

Managing the Mappings between Domain Ontologies and Database Schemas when
Formulating Relational Queries

Kamran Munir
University of the West of England

Centre for Complex Coop. Systems
BS16 1QY, Bristol, UK

+44-1173-283279

Kamran.Munir@cern.ch

Mohammed Odeh
University of the West of England

Centre for Complex Coop. Systems
BS16 1QY, Bristol, UK

+44-1173-283700

Mohammed.Odeh@uwe.ac.uk

Richard McClatchey
University of the West of England

Centre for Complex Coop. Systems
BS16 1QY, Bristol, UK

+44-1173-283176

Richard.McClatchey@cern.ch

ABSTRACT
In recent years, the tremendous increase in the use of medical
knowledge-discovery and decision-support applications has often
required clinical researchers to write complex database queries.
The users of these data analysis systems are normally unaware of
the semantic relationships between the concepts stored in a
database. In order to provide automated query formulation
services, some mechanism for generating queries is required. In
this regard, as reported in [1], domain ontologies can be used to
formulate relational database queries in order to simplify the data
access of the underlying data sources. However, the provision of
such a query generation facility requires managing complex
mappings between domain ontologies and relational data sources.
In this regard, this paper discusses our approach to define
mappings between domain ontologies and database schemas to
support the ontology assisted relational query formulation
process. This approach has been applied to the integrated medical
database schema of the EU funded Health-e-Child (HeC) project.

Keywords
Relational Databases, Query Formulation, Domain Ontology,
Domain Metadata

1. INTRODUCTION

1.1. The Problem in General
In information management systems, structured query formulation
languages are one of the means to retrieve information.
Formulated queries allow the selection of data under particular
constraints. In contrast to the menu driven (MD) or query by
example (QBE) information access methods [2], writing
structured queries is a powerful method to access data because it
allows end-users to formulate complex database queries and this
consequently forces end-users to learn specialised query
languages. Thus structured query formulation, with the exception
of a few visual query generation approaches, remains noticeably

difficult for large classes of end users.

Despite the variety of approaches presented so far, three major
concerns can be raised when we request information extraction
from available data: (1) what type of requests can a specific
system handle? (2) how can visual interfaces be provided to
generate data requests? and (3) how can the user be assisted in
formulating queries in order to retrieve more accurate
information? Information technology today has been widely
adopted in resolving the first two problems by providing some
theoretical and practical solutions using artificial intelligence
techniques and graph theories, especially in providing visual tools
to generate specific queries. However, little has been achieved in
the use of computational techniques to provide users with ‘query
formulation’ services using ‘domain ontologies’.

For example, a clinical researcher may want to perform a study on
patients’ ‘infections’. In doing so, an associated domain ontology
based system should recognise that ‘bacterial’ and ‘viral’ are
types of infections but ‘meningitis’, ‘rat bite fever’, and ‘scarlet
fever’ etc. are sub-types of bacterial infection. Here, the system
should also identify how the associated data are structured in the
underlying database in order to transparently retrieve the resultant
dataset. Similarly, for a particular clinical study of ‘female’
patients diagnosed with the medical disorder ‘double-vision’ and
who were using ‘anti-depression drugs’, the associated domain
ontology based system should recognise that ‘double vision’ is a
type of clinical test with the possible values ‘true’ (to confirm the
affliction) or ‘false’ (to disprove its existence) and also to check
for the medical history of female patients prescribed with
‘antidepression drugs’ to retrieve the desired resultant dataset.

1.2. Research Aims
In relation to the above problem, this research aims: (1) to assist
end users in formulating relational database queries without
requiring a complete knowledge of the information structure and
access mechanisms to the underlying data sources; and (2) to
enable the developed query formulation methods to : (a) be
flexible in terms of accommodating changes in the underlying
database schema; and (b) provide access to existing relational
database without manipulating or replicating the transactional
data. These research aims have been achieved by building an
ontology to be the repository for end user queries. Precisely, the
emphasis has been put on exploiting the semantic relationships
and assertion capabilities of OWL-DL domain ontologies to assist
in generating relational database queries. In this regard, the
ontology assisted query formulation architectural framework with

"Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IDEAS09 2009, September 16-18, Cetraro, Calabria [Italy]
Editor: Bipin C. DESAI
Copyright ©2009 ACM 978-1-60558-402-7/09/09 $5.00"

131

several heuristic based ontology to relational query translation
algorithms have already been reported in [1] and [3]. This paper
reports on further developments in this area and particularly
focuses on (1) domain metadata representation from a relational
model to an ontology model to enable ontology based query
formulation; (2) storage and retrieval of ontology-database
mappings to translate ontology statements into relational query
statements as per the underlying schema structure; and (3) an
ontology assisted query formulation case study in relation to the
Health-e-Child [4] project.

1.3. Semantic Query Formulation in Health-e-Child
The Health-e-Child (HeC) project [5] aims to develop an
integrated platform for European paediatrics, enabling data
integration between spatially distributed clinicians and bringing
together information produced in different departments or
multiple hospitals. The emphasis of the HeC data integration
process is on providing “universality of information”. Its
cornerstone is the integration of information across biomedical
abstractions, whereby all layers of biomedical information can be
‘vertically integrated’ [6].

Figure 1: The OntoQF architectural framework

The provision of semantic query formulation services in HeC
aims at the provision of semantics-driven query formulation
services for the clinical researchers and medical knowledge
discovery applications to access the HeC Integrated Data Model
(IDM) [7]. This task of query formulation has been automated by
the successive incremental development of algorithms to test the
extent to which this procedure could be effectively automated. In
order to test our query formulation system and the developed
methodologies, a detailed case study has been implemented
(reported in Section 7) using a large subset of the Health-e-Child
(HeC) patients’ medical data collected during the requirements
gathering and data-collection phases of the HeC project. Figure 1
shows the Ontology Assisted Relational Query Formulation
(OntoQF) architectural framework as reported in [1].

2. RELATED WORK

2.1. Ontology Based Information Retrieval
In recent years, considerable work has been reported that supports
ontology based information retrieval. Most of these approaches
use RDF [8], [9], [10] and [11] structures which, although
yielding schema information, provide insufficient knowledge for
database query formulation. These approaches also lack the
details of what needs to be included in the ontology from the data
sources along with the domain knowledge to drive the process of
query formulation. The focus of these approaches (for example
[11]) remains towards interactive query generation through
nondirected graphs supporting multiple natural languages.
Moreover, RDF is too weak to describe resources in sufficient
detail since it lacks localised range and domain constraints. In
OntoQF, OWL-DL is the ontology development language that is
used to specify the concepts with related assertions that drive the
process of query formulation, since it has explicit support for
expressing semantics when compared to RDF and RDFS.
Moreover, unlike the approaches in [12], [13], [14], [15] and [16]
our system does not store all data from a data-source as part of the
ontology, as it may not be practically feasible to store all data as
part of a certain domain ontology especially for systems with
large amounts of data.

2.2. The Database-Ontology Transformation
Currently, there are several theories and tools available that can
transform a relational database into an ontology. For example,
considerable work has been carried out in [17] and [18] on the
transformations between relational databases and ontologies. Most
of these transformations are fairly trivial: each table maps to one
or more ontology concept(s); each column maps to a datatype
property; and each row maps to an instance. In relation to this, the
work that has also been carried out in [19] describes the
relationship between entities in the entity-relationship (ER) model
and DL theory.

In OntoQF, while using domain ontology to formulate relational
queries, some of the basic rules to generate domain ontology from
relational schema remain the same as reported in [17] and [18].
However, such transformation approaches do not further assist in
specifying concept restrictions to generate precise database
queries. In our approach, the existing mapping schemes are
extended to support query formulation needs by introducing
further semantic groupings with respect to cardinality
relationships between domain metadata. Moreover, our relational
schema to ontology transformation is different in the sense that

132

transactional data are not transformed and then stored as ontology
instances.

2.3. The Ontology-Database Transformation/Mappings
Approaches

Ontologies allow interaction between data held in different
formats and can possibly be used as the basis to guide and validate
models of particular domains, for example, conceptual data
models [20]. In recent years, some valuable work has been
reported which aims to transform ontologies to conceptual data
models (expressed, for example, in UML or in ER) in [21], [22],
[23] and [24]. However, the ontology-database mappings
requirement for query formulation as reported in this paper is
rather different than these approaches, because our focus is not to
generate conceptual data models from an ontology but to use these
mappings to generate domain specific relational database queries.
Helpfully in [24] several mapping rules have been proposed that
guide the transformation from domain ontology to conceptual
schema. One of these mapping rules describes the transformation
of ontology properties to entities-attributes in the conceptual data
model. In this paper, this rule has been extended to define
mappings between an OWL ontology to a data source schema.

3. ONTOLOGICAL REPRESENTATION
OF DOMAIN METADATA FOR QUERY
FORMULATION

In OntoQF, the process of domain metadata representation in an
ontology based on a relational database involves analysing the
database schema to determine the database ‘domain metadata’ to
‘domain ontology’ transformation dependencies. This analysis
helps in determining the relational entities to be transformed into
ontology concepts. It also helps either to group together or
separate the ontological representation of a domain entity and also
to determine the relationships between different entities.
However, the database-ontology transformation is also dependent
on the query formulation requirements.

In general, the term database-ontology (or ontology-database)
mapping(s) assumes the existence of both a relational database
and an ontology and defines links between them, whereas the
database-ontology transformation assumes that only a relational
database exists and an ontology is generated by applying
database-ontology transformation rules [25]. In OntoQF (as
shown in Figure 2), first a domain ontology is created by
transforming the database entities which contain the domain
metadata and associated semantics. At this stage, the ontology-
database mappings (correspondence) entries are also stored. The
term ‘domain metadata’ refers to those database relations which
contain the entity related data or semantics of a domain. The
database tables that are generated as a result of creating a
relationship between individual entities are called ‘transaction
tables’ usually denoted by R(R). Such relations are not stored in
the domain ontology as classes. This is because we do not aim to
migrate or replicate transactional data in the ontology rather the
entity related metadata is to be used for querying the transactional
data. However, the extent to which domain metadata and
semantics are to be represented in a domain ontology can be
decreased or increased as per the query formulation requirements.

While creating a domain ontology, the development of a class
hierarchy and defining properties of concepts (slots) are closely

intertwined. In general, the definitions of the concepts are to be
created first in the hierarchy and then the properties of these
concepts are described. In this section, we discuss the mapping
rules which explain how selected sets of relational entities
containing domain metadata are included in the OntoQF ontology.
These database-ontology mappings rules have been devised while
keeping the followings three important considerations: (1) the
result of the database-ontology transformation adequately
describes the original database relationships; (2) in some cases,
not all constructs in a relational database may require to be
transformed in an ontology; and (3) while representing foreign
key metadata relations the transformation should maintain the
relationships between concepts. The following subsections
explain how the database-ontology transformations of domain
metadata are performed. At the end of this section we discuss
more advanced issues that need to be considered while creating
the OntoQF domain ontology.

Figure 2: OntoQF domain metadata representation and
ontology-database mappings

3.1. Ontological Representation of an Entity Type E
containing Domain Metadata

As shown in Figure 3, an entity type E (containing domain
metadata) in a relational schema R(E) is represented as a class in
the ontological model. Here each distinct column value is stored
as a subclass of the entity class. An object property is created
which points to the class as property range. This rule is only
applicable to a standalone entity and does not apply for the
representation of domain metadata which is based on any
cardinality (1:1 or 1:M etc.) relationship.

 Figure 3: Ontological representation of an entity type E

133

3.2. Ontological Representation of Domain Metadata
with 1:1 Relationships

In such a case, R is a relationship in a database D that links an
entity type E1 in D to the entity type E2 in D, with P1 as the
primary key of E1 and P2 as the primary key of E2; and R is a
one-to-one relationship type between the entity types E1 and E2.

Figure 4 shows entities E1 and E2 in a relational schema R(E).
Here, both R(E1) and R(E2) contain domain metadata and there is
a ‘one to one’ relationship from R(E1) to R(E2). In such a
situation both R(E1) and R(E2) are required to be represented as
ontology classes. For R(E1), an ontology class is created for entity
type R(E1) and each entity of the entity type is represented as a
subclass of the entity-type class. For R(E2), we have two
situations, i.e. (1) if there is a 1:1 generalization (specialization,
is-a) relationship from R(E1) to R(E2), as shown in Figure 4(a),
and (2) if there is any other ID based 1:1 relationship (e.g. has-a,
part-of etc) from R(E1) to R(E2), as shown in Figure 4(b).

Figure 4: Ontological representation of domain metadata with
1:1 relationships between entity E1 and E2

For an is-a relationship, as shown in Figure 4(a), each column
value (i.e. col-3) stored as a foreign key value is represented as a

subclass (i.e. class-111, class-121 etc) of the parent entity class
(i.e. class-11, class-12 etc). In this way, all of the R(E2) entities
are represented under a generalised class (class-1). The parent
class (class-1) is defined as a range class for the related object
property in order to have each foreign key value mapped to a
common object property. In addition, similar entities could be
further defined under one generalized parent class, if needed. An
example of such situation, as in Figure 4(a), is “Antibiotic drugs”
as parent class and a drug “Actinomycin” is an (is-a) antibiotic
drug.

For all other type of ID relationships, as in Figure 4(b), an
ontology class (class-2) is created for entity type R(E2) and the
column values (i.e. col-3) stored against each foreign key are
mapped to a subclass (i.e. class-21, class-22 etc) of the entity type
class (class-2). In order to link class-1 (primary key values) with
class-2 (foreign key values), object properties are used. In order to
support the relationship between domain entities within the
ontology each subclass of class-2 (i.e. foreign key column values)
is linked to an object property (i.e. ObjProp-21, ObjProp-22 etc).
All of these object properties are defined by a generalised
property (object property-2). Here, the individual properties
(objProp21, objprop22 etc) link the subclasses of class-1 (i.e.
subclass11, subClass12 etc) to the subclasses of class-2 (i.e.
subClass21, subClass22 etc) through property domain and range
relationship. This is how the links are established between a
primary key row instances (whose corresponding class is defined
as a domain class) with a foreign key row instance (whose
corresponding class is defined as a range class). An example of
such a situation (as shown in Figure 4(b)) is: a country “France”
has a (has-a) capital “Paris”.

3.3. Ontological Representation of Domain Metadata
with 1:M Relationships

In Figure 5 both R(E1) and R(E2) contain domain metadata and
there is a ‘one to many’ relationship from R(E1) to R(E2). This
situation is almost similar to 1:1 mappings (as detailed in Section
3.2) with the only major difference in the ontological
representation of foreign key values for entity R(E2).

In such a case, for an is-a relationship, as shown in Figure 5(a),
the column values (i.e. col-3) stored against a foreign key are
represented as subclasses of the parent entity class (i.e. class-111
and class-112 for class-11, and class-121 for class-12 etc). For all
other type of ID relationships, as in Figure 5(b), column values
(e.g. col-3) stored against one common foreign key are
represented under a parent class having these values as subclasses
(i.e. class 211 and class 212 defined as subclasses for class 21
etc). The parent classes (i.e. class 21, class 22 etc.) are represented
by one generalised class (class-2) of R(E2). Here, the object
properties are created for each distinct foreign key value. All of
these object properties are defined by a generalised property
(object property-2). Individual properties (objProp21, objprop22
etc) link the subclasses of class-1 (i.e. subclass11, subClass12 etc)
to the subclasses of class-2 (i.e. subClass21, subClass22 etc)
through property domain and range relationships. This is how
links are established between a primary key row instances (whose
corresponding class is defined as domain class) with a foreign key
row instance (whose corresponding classes are defined as range
classes). An example of such a situation (as shown in Figure 5(b))
is: a country “France” has cities “Paris”, “Lyon” etc.

134

Figure 5: Ontological representation of domain metadata with
1:M relationships between entity E1 and E2

3.4. Ontological Representation of Domain Metadata
with M:N Relationships between Entity E1 and E2

In such a case, R is a relationship in a database D that links an
entity type E1 in D to the entity type E2 in D, with P1 being the
primary key of E1 and P2 being the primary key of E2; R is a
many-to-many relationship type mapped to a schema relation
denoted by R(R) = P1 U P2.

Figure 6 shows the entities E1 and E2 in a relational schema R(E)
with ‘many to many’ relationship between them. In such a
situation only the entity types R(E1) and R(E2) are represented
into the ontology as classes. In practice, the day to day
transactions are stored with such R(R) relations. We do not store
such relations into the ontology as classes because we do not store
transactional data in the ontology rather the entity related domain
metadata are used to query such transactional data.

Figure 6: Ontological representation of domain metadata with
M:N relationships between entity E1 and E2

3.5. Database to Ontology Mapping for Data Columns
In OWL-DL, property restrictions can be applied to both datatype
properties (properties for which the value is a data literal) and
object properties (properties for which the value is an individual).
Here, ‘object properties’ link individuals to individuals and
‘datatype properties’ link individuals to data values.

In OntoQF, table columns whose values are data literals and are
not containing domain metadata or semantics are transformed into
datatype properties. This is because the table columns which
contain domain metadata or semantics are to be defined by
class/subclass relationship or by linking them with object
properties (as discussed in sections 3.1 – 3.4). Therefore, in order
to specify ontology restrictions on data values, for each of the
selected table column a datatype property is created which links to
the related ontology class as rdfs:domain. In such a case, the
rdfs:range datatype of the ‘datatype property’ is defined as per the
column datatype. Examples of such data columns in the medical
domain are: patient’s registration year, patient’s disease duration,
patient’s height, patient’s weight etc. For all of such cases, the
rdfs:domain class will be the patient.

135

Figure 7 shows an entity E in a relational schema R(E) and the
attributes

1 2, , ..., nCol Col Col belong to entity E. Here, R(E) is

represented as an ontology class E and columns (i.e.

1 2, , ..., nCol Col Col) are represented as datatype properties (i.e.

1 2, , ... , nDatatype Property Datatype Property Datatype Property− − −)

with class-E defined as rdfs:domain. The rdfs:range datatype for
these ontology properties are defined as per the columns
(

1 2, , ..., nCol Col Col) datatype. Such a transformation of data

columns can be validated by applying a reverse transformation,
i.e. by converting ontology datatype properties to relational
database table columns [26]. Here, all datatype properties are
parsed in a series. For each parsed datatype property, a database
table is located similar to the rdfs:domain value for datatype
property, and a data column is created with the name of that
property.

Figure 7: Ontological representation of data columns

4. ONTOLOGY REPRESENTATION OF
DOMAIN KNOWLEDGE

Once the basic structural elements of an OntoQF domain ontology
have been defined using the above mentioned database-ontology
transformation approach, then this ontology can be further
enriched with domain knowledge which is expressed in terms of
OWL-DL property assertions as concept restrictions that are
consistent with the ontology schema. These concept restrictions
could be either simple or complex ones, and may involve many
conditions. In OntoQF, object properties with quantifier
restrictions and datatype properties with comparative restrictions
are used for the purpose of generating ontology based queries.

A given DL expression has a set of concepts and a role forming
operator. The smallest set propositionally closest to DL is

Attributive Language with Complements (ALC), where concepts
are constructed using Union, Intersection, allValuesFrom,

someValuesFrom and complementOf written as , , ∀ , ∃

and ¬ respectively. The ‘all’ in allValuesFrom is the universal
qualifier whereas the ‘some’ in someValuesFrom is the
extensional qualifier. The someValuesFrom (hasClass) and
allValuesFrom (toClass) constructs are applied to classes while
specifying classes and restrictions. The cardinality restrictions are
referred to as local restrictions since they are associated with
object properties of a class. That is, restrictions constrain the
cardinality of an object property on instances of a class. For
example, a minimum cardinality of zero on an object property
states (in the absence of any more specific information) that this
property is optional with respect to that class. The cardinality
restrictions may also be used to state that certain classes can have
no values for a particular property. These cardinality restrictions
are used to inform the ontology Reasoner [19] of the maximum or
minimum number of a class instances that are related to one
individual by that object property.

As in OntoQF, the focus remains on using a domain ontology to
formulate database queries by translating ontology statements into
relational query statements; therefore, cardinality constraints are
not used to perform query formulation tasks. This is mainly
because these restrictions, when used with object properties,
constrain the cardinality of a class property. This is because class
instances contain the transactional data of a domain, whereas in
OntoQF we do not migrate or replicate transactional data into the
ontology. However, the comparative restrictions minimum,
maximum and exactly can be used with the datatype properties to
qualify domain knowledge statements. Here, the restrictions
constrain the value of a datatype property in relation to data
values in a table column. In such a case, minimum with a datatype
property states (in the absence of any more specific information)
that the selected class should not have any value less than the
specified value. Moreover, all of these minimum, maximum and
exactly restrictions can also be used with a negation (not)
operator.

5. TRANSLATION OF ONTOLOGY
STATEMENTS INTO RELATIONAL
QUERY STATEMENTS

As detailed in Sections 3 and 4, the OntoQF domain ontology
stores the domain metadata or semantics, and the domain
knowledge is expressed in terms of ontology statements as
concept restrictions. These concept restrictions can include
individual or multiple OWL description logic constructs as well as
conditions. In order to translate these ontology statements into
relational query statements, each DL construct needs to be
processed and translated into the corresponding relational query
constructs. The following are the syntax rules for DL constructs
[19].

C, D A | (atomic concept)
I (Instance)
¬ C | (negation)
C D | (intersection)
C U D | (union)
!P.C | (universal restriction)

"P.C | (existential quantification)
PD . Min/Max/Exactly {value} | (PD datatype property)

136

Table 1: Translating Ontology OWL-DL Statements into Relational Query (RQ) Statements

OWL-DL
Formulae

FOL * Translation in Relational Query Statements

Existential
Quantification

(some P C)

i.e. ∃ P.C

∃ y. P(x, y) ∧ C(y)
Here y: C C(y)
and (x, y) : P P(x, y)

For a DL concept DC = ∃ P.C the set A is called the domain of p(x). Therefore
DC = (x∃ ∈ A, P(x)), i.e. for any existence of x in A such that P(x) is true.

The equivalent RA expression i.e.)(
 C RP =

σ will select values from a relation/view

where the corresponding record satisfies this condition. In this case the ontology-
database mapping information is to be used to retrieve the target table.column
information.

Universal
Restriction

(all P C)

i.e. ∀ P.C

∀ y. P(x,y) C(y)

For a DL concept DC = ∀ P.C, the set A is called the domain of p(x).

As per DeMorgan’s theorem ¬ ∀ x. p(x) = ∃ x. ¬ p(x)

and by applying negation ¬ (¬ ∀ x. p(x))= ¬ (∃ x. ¬ p(x))

is equal to ∀ x. p(x) = ¬ (∃ x. ¬ p(x))

Thus, in order to show that ∀ x. p(x) is true, it is equivalent to show that ∃ x. ¬
p(x) is false. Therefore, in order to find x for which the p(x) is false, the equivalent
RA expression will first select values from a relation where the corresponding record
satisfies this condition and then taking an inverse (complementOf) of the result set.

Therefore, for ∀ P.C, (()))(()
domain col P CR domain col IN RQ Rπ σ

σ
− < >− ¬

=

Operations
(a) Intersection
i.e. C1 … Cn

(b) Union
i.e. C1 … Cn

(c) Negation
i.e. ¬ C

(a) C1(x) ∧ … ∧ Cn(x)

(b) C1(x) ∨ … ∨ Cn(x)

(c) ¬ C(x)

The Intersection, Untion and Negation operators in DL (FOL) has same interpretation
as AND (∧), OR (∨) and complementOf (¬) operators respectfully, i.e.
(a) If C1(x) and C2(x) are true, then C1(x) ∧ C2(x) is true; otherwise C1(x) ∧ C2(x) is

false.
(b) If C1(x) and C2(x) are false, then C1(x) ∨ C2(x) is false; otherwise C1(x) ∨

C2(x) is true.
(c) If C(x) is true, then ¬ C(x) is false; and if C(x) is false, then ¬ C(x) is true.

Object Property
with data values
(a)Min {value}
(b)Max {value}
(c)Exactly{value}

(a)PD {value}

(b)PD {value}

(c)PD = {value}

If C ∈ | (PD (exactly|min|max) (value)) then (a) ()
DR P va lu eQ Rσ

≥
= ,

(b) ()
DR P va lu eQ Rσ

≤
= and (c) ()

DR P va lu eQ Rσ
=

=

Here the RA expression is required to select values from a relation/view where the
corresponding record satisfies PD = value condition.

Table Key:

• C is the ontology concept/class and R is a database relation/view or multiple database relations with Join condition. The ontology-
database schema mapping information (detailed in section 7) is used to replace R with SQL’ FROM’ clause.

• P/PD is an ontology object-property/datatype-property, which relates x to y or to a data value. While translating DL to RA, the
P/PD is replaced with the database schema information (discussed in section 7).

• Domain-col is a manually selected domain column of relation R for ontology property P (discussed in section 7).

• A Predicate function P: X {true, false} is called a predicate on X. When P is a predicate on X, we say P is a property of X.

*Note: - For theoretical background and further details on DL to RA translation algorithms readers are referred to [1] reported earlier.

In the relational database paradigm, a logical data model may be
accessed through SQL which is based on the Relational Algebra
(RA), whereas OWL-DL is based on Description Logic [27].
Therefore, we base our translations on Description Logic and
Relational Algebra, to work with any relational database that
implements the SQL standard. In this regard, Table 1 outlines DL
to RA translation rules for individual constructs. Due to space
limitations, Table 1 presents only the core DL to RA translations;
for details, please refer to [1].

While applying DL to RA translation on DL’s existential
quantification or universal restriction when specified with an
ontology class C, further checks need to be carried out to see if the
class C contains subclasses. This is because a database needs to be
searched for all individuals which can be defined as instances of
class C. In OntoQF, the database-ontology metadata
transformation scheme (as detailed in section 3.2 & 3.3) enables

such operation by storing the related entity elements (with “is-a”
relationship) as subclasses. Using this approach, if an ontology
class C contains subclasses; the query condition on a class C is to
be updated as per the following two situations (a) and (b).

(a) If C contains only one subclass C1, then class C is to be
replaced with C1

i.e. For ∃ P.C i.e.)(
 C RP =

σ it will be
1C ()P Rσ

=

and for ∀ P.C i.e. ((() ()
domain col P Cdomain col IN R R

π σ
σ

− ≠− ¬

it will be
1

((() ()
domain col P Cdomain col IN R R

π σ
σ

− ≠− ¬

(b) If C contains more than one subclasses i.e. C1, C2,…,Cn then C
is to be replaced with all of the subclasses of C using the union
operator i.e. C1 C2 … Cn

137

i.e. For ∃ P.C i.e.)(
 C RP =

σ

it will be
1 2 nC C C ()P P P Rσ

= ∨ = ∨ ∨ =

and for ∀ P.C i.e.

((() ()
dom ain col P Cdomain col IN R R

π σ
σ

− ≠− ¬
, it will be

C1 C2 Cn((() ()
domain col P P Pdomain col IN R R

π σ
σ

− ≠ ∨ ≠ ∨ ∨ ≠− ¬

Here, both (a) and (b) are to be applied recursively, until the last
child node of class C is retrieved.

6. Mappings from an Ontology Model to a
Relational Model

Once the ontology statement constructs are translated into
corresponding relational query statement constructs (as outlined in
Section 5), further processing is required to produce a final
executable relational query. This includes (1) replacement of the
ontology property links (i.e. P/ PD) as per the underlying database
schema structure; and (2) integration of a SQL From clause
including table join conditions (when required). In OntoQF,
ontology-database mappings are used to achieve these tasks. The
ontology-database mappings are expressed as a set of
correspondences that relate the vocabulary of an ontology model
(concept, property etc) with a relational model (table(s), column
etc). To this end, two database tables containing ontology-
database mappings information are created during the ontology
processing phase. These mapping tables store information about
ontology property links, database name, table name, column
name, primary and foreign key(s) (i.e. table join information).
Once the query formulation engine translates the OWL
description logic constructs into respective relational constructs,
this ontology-database mapping information is used to generate a
final query. In order to access the ontology-database mapping
definitions a ‘mapping-access’ scheme is implemented within the
query formulation engine (as shown in Figure 1). The ontology-
database mappings are stored within the existing ontology server
using the same namespace being used to store corresponding
ontology model. In this way an ontology file, when processed and
stored in the ontology server, has its database mapping
information stored alongside it. In the ontology server, the
following two database tables (1) Mappings_Information and (2)
Mappings_Relationship (having 1:M relationship) have been
implemented to store the ontology-database mappings:

Table-1: ‘Mappings_Information’
Column-Info Constraint
‘ID’ (primary key) (Not Null/ Unique)
‘Onto_Property’ (object or datatype) (Not Null/ Unique)
‘Col_Name’ (Not Null)
‘Table_Name’ (Not Null)

Table-2: ‘Mappings_Relationship’
Column-Info Constraint
‘ID’ (primary key) (Not Null/ Unique)
‘Relationship_Table’ (primary key) (Not Null/ Unique)
‘Key_Table_Join’ (Not Null)
 (Foreign Key ID reference Mappings_Information.ID)

The ‘ontology-property’ to ‘database-schema’ conversions are
straightforward for the queries which only access a single attribute
from a database entity/relation. However, some complex
processing is required when multiple attributes are to be accessed

with different associated constraints in a single query, or when a
database query requires a Join operation. In this regard, the
mappings_relationship table provides the Join condition with
respect to a given ontology statements.

7. Experimental Evaluation: A Case Study
from Health-e-Child Project

This approach has been applied to a large subset of the integrated
Health-e-Child (HeC) patients’ database schema along with the
implementation of a prototype system to perform query
formulation tasks. The prototype system has been presented to the
HeC consortium and validated by domain experts who have
confirmed its potential functionality. Due to space limitations, we
present a subset of the HeC case study and discuss associated
results.

Figure 8: A subset of HeC patients’ database showing domain

metadata and data tables

This section explains how the HeC domain metadata, used to
drive the process of generating queries, is represented in the
OntoQF domain ontology. In this regard, Figure 8 shows an
example subset of the HeC relational data model. This subset of
the data model is separated into two parts: (1) the database tables
containing domain metadata; and (2) the database tables which
contain transactional data. Here, domain metadata are to be
represented into the domain ontology to assist in both: (a) domain
knowledge representation; and (b) to generate relational database
query statements. As in OntoQF, transactional data are not stored
in the ontology rather the domain metadata is used for querying
the transactional data. The tables containing HeC domain
metadata e.g. Country, Race, Hospital, Drug,
MedicalObservationGroup and ClinicalObservation are
transformed into ontology schema (as shown in Figure 9) as per

138

the database-ontology transformation approach (detailed in
section 3). Moreover, due to query formulation requirements the
Gender column (represented as Sex) in the patient table is also
selected as domain metadata and represented as an ontology
concept ‘Gender’ having subclasses ‘Male’ and ‘Female’.
Furthermore, as shown in Figure 9, ‘Domain:Patient’ implies that
the queries are to be formulated with respect to patient entity.

Figure 9: An OntoQF Domain Ontology view of the example

Domain Metadata (created using the database-ontology
mapping scheme to support domain knowledge representation

and query formulation)

Once the OntoQF ontology is formulated, it is further enriched by
defining clinical case studies. These clinical case studies were
collected during the requirements gathering and data collection
phases of the HeC project. In this paper, we have included the
following two example case studies. OntoQF is able to
automatically generate relational database queries for such (but
not limited to) example case studies using the associated OntoQF
domain ontology and ontology-database mappings.

Figure 10: Ontology-Database mappings for the subset of HeC
patients’ database as per the mapping scheme detailed in

Section 7

139

Clinical Study 2:

Processed Ontology statement:

8. DISCUSSION
In a relational model, the general schema restrictions (e.g. Not-
Null, Unique etc.) are used to restrict data entry i.e. ‘Insert’ or
‘Update’ operations. However, in OntoQF we deal with the
‘Select’ query operations exclusively. Therefore, the OntoQF
domain ontology does not require the definition of general schema
datatype ranges, cardinality restrictions or specific constraints
(expressed in the database schema) as axioms. Moreover, while
defining a class hierarchy through database-ontology
transformation, it is not always required that the ontology should
contain all the possible information about the domain.

In some cases, an ontology statement to relational query
translation can result in generating unsafe relational queries. Here
the term ‘safe’ implies that the correct answer of the query is
contained within (or can be obtained directly from) the associated
database tables. For example, multiple someValuesFrom()
restrictions are used in an ontology restriction, with an
intersection operation within each restriction and a similar
property defines each concept. In such a case, the semantics of an
intersection class means that the resultant class is described as a
subclass of interesting class ‘A’ and a subclass of interesting class
‘B’ for a similar property. However, if the underlying database
implements normalization i.e. "a single database record cannot
hold more than one value for a table column" then the generated
query from such ontological definition may produce either no or
incorrect results. Similarly, another example of such unsafe
ontology statement is "use of a complementOf construct, with an
intersection operation within each hasValue property restriction,
i.e. complementOf (a, b,…,n) with intersection operation". Such
unsafe ontology definitions can be avoided by applying the
following rule: “for a given ontological domain knowledge, if the
restriction includes the ‘conjunction’ operation then the
translation is only safe if the conjunction is safe”.

9. CONCLUSIONS
The central aim of this work is to assist clinical researchers in
formulating relational database queries using an OWL-DL based
domain ontology. The task of query formulation is investigated by
the successive incremental development of DL to RA translation
algorithms. One of the major requirements of an ontology assisted
query formulation system is the formulation of a domain ontology
which includes definition of domain metadata, relationships and
knowledge of the ontology. In this regard, an ontology modelling
approach has been identified to transform domain metadata and
relationships into the ontology schema to assist in the query
formulation process. Once the basic structural elements of the
domain ontology are defined they are further enriched with
domain knowledge. Moreover, in order to generate relational
query statements as per the underlying database schema structure,
ontology-database mappings are expressed as a set of
correspondences that relate the vocabulary of a relational model
(table/relation, column etc) with the ontology model (concept,
property etc). This ontology assisted query formulation approach
has been applied to a large subset of the integrated HeC patients’
database schema along with the implementation of a prototype
system to perform query formulation.

One of the key merits of this approach is that no interpretation of
stored transactional data needs to be carried out or even
transformed and stored as ontology instances. This is clearly
beneficial since the interpretation of data in existing medical data
source(s) may cause serious scalability issues with existing legacy
clinical applications. Unlike most of the existing database-
ontology transformation approaches, the database-ontology
mappings presented in this research provide literal representation
of the domain-metadata in an ontology. Thus, the ontology
generated by following such mappings can play a significant role
in specifying concept restrictions and in generating relational
database queries. Also, this approach does not require users to be
familiar with the overall contents of the ontology to generate
respective queries. As a consequence, this can provide significant
support to clinical researchers while performing their studies,
especially if they do not fully understand the underlying system;
and thus navigating in a large ontology to select appropriate terms
can be significantly eased rather being a key obstacle in achieving
the associated study goals. Finally, we anticipate that the
provision of ontology assisted query formulation will provide
sufficient theoretical foundation to instantiate this approach in
further application domains.

10. ACKNOWLEDGMENTS
The authors would like to acknowledge the support of the
European Union in funding this work and the valuable assistance
of all partners in the Health-e-Child project, with special thanks to
colleagues working for University of the West of England (UWE)
at Center for European Organization for Nuclear Research
(CERN), Geneva and colleagues at UWE.

11. REFERENCES
[1] K. Munir, M. Odeh and R. McClatchey, Ontology Assisted

Query Reformulation Using the Semantic and Assertion
Capabilities of OWL-DL Ontologies, Twelfth International
Database Engineering & Applications Symposium (IDEAS)
2008.

140

[2] M. Zloof, Query-by-example: the invocation and definition
of tables and forms, VLDB: Proceedings of the 1st
International Conference on Very Large Data Bases pp. 1-
24, 1975.

[3] K. Munir, M. Odeh, P. Bloodsworth and R. McClatchey,
Using Assertion Capabilities of an OWL-Based Ontology
for Query Formulation, 3rd International Conference on
Information & Communication Technologies: from Theory
to Applications (ICTTA) 2008.

[4] Health-e-Child, The Information Societies Technology
Project: Health-e-Child, EU Contract IST-2004-027749,
2004.

[5] J. Freund, Health-e-Child: An Integrated Biomedical
Platform for Grid-Based Pediatric Applications, vol. Studies
in Health Te, pp. 259-270, 2006.

[6] A. Anjum, P. Bloodsworth, A. Branson, T. Hauer, R.
McClatchey, K. Munir, D. Rogulin and J. Shamdasani, The
Requirements for Ontologies in Medical Data Integration: A
Case Study, Eleventh International Database Engineering
& Applications Symposium (IDEAS) vol. 6, pp. 308-314,
2007.

[7] A. Branson, T. Hauer, R. Mcclatchey, D. Rogulin and J.
Shamdasani, A Data Model for Integrating Heterogeneous
Medical Data in the Health-e-Child Project, Accepted in
HealthGrid'08 Conference 2008.

[8] N.W. Paton, R. Stevens, P. Baker, C.A. Goble, S. Bechhofer
and A. Brass, Query Processing in the TAMBIS
Bioinformatics Source Integration System, Proceedings of
the IEEE International Conference on Scientific and
Statistical Databases (SSDBM) pp. 138-147, 1999.

[9] E. Mena, A. Illarramendi, V. Kashyap and A. Sheth,
OBSERVER: An Approach for Query Processing in Global
Information Systems based on Interoperation across Pre-
existing Ontologies, Journal on Distributed and Parallel
Databases vol. 8, no. 2, pp. 223-271, 2000.

[10] D. Baer, P. Groenewoud, E. Kapetanios and S. Keuser, A
Semantics Based Interactive Query Formulation Technique,
User Interfaces to Data Intensive Systems: Second
International Workshop on User Interfaces to Data
Intensive Systems pp. 43-49, 2001.

[11] E. Kapetanios, D. Baer, B. Glaus and P. Groenewoud, Data
Querying and Analysis through Integration of Intentional
and Extensional Semantics, 16th International Conference
on Scientific and Statistical Database Management
(SSDBM) pp. 353-356, 2004.

[12] C.B. Necib and J.-C. Freytag, Query Processing using
Ontologies, CAiSE pp. 167-186, 2005.

[13] A.L. Rector, S. Bechhofer, C.A. Goble, I. Horrocks, W.A.
Nowlan and W.D. Solomon, The GRAIL Concept
Modelling Language for Medical Terminology, Artificial
Intelligence in Medicine vol. 9, pp. 139-171, 1997.

[14] D. Calvanese, G.D. Giacomo, D. Lembo, M. Lenzerini, A.
Poggi and R. Rosati, Ontology-based Database Access,
Proc. of the 15th Italian Conf. on Database Systems (SEBD)
pp. 324-331, 2007.

[15] D. Calvanese, G.D. Giacomo, D. Lembo, M. Lenzerini, A.
Poggi and R. Rosati, Linking Data to Ontologies: The
Description Logic DL-LiteA, In Proc. of the 2nd Workshop
on OWL: Experiences and Directions (OWLED) 2006.

[16] Y. Arens, C.A. Knoblock and W.-M. Shen, Query
Reformulation for Dynamic Information Integration,
Journal of Intelligent Information Systems - Special Issue on
Intelligent Information Integration vol. 6, no. 2, pp. 99-130,
1996.

[17] Z. Xu, S. Zhang and Y. Dong, Mapping between Relational
Database Schema and OWL Ontology for Deep Annotation,
Web Intelligence, 2006. WI 2006. IEEE/WIC/ACM
International Conference on Web Intelligence pp. 248-552,
2006.

[18] J. Barrasa, O. Corcho, G. Shen and A. Gomez-Perez, R2O,
an Extensible and Semantically Based Database-to-ontology
Mapping Language, 2nd Workshop on Semantic Web and
Databases (SWDB) 2004.

[19] A. Borgida, M. Lenzerini and R. Rosati, Description Logics
for Databases, The description logic handbook: theory,
implementation, and applications pp. 462-484, 2003.

[20] D. Caragea, J. Pathak, J. Bao, A. Silvescu, C. Andorf, D.
Dobbs and V. Honavar, Information Integration from
Semantically Heterogeneous Biological Data Sources,
DEXA Workshops: Proceedings of the 3rd International
Workshop on Biological Data Management pp. 580-584,
2005.

[21] E. Vysniauskas and L. Nemuraite, Transforming Ontology
Representation from OWL to Relational Database,
Information Technology and Control vol. 35, no. 3A, 2006.

[22] J. Trinkunas and O. Vasilecas, A Graph Oriented Model for
Ontology Transformation into Conceptual Data Model,
Journal of Information Technology and Control vol. 36, no.
1A, 2007.

[23] P. Mitra, G. Wiederhold and M. Kersten, A Graph Oriented
Model for Articulation of Ontology Interdependencies,
Proc. Extending Database Technologies vol. 1777, pp. 86-
100, 2000.

[24] H. El-Ghalayini, M. Odeh, R. McClatchey and T.
Solomonides, Reverse Engineering Domain Ontologies to
Conceptual Data Models, Proceedings of the 23rd IASTED
International Conference on Databases and Applications
pp. 222-227, 2005.

[25] I. Astrova, N. Korda and A. Kalja, Rule-Based
Transformation of SQL Relational Databases to OWL
Ontologies, 2nd International Conference on Metadata &
Semantic Research 2007.

[26] E. Vysniauskas and L. Nemuraite, Transforming Ontology
Representation from OWL to Relational Database,
Information Technology and Control vol. 35, no. 3A, pp.
333-343, 2006.

[27] F. Baader, I. Horrocks and U. Sattler, Description Logics as
Ontology Languages for the Semantic Web, Mechanizing
Mathematical Reasoning: Essays in Honor of Jörg
Siekmann, in Lecture Notes in Artificial Intelligence vol.
2605, pp. 228-248, 2005.

141

