8], [9], [10] and [11] structures which, although 
yielding schema information, provide insufficient knowledge for 
database query formulation. These approaches also lack the 
details of what needs to be included in the ontology from the data 
sources along with the domain knowledge to drive the process of 
query formulation. The focus of these approaches (for example 
[11]) remains towards interactive query generation through 
nondirected graphs supporting multiple natural languages. 
Moreover, RDF is too weak to describe resources in sufficient 
detail since it lacks localised range and domain constraints. In 
OntoQF, OWL-DL is the ontology development language that is 
used to specify the concepts with related assertions that drive the 
process of query formulation, since it has explicit support for 
expressing semantics when compared to RDF and RDFS. 
Moreover, unlike the approaches in [12], [13], [14], [15] and [16] 
our system does not store all data from a data-source as part of the 
ontology, as it may not be practically feasible to store all data as 
part of a certain domain ontology especially for systems with 
large amounts of data. 

2.2. The Database-Ontology Transformation  
Currently, there are several theories and tools available that can 
transform a relational database into an ontology. For example, 
considerable work has been carried out in [17] and [18] on the 
transformations between relational databases and ontologies. Most 
of these transformations are fairly trivial: each table maps to one 
or more ontology concept(s); each column maps to a datatype 
property; and each row maps to an instance. In relation to this, the 
work that has also been carried out in [19] describes the 
relationship between entities in the entity-relationship (ER) model 
and DL theory.  

In OntoQF, while using domain ontology to formulate relational 
queries, some of the basic rules to generate domain ontology from 
relational schema remain the same as reported in [17] and [18]. 
However, such transformation approaches do not further assist in 
specifying concept restrictions to generate precise database 
queries. In our approach, the existing mapping schemes are 
extended to support query formulation needs by introducing 
further semantic groupings with respect to cardinality 
relationships between domain metadata. Moreover, our relational 
schema to ontology transformation is different in the sense that 
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transactional data are not transformed and then stored as ontology 
instances.  

2.3. The Ontology-Database Transformation/Mappings 
Approaches 

Ontologies allow interaction between data held in different 
formats and can possibly be used as the basis to guide and validate 
models of particular domains, for example, conceptual data 
models [20]. In recent years, some valuable work has been 
reported which aims to transform ontologies to conceptual data 
models (expressed, for example, in UML or in ER) in [21], [22], 
[23] and [24].  However, the ontology-database mappings 
requirement for query formulation as reported in this paper is 
rather different than these approaches, because our focus is not to 
generate conceptual data models from an ontology but to use these 
mappings to generate domain specific relational database queries. 
Helpfully in [24] several mapping rules have been proposed that 
guide the transformation from domain ontology to conceptual 
schema. One of these mapping rules describes the transformation 
of ontology properties to entities-attributes in the conceptual data 
model. In this paper, this rule has been extended to define 
mappings between an OWL ontology to a data source schema.  

3. ONTOLOGICAL REPRESENTATION 
OF DOMAIN METADATA FOR QUERY 
FORMULATION 

In OntoQF, the process of domain metadata representation in an 
ontology based on a relational database involves analysing the 
database schema to determine the database ‘domain metadata’ to 
‘domain ontology’ transformation dependencies. This analysis 
helps in determining the relational entities to be transformed into 
ontology concepts. It also helps either to group together or 
separate the ontological representation of a domain entity and also 
to determine the relationships between different entities. 
However, the database-ontology transformation is also dependent 
on the query formulation requirements.  

In general, the term database-ontology (or ontology-database) 
mapping(s) assumes the existence of both a relational database 
and an ontology and defines links between them, whereas the 
database-ontology transformation assumes that only a relational 
database exists and an ontology is generated by applying 
database-ontology transformation rules [25]. In OntoQF (as 
shown in Figure 2), first a domain ontology is created by 
transforming the database entities which contain the domain 
metadata and associated semantics. At this stage, the ontology-
database mappings (correspondence) entries are also stored. The 
term ‘domain metadata’ refers to those database relations which 
contain the entity related data or semantics of a domain. The 
database tables that are generated as a result of creating a 
relationship between individual entities are called ‘transaction 
tables’ usually denoted by R(R). Such relations are not stored in 
the domain ontology as classes. This is because we do not aim to 
migrate or replicate transactional data in the ontology rather the 
entity related metadata is to be used for querying the transactional 
data. However, the extent to which domain metadata and 
semantics are to be represented in a domain ontology can be 
decreased or increased as per the query formulation requirements. 

While creating a domain ontology, the development of a class 
hierarchy and defining properties of concepts (slots) are closely 

intertwined. In general, the definitions of the concepts are to be 
created first in the hierarchy and then the properties of these 
concepts are described. In this section, we discuss the mapping 
rules which explain how selected sets of relational entities 
containing domain metadata are included in the OntoQF ontology. 
These database-ontology mappings rules have been devised while 
keeping the followings three important considerations: (1) the 
result of the database-ontology transformation adequately 
describes the original database relationships; (2) in some cases, 
not all constructs in a relational database may require to be 
transformed in an ontology; and (3) while representing foreign 
key metadata relations the transformation should maintain the 
relationships between concepts. The following subsections 
explain how the database-ontology transformations of domain 
metadata are performed. At the end of this section we discuss 
more advanced issues that need to be considered while creating 
the OntoQF domain ontology. 
 

Figure 2: OntoQF domain metadata representation and 
ontology-database mappings 

 

3.1. Ontological Representation of an Entity Type E 
containing Domain Metadata 

As shown in Figure 3, an entity type E (containing domain 
metadata) in a relational schema R(E) is represented as a class in 
the ontological model. Here each distinct column value is stored 
as a subclass of the entity class. An object property is created 
which points to the class as property range. This rule is only 
applicable to a standalone entity and does not apply for the 
representation of domain metadata which is based on any 
cardinality (1:1 or 1:M etc.) relationship. 

 

 

   Figure 3: Ontological representation of an entity type E 
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3.2. Ontological Representation of Domain Metadata 
with 1:1 Relationships 

In such a case, R is a relationship in a database D that links an 
entity type E1 in D to the entity type E2 in D, with P1 as the 
primary key of E1 and P2 as the primary key of E2; and R is a 
one-to-one relationship type between the entity types E1 and E2.  

Figure 4 shows entities E1 and E2 in a relational schema R(E). 
Here, both R(E1) and R(E2) contain domain metadata and there is 
a ‘one to one’ relationship from R(E1) to R(E2). In such a 
situation both R(E1) and R(E2) are required to be represented as 
ontology classes. For R(E1), an ontology class is created for entity 
type R(E1) and each entity of the entity type is represented as a 
subclass of the entity-type class. For R(E2), we have two 
situations, i.e. (1) if there is a 1:1 generalization (specialization, 
is-a) relationship from R(E1) to R(E2), as shown in Figure 4(a), 
and (2) if there is any other ID based 1:1 relationship (e.g. has-a, 
part-of etc) from R(E1) to R(E2), as shown in Figure 4(b).  

 

 

Figure 4: Ontological representation of domain metadata with 
1:1 relationships between entity E1 and E2 

 
For an is-a relationship, as shown in Figure 4(a), each column 
value (i.e. col-3) stored as a foreign key value is represented as a 

subclass (i.e. class-111, class-121 etc) of the parent entity class 
(i.e. class-11, class-12 etc). In this way, all of the R(E2) entities 
are represented under a generalised class (class-1). The parent 
class (class-1) is defined as a range class for the related object 
property in order to have each foreign key value mapped to a 
common object property. In addition, similar entities could be 
further defined under one generalized parent class, if needed. An 
example of such situation, as in Figure 4(a), is “Antibiotic drugs” 
as parent class and a drug “Actinomycin” is an (is-a) antibiotic 
drug.    

For all other type of ID relationships, as in Figure 4(b), an 
ontology class (class-2) is created for entity type R(E2) and the 
column values (i.e. col-3) stored against each foreign key are 
mapped to a subclass (i.e. class-21, class-22 etc) of the entity type 
class (class-2). In order to link class-1 (primary key values) with 
class-2 (foreign key values), object properties are used. In order to 
support the relationship between domain entities within the 
ontology each subclass of class-2 (i.e. foreign key column values) 
is linked to an object property (i.e. ObjProp-21, ObjProp-22 etc). 
All of these object properties are defined by a generalised 
property (object property-2). Here, the individual properties 
(objProp21, objprop22 etc) link the subclasses of class-1 (i.e. 
subclass11, subClass12 etc) to the subclasses of class-2 (i.e. 
subClass21, subClass22 etc) through property domain and range 
relationship. This is how the links are established between a 
primary key row instances (whose corresponding class is defined 
as a domain class) with a foreign key row instance (whose 
corresponding class is defined as a range class). An example of 
such a situation (as shown in Figure 4(b)) is: a country “France” 
has a (has-a) capital “Paris”.  

3.3. Ontological Representation of Domain Metadata 
with 1:M Relationships 

In Figure 5 both R(E1) and R(E2) contain domain metadata and 
there is a ‘one to many’ relationship from R(E1) to R(E2). This 
situation is almost similar to 1:1 mappings (as detailed in Section 
3.2) with the only major difference in the ontological 
representation of foreign key values for entity R(E2).  

In such a case, for an is-a relationship, as shown in Figure 5(a), 
the column values (i.e. col-3) stored against a foreign key are 
represented as subclasses of the parent entity class (i.e. class-111 
and class-112 for class-11, and class-121 for class-12 etc). For all 
other type of ID relationships, as in Figure 5(b), column values 
(e.g. col-3) stored against one common foreign key are 
represented under a parent class having these values as subclasses 
(i.e. class 211 and class 212 defined as subclasses for class 21 
etc). The parent classes (i.e. class 21, class 22 etc.) are represented 
by one generalised class (class-2) of R(E2). Here, the object 
properties are created for each distinct foreign key value. All of 
these object properties are defined by a generalised property 
(object property-2). Individual properties (objProp21, objprop22 
etc) link the subclasses of class-1 (i.e. subclass11, subClass12 etc) 
to the subclasses of class-2 (i.e. subClass21, subClass22 etc) 
through property domain and range relationships. This is how 
links are established between a primary key row instances (whose 
corresponding class is defined as domain class) with a foreign key 
row instance (whose corresponding classes are defined as range 
classes). An example of such a situation (as shown in Figure 5(b)) 
is: a country “France” has cities “Paris”, “Lyon” etc.  
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Figure 5: Ontological representation of domain metadata with 
1:M relationships between entity E1 and E2 

 

3.4. Ontological Representation of Domain Metadata 
with M:N Relationships between Entity E1 and E2 

In such a case, R is a relationship in a database D that links an 
entity type E1 in D to the entity type E2 in D, with P1 being the 
primary key of E1 and P2 being the primary key of E2; R is a 
many-to-many relationship type mapped to a schema relation 
denoted by R(R) = P1 U P2. 

Figure 6 shows the entities E1 and E2 in a relational schema R(E) 
with ‘many to many’ relationship between them. In such a 
situation only the entity types R(E1) and R(E2) are represented 
into the ontology as classes. In practice, the day to day 
transactions are stored with such R(R) relations. We do not store 
such relations into the ontology as classes because we do not store 
transactional data in the ontology rather the entity related domain 
metadata are used to query such transactional data.  

 

 

Figure 6: Ontological representation of domain metadata with 
M:N relationships between entity E1 and E2 

 

3.5. Database to Ontology Mapping for Data Columns 
In OWL-DL, property restrictions can be applied to both datatype 
properties (properties for which the value is a data literal) and 
object properties (properties for which the value is an individual). 
Here, ‘object properties’ link individuals to individuals and 
‘datatype properties’ link individuals to data values.  

In OntoQF, table columns whose values are data literals and are 
not containing domain metadata or semantics are transformed into 
datatype properties. This is because the table columns which 
contain domain metadata or semantics are to be defined by 
class/subclass relationship or by linking them with object 
properties (as discussed in sections 3.1 – 3.4). Therefore, in order 
to specify ontology restrictions on data values, for each of the 
selected table column a datatype property is created which links to 
the related ontology class as rdfs:domain. In such a case, the 
rdfs:range datatype of the ‘datatype property’ is defined as per the 
column datatype. Examples of such data columns in the medical 
domain are: patient’s registration year, patient’s disease duration, 
patient’s height, patient’s weight etc. For all of such cases, the 
rdfs:domain class will be the patient.  
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Figure 7 shows an entity E in a relational schema R(E) and the 
attributes

1 2, , ..., nCol Col Col belong to entity E. Here, R(E) is 

represented as an ontology class E and columns (i.e. 

1 2, , ..., nCol Col Col ) are represented as datatype properties (i.e. 

1 2, , ... , nDatatype Property Datatype Property Datatype Property− − − ) 

with class-E defined as rdfs:domain. The rdfs:range datatype for 
these ontology properties are defined as per the columns 
(

1 2, , ..., nCol Col Col ) datatype. Such a transformation of data 

columns can be validated by applying a reverse transformation, 
i.e. by converting ontology datatype properties to relational 
database table columns [26]. Here, all datatype properties are 
parsed in a series. For each parsed datatype property, a database 
table is located similar to the rdfs:domain value for datatype 
property, and a data column is created with the name of that 
property. 

 

 

Figure 7: Ontological representation of data columns 

 

4. ONTOLOGY REPRESENTATION OF 
DOMAIN KNOWLEDGE 

Once the basic structural elements of an OntoQF domain ontology 
have been defined using the above mentioned database-ontology 
transformation approach, then this ontology can be further 
enriched with domain knowledge which is expressed in terms of 
OWL-DL property assertions as concept restrictions that are 
consistent with the ontology schema. These concept restrictions 
could be either simple or complex ones, and may involve many 
conditions. In OntoQF, object properties with quantifier 
restrictions and datatype properties with comparative restrictions 
are used for the purpose of generating ontology based queries.   

A given DL expression has a set of concepts and a role forming 
operator. The smallest set propositionally closest to DL is 

Attributive Language with Complements (ALC), where concepts 
are constructed using Union, Intersection, allValuesFrom, 

someValuesFrom and complementOf written as  , , ∀ , ∃  

and ¬  respectively. The ‘all’ in allValuesFrom is the universal 
qualifier whereas the ‘some’ in someValuesFrom is the 
extensional qualifier. The someValuesFrom (hasClass) and 
allValuesFrom (toClass) constructs are applied to classes while 
specifying classes and restrictions.  The cardinality restrictions are 
referred to as local restrictions since they are associated with 
object properties of a class. That is, restrictions constrain the 
cardinality of an object property on instances of a class. For 
example, a minimum cardinality of zero on an object property 
states (in the absence of any more specific information) that this 
property is optional with respect to that class. The cardinality 
restrictions may also be used to state that certain classes can have 
no values for a particular property. These cardinality restrictions 
are used to inform the ontology Reasoner [19] of the maximum or 
minimum number of a class instances that are related to one 
individual by that object property.  

As in OntoQF, the focus remains on using a domain ontology to 
formulate database queries by translating ontology statements into 
relational query statements; therefore, cardinality constraints are 
not used to perform query formulation tasks. This is mainly 
because these restrictions, when used with object properties, 
constrain the cardinality of a class property. This is because class 
instances contain the transactional data of a domain, whereas in 
OntoQF we do not migrate or replicate transactional data into the 
ontology. However, the comparative restrictions minimum, 
maximum and exactly can be used with the datatype properties to 
qualify domain knowledge statements. Here, the restrictions 
constrain the value of a datatype property in relation to data 
values in a table column. In such a case, minimum with a datatype 
property states (in the absence of any more specific information) 
that the selected class should not have any value less than the 
specified value. Moreover, all of these minimum, maximum and 
exactly restrictions can also be used with a negation (not) 
operator.  

5. TRANSLATION OF ONTOLOGY 
STATEMENTS INTO RELATIONAL 
QUERY STATEMENTS 

As detailed in Sections 3 and 4, the OntoQF domain ontology 
stores the domain metadata or semantics, and the domain 
knowledge is expressed in terms of ontology statements as 
concept restrictions. These concept restrictions can include 
individual or multiple OWL description logic constructs as well as 
conditions. In order to translate these ontology statements into 
relational query statements, each DL construct needs to be 
processed and translated into the corresponding relational query 
constructs. The following are the syntax rules for DL constructs 
[19]. 

C, D  A | (atomic concept) 
I (Instance) 
¬ C | (negation) 
C  D | (intersection) 
C U D | (union) 
!P.C | (universal restriction) 

"P.C | (existential quantification) 
PD . Min/Max/Exactly {value} | (PD  datatype property) 
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Table 1: Translating Ontology OWL-DL Statements into Relational Query (RQ) Statements 

OWL-DL 
Formulae 

FOL  * Translation in Relational Query Statements 

Existential 
Quantification 
 
(some P C)  

i.e. ∃ P.C 

∃ y. P(x, y) ∧ C(y)  
Here y: C   C(y)  
and (x, y) : P  P(x, y) 
 

For a DL concept DC = ∃ P.C the set A is called the domain of p(x). Therefore  
DC = ( x∃ ∈  A, P(x)), i.e. for any existence of x in A such that P(x) is true.  

The equivalent RA expression i.e. )(
 C  RP =

σ will select values from a relation/view 

where the corresponding record satisfies this condition. In this case the ontology-
database mapping information is to be used to retrieve the target table.column 
information.   

Universal 
Restriction 
 
(all P C) 

i.e. ∀ P.C 
 

∀ y. P(x,y)  C(y) 
 

For a DL concept DC = ∀ P.C, the set A is called the domain of p(x).  

As per DeMorgan’s theorem        ¬  ∀ x. p(x) =  ∃ x. ¬  p(x) 

and by applying negation      ¬ ( ¬ ∀ x. p(x))=  ¬  ( ∃ x. ¬  p(x) ) 

is equal to                                           ∀ x. p(x) =  ¬ ( ∃ x. ¬  p(x)) 

Thus, in order to show that ∀ x. p(x) is true, it is equivalent to show that ∃ x. ¬  
p(x) is false. Therefore, in order to find x for which the p(x) is false, the equivalent 
RA expression will first select values from a relation where the corresponding record 
satisfies this condition and then taking an inverse (complementOf) of the result set. 

Therefore, for ∀ P.C, ( ( ) ))( ( )
domain col P CR domain col IN RQ Rπ σ

σ
− < >− ¬

=     

Operations 
(a) Intersection  
i.e. C1 … Cn 

(b) Union  
i.e. C1 …  Cn 

(c) Negation  
i.e. ¬ C 

 
 
(a) C1(x) ∧ … ∧ Cn(x) 
 
(b) C1(x) ∨ …  ∨ Cn(x) 

 
(c) ¬ C(x) 

The Intersection, Untion and Negation operators in DL (FOL) has same interpretation 
as AND ( ∧ ), OR ( ∨ ) and complementOf ( ¬ ) operators respectfully, i.e. 
(a)  If C1(x) and C2(x) are true, then C1(x) ∧ C2(x) is true; otherwise C1(x) ∧ C2(x) is 

false. 
(b) If C1(x) and C2(x) are false, then C1(x) ∨  C2(x) is false; otherwise C1(x) ∨      

C2(x) is true. 
(c) If C(x) is true, then ¬ C(x) is false; and if C(x) is false, then ¬ C(x) is true. 

Object Property 
with data values 
(a)Min {value} 
(b)Max {value} 
(c)Exactly{value} 

(a)PD  {value} 
 
(b)PD   {value} 
 
(c)PD  = {value} 

If C ∈   | (PD (exactly|min|max) (value)) then (a) ( )
DR P va lu eQ Rσ

≥
= , 

(b) ( )
DR P va lu eQ Rσ

≤
= and  (c) ( )

DR P va lu eQ Rσ
=

=  

Here the RA expression is required to select values from a relation/view where the 
corresponding record satisfies PD = value condition.  

Table Key: 

• C is the ontology concept/class and R is a database relation/view or multiple database relations with Join condition. The ontology-
database schema mapping information (detailed in section 7) is used to replace R with SQL’ FROM’ clause. 

• P/PD is an ontology object-property/datatype-property, which relates x to y or to a data value. While translating DL to RA, the 
P/PD is replaced with the database schema information (discussed in section 7). 

• Domain-col is a manually selected domain column of relation R for ontology property P (discussed in section 7).  

• A Predicate function P: X {true, false} is called a predicate on X. When P is a predicate on X, we say P is a property of X.   
 
*Note: - For theoretical background and further details on DL to RA translation algorithms readers are referred to [1] reported earlier. 

 

In the relational database paradigm, a logical data model may be 
accessed through SQL which is based on the Relational Algebra 
(RA), whereas OWL-DL is based on Description Logic [27]. 
Therefore, we base our translations on Description Logic and 
Relational Algebra, to work with any relational database that 
implements the SQL standard. In this regard, Table 1 outlines DL 
to RA translation rules for individual constructs. Due to space 
limitations, Table 1 presents only the core DL to RA translations; 
for details, please refer to [1].  

While applying DL to RA translation on DL’s existential 
quantification or universal restriction when specified with an 
ontology class C, further checks need to be carried out to see if the 
class C contains subclasses. This is because a database needs to be 
searched for all individuals which can be defined as instances of 
class C. In OntoQF, the database-ontology metadata 
transformation scheme (as detailed in section 3.2 & 3.3) enables 

such operation by storing the related entity elements (with “is-a” 
relationship) as subclasses. Using this approach, if an ontology 
class C contains subclasses; the query condition on a class C is to 
be updated as per the following two situations (a) and (b). 

(a) If C contains only one subclass C1, then class C is to be 
replaced with C1  

i.e. For ∃ P.C i.e. )(
 C  RP =

σ it will be 
1C ( )P Rσ

=
  

and for ∀ P.C i.e. ( ( ( ) ( )
domain col P Cdomain col IN R R

π σ
σ

− ≠− ¬
 

it will be 
1

( ( ( ) ( )
domain col P Cdomain col IN R R

π σ
σ

− ≠− ¬
 

(b) If C contains more than one subclasses i.e. C1, C2,…,Cn then C 
is to be replaced with all of the subclasses of C using the union 
operator i.e. C1   C2 …  Cn 
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i.e. For ∃ P.C i.e. )(
 C  RP =

σ  

it will be
1 2 nC C .... C ( )P P P Rσ

= ∨ = ∨ ∨ =
 

and for ∀ P.C i.e. 

( ( ( ) ( )
dom ain col P Cdomain col IN R R

π σ
σ

− ≠− ¬
, it will be  

C1 C2 .... Cn( ( ( ) ( )
domain col P P Pdomain col IN R R

π σ
σ

− ≠ ∨ ≠ ∨ ∨ ≠− ¬
 

Here, both (a) and (b) are to be applied recursively, until the last 
child node of class C is retrieved. 

6. Mappings from an Ontology Model to a 
Relational Model 

Once the ontology statement constructs are translated into 
corresponding relational query statement constructs (as outlined in 
Section 5), further processing is required to produce a final 
executable relational query. This includes (1) replacement of the 
ontology property links (i.e. P/ PD) as per the underlying database 
schema structure; and (2) integration of a SQL From clause 
including table join conditions (when required). In OntoQF, 
ontology-database mappings are used to achieve these tasks. The 
ontology-database mappings are expressed as a set of 
correspondences that relate the vocabulary of an ontology model 
(concept, property etc) with a relational model (table(s), column 
etc). To this end, two database tables containing ontology-
database mappings information are created during the ontology 
processing phase. These mapping tables store information about 
ontology property links, database name, table name, column 
name, primary and foreign key(s) (i.e. table join information). 
Once the query formulation engine translates the OWL 
description logic constructs into respective relational constructs, 
this ontology-database mapping information is used to generate a 
final query. In order to access the ontology-database mapping 
definitions a ‘mapping-access’ scheme is implemented within the 
query formulation engine (as shown in Figure 1). The ontology-
database mappings are stored within the existing ontology server 
using the same namespace being used to store corresponding 
ontology model. In this way an ontology file, when processed and 
stored in the ontology server, has its database mapping 
information stored alongside it. In the ontology server, the 
following two database tables (1) Mappings_Information and (2) 
Mappings_Relationship (having 1:M relationship) have been 
implemented to store the ontology-database mappings: 

Table-1:  ‘Mappings_Information’ 
Column-Info                                              Constraint 
‘ID’ (primary key) (Not Null/ Unique)   
‘Onto_Property’ (object or datatype)              (Not Null/ Unique)   
‘Col_Name’   (Not Null) 
‘Table_Name’  (Not Null) 
 
Table-2:  ‘Mappings_Relationship’ 
Column-Info                                              Constraint   
‘ID’ (primary key) (Not Null/ Unique)   
‘Relationship_Table’   (primary key) (Not Null/ Unique)   
‘Key_Table_Join’  (Not Null) 
 (Foreign Key ID reference Mappings_Information.ID) 

The ‘ontology-property’ to ‘database-schema’ conversions are 
straightforward for the queries which only access a single attribute 
from a database entity/relation. However, some complex 
processing is required when multiple attributes are to be accessed 

with different associated constraints in a single query, or when a 
database query requires a Join operation. In this regard, the 
mappings_relationship table provides the Join condition with 
respect to a given ontology statements. 

7. Experimental Evaluation: A Case Study 
from Health-e-Child Project 

This approach has been applied to a large subset of the integrated 
Health-e-Child (HeC) patients’ database schema along with the 
implementation of a prototype system to perform query 
formulation tasks. The prototype system has been presented to the 
HeC consortium and validated by domain experts who have 
confirmed its potential functionality. Due to space limitations, we 
present a subset of the HeC case study and discuss associated 
results.  

 

 
Figure 8: A subset of HeC patients’ database showing domain 

metadata and data tables 

 
This section explains how the HeC domain metadata, used to 
drive the process of generating queries, is represented in the 
OntoQF domain ontology. In this regard, Figure 8 shows an 
example subset of the HeC relational data model. This subset of 
the data model is separated into two parts: (1) the database tables 
containing domain metadata; and (2) the database tables which 
contain transactional data. Here, domain metadata are to be 
represented into the domain ontology to assist in both: (a) domain 
knowledge representation; and (b) to generate relational database 
query statements. As in OntoQF, transactional data are not stored 
in the ontology rather the domain metadata is used for querying 
the transactional data. The tables containing HeC domain 
metadata e.g. Country, Race, Hospital, Drug, 
MedicalObservationGroup and ClinicalObservation are 
transformed into ontology schema (as shown in Figure 9) as per 
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the database-ontology transformation approach (detailed in 
section 3). Moreover, due to query formulation requirements the 
Gender column (represented as Sex) in the patient table is also 
selected as domain metadata and represented as an ontology 
concept ‘Gender’ having subclasses ‘Male’  and ‘Female’. 
Furthermore, as shown in Figure 9, ‘Domain:Patient’ implies that 
the queries are to be formulated with respect to patient entity. 

 

 
Figure 9: An OntoQF Domain Ontology view of the example 

Domain Metadata (created using the database-ontology 
mapping scheme to support domain knowledge representation 

and query formulation)  

 
Once the OntoQF ontology is formulated, it is further enriched by 
defining clinical case studies. These clinical case studies were 
collected during the requirements gathering and data collection 
phases of the HeC project. In this paper, we have included the 
following two example case studies. OntoQF is able to 
automatically generate relational database queries for such (but 
not limited to) example case studies using the associated OntoQF 
domain ontology and ontology-database mappings.  









  
     
      
































  
    
    
    
    
    
   
    
    
    



   
   
   
   
   
   
   
   
   
   
   



    
  
  
 
  
  
 

Figure 10: Ontology-Database mappings for the subset of HeC 
patients’ database as per the mapping scheme detailed in 

Section 7 
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Clinical Study 2:  



 

Processed Ontology statement: 









 













8. DISCUSSION 
In a relational model, the general schema restrictions (e.g. Not-
Null, Unique etc.) are used to restrict data entry i.e. ‘Insert’ or 
‘Update’ operations. However, in OntoQF we deal with the 
‘Select’ query operations exclusively. Therefore, the OntoQF 
domain ontology does not require the definition of general schema 
datatype ranges, cardinality restrictions or specific constraints 
(expressed in the database schema) as axioms. Moreover, while 
defining a class hierarchy through database-ontology 
transformation, it is not always required that the ontology should 
contain all the possible information about the domain.  

In some cases, an ontology statement to relational query 
translation can result in generating unsafe relational queries. Here 
the term ‘safe’ implies that the correct answer of the query is 
contained within (or can be obtained directly from) the associated 
database tables. For example, multiple someValuesFrom() 
restrictions are used in an ontology restriction, with an 
intersection operation within each restriction and a similar 
property defines each concept. In such a case, the semantics of an 
intersection class means that the resultant class is described as a 
subclass of interesting class ‘A’ and a subclass of interesting class 
‘B’ for a similar property. However, if the underlying database 
implements normalization i.e. "a single database record cannot 
hold more than one value for a table column" then the generated 
query from such ontological definition may produce either no or 
incorrect results. Similarly, another example of such unsafe 
ontology statement is "use of a complementOf construct, with an 
intersection operation within each hasValue property restriction, 
i.e. complementOf (a, b,…,n) with intersection operation". Such 
unsafe ontology definitions can be avoided by applying the 
following rule: “for a given ontological domain knowledge, if the 
restriction includes the ‘conjunction’ operation then the 
translation is only safe if the conjunction is safe”. 

9.  CONCLUSIONS 
The central aim of this work is to assist clinical researchers in 
formulating relational database queries using an OWL-DL based 
domain ontology. The task of query formulation is investigated by 
the successive incremental development of DL to RA translation 
algorithms. One of the major requirements of an ontology assisted 
query formulation system is the formulation of a domain ontology 
which includes definition of domain metadata, relationships and 
knowledge of the ontology. In this regard, an ontology modelling 
approach has been identified to transform domain metadata and 
relationships into the ontology schema to assist in the query 
formulation process. Once the basic structural elements of the 
domain ontology are defined they are further enriched with 
domain knowledge. Moreover, in order to generate relational 
query statements as per the underlying database schema structure, 
ontology-database mappings are expressed as a set of 
correspondences that relate the vocabulary of a relational model 
(table/relation, column etc) with the ontology model (concept, 
property etc). This ontology assisted query formulation approach 
has been applied to a large subset of the integrated HeC patients’ 
database schema along with the implementation of a prototype 
system to perform query formulation. 

One of the key merits of this approach is that no interpretation of 
stored transactional data needs to be carried out or even 
transformed and stored as ontology instances. This is clearly 
beneficial since the interpretation of data in existing medical data 
source(s) may cause serious scalability issues with existing legacy 
clinical applications. Unlike most of the existing database-
ontology transformation approaches, the database-ontology 
mappings presented in this research provide literal representation 
of the domain-metadata in an ontology. Thus, the ontology 
generated by following such mappings can play a significant role 
in specifying concept restrictions and in generating relational 
database queries. Also, this approach does not require users to be 
familiar with the overall contents of the ontology to generate 
respective queries. As a consequence, this can provide significant 
support to clinical researchers while performing their studies, 
especially if they do not fully understand the underlying system; 
and thus navigating in a large ontology to select appropriate terms 
can be significantly eased rather being a key obstacle in achieving 
the associated study goals. Finally, we anticipate that the 
provision of ontology assisted query formulation will provide 
sufficient theoretical foundation to instantiate this approach in 
further application domains.  
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