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Given the uncertainty surrounding how existing explainability methods for autonomous vehicles (AVs) meet
the diverse needs of stakeholders, a thorough investigation is imperative to determine the contexts requiring
explanations and suitable interaction strategies. A comprehensive review becomes crucial to assess the
alignment of current approaches with varied interests and expectations within the AV ecosystem. This study
presents a review to discuss the complexities associated with explanation generation and presentation to
facilitate the development of more effective and inclusive explainable AV systems. Our investigation led to
categorising existing literature into three primary topics: explanatory tasks, explanatory information and
explanatory information communication. Drawing upon our insights, we have proposed a comprehensive
roadmap for future research centred on (i) knowing the interlocutor, (ii) generating timely explanations, (ii)
communicating human-friendly explanations and (iv) continuous learning. Our roadmap is underpinned
by principles of responsible research and innovation, emphasising the significance of diverse explanation
requirements. To effectively tackle the challenges associated with implementing explainable AV systems, we
have delineated various research directions, including the development of privacy-preserving data integration,
ethical frameworks, real-time analytics, human-centric interaction design and enhanced cross-disciplinary
collaborations. By exploring these research directions, the study aims to guide the development and deployment
of explainable AVs, informed by a holistic understanding of user needs, technological advancements, regulatory
compliance and ethical considerations, thereby ensuring safer and more trustworthy autonomous driving
experiences.

CCS Concepts: • Computer systems organization → Robotics; • Human-centered computing →
Interaction devices; • Computing methodologies→ Artificial intelligence;

Additional Key Words and Phrases: Explainable autonomous vehicles, Human-robot interaction, XAI, Trans-
parency, Feedback communication, Human factors

ACM Reference format:
Sule Tekkesinoglu, Azra Habibovic, and Lars Kunze. 2025. Advancing Explainable Autonomous Vehicle
Systems: A Comprehensive Review and Research Roadmap. ACM Trans. Hum.-Robot Interact. 14, 3, Article 39
(March 2025), 46 pages.
https://doi.org/10.1145/3714478

This work was supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP), funded by the Knut
and Alice Wallenberg Foundation. L. Kunze was supported by EPSRC Project RAILS (EP/W011344/1).
Authors’ Contact Information: Sule Tekkesinoglu (corresponding author), University of Oxford, Oxford, UK; e-mail:
sule@robots.ox.ac.uk; Azra Habibovic, Scania CV AB, Sodertalje, Sweden; e-mail: azra.habibovic@scania.com; Lars Kunze,
University of the West of England, Bristol, UK and University of Oxford, Oxford, UK; e-mail: lars@robots.ox.ac.uk.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2025 Copyright held by the owner/author(s).
ACM 2573-9522/2025/3-ART39
https://doi.org/10.1145/3714478

ACM Transactions on Human-Robot Interaction, Vol. 14, No. 3, Article 39. Publication date: March 2025.

https://orcid.org/0000-0002-1232-346X
https://orcid.org/0000-0002-0885-9560
https://orcid.org/0000-0001-5302-1938
https://doi.org/10.1145/3714478
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3714478
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3714478&domain=pdf&date_stamp=2025-03-17


39:2 S. Tekkesinoglu et al.

1 Introduction
The promise of autonomous vehicles (AVs) is significant, but their success is contingent on
overcoming key challenges, one of which is ensuring that their AI-driven operations are explainable.
Explainable AI is crucial to building trust, transparency and accountability in decision-making
processes conveyed through user-friendly interfaces [62]. Without effective human–machine
communication, the potential benefits of AVs—such as enhanced road safety, improved traffic
flow and increased mobility—are unlikely to be fully realised. To meet this need, research in the
field strives to make AV actions and decisions easily understood and interpreted by humans. AI
experts have endeavoured to design models with explainability features and incorporate them into
user-centric interfaces, e.g., within the infotainment systems. Numerous literature surveys have
scrutinised current approaches from various angles, encompassing cooperative driving, driving
scenarios, trustworthiness and computational infrastructure [102, 113, 138, 154, 209]. These studies
have put forth recommendations and frameworks to pave the way for future investigations that
aim to overcome the hurdles associated with developing explainable AVs.

Atakishiyev et al. offered a thorough analysis of explainable AI (XAI) in autonomous driving
[6]. Their work described concepts and processes involved in AI explainability and proposed a
framework that considers societal and legal requirements for ensuring the explainability of AVs.
A survey study by Omeiza et al. reviewed research on explanations for various AV operations [189].
The study identified stakeholders involved in developing, using and regulating AVs. Based on their
findings, the authors provided recommendations, including a conceptual framework for AV explain-
ability. In their review, Zablocki et al. discuss the challenges of interpretability and explainability
in vision-based autonomous driving [261]. Their study provides a detailed organisation of the post
hoc explainability methods available for black-box autonomous driving systems. Furthermore, the
authors explore several strategies for developing interpretable autonomous driving systems by
design. The review by Xing et al. explored human behaviours and cognition in AVs for effective
human-autonomy collaboration [256]. The review also delved into the critical factors influencing
trust and situational awareness in AVs. Furthermore, the authors provided an analysis of human
behaviours and cognition in shared control and takeover situations. Kettle and Lee undertook a
comprehensive literature review centred on the augmented reality (AR) interfaces implemented
in AVs [113]. The review examines the impact of AR interfaces on drivers’ situational awareness,
performance and trust. While their analysis indicates that integrating AR interfaces in AVs can
enhance trust, acceptance and driving safety, the findings underscore the necessity for research on
the long-term effects of AR interfaces, impaired visibility, contextual user needs, system reliability
and inclusive design.

Despite the growing body of research on explainability for AVs, it remains unclear how to
effectively generate and communicate explanations that adapt to diverse user needs and varying
levels of transparency across different levels of autonomy. The objective of this study is to assess
how task and context, e.g., stakeholders, driving operations and timing, influence the explanation
needs and identify situations requiring explanations in various levels of automation. Moreover,
we evaluate diverse requirements for communicating explanatory information. After critically
evaluating the existing literature and identifying research gaps, we propose responsible research
and innovation (RRI)-grounded roadmap for future research.1 With these focus points in mind,
our article contributes in the following ways:

1RRI is a term used by the European Union’s Framework Programmes to describe scientific research and technological
development processes that take into account effects and potential impacts on society and the environment.
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Fig. 1. Our perspective on the factors affecting human trust in AVs and its relation to transparency and
explanations.

—Conducting an extensive survey: We provide a comprehensive review of the state-of-the-art
(SotA) research on explainability in AVs, identifying strengths, challenges and areas where
further research is needed.

—Presenting factors that affect explanation generation and communication: We categorise and
analyse key factors influencing the explanatory task, information and information commu-
nication. This provides a structured framework for researchers to follow when developing
explainability solutions.

—Offering RRI grounded roadmap: The roadmap outlines key research directions, ethical con-
siderations and design principles. The application of this roadmap can benefit future research
by providing a user-centred and adaptive framework that focuses on the clarity and relevance
of explanations.

The rest of the article is organised as follows: Section 2 gives a background on trust factors,
transparency and explanations. Section 3 presents the methodology describing the design of the
review. Section 4 provides a literature review on the explanatory task, followed by explanatory
information (Section 5), and explanatory information communication (Section 6). Section 7 presents
the proposed roadmap and discusses a number of future research directions. Section 8 concludes
the paper with a summary of key points.

2 Background
This section lays the groundwork for the review by discussing factors affecting human trust in
AV technology and contextualising its relation to transparency and explanations (see Figure 1).
Acceptance and appropriate trust depend on a proper understanding of the technology. One way
to attain this is by transparently elucidating its internal processes. Thus, trust and transparency are
intrinsically linked. Transparency fosters confidence in the system by providing insights into its
reasoning mechanisms, thereby compelling the necessity for explanations.

In the following, we discuss various factors influencing conceptual and contextual trust. While
the literature widely explores the impact of explanations on user trust, it is important to note
that not all trust factors can be fully addressed through transparency and explanations alone.
Understanding these distinct dimensions of trust is critical, as they require different explanatory
approaches, e.g., personalisation. When generating explanations, it is essential to consider both
conceptual and contextual trust factors to effectively build user confidence.
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2.1 Trust in AVs
Trust in AVs concerns the reliance, confidence and belief individuals place in the technology to
perform a task accurately, reliably and safely. Perceived trust is crucial in determining how much
an individual is willing to accept, intend to use and depend on the automated system [104, 196].
One prominent definition of trust in automation is provided by Mayer et al. as ‘the attitude that
an agent will help achieve an individual’s goals in a situation characterized by uncertainty and
vulnerability’ [169]. Several factors influence trust in automation, e.g., perceived safety, design
features, brand, road type and weather. Hoff and Bashir [93] proposed a trust in automation model
with three layers of variability: dispositional trust, situational trust and learned trust. Numerous
studies have assessed trust factors in the context of AVs across cultures and scenarios. Building
on Hoff and Bashir’s model, we propose a two-category framework—conceptual and contextual
trust—that synthesises findings from the current literature on trust in AVs (see Figure 1).

Conceptual trust, paralleling dispositional trust, focuses on general perceptions of trust shaped
by individual characteristics, such as demographic background, personality traits and pre-existing
knowledge. Studies examining inherent factors, e.g., how demographic variables such as age or
education affect willingness to adopt AVs, align with conceptual trust [87, 155, 215]. Contextual trust,
paralleling situational trust, emphasises dynamic factors that influence real-time interactions with
the vehicle, defined by the internal state (e.g., emotional or cognitive state) and external situation
(e.g., traffic, weather or vehicle behaviour) [11, 105, 226]. Learned trust bridges both categories.
It influences conceptual trust by shaping broader perceptions and beliefs through cumulative
experience, which directly relates to pre-existing knowledge [111, 272, 273]. Learned trust affects
contextual trust by informing situational expectations and responses based on interactions [200].
This categorisation provides a systematic way to interpret existing literature in a manner relevant
to understanding trust in AVs.

Before we delve into these concepts, it is important to point out perceived safety’s key role in both
conceptual and contextual trust-building processes. These concepts have a bidirectional relationship
in that changes in one factor can impact the other. Perceived safety could either be objective, based
on an objective evaluation of the safety factors, or subjective, that is, safety based on feeling or
perception [148]. Perceived safety is a dynamic process in which levels can shift as individuals
encounter new information. For instance, the sudden deviation of AV’s driving behaviour from
the human driver’s norm or even accident reports associated with AVs might hamper the feeling
of safety and thereby reduce trust [260]. In full automation (society of automotive engineers
(SAE) Level 5), where user agency is low, perceived safety is heavily influenced by the user’s
trust in the system.2 When users feel they have no control, trust becomes the primary factor in
perceived safety. AV systems must demonstrate consistent performance, maintain transparency
and communicate effectively with users to appease any unnecessary discomfort caused by lack
of control. Therefore, understanding and managing trust calibration—the measure of the polarity
of trust, that is, misplacement of trust, e.g., overtrust, distrust and mistrust, is critical [127]. When
users perceive the system to perform effectively and reliably, their trust increases—or remains
stable. Conversely, users may recalibrate their trust if the system exhibits errors or inconsistencies,
potentially becoming more cautious or sceptical. Thus, justified trust calibration is crucial to foster
effective collaboration and safe interactions between humans and machines.

2.1.1 Conceptual Trust. Conceptual trust refers to a person’s mental conception and propensity
to trust and accept technology over time, which is along the lines of dispositional trust [93]. This

2SAE defines levels of driving automation in six levels. The levels are: Level 0—No Automation, Level 1—Driver Assistance,
Level 2—Partial Automation, Level 3—Conditional Automation, Level 4—High Automation and Level 5—Full Automation.
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type of trust is influenced by demographic background, pre-existing knowledge and personality
traits. In relation to demographic information, culture, age, gender and education have been widely
studied to understand the influence on acceptance and trust in AVs. People from different cultures
drive by different implicit and explicit rules. For instance, the work by Edelman et al. work reports
that participants from different backgrounds respond differently to overtaking and hindering
decisions of the AV [63]. Though some similarities can be drawn among cultures to form a design
framework applicable across the globe, an AV is not expected to have the same behaviour worldwide
and be understood and accepted by everyone equally well. Cross-cultural differences require AVs
in different places to adapt to the culture and transition from one behaviour to another when it
travels through cultural borders [201]. Additionally, culture influences key psychological factors
such as propensity to trust, which affects how quickly users may place confidence in AV systems
[71], and locus of control, which shapes individuals’ sense of control over the driving environment
and technology [160]. These variations highlight the need for culturally sensitive AV design to
accommodate diverse user expectations.

Regarding the age factor, research revealed no significant differences between the average trust
ratings of younger and older adults [87, 155, 215]. Both younger and older participants reported
autonomous driving as trustworthy and acceptable. Liu et al. reported that the younger participants
had a higher positive attitude and acceptance than the older participants [155]. At the same time,
Hartwich’s study revealed that older people also had a strong positive attitude toward AVs [87].
This suggests that age may not be a significant factor on its own but could be a proxy for other
underlying variables. Further research is needed to assess if consistent age differences exist in
individual trust in AVs. In terms of gender differences, previous studies suggest that men are
more inclined towards accepting AVs [206, 274]. Regarding the education level, Liu et al. showed
that education was positively correlated with respondents’ willingness and ability to pay for AV
technology [155].

On another note, research has explored how personality traits, particularly the big five, influence
the acceptance of AVs. People with high openness, conscientiousness, extraversion and agree-
ableness had a more positive perspective, while high neuroticism had a negative effect [99, 205].
Personal innovativeness, considered a relevant personality trait influencing one’s willingness to
accept and implement new ideas, products and systems [3], is also perceived to positively influence
the adoption of AVs [90]. Risk preference (risk-seeking or risk-averse personality) is also considered
an important factor in AV adoption. The research shows that risk preference is highly influenced
by age, income and education [246].

Pre-existing knowledge is another factor influencing trust formation even before an actual
interaction with AVs occurs. Prior experience with similar technology—or other transport modes
and information conveyed by external sources (e.g., media)—could lead to overtrust, distrust,
or mistrust toward AVs [197, 240]. Previous studies reported that participants with pre-existing
knowledge of AVs held more optimistic views towards using AVs in the future than those without
such knowledge [111]. Research by Shammut et al. also highlighted that respondents who tended
to trust AVs commented on how safe and reliable AVs are based on their pre-existing knowledge
[225]. Another work revealed that responders who reported greater knowledge and experience
of new technologies were more accepting of AVs [140]. On the other hand, the study by Zhou
et al. revealed that misinformation could be the most significant factor causing distrust in AVs due
to risks associated with software malfunctions or cyberattacks [272]. According to Zhou et al.,
negative news coverage about accidents involving AVs could cause people to distrust them [273].
Conversely, overstated assurances or overpromising marketing claims can lead to developing
unrealistic expectations about the safety and capabilities of AVs [77]. While initial trust is formed
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based on pre-existing knowledge and previous experiences with technology, interacting with AVs
and understanding their capabilities and limits generates proper trust calibration.

2.1.2 Contextual Trust. Contextual trust is determined by the particular situation or location in
which an interaction occurs, which aligns with situational trust [93]. Contextual trust is consequen-
tial and temporal, influenced by both the external (e.g., driving behaviour) and internal environment
(e.g., state of mind) [112]. People might feel positive trust toward a system concerning certain tasks
and goals yet mistrust or distrust when other tasks, goals, or situations are involved. For instance,
existing literature highlights contextual elements, such as traffic signals and driving behaviour
(e.g., defensive, normal and aggressive), are important external factors related to contextual trust
in pedestrian-AV interaction [40, 105, 241]. Research showed that pedestrians generally expressed
more trust in AVs at signalised crosswalks than in unsignalised crossing. This finding is based
on the assumption that AVs are expected to be law-abiding (e.g., stopping at red lights) under all
circumstances [105].

In future, human-driven vehicles and AVs will inevitably share the road. A recent work studied
how human drivers’ trust toward AVs varies with contextual attributes such as traffic density and
road congestion. Sun et al. discovered a positive correlation between the vehicle gap and trust
level, while factors such as relative speed and traffic density exhibited a negative correlation [233].
Osikana et al. found that the vehicle’s speed and distance have the most influence on the cyclists’
trust levels [190]. Another study found that motorcyclists trust AVs more than human drivers due
to human unpredictable driving behaviours, not checking their blind spots and speeding [194].

Researchers have investigated the influence of perceived risk on drivers’ trust in automated
driving. Ayoub et al. examined drivers’ trust in AVs’ takeover scenarios with different system
performances [10]. The results show that drivers quickly calibrate their trust level when AV clearly
demonstrates its limitations. Azevedo-Sa et al. considered two risk types (i.e., low system reliability
and low visibility from foggy weather) as contextual factors where low visibility did not significantly
impact drivers’ trust in automated driving [11].

Trust develops inconsistently in different contexts due to internal factors such as emotional state,
attentional capacity and self-confidence [163, 258].The attentional capacity of a driver often depends
on the task—monotonous automated driving promotes passive task-related fatigue [126]. A high
level of positive trust in automation might reduce attention allocation and situational awareness.
Inactivity and engagement in non-driving-related tasks (NDRTs) have been suggested to impair
the driver’s ability to handle the takeover process safely, which might cause accidents resulting
from over-trusting automation [180, 198]. In another work, contextual trust was associated with
emotions, where a high level of trust in AVs significantly improved participants’ positive emotions
[7]. Furthermore, factors such as motivation, stress, sleep deprivation and boredom influence trust
dynamics in driving scenarios [93].

A non-task-related condition, attention deficit hyperactivity disorder (ADHD), could influ-
ence trust in AVs due to the cognitive challenges it poses in monitoring and maintaining awareness
[126]. Since people with ADHD are more prone to distraction, their ability to monitor automa-
tion and respond appropriately might be compromised, further impacting their willingness to
use automation. On a different note, self-confidence is another context-dependent variable that
can alter trust in automation and control allocation [93]. A recent study compared participants
who underwent training for engaging automated driving systems with those who did not receive
such training. The findings unveiled notable disparities in response to emergency events requiring
drivers to assume control. Trained drivers demonstrated reduced reaction times and exhibited more
calibrated trust levels in automation compared to their non-trained counterparts [200]. Overall, it
is essential to consider internal state factors along with locus of control and propensity to trust
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when assessing trust in AVs, as they collectively shape individuals’ perceptions and acceptance of
the technology.

As discussed above, some factors influencing trust in AVs may not be addressed by training or
technological advancements. Regardless, certain elements are central to establishing trustworthiness
objectively, including technical competence, adept situation management and transparency [33,
179]. Technical competence refers to the user’s belief that the AV meets performance and reliability
expectations (e.g., GPS connection, security and ability to choose the best course of action). Situation
management relates to the user’s belief that they can gain control over the vehicle or contact a
human operator whenever required. Transparency provides a clear view of an AV’s abilities and
operations to promote appropriate trust and discourage automation misuse and disuse. In the
following, we delve into the transparency requirement further.

2.2 Transparency
System transparency refers to the degree of observability and predictability of the operations
to give a sense of control and acceptance in autonomous driving [179]. Transparency is usually
a precondition for accountability in which AV should be able to explain its plans and actions,
especially in unexpected events. It concerns the extent to which the responsibility for the outcome
can be ascribed to an agent (e.g., governments, companies, system developers, drivers) legally or
ethically [242]. This is because, for an action to be evaluated properly, relevant stakeholders should
have access to all necessary information.

Transparency requirements vary depending on the levels of autonomy (e.g., SAE Level 2 vs. Level
5) [217]. In semi-autonomous systems, transparency is required when the vehicle needs to hand the
control to the driver at certain stages of the journey. In the highest level of vehicular automation,
where vehicles can handle all traffic situations, transparency requirements may not necessarily
be safety-critical, but in the attempt to regulate trust in the automation, thereby improving user
experience and comfort [55, 66]. Regardless of the level of autonomy, AVs in action are expected to
communicate information about the driving decisions, reasons and plans transparently in a timely
manner to calibrate an appropriate level of trust [256].

2.3 Explanations
Explanations are a mechanism to promote greater transparency and help address problems caused
by the black-box nature of automated decision-making. The literature has extensively studied
explanations for AV’s behaviour to improve transparency of system decisions and trust. The
research explored transparency and explanations for situations including system uncertainty [91],
perceived risk (e.g., weather and driving speed) [82], intent communication for vulnerable road
users [54], motion planning [81], driver takeover request [125] and lane positioning [119].

We categorised the literature on AV explanations into two primary approaches based on their
intended focus and purpose: ‘user-centric’ and ‘technical-centric’. User-centric explanations priori-
tise conveying information to users (e.g., the general public or non-experts) in a comprehensible
and meaningful manner. Research highlights that users benefit from simplified, legible explanations
that enhance comprehension and trust in the system [181]. These explanations involve intuitive
visualisations and simple language to communicate complex technical decisions and are typically
assessed through user studies conducted in virtual or simulated environments. User-centric expla-
nations centre around the driving context and the kind of information or interaction that is relevant.
Contexts (e.g., near-crash) and individual attributes (e.g., aggressive driving style) significantly
influence the desire for explanation. A study showed that people tend to agree on the need for
an explanation for near-crash or emergency driving scenarios and less for the ordinary driving

ACM Transactions on Human-Robot Interaction, Vol. 14, No. 3, Article 39. Publication date: March 2025.



39:8 S. Tekkesinoglu et al.

Fig. 2. The SotA review approach.

situation [226].The context also has a strong influence on the types of questions the AVmay receive.
Omeiza et al. explored explanation types (i.e., causal and non-causal) and their investigatory queries
(e.g., why, why not, what if and how), demonstrating ‘why-not’ (i.e., contrastive) explanations have
the most positive impact on participants’ understandability [188].

Technical-centric explanations, on the other hand, focus on the intricate details of how the AV
operates, emphasising interpretability and exploring technical aspects such as the sensor data
and algorithms used in decision-making [47, 115, 144, 193]. These explanations are more geared
towards experts or individuals with technical backgrounds who seek in-depth insights into the
underlying mechanisms of the AV’s actions and are evaluated through quantitative metrics. Often,
a combination of both user and technical-centric approaches might be necessary to address various
user needs and levels of expertise.

3 Review Methodology
This study conducts a review of the design considerations for explainable AV systems by adopting
a ‘SotA review’ approach [79]. This approach focuses on analysing the most recent advancements
in the field, identifying emerging trends and contrasting recent advancements with established
studies. The SotA review is particularly well-suited to this work as it offers more flexibility than
formal methodologies such as systematic reviews. It allows the inclusion of the latest findings from
diverse sources (e.g., preprints, technical reports) without being constrained by rigid protocols. It
also enables to focus on the criticality of studies without the formal quality assessments typically
required in systematic reviews. Figure 2 illustrates the key steps involved in the review process.

The scope of this study is limited to the explainability of AVs, focusing specifically on the
unique challenges in this domain rather than the broader field of explainable AI. To address
the challenges of explainability in AVs, we conceptualised the explainability framework into
three key dimensions—explanatory tasks, explanatory information and explanatory information
communication—representing why to explain, what to explain and how to explain, respectively.
These dimensions guide the formulation of research questions that aim to explore the unique
requirements of AV explainability. Below, we outline how each dimension identifies with specific
research questions:
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Explanatory Tasks. This dimension focuses on the purpose and factors motivating the need for
explanations in AV systems. Research on explainability highlights the importance of identifying
the contexts and triggers where explanations are essential, particularly in dynamic and safety-
critical situations [24, 250]. The following research questions examine the core elements that define
why explanations are required, including stakeholders, driving operations and the function of
explanations. It also addresses the need to adapt explanations to the urgency and stakes of specific
scenarios:

RQ1. What factors are integral to the explanatory task?
RQ2. How do timing and situation criticality influence the explanatory task?

Explanatory Information. This dimension explores the content of the explanation, focusing on
the types of information users need to understand AV behaviour. Prior studies highlight the
importance of structuring information across layers of transparency, e.g., abstract information vs.
causal reasoning [28, 253]. The following research questions examine how to organise explanatory
information to meet diverse user needs and how this structural approach is considered within
explanatory tasks and context:

RQ3. How is the explanatory information structured across different layers of transparency?
RQ4. How do task and context influence the explanatory information across transparency
layers?

Explanatory Information Communication. This dimension addresses the modalities and methods
for delivering explanations to different stakeholders. Research highlights the importance of tailoring
communication methods (e.g., visual, verbal and multimodal) to meet varying stakeholder needs [86,
254]. Explanation requirements for internal stakeholders differ from those for external stakeholders.
These research questions examine how explanations can be optimised for various users and explore
methods to ensure clarity and usability in these communications:

RQ5. How is the explanatory information communicated to internal stakeholders?
RQ6. How is the explanatory information communicated to external stakeholders?

To obtain relevant articles, we applied the keywords ‘explainable + autonomous + vehicles +
driving’ and ‘transparency + feedback + communication + autonomous + vehicle + car + driving’
on Google Scholar for publications between 2018 and 2023. Our initial search yielded 169 papers;
through the review process, we eliminated papers that lacked a component of explainability/trans-
parency, only presented a conceptual framework, or were duplicates. This left us with 135 relevant
papers. After critically evaluating these papers and identifying research gaps, we formulated a
conceptual roadmap for future research tackling advancing explainable AV systems.

The roadmap is grounded in a RRI framework. RRI frameworks provide guidelines and best prac-
tices to promote inclusive and sustainable research and innovation design, proactively addressing
challenges before they arise when deploying technologies in the broader society [21]. The roadmap
presented here follows the AREA framework, which stands for Anticipate, Reflect on, Engage with
and Act upon [238]. Each holds a specific role in the research and innovation process, as follows:

Anticipate: Conducting an in-depth analysis of the intended or unintended consequences that
may arise. This aims to facilitate the exploration of potential implications that may otherwise
remain overlooked and under-discussed.
Reflect : Reflecting on the objectives, motivations and potential implications of the research,
alongwith any unknowns, gaps in knowledge, presuppositions, dilemmas and societal shifts that
may arise.
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Engage: Encouraging diverse perspectives and inquiries to be shared and discussed in a collab-
orative and inclusive manner.
Act : Utilizing these conversations to shape the course of the research and innovation process
itself.

Taken together, we propose potential areas of improvement related to each research topic and
then discuss these further within the AREA framework in Section 7.

4 Explanatory Task
Explanations serve different purposes depending on the setting. Various factors influence the con-
text and purpose, shaping the explanatory task. We reviewed the relevant literature to discuss these
factors and circumstances that affect the explanatory task, specifically addressing RQ1 and RQ2.

4.1 RQ1: What Factors Are Integral to the Explanatory Task?
The literature discusses factors influencing the explanatory task based on intended stakeholder,
driving operation and function of explanation depending on the level of autonomy. Table 1 provides
a comprehensive overview of the literature on these factors and their respective variants. The
following section offers an in-depth analysis of the literature through the lens of these factors.

4.1.1 Stakeholders. Within the autonomous driving domain, explanations are utilised for mul-
tiple purposes, resulting in various types of stakeholders. The level of detail, form and mode of
communication necessary for an explanation vary depending on the target audience and the ex-
planation’s purpose. As such, it is vital to tailor the explanation to meet the specific needs of
the intended stakeholders. Omeiza et al. identified three primary stakeholder categories: Class
A (including all end-users and society), Class B (consisting of technical groups such as system
developers) and Class C (encompassing regulatory bodies, such as guarantors) [189].

We further divided Class A into twomain classes of users: vehicle internal and external stakehold-
ers. Internal stakeholders include drivers who participate in driving operations and passenger(s)
who may interact with the AV but are not responsible for its operation. External stakeholders
can be categorised into different groups based on their relation to the AV and the risks they face.
Remote operators assist or control the AV from a distance, where they are not exposed to physical
risks but still carry legal responsibilities and emotional stress [85]. In contrast, vulnerable road
users, such as pedestrians, cyclists, motorcyclists and mobility scooter users and protected road
users, including drivers of cars, trucks and buses, are present in the AV’s environment and face
varying levels of physical risk [95]. The results revealed that out of 135 papers, only 67 explicitly
specified the intended stakeholders for the explanations. These were categorised as follows: driver
(32 papers), passenger (8 papers), both driver and passenger (7 papers), pedestrian (16 papers) and
other vehicles (4 papers). The remaining papers did not specify a target stakeholder; however, it was
apparent that these studies were primarily aimed at technical users to explain model behaviour.
Technical-centric explanations are relevant to Class A users as well; however, further research is
necessary to study how these approaches can be adapted to meet the end-user requirements and
integrated into appropriate human–machine interfaces (HMIs). Moreover, previous studies
have not yet touched upon integrating stakeholder observations/feedback into explanations.

4.1.2 Driving Operations. Another important factor that influences the explanatory task is the
driving operation. AVs, equipped with sensory capabilities to perceive their surroundings, rely on a
series of interconnected operational stages to make informed driving decisions in real-time. These
stages encompass perception, localisation, planning and control.
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Table 1. Classification of Reviewed Literature Based on Factors Integral to the Explanatory Task

Task and Context Variants SAE Level 1-2-3 SAE Level 4-5

Stakeholders
Internal User-centric [8, 29, 30, 38,

40, 43, 52, 76, 78, 91, 129,
131–135, 174, 186, 216, 221,
227, 254, 262, 268, 269]
Technical-centric [14, 17, 24,
26, 47–51, 56, 92, 98, 106, 107,
120, 130, 141, 144, 149, 150,
158, 166, 177, 195, 230, 249,
255, 264, 266]

User-centric [36, 41, 58, 64, 70,
81, 86, 110, 119, 136, 187, 202,
222, 223, 232, 235, 244, 245,
251, 267] Technical-centric [1,
2, 15, 18–20, 22, 23, 25, 31, 32,
69, 97, 108, 115–118, 121, 137,
146, 152, 153, 164, 165, 184,
185, 188, 193, 204, 208, 211,
218, 220, 224, 231, 239, 257,
259, 265, 270]

External User-centric [9, 84, 96] User-centric [34, 35, 37, 39, 42,
68, 83, 109, 139, 161, 182, 191,
228, 241, 271] Technical cen-
tric [210, 213]

Observations ø ø

Driving operations
with explainability

Perception User-centric [38, 43, 52, 254]
Technical-centric [24, 49, 177,
195]

User-centric [35, 119]
Technical-centric [1, 31, 110,
117, 118, 121, 165, 184, 208,
218, 232, 239, 257, 259]

Planning Technical-centric [17, 50, 51,
141, 166, 266]

Technical-centric [2, 18, 19, 23,
146, 152, 210, 211, 213, 265]

Localisation Technical-centric [255] Technical-centric [25]
Control User-centric [8, 9, 29, 30, 40,

76, 78, 84, 91, 96, 129, 131–135,
174, 186, 216, 221, 227, 262,
268, 269] Technical-centric
[14, 26, 47, 48, 56, 92, 98, 107,
120, 130, 144, 149, 150, 158,
230, 249, 264]

User-centric [34, 36, 37, 39,
41, 42, 58, 64, 68, 70, 81, 83,
86, 109, 136, 139, 161, 182,
187, 191, 202, 222, 223, 228,
241, 245, 267, 271] Technical-
centric [15, 20, 22, 31, 32, 69,
108, 116, 137, 153, 164, 185,
188, 193, 204, 220, 224, 231,
235, 270]

Integrated Technical-centric [106] User-centric [244, 251]
Technical-centric [97, 115]

Function of
explanations

Situation awareness User-Centric [8, 76, 78, 129,
132–135, 221, 268] Technical-
centric [14, 17, 24, 26, 47–51,
56, 92, 98, 106, 107, 120, 130,
141, 144, 149, 150, 158, 166,
177, 195, 230, 249, 255, 264,
266]

User-centric [36, 70, 187, 251]
Technical-centric [1, 2, 15,
18–20, 22, 23, 25, 31, 32, 69,
97, 108, 110, 115–118, 121, 137,
146, 153, 164, 165, 184, 188,
193, 204, 208, 211, 218, 220,
224, 231, 232, 235, 239, 257,
259, 265, 270]

Safe mode transition User-centric [29, 30, 40, 52,
131, 174, 227, 262, 269]

User-centric [136, 202]

Trust calibration User-centric [38, 43, 91, 186,
216, 254]

User-centric [41, 58, 64, 81, 86,
119, 222, 223, 244, 245, 267]
Technical-centric [152]

External interaction User-centric [9, 84, 96] User-centric [34, 35, 37, 39,
42, 68, 83, 109, 136, 139, 161,
182, 191, 202, 228, 241, 271]
Technical-centric [210, 213]

Commentary driving ø Technical-centric [185]
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Perception is the sensing of an operational environment defined as a combination of two tasks:
road surface extraction and on-road object detection through sensors such as vision, LiDAR, RADAR
and ultrasonic technology. Gradient-based methods are the most commonly used approaches for
scene understanding tasks [1, 121, 165]. Various explainability approaches have been developed
for early anticipation of traffic accidents [173], risk assessment in complex road conditions [259]
and segmentation under hazy weather [218] based on the vision data. Explanations are explored
for LiDAR and RADAR data to detect 3D objects [195] and sensor input uncertainty for possible
deceptive attacks [208]. Other works have proposed explainable localisation and mapping by
extracting non-semantic features from LiDAR scans to accurately determine AV’s position in the
environment [25, 255].

As the AV perceives its surroundings and gets its precise localisation, it plans the trajectory from
the initial point to the final destination. Planning is a complex operation in that the amount of data
the AV processes per time unit is hard to keep track of continuously and accurately. Research in
this field has focused on either route planning (i.e., selection of a route) [2, 152, 211] or behaviour
planning, which involves anticipating and interacting with other road users who share the same
trajectory [17, 141, 266, 269]. Much of this research has focused on explicable planning models
in which the outcomes can be explained through action implicitly. The process requires further
translating the AV’s updated plans into comprehensible and user-friendly formats.

Finally, control of an AV involves the execution of planned motions. Feedback controllers mainly
manage this function by interacting with the sensors and assisting the car in controlling its
trajectory along the journey. The review results show that explanations are generated and explored
mainly for the control and navigation-related tasks, i.e., longitudinal control (speed regulation)
and lateral control (steering operation). Having that the driving operations are interconnected, the
explanation generation process for control and navigation operation is coupled with perception
and planning tasks. Explanations are explored for each and every driving action, such as move, stop
and lane change in urban areas [108, 186]. From the technical perspective, the aim of generating
explanations for each action taken by AV is to understand how the model would perform under
unseen environments and unexpected situations [15, 69, 120]. From the user-centric perspective,
explaining every action helps build the user’s initial trust and acceptance that the AV is making
reasonable decisions aligned with their expectations. In summary, our review reveals that research
has primarily focused on control and perception tasks, particularly for higher-level automation
while lacking in-depth studies for explanations for planning and localisation tasks.

4.1.3 Function of Explanations. The function of explanation directly supports the purpose of
the explanatory task. In addition, it is important to consider the level of autonomy inherent in the
system to understand the function of explanations. While vehicles with higher levels of autonomy
may sometimes require fewer explanations, the opposite can also be true—more agentic systems
might need to provide more explanations due to reduced driver engagement. The greatest need
for explanations may arise at intermediate levels of autonomy, where the driver is required to
supervise or partly control the vehicle, but is less directly engaged in the driving task.This discussion
highlights the function of explanations based on the level of autonomy, whether in collaborative
driving or full autonomy scenarios.

In low-level automation (SAE Levels 1-2-3), the driver’s role evolves across different levels.
At SAE Level 1, the driver maintains partial control of the vehicle, either handling longitudinal
tasks (accelerating, braking) or lateral tasks (steering), while the system assists with the other. In
SAE Levels 2-3, the driver takes on the role of a supervisory controller, monitoring the performance
of the driver assistance system and intervening when necessary. At these levels of autonomy,
explanations are essential to help the driver understand when and how they need to interact with
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the AV in the context of shared control. The function of explanations in various scenarios within
Levels 1-2-3 can be outlined as follows:

Maintaining situation awareness—Maintaining situation awareness is essential for the driver to
take control at any point of the journey.The driver continuously monitors the driving behaviour
and makes necessary adaptations if the current driving behaviour differs from their desired
actions [250]. Explanation mechanism keeps the human driver informed in case of system
uncertainty [129, 134, 136], perceived risk [22, 24, 164, 177, 231] and traffic complexity [2, 86].
Safe transition to manual driving—In complex traffic scenarios, a takeover request without
context may not effectively convey the gravity of the situation, and the driver may take over
control without fully comprehending the situation. This can lead to a decrease in the quality of
takeover control [269]. A study by Chen et al. suggests that situation influences participants’
decisions to take over control when observable cues are not available in the driving environment
[30]. It is necessary to provide clear explanations to persuade the driver to take the necessary
action to avoid potential hazards, e.g., the system sends an alerted message: ‘Automated driving
is about to be disabled due to the busy intersections, switch to manual driving mode and
proceed with caution’ [59, 181].
Supporting trust calibration—Another function of explanations is to convey the AV’s performance
limits to support trust calibration [132, 135]. Explanations provide a clear view of AV’s abilities
and operations to promote appropriate trust and discourage misuse of automation by over-
reliance on it or disusing it due to under-trusting it. Goldman and Bustin show that the
explanation presenting risk and the next plan reduces participants’ willingness to take manual
control, increasing enjoyment of automated driving and preventing disuse of automation [76].
In a study conducted by Helldin et al., the trust analysis showed that participants who received
uncertainty information trusted the system less than those who did not, indicating a more
proper trust calibration than in the control group [91].

In Level 4 automation, the vehicle can complete an entire journey without human intervention
in specific conditions or environments; however, intervention may still be needed in exceptional
situations with sufficient lead time.3 Certain applications in this category may not necessitate a
human driver. At Level 5 (full automation), no human intervention is required, and the vehicle can
operate under all circumstances [72, 86]. In Level 4 and 5 automation, the function of explanations
concerns both the internal and external stakeholders. The role of explanations includes:

Maintaining situation awareness—Situation awareness is also relevant in high-level automation,
particularly in Level 4 automation, where occasional human intervention may be necessary.
Providing explanations can facilitate a safe transition from automated to manual driving
[136, 202]. Research has demonstrated that explanations effectively convey functional and
system-wide uncertainties in diverse driving scenarios, such as construction zones, unclear
lane markings, heavy traffic, animal crossings in wooded areas and sudden lane changes
[58, 244]. Moreover, situation awareness cues can enhance engagement in NDRTs and increase
the enjoyment of automated driving [70]. In full autonomy, explanations create a feeling
of safety and control, elevating the passenger experience and trust, particularly in complex
traffic situations such as intersections, road obstructions, construction sites, pedestrian zones,
slow-moving bicycles and ride delays [43, 64, 86, 222, 223].

3Sufficient lead time should account for the driver’s reaction time, the complexity of the driving task and the current driving
conditions, to prevent any potential hazards that may emerge after the takeover request is issued.
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Increasing driving knowledge—Commentary driving is a technique that involves drivers verbal-
ising their observations, assessments and intentions. Explanations are explored as part of a
driving commentary that mimics how a human instructor would explain driving behaviour
[185]. It involves aspects such as driving speed, timing of overtaking another vehicle, dis-
tance to object, change plan and lane positioning. By articulating the driving actions out loud,
novice drivers can gain a better understanding and awareness of their surroundings [207]. This
would also help learners better understand the driving processes and increase their driving
knowledge through conversational explanations. Moreover, research has shown that training
in commentary driving improves responsiveness to hazards in a driving simulator [44].
Safe interaction with external stakeholders—Explanatory signals provided through visual displays
play a crucial role in compensating for the absence of direct interaction with human drivers,
typically involving gestures and eye contact with other road users. In scenarios such as four-
way intersections and pedestrian crosswalks, where communication between AVs and other
road users is essential, effective communication mechanisms become even more critical [9].
One way to improve interaction is by indicating the vehicle’s driving mode, whether it is in
automated or manual mode. This could foster transparency and help pedestrians understand
what to expect from the AV and adjust their actions accordingly [109, 228]. It would reduce the
frustration for internal stakeholders and make it clear to others around the vehicle that the
onboard users are not actively controlling the vehicle and have no immediate agency over its
actions [250]. External communication is also important in ridesharing scenarios, as it helps
users identify the AV and understand its intent, especially when there are multiple AVs on the
road [191].

Our analysis revealed that the literature predominantly addressed explanations related to Levels
4 and 5 automation, with limited coverage for Level 1-2-3 across all aspects (see Table 1).

4.2 RQ2: How Do Timing and Situation Criticality Influence the Explanatory Task?
According to our findings, explanations can be classified based on their timing as either proactive
or reactive. Proactive explanations are given in anticipation of future needs, while reactive expla-
nations are generated in response to a request after an event has occurred. Proactive explanations
are particularly important in low-level automation, where the timing of warnings for potential
interventions is a key concern. Studies have shown that providing explanations before the AV
takes action promotes more trust than explanations provided after the event [88, 122]. Another
aspect to consider is the criticality of the event, as it influences the optimal timing for delivering
explanations [226].

Regarding criticality, we have identified two types of situations that require explanations: critical
situations that threaten human health and life and non-critical situations that involve harmless but
questionable driving behaviour and style. Adapted from Schneider et al., we discuss the timing and
criticality of explanations for four different categories of driving situations: proactive and reactive
explanations, which can be generated for critical or non-critical events [221]. It is essential for AVs
to be capable of providing all these four categories of explanations in relevant contexts. Table 2
classifies the reviewed articles according to the timing and criticality of the explanations.

4.2.1 Proactive Explanations in Non-Critical Situations. This type of explanation aims to increase
situation awareness for internal stakeholders by supporting their understanding of ‘what is going
on’. This includes providing information about the elements within the environment, their meaning,
and a projection of their status in the near future [262]. External stakeholders also benefit from the
proactive display of the driving mode of the AVs in inconsequential situations [67, 109]. Proactive
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Table 2. Timing and Situations Requiring Explanations

Timing and Situations SAE Level 1-2-3 SAE Level 4-5
Proactive critical User-centric [8, 9, 29, 30,

40, 52, 76, 84, 91, 96, 129,
131–135, 174, 227, 262, 268,
269] Technical-centric [50,
177]

User-centric [34, 36, 37, 39, 41,
42, 58, 68, 83, 110, 136, 139,
161, 182, 187, 191, 202, 228,
241, 244, 267, 271] Technical-
centric [2, 115, 164, 193, 208,
210, 231, 232, 235]

Proactive non-critical User-centric [38, 43, 78, 186,
216, 221, 254] Technical-
centric [14, 17, 26, 49, 92, 98,
130, 150, 158, 166, 249]

User-centric [64, 70, 86, 109,
245] Technical-centric [18, 32,
97, 117, 137, 211, 239, 270]

Reactive critical Technical-centric [24, 106] User-centric [81, 222]
Technical-centric [22, 146,
188, 213, 259, 265]

Reactive non-critical Technical-centric [47, 48, 51,
56, 107, 120, 141, 144, 149, 195,
230, 255, 264, 266]

User-centric [35, 119, 223, 251]
Technical-centric [1, 15, 19, 20,
23, 25, 31, 69, 108, 116, 118, 121,
152, 153, 165, 184, 185, 204,
218, 220, 224, 257]

explanations in non-critical situations are intended to improve the overall user experience and
comfort. Nevertheless, further research is needed to identify which non-critical situations require
proactive explanations. Based on the literature, providing stakeholders with proactive explanations
in non-critical situations could generate the following benefits:

Acceptance and trust for new users—As discussed in Section 2.1, acceptance and trust rely on
an appropriate understanding of the technology. One way to achieve this is by expressing its
internal processes proactively. Kuhn et al. and Omeiza et al. presented this type of explanation
for normative driving actions, including move, stop and lane change, e.g., ‘Car is stopping
because the traffic light is not green on ego’s lane’, ‘Stopping because cyclist stopped on my
lane’ [130, 186]. Ruijten et al. added anthropomorphic features to such explanations where AV
perform a commentary driving (e.g., ‘We’re on a cobbled road with pedestrians, I’m slowing
down.’) [216].Their findings show that adding a layer of human likeness to an explanatory agent
made it perceived to be more intelligent and appealing. Although proactive explanations for
non-critical situations help build initial trust and allow constant control over driving behaviour,
they quickly become overwhelming and create a high workload for the user [70, 136]. Hartwich
et al. suggested adapting this to the user-specific needs to gain broader acceptance rather than
providing complete information permanently as a universal standard [86].
Avert frustration and surprise—In high-level automation, proactive explanations are necessary
for onboard users who do not have any control over driving behaviour. This type of explanation
helps to ease frustration and minimise the need for users to constantly ask about the AV’s
decisions [75]. For instance, in a scenario where the AV stops for longer than usual, it displays
a message ‘Yielding to pedestrians!’ for the riders, giving a view of where the pedestrians are
in the scene and how it’s reacting [247].

4.2.2 Proactive Explanations in Critical Situations. Proactive explanations in critical situations
play a pivotal role in ensuring the safety of everyone involved, particularly in cases where the driver
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is required to assume manual control. In such cases, the system should alert the driver regarding
potential high-risk situations or the possibility of a failure [215]. For other road users, proactive
communication of the AV’s intention is crucial to ensure safe and efficient interaction with them.
The purpose of proactive explanations in critical situations is twofold, as discussed below:

Alert/prepare driver to takeover—Proactive explanations for critical situations require drivers
to pay more attention to the road situation and the recommended action to prepare for a
potential takeover event [142]. Chen et al. proposed three types of critical situations that may
lead to a takeover event: operational problems, system limitations and unexpected events
[30]. Operational problems are related to the AV’s internal functions (i.e., operating system
problems involving sensors, computation and communication between hardware and software)
that provide no visible cues within the driving environment. System limitations occur when
the AV approaches its operation limits due to various factors such as road or environmental
conditions, e.g., construction site, highway exit, traffic jam, foggy weather, road with bends
or poor lane markings [174]. Unexpected situations include where the AV may be uncertain
about its detection or classification of certain road elements and events (e.g., cut-in vehicle
or stopped vehicle cause emergency manoeuvres [134], failure prediction [231] and accident
anticipation [173]).
Intent communication for external stakeholders—Research has extensively examined the external
communication of AVs in potentially unsafe situations, e.g., unsignaled intersection [67, 161],
zebra crossing, parking lot [83] and four street crossing scenarios [182] involving pedestrians,
cyclists, skateboarders, individuals with disabilities and other vehicles. Various design elements
have been explored in online and simulated environments to facilitate unambiguous communi-
cation between AVs and other road users [37, 84, 139, 241]. However, it is still unknown how
AVs should communicate proactively in critical situations and whether explanations are needed
immediately after a critical situation [122].

4.2.3 Reactive Explanations in Non-Critical Situations. Reactive explanations are initiated by
users in response to unexpected behaviour exhibited by the AV, especially when no apparent cause
is evident in the environment. Research has explored various types of questions users may pose,
including inquiries about what the system did, why it acted in a certain way, why it did not do
something else and how it arrived at its decision. A study by Graefe et al. found that ‘why’ and
‘how’ questions are preferred for enhancing transparency, understandability and predictability
[78]. Similarly, Wiegand et al. found that users expressed a desire for reactive explanations to
influence the AV’s driving behaviour interactively [250]. For instance, users may inform the vehicle
that a pedestrian will not cross the street, enabling the AV to proceed safely. Such interaction
could potentially correct the AV’s driving behaviour. Another research has proposed the use of
conversational agents, where AVs provide brief proactive explanations for unexpected driving
behaviour, allowing users to inquire for further information about the situation [223].

Several technical-centric studies introduced post hoc explanation methods to justify a driving
action retrospectively in response to a request [25, 164, 166]. However, much of this work is not
comprehensible to non-technical users, which requires them to be integrated into HMIs and further
assessed for their usability with human-subject studies.

4.2.4 Reactive Explanations in Critical Situations. Reactive explanations for critical situations
involve events ranging from near misses to incidents compromising human health and lives.
However, existing literature has not sufficiently explored reactive explanations concerning critical
situations. Wiegand et al. conducted a study on unexpected driving scenarios that do not necessarily
result in human injury, hardware damage, or an interruption to the regular operation but cause a
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great deal of frustration and dissatisfaction for the user [250]. Some of these scenarios in which
the participants requested an explanation include unnecessary lane changes that almost lead to
collisions, abrupt stops during turns, unexpected stops, sudden acceleration and deceleration and
unclear interaction with pedestrians.

Moreover, reactive explanations provide evidence for post-incident forensic analysis, as they can
answer questions that help determine liability-related issues arising from autonomous decisions
[192, 208]. Explainability techniques are currently capable of providing answers to the following
questions:

—What happened? This involves presenting a factual chain of events that demonstrates causation.
—How did it happen? This requires establishing an unbroken chain of causation between the
defendant’s negligence and the claimant’s injury.

—Why did it happen? This involves identifying the breach of duty.

By answering these questions, XAI techniques can help explain the events and the chain of
events to establish the factual and legal causation required by common and civil law systems. Con-
sequently, such explanations can fulfil the obligations to establish causation, aiding in identifying
the responsible party or the percentile of responsibility.

5 Explanatory Information
Explanatory information refers to the information provided by an AV to make its behaviour and
decision-making processes understandable to users. Explanatory information is a component of
‘transparency’, which refers more broadly to the extent to which the system makes its processes
visible to the user [202]. In some contexts, AV actions may appear self-explanatory such as when
the vehicle stops at a red light. However, in more complex scenarios, users may require deeper
insight into the AV’s decision-making process to feel confident in its actions [27]. For example,
users may need explanations related to sensor inputs, system beliefs and anticipated outcomes to
achieve a higher level of transparency. Consequently, transparency is achieved through multiple
layers. In this section, we delve into the type of explanatory information involved in different layers
of transparency and task factors that influence the explanatory information in different layers of
transparency, addressing RQ3 and RQ4.

5.1 RQ3: How Is the Explanatory Information Structured across Different Layers
of Transparency?

In exploring the literature on transparency in autonomous systems, one notable resource is the
IEEE standard, which defines transparency requirements at progressive levels [253]. At the lower
levels, transparency is established by providing documentation about the system prior to any
interaction. This includes detailing the system’s general operating principles, expected behaviour
and information on sensor data collection and usage. As discussed in Section 2.1.1, pre-existing
knowledge significantly influences conceptual trust, often leading to a more positive outlook and a
greater inclination to trust AV technology [111, 225]. Therefore, the initial level of transparency is
critical in fostering a clear understanding of the technology and setting realistic expectations for safe
interactions. User-centric studies typically adopt this approach by offering pre-interaction briefing,
training and surveys, which can be interpreted as a representation of a low level of transparency
[83, 91, 134, 186].

At higher levels, transparency requires the system to be responsive to user-initiated queries and
provide situational explanations in real-time [253]. This transparency at the interaction level is
the focus of our review, specifically in the context where individuals are directly impacted by the
decisions made by AVs, as discussed in Section 4. At the interaction level, the layers of transparency
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Table 3. Influence of Task and Context on Explanatory Information Concerning
Internal and External Stakeholders

Transparency Internal Stakeholders External Stakeholders

Layer 1: Goal
Driving state/mode Driving mode
Driving action Intent communication
Trajectory planning Information + warning

Layer 2: Reasoninga Driving action
not addressedManoeuvre planning

Layer 3: Projection Uncertainty communication
not addressedSystem limitations

Adapted from [27]. aAlthough the literature suggests that agents typically provide explanatory
information proactively at any level, there are also instances where reasoning-level explanations
are given in response to users’ queries.

the system requires vary depending on the task and context. A widely accepted protocol proposed
by Chen et al. comprises three hierarchical layers of transparency [28]. Each layer outlines the
necessary information that an agent must communicate to uphold a transparent interaction with
the user.

—Layer 1: Goal—The first layer of transparency concerns the goals, actions and current status
of the agent (e.g., ‘AV stopping!’). Research on AV-user interaction, such as by [86, 96, 202],
suggests that providing this basic level of explanatory information increases user comfort and
situational awareness.

—Layer 2: Reasoning—The second layer of transparency contains the reasoning process, beliefs
and motivations towards the current task (e.g., ‘AV stopping because the traffic light is red!’).
Studies, including [222, 262, 267], show that explaining the reasoning behind actions enhances
user trust and safe mode transition in takeover situations.

—Layer 3: Projection—On the last layer of transparency, the agent is expected to predict future
outcomes while managing uncertainty and potential limitations. Explanations might include
statements such as ‘AV stopping because the traffic light is red. It might take longer to take
off due to a crowded pedestrian crossing’. Current research primarily focuses on explana-
tory information at this level in takeover scenarios, where the AV reaches the limits of its
operational driving domain and alerts the driver to take control [29, 30].

The following research question investigates how explanatory information varies across different
transparency layers, considering the diverse needs of internal and external stakeholders in various
driving operations.

5.2 RQ4: How Do Task and Context Influence the Explanatory Information across
Transparency Layers?

We reviewed literature across three layers of transparency, with each layer increasing in complexity
in delivering explanatory information in relation to the explanatory task factors (i.e., stakeholder,
driving condition, the function of explanation), as summarised in Table 3. Several driving conditions
were identified for each transparency layer and stakeholder group. For example, in Layer 1 (Goal),
the most basic explanatory information for both internal and external stakeholders involves com-
municating the current driving mode to prevent confusion in either environment. In the following,
we delve into the explanatory information across transparency layers concerning different driving
conditions for internal and external stakeholders.
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5.2.1 Layer 1 Transparency: Providing Current State, Goal and Action. This layer of transparency
entails the display of basic driving status cues to internal stakeholders, such as estimated arrival
time, navigation and traffic conditions [70, 86]. In collaborative driving settings, the driver must be
aware of the current mode and status to avoid confusion. During autonomous driving, the driver
must be informed that the vehicle is following established driving norms and traffic regulations,
such as indicating the current speed and speed limit. This layer of transparency needs no descriptive
explanations; it only sends proactive, non-critical short messages to support situation awareness,
e.g., ‘Construction site!’ [221]. Moreover, the driver can detect and understand the actions being
performed by the vehicle through the visual arrows/carpet shown in HMI displays, indicating the
direction and route without providing detailed reasoning [202, 268]. Concerning the planning task,
several approaches have been suggested, such as bird’s eye view displays for scene comprehension
to identify the most influential objects in planning a trajectory [19, 23, 152, 211, 266].

Regarding external stakeholders, as per the Turing Red Flag law, AVs must be designed to clearly
identify themselves as such and indicate their presence when interacting with external agents [253].
Research has explored the effect of external HMIs (eHMIs) to display the vehicle’s driving mode
[68, 109, 228]. Furthermore, literature has investigated the use of eHMIs in ambiguous crossing and
unsignaled intersections for intent communication to facilitate safety crossing [39, 43, 139].

5.2.2 Layer 2 Transparency: Providing Reasoning Behind AV’s Actions and Decisions. In this layer
of transparency, it is essential for users to comprehend the reasoning behind a vehicle’s action. This
involves understanding what the AV is perceiving, analysing and making decisions. The user could
trigger this function to produce an immediate explanation of why the system acted in a certain
way in a given situation [78, 223]. Alternatively, the system itself could initiate a brief explanation
of its ongoing activities [58, 78, 268]. Explanations generated for driving action could have different
levels of specificity (abstract or specific) depending on the user’s desire to influence the driving
activity [186]. Furthermore, such explanations can facilitate interactive exploration of hypothetical
situations, enabling users to inspect ‘what if’ scenarios.

Research has yet to delve into the communication of reasoning-level explanations and beyond
with external stakeholders, particularly in the vehicle-to-everything (V2X) context. Such infor-
mation is difficult to direct to individuals; it is, per the definition, broadcasted [53]. AV reasoning is
often conveyed through its driving behaviour, which constitutes implicit communication. Further
research is needed to identify scenarios necessitating explicit communication for AV reasoning.
Additionally, there is a concern regarding handling communication with the outside in case eHMIs
malfunction or display misleading information [96]. Given the limitations of LED-based eHMIs,
alternative methods, such as personalised messages through smart and wearable devices, may be
more appropriate for conveying this layer of transparency to other road users.

5.2.3 Layer 3 Transparency: Conveying Uncertainty and Predictions of Failure. In this layer of
transparency, the driver must know the AV’s capabilities and the conditions under which it operates.
The driver should be informed of any unexpected outcomes, uncertainties or limitations when
the AV approaches its operational boundaries due to road or environmental conditions, such as
roads with curves, unclear markings or heavy traffic [30]. This can be achieved through a feedback
mechanism that indicates an AV’s proximity to its limits and control transition [174]. Studies have
shown that informing drivers of the AV’s uncertainty can better prepare them to switch to manual
control when required [91]. Shull et al. implemented a system that offers pre-emptive feedback
to the user when the AV fails to detect lane lines, thereby alerting them before it veers out of its
designated lane [227]. Likewise, Kruger et al. and Kunze et al. conducted research on the impact of
conveying reduced sensor reliability and machine certainty in diverse weather conditions, such as
fog and rain [129, 135].
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Table 4. Overview of the Communication Methods for Internal and External HMIs

Communication Method Presentation Interactivity

In
te
rn

al
H
M
I

D
is
pl
ay

Head-down displays (HDDs) [30, 38, 121, 134] [38, 134]
Head-up displays (HUDs) [41, 43, 52, 86, 91, 132, 136, 174, 202, 221, 222, 251] [52, 86, 136, 202, 221]
Head-mounted displays (HMDs) [70] [70]
Light band [36, 41] [36]
Vibrotactile feedback [129, 133] [129, 133]
Auditory voice message [58, 186, 262, 267] [58, 186, 262, 267]
Sonification [29, 30] [29, 30]

M
ul
t. Audiovisual [8, 64, 76, 216, 227, 244, 269] [64, 216, 227, 244, 269]

LED and vibrotactile [135, 268] [135, 268]

Fe
at
ur

es

Visuals/icons [30, 52, 64, 91, 97, 132, 202, 216, 222, 269] [52, 91, 136, 202, 222, 223]
Informative (text) [69, 78, 81, 108, 119, 130, 177, 185, 188, 223] [78, 81, 188]
Saliency maps [1, 48, 120, 165, 218, 231, 264] ø
Graphs/plots/trees [17, 24, 25, 47, 144, 193, 220, 232, 266] ø
Bird’s eye view [19, 23, 152, 166] ø

Ex
te
rn

al
H
M
I D

is
pl
ay LED bands [34, 68, 83, 139, 271] [34, 68, 83, 139, 271]

Forward-facing display [40, 42, 96, 109, 161, 191, 228, 241] [40, 109, 161, 228]
Optical projection [37, 42, 182, 191] [37, 42, 182, 191]

M
ul
t. Display and projection [39] [39]

Audiovisual [84] [84]

Fe
at
ur

es

Instructional [35, 42, 109, 161, 191, 228] [35, 42, 109, 161, 191, 228]
Symbolic [9, 34, 37, 68, 83, 84, 96, 109, 139, 182, 228, 271] [68, 83, 96, 139, 271]
Metaphorical [37] [37]
Anthropomorphic [37, 241] [37, 241]

Research has shown that communicating potential uncertainties can improve trust calibration
and situation awareness, leading to safer takeovers [134]. Issuing a warning in such circumstances
is crucial, although the level of detail required may vary depending on the level of situational
awareness required. In some cases, presenting visual information alone may be sufficient [40].

6 Explanatory Information Communication
HMIs facilitate communication between the AV, onboard occupants and surrounding road users.
Bengler et al. and Murali et al. proposed a taxonomy for different types of HMIs in AVs [16,
176]. These HMIs are categorised as either ‘internal’ or ‘external,’ encompassing all interfaces
within the vehicle’s interior and exterior. We organised these interfaces and their components
into communication methods, as outlined in Table 4. The table highlights studies that present
explainability and explore interactive engagement through user evaluations. Articles focusing
solely on technical-centric explainability without any presentation are omitted. Research involving
interactivity mainly focuses on one-way interaction where communication flows from the AV
to the user. More research is needed on bidirectional interactivity for both internal and external
stakeholders, where users actively engage with the system, request additional information, or
provide feedback to the system. In this section, we explore the different modalities and methods
for delivering explanations to internal and external stakeholders, addressing RQ5 and RQ6.

6.1 RQ5: How Is the Explanatory Information Communicated to Internal Stakeholders?
Internal HMIs, which include all interfaces within the vehicle’s interior, are designed to convey
explanatory information to onboard users. They communicate the system’s status, intentions and
motion decisions in a transparent manner, promoting mode awareness and facilitating smooth
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transitions between driving modes for a safer, more comfortable journey. The communication of
explanatory information is discussed in terms of display modalities, multimodality and features
(i.e., the type of information conveyed).

6.1.1 Display Methods for Internal Users. Display modalities enable the communication of
explanatory information. The internal HMI modalities are categorised into visualisations, audio
and vibrotactile feedback. The proper modality of HMI must be activated by taking into account
the context, audience and information content to effectively communicate relevant information.

In the realm of in-vehicle visualisations, feedback devices such as head-down displays (HDDs),
head-up displays (HUDs), head-mounted displays (HMDs) and light bands/strips are com-
monly studied. While HDDs offer the benefit of not obstructing the users’ view of the outside world,
they can still be a source of distraction as users may become too engrossed in the display instead
of the road ahead [175]. On the other hand, HUDs are designed to minimise driver distraction
by presenting essential information relative to the positional and temporal environment within
the driver’s primary field of vision. Research suggests that HUDs offer better driving experiences
over HDDs, resulting in decreased cognitive load, higher usability and better performance con-
trol [40, 134, 229]. AR-HUDs as windshield displays (WSDs) are the next step in developing
HUDs by covering the entire windshield. These tools have demonstrated a remarkable capacity
to enhance a driver’s intuitive cognition and foster an efficient driving experience, particularly
in challenging driving scenarios [40, 175]. However, to realize these benefits, HUD information
must be thoughtfully designed in terms of content, timing and placement to ensure it complements
rather than conflicts with real-world information.

HMDs offer the same advantages as HUDs. Optical HMDs allow users to access necessary
information while remaining aware of their surroundings. Discrete HMDs provide a fully immersive
virtual reality (VR) experience, which can replace the physical world with a virtual environment.
This has the potential to reduce distractions and increase productivity for riders. Fereydooni et al.
suggested incorporating short visual cues in the VR world during a ride, which was found to be
helpful by passengers [70]. However, these devices are limited in the market and require further
research to determine their suitability for in-vehicle applications. Given the technical difficulties
and significant construction challenges in realising AR-HUDs and HMDs, current displays often
come in the form of prototypes, concepts or demonstration videos. While AR-HUD proposes a
more granular possibility of highlighting all relevant traffic objects, one of the concerns is that
visual clutter may cause driver distraction and negatively impact driving performance. Kunze et al.
argued that using the instrument cluster to visualise uncertainty information can increase mental
workload [135]. Therefore, less distracting visualisation methods such as light bands (light strips)
are used as a peripheral cue to bring attention to the objects of importance in the scene. Some works
proposed lighting certain parts of the band depending on the position of the crossing pedestrian to
indicate intention and perception [41, 89, 252].

Auditory feedback serves as another effective communication channel with internal stakeholders.
Researchers have explored different strategies, such as speech, blended sonification and alerting
sounds. In a study conducted by Avetisian et al., audio messages are used to direct users’ attention
to critical objects in the traffic to indicate their significance for the AV’s decisions [7]. The study by
Eimontaite et al. revealed that sound-based feedback improved the ease of operation and journey
experience for elderly users when examining the impact of different modalities [64]. The research
by Zhang et al. demonstrated the differences in the effectiveness of audio explanations across
different age groups [267]. They discovered that voice-based explanations provided before action
was taken resulted in the highest trust among elderly drivers. Additionally, blended sonification,
which manipulates background music, was proposed to convey the reliability level to keep drivers
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informed. This strategy effectively increased monitoring behaviour and reduced response time to
takeover requests, as suggested in studies by [29, 30].

Vibrotactile feedback is explored as an unobtrusive and intuitive means of communicating
uncertainty to users. Kruger et al. conducted a study on the effects of using a vibrotactile belt to
communicate sensor uncertainty information [129].Their results showed that participants were able
to understand the encoded information and perceived it as a meaningful communication medium.
However, further investigation is needed to determine the usability of vibrotactile feedback for the
ageing population, as it is known that age is associated with sensory decline. Kunze et al. suggested
using vibration motors mounted in the vehicle seat to convey uncertainty [135]. While vibrotactile
feedback alone can be helpful, it can also cause sudden spikes in attention, making it less effective for
conveying dynamic information. Kunze et al.’s work suggests that combining vibrotactile feedback
with other modalities may be more effective in communicating such information than relying
solely on it [135].

6.1.2 Multimodality for Internal Users. Multiple feedback modalities enable the perception of a
large amount of information without overwhelming a single sensory input. Multimodality is also
necessary to convey warnings in case human intervention is needed [263]. This can increase the
sense of urgency and lead to quicker response times [16]. However, it is essential to consider the form
and content of multimodality depending on the context. These modalities should complement each
other and aim to reduce information overload and clutter. Research has shown that a combination
of visual and auditory resources is an effective feedback strategy to increase situational awareness
[7, 37, 266]. Shull et al. studied how uncertainty feedback, representing current capability, influenced
the transition of control to manual driving [227]. Their results showed that providing auditory-
visual feedback led to longer HMI viewing times and early takeovers. In contrast, Zhang et al. found
that auditory-visual explanations decreased decision-making performance [269]. Alternatively,
visual-haptic feedback is introduced to raise the driver’s attention when distracted by other tasks.
As proposed in the study by Kunze et al., combining vibrotactile feedback with peripheral light can
enhance the effectiveness of the feedback, as both can be adjusted based on the levels of uncertainty
[135]. Nevertheless, further research is needed to assess the practicality of this approach.

6.1.3 Display Features in Internal HMIs. Explanations feature various formats, such as icons,
text and bird’s eye view to convey different types of information. Several visual presentation
strategies were employed to support visibility and comprehension. Kunze et al. suggested using
manipulable and abstract signs to communicate uncertainties by adjusting visual variables in size
and transparency based on the level of ambiguity [132, 136]. Zhang et al. proposed using AR carpet
visualisations to display lane availability, with arrows indicating lane-changing suggestions [268].
Monsaingeon et al. implemented an HDD interface that contains the instrument cluster, distance
to the followed vehicle, detected road markings, system activation and a small area for textual
messages [174]. Colley et al. presented semantic segmentation visualisations of the most relevant
objects (e.g., vehicles, pedestrians) projected on the windshield as AR-HUD to promote user trust
and situational awareness [43].

Research on the technical-centric perspective employs various presentation methods, including
natural language, saliency maps, bounding boxes, feature importance plots, decision trees and
bird’s eye views. Natural language explanations provide detailed information about the vehicle’s
current actions [69, 130, 189]. Saliency maps and bounding boxes highlight areas influencing the
system’s decision-making [24, 48, 117, 120]. Graphs, plots and decision trees visually represent data
and decision processes, helping users understand the rationale behind the system’s actions [25, 47,
193]. The bird’s eye view offers a top-down perspective, often illustrating the vehicle’s surroundings
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and intended path [19, 23, 152]. However, despite their usefulness, these presentations are typically
not integrated into HMIs and are rarely evaluated through human-subject studies.

6.2 RQ6: How Is the Explanatory Information Communicated to External Stakeholders?
External stakeholders receive explanatory information through external HMIs, which are installed
on or projected from the vehicle’s surface. While standardised eHMIs, such as indicators and brake
lights, are already in use, new forms of eHMIs are being explored to enable seamless communication
with other road users. The following section discusses various display modalities, multimodal
approaches and the types of information conveyed by different modalities.

6.2.1 Display Methods for External Users. The external HMI modalities are categorised into light
bands, forward-facing displays and optical projections. Light band exudes light patterns, such as
running from one side to another or flashing to convey a message. The advantage of light band
eHMI is its technical feasibility compared to projections or forward-facing displays. Furthermore,
light bands are visible to multiple pedestrians and are not subject to the constraints of textual
messages. Various lighting colours and patterns have been suggested to describe vehicle mode and
intent [83]. One idea proposed by Lanzer et al. is to use a light strip that displays the vehicle’s intent
using different light patterns, such as yellow dots or flashed turquoise, to communicate whether
the car is moving or intends to stop [139]. Faas et al. implemented a slowly flashing blue-green
light above the windshield to signal yielding intent, which helped pedestrians calibrate their trust
accordingly [67, 161]. Similarly, Zhanguzhinova et al. used red and green lights that switched
between moving and stopping actions, resulting in smooth crossing behaviour and increased
trust [271].

For forward-facing displays, various concepts have been proposed for positioning screens or
panels on the vehicle’s surface, including the bumper, grille, hood, windows and windshield. These
display concepts have been studied to convey information for intended communication and increase
road safety. Singer et al. proposed using symbols to communicate the vehicle’s intentions to other
road users, such as the vehicle’s parking intention or direction of movement [228]. Research has
also explored the use of forward-facing displays for presenting personal information when picking
up passengers, indicating driving modes and signalling hazards to foster awareness and safety
between the vehicle and external users [42, 109, 191]. Additionally, forward-facing displays have
been studied for two-way communication, allowing pedestrians to respond to the vehicle’s messages
with gestures or waves [35].

Optical projections are an alternative means of conveying information by projecting messages—
trajectories, stopping points, intentions and directions—onto the road surrounding the vehicle. This
medium allows for the highest amount of information to be communicated, as the interface can
be designed in detail [16, 53]. In an earlier study, Nguyen et al. proposed visualisations displayed
on-road projections to indicate the intention of AV, such as stopping, slowing down, or proceeding
[182]. Although this information helped participants adjust their actions, they demanded a display
of timing during the crossing to know when the AV would start moving. Colley et al. compared the
effectiveness of on-road projections versus information displayed on a car’s surfaces, such as the
bumper and windows [40]. The results showed that projecting the information on the sidewalk did
not lead to increased trust. However, this concept was better at increasing situational awareness
and warning distracted pedestrians about oncoming traffic. In another study by Colley et al., street
projectionwas among the best-performing concepts as it was the only display communicatingwhere
the AV will stop [37]. Despite its potential benefits, on-road projections have certain limitations.
They require near-perfect environmental conditions, including lighting, weather and road surface,
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to work properly. A powerful projector would also be necessary since the eHMI is projected over a
significant distance.

6.2.2 Multimodality for External Users. In the realm of eHMIs, while the literature provides
instances of combining two or more modalities, the exploration of multimodality has generally
been less extensive compared to single-modality approaches [39, 57]. One line of research explored
multimodality to address the inadequacy of current concepts for stakeholders with varying disabil-
ities [84]. They compared auditory-visual modalities for individuals with and without intellectual
disability (ID) to assess the inclusiveness of current eHMI concepts. The study involved emitting
an audio message from the front of the vehicle for pedestrians and displaying a visual signal on
the hood to indicate yielding intention. This implementation of multimodal eHMIs has shown
positive results in terms of ID inclusivity. Regardless, it is essential to consider other factors, such as
visual impairment, distracted road users and language barriers, as relying solely on visual displays
may hinder safe interaction with various road users. There is no ‘best’ modality, as acceptability
depends on various factors and is not universal, which calls for further research in mixed-modality
eHMIs [219].

6.2.3 Display Features in External HMIs. External display signals information in four ways:
instructional, symbolic, anthropomorphic and metaphorical [241]. Instructional signals are usually
presented as text, providing advisory and informative messages. Advisory signals are not favoured
for safety reasons (e.g., AV shows ‘Cross’, but another vehicle in the adjacent lane may not stop)
[83]. Instead, intention-based informative messages (e.g., ‘Stopping’) are recommended by ISO
[100]. Colley et al. considered instructional signals as the bidirectional communication between the
AV and the pedestrian [35]. The study found that participants appreciate it when an AV responds
to their hand gesture of ‘Thank you!’ with the feedback ‘You are welcome!’. They described it as
more human-like, friendly and clear. As useful as it is, there could be other limitations to textual
signals, including language barrier, illegibility due to distance and vision disability.

The symbolic visual signals feature patterns (e.g., traffic symbols) that would animate over
the LED display. Singer et al. explored the impact of animated symbols, like the P sign, arrow
and flashing hand, on driving behaviour and intent recognition [228]. The results show that a
combination of signals helps a better perception of the AV’s intention and increases the perceived
safety. Avetisyan et al. focused on eHMI for communication with human drivers in conventional
vehicles in mixed traffic situations [9]. The visual messages displayed on the front of the AV warned
drivers of uncertain situations, leading to increased awareness and trust.

The anthropomorphic signals comprised facial expressions such as animated eyes that would blink
or gaze in different directions to indicate the vehicle’s intention [214]. Colley et al. experimented
with an expressive eHMI for AVs [37]. They utilised a bumper display shaped like a mouth, which
would remain neutral with a horizontal line when the AV was not yielding and turn into a smile
when the AVwas yielding to pedestrians. Finally, metaphorical pictographs use animated allegorical
narratives (e.g., ‘walking man’ at pedestrian crossings) to convey pedestrians to exercise caution,
wait, or cross the street. Metaphorical pictographs and anthropomorphic signals seem most easily
understood, especially as the characters explicitly display gestures and movements to indicate the
future steps pedestrians could follow [241].

7 RRI Grounded Roadmap
As shown in our review (Sections 4–6), the explainability of AVs has been widely addressed
in the research community. However, there is currently a lack of a systematic approach to the
design of explanations, which may lead to suboptimal design of explanatory information or even
contradictory outcomes. To address this gap, we suggest a roadmap that designers of explanatory
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Fig. 3. RRI grounded roadmap for advancing explainable AV systems.

information in the context of AV could utilise to ensure that all key design elements are captured, as
illustrated in Figure 3. The roadmap is grounded in RRI principles outlined in the AREA framework
(see Section 3).

The proposed roadmap outlines four key objectives: knowing the interlocutor, generating timely
explanations, communicating human-friendly explanations and continuous learning. The first
three objectives correspond to each reach topic respectively, highlighting the essential components
extracted from the explanatory task, explanatory information and explanatory information com-
munications. In contrast to previous discussions (e.g., [6, 189, 256]), our roadmap also integrates
the element of continuous learning and improvement. This objective encompasses the other three,
emphasising the need for regular revisions and adaptations of explanation concepts as newmethods
emerge and user needs evolve. The development of each objective is informed by conclusions drawn
from the literature survey and identifying gaps in each research topic. These lead to extracting
subareas that are less explored but integral to advancing AV systems. Each objective is then fur-
ther elaborated, incorporating AREA principles by considering the challenges highlighted in the
literature and the broader context of AV development and design research.

7.1 Knowing the Interlocutor
An interlocutor in this context refers to the Class A users who are directly influenced by the actions
taken by anAV (see Section 4.1.1). Previous research has discussed the integration of driver’s physical
and cognitive state information into in-vehicle interaction applications [103, 176]. However, these
observations have not been incorporated into explanations, as noted in Section 4. This highlights
the need for vehicle interaction technologies to identify the target interlocutor, i.e., the audience,
whether the internal or external stakeholder and observe and recognise their physical and cognitive
state to generate timely and meaningful explanations. As shown in Section 4.2, there are several
scenarios where incorporating observations into explanations might be necessary, such as:

—The observations of stakeholders can be incorporated into explanations when the automation
raises an intervention due to detecting deficient states of the driver. This approach can involve
either reducing or increasing automation agency based on the level of autonomy the system
has (e.g., AV takeover control due to detecting alcohol through transdermal sensors or alerting
a drowsy driver for situation awareness).

ACM Transactions on Human-Robot Interaction, Vol. 14, No. 3, Article 39. Publication date: March 2025.



39:26 S. Tekkesinoglu et al.

—Observation can help offer proactive explanations in situations where there is a risk that the
passenger(s) might feel discomfort, confusion, or frustration by a driving-related situation,
especially when no visible reason exists in the scene.

—Observations can help to justify an action that resulted from detecting an unusual situa-
tion (e.g., AV pulls over and contacts an operator due to detecting the passenger’s medical
emergency).

—Understanding external stakeholders’ attributes is essential to provide explainable trajectory
planning for onboard users, especially when other road users’ intentions are not clear but
could influence the behaviour of the AV.

—Detecting relevant characteristics of safety-critical road users (e.g., child, elderly, pet/animal,
distracted pedestrians, e-scooter user), if there exists any impairment (e.g., cognitive, vision,
hearing, mobility) is necessary to properly calibrate the external communication mode and
efficiently interact with them.

While an explainable AV with these capabilities can significantly improve user experience and
safety, it also poses certain risks and implications related to the effectiveness and ethical use of the
data. The literature evaluated several risks and implications concerning such technology, which
relates to the explanatory task as follows:

Data privacy and security concerns—Incorporating stakeholder observations for explanations
raises privacy concerns, especially when sensitive information about drivers or passengers
is involved. Proper data handling and anonymisation protocols must be in place, and clear
guidelines should be established for collecting, storing and processing stakeholder observations
to protect the privacy and confidentiality of the individuals involved [128, 176].

User acceptance and trust—Users may have concerns about the collection and use of personal
data [103, 176]. Therefore, it is essential to empower users to have control over their data and
the ability to select which part of observations to opt in or out of the system. It is important
to make sure that users are informed about the benefits and implications of incorporating
observations in enhancing the AV system’s operations.

Erroneous observations—There is a risk of misinterpreting stakeholder behaviour, leading to
incorrect or inappropriate responses. To minimise this risk, it is necessary to have robust AI
models capable of accurately understanding and responding to complex human behaviours
and intentions [162]. Implementing robust sensor technologies and data fusion techniques can
help ensure the accuracy and reliability of stakeholder observations, reducing the risk of false
positives.

Legal and regulatory compliance—Incorporating stakeholder observations for decision-making
raises questions about legal liability and compliance with existing regulations. The legal impli-
cations of AV interventions and data usage must be thoroughly evaluated and addressed to
ensure adherence to relevant laws and regulations [16]. Additionally, clear ethical guidelines
and informed consent procedures should be established for the collection and use of stakeholder
observations in AV decision-making processes.

Algorithmic bias and fairness— Integrating stakeholder observations may reduce some biases
while potentially introducing others into the AV’s decision-making processes, especially if the
observations are not sufficiently representative or if the algorithms are not properly calibrated.
Implementing bias detection mechanisms, algorithmic fairness assessments and regular audits
can help identify and mitigate potential biases, ensuring fair decision-making by the AV system
[80, 128].
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Addressing these risks and implications requires a collaborative and inclusive approach that
combines robust technical solutions, ethical guidelines and legal compliance. Researchers have
been engaging with various relevant parties to enable the responsible and ethical deployment of
AV technology through industrial collaborations and workshops [78, 157, 178]. We identified some
key interest groups to involve in the process, including:

Legal authorities and ethics committees—Collaborating with legal experts can help establish
ethical guidelines, informed consent frameworks and regulatory compliance measures for
integrating stakeholder observations in AV decision-making processes.
Diversity, Equity, Inclusion and Accessibility advocates—Involving accessibility, diversity and
inclusion advocates can help address the diverse needs of users. Discussions around the impor-
tance of fair representation, assessments and bias detection mechanisms will ensure that the
AV system’s decision-making processes are inclusive and fair [199].
AV industry and technology developers—Collaborating with the AV industry and technology
developers can provide insights into best practices, such as sensor technologies and data fusion
techniques, for integrating stakeholder observations in AV systems. This knowledge exchange
would also foster consensus on technical specifications and protocols, leading to standardised
frameworks.
Urban planners and representatives of other road users—Engaging urban planners and represen-
tatives from various road user groups (e.g., pedestrians, cyclists) is crucial for understanding
the broader context of AV deployment. Their input helps address urban infrastructure needs,
safety concerns and the integration of AVs into existing transportation networks.

7.2 Generating Timely Explanations
Providing explanations for every action, even in routine situations, may result in information
overload for users, ultimately diminishing the value of explanations and reducing their effectiveness
[65]. Prioritising event criticality for explanations while ensuring a balance between transparency
and simplicity is essential to avoid overwhelming users with unnecessary details. While this has
been partially addressed in the literature, further research is needed to focus on timing for proactive
explanations (see Sections 4.2.1 and 4.2.2). Timely explanations should address discrepancies
between what the user expects the system to do and what it does, thereby promoting a seamless
experience. Motivated by the work of Gervasia et al. [75], we suggest a set of guidelines for
generating timely explanations that address expectation violation as follows:

Deviation from usual—AV should identify if an action differs from past behaviour in similar
situations through statistical analysis of performance logs and semantic models.The explanation
should acknowledge the atypical action and explain the reason when it exhibits unusual
behaviour (e.g., AV not yielding to pedestrians).
Atypical instances—AV should generate explanations for actions taken in unusual situations
causing atypical action. The AV can identify these situations by their frequency of occurrence
and describe the unusual situation to the user (e.g., sharp brake due to an unidentified object—a
deer jumping on the road).
Ambiguous situation—In some situations, the apparent cause of the action may be unavailable
to the user, and the user might assume that the information used for the decision comes only
from the vehicle’s vision sensors. AV should explain the potential mismatch and indicate
decision criteria in such situations, e.g., in a ride-sharing scenario, AV divert to an unusual
route, justifying that it will take a new rider on the way.
Acting against rules or preferences—In typical driving conditions, AVs seek to satisfy the estab-
lished traffic rules, regulations and preferences; nevertheless, various factors (e.g., to prevent
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a potentially more severe incident, time frame, physical restrictions) may cause a violation,
leading to the agent operating contrary to its set-up. Explanation, in this case, involves acknowl-
edging the violated directive or preference and providing why that occurred (e.g., changing the
preferred driving style or stopping at the ‘No stopping’ sign).

Implementing an explainable AV system with the outlined capabilities can significantly improve
user trust and experience. However, it is crucial to consider and act on several key aspects to
ensure the effectiveness of the explanations. One such aspect is technical complexity and system
performance. Generating context-sensitive explanations requires a robust technical infrastructure
and algorithms without impacting the overall system performance and responsiveness [261].
Therefore, it is crucial to prioritise system optimisation and efficient algorithm design to ensure that
the explanation generation process does not compromise the overall performance and computational
resources of the AV system [5, 243]. Another aspect to consider is the risk of misinterpreting user
expectations, leading to misaligned explanations that fail to address the user’s concerns adequately.
To mitigate this risk, incorporating robust user feedback mechanisms and conducting regular user
studies can help align the AV system with user expectations more effectively [223]. Additionally,
there is a risk of users becoming overly dependent on the explanations, which may lead to a lack of
critical thinking and reduced user engagement with the driving task [262].

Academics and industrial partners have been working together to address these concerns and
fuse their expertise to design AV systems that are both robust and reliable [183, 244]. In addition,
collaborating with human factor experts in the field can offer valuable insight into users’ cognitive
processes, behaviours and preferences [53]. Such collaborations can inform the explanation genera-
tion process and user-centred design principles to ensure the successful deployment of explainable
AV technology with these capabilities.

7.3 Communicating Human-Friendly Explanations
In the literature, there is a consensus that explanations should convey relevant information in a clear,
concise and friendly manner, revealing the reasoning behind a decision, the current state of affairs
and the potential outcomes in the future [22, 129, 185]. For external stakeholders, communication
should compensate for the absence of human-driver interaction. While discussions on these aspects
exist, the lack of a comprehensive set of guidelines remains a gap. Our approach introduces three key
properties for communicating human-friendly explanations in the context of AVs: conspicuousness
(easy to perceive), comprehensibility (easy to understand) and interactivity (easy to engage with).
We proposed a thorough approach with a detailed map outlining how to take on each one properly.

7.3.1 Conspicuousness. This refers to the degree to which the resulting explanation is clear and
easy to notice through the visual, auditory, or tactile channel. The communication channel should
be adjusted based on the degree of priority of the message.

Low-priority messages—These refer to the messages conveyed in the first layer of transparency
that describe the current state of the system when it is running smoothly (see Section 5.2.1).
Low-priority messages vary across levels of autonomy, with SAE Levels 2 and 3 focusing on
driver awareness and readiness, while higher levels provide more general information that does
not require immediate attention from the driver. To avoid disrupting users while they perform
NDRTs, one could consider presenting low-priority messages as visual feedback incorporated
into AR WSDs [212]. Visual feedback may include information about other vehicles in close
proximity to the ego vehicle, such as their orientation, size, movement and intention [254]. This
may also include information about detecting partially obstructed objects in the environment,
as well as large objects that may block the view of potential hazards [232]. As discussed in
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Section 4.2.1, this information should be readily available, especially during the introductory
phase, to enhance the perception of safety. Concerning external road users, the low-priority
messages involve the display of driving mode when the vehicle is operated in autonomous
driving (see Section 5.2.1). Previously, marker lamps have been recommended by SAE [101].
Most recently, Mercedes-Benz became the first automaker to receive permits allowing the
use of turquoise-coloured lights on the outside of the vehicle to indicate autonomous driving
mode [236].
High-priority messages—Conspicuousness is essential for messages of higher importance. It is
advisable to avoid displaying such information visually, as it may result in drivers overlooking
significant changes [142]. This is because drivers frequently switch focus between the road,
displays and NDRTs [134]. High-priority messages might be presented through multimodal
interfaces to capture the user’s attention as uncertainties escalate, e.g., when a takeover becomes
more probable [181, 269]. As shown in Section 6.1.2, audible verbal messages accompanied
by visual cues have been proven to be more effective than relying solely on visual signals
when communicating takeover requests [40]. However, they may not be sufficient in situations
where the driver is listening to music, conversing with passengers, or dealing with loud noises
[171]. As discussed in Section 6.1.2, auditory and vibrotactile alerts could be utilised to adapt to
the urgency of the message. Regardless of the modality, the warning messages should direct
the user’s attention towards the source of danger and persuade them to take action promptly.
In regard to external stakeholders, high-priority messages involve situations ranging from
intent communication to warning signals [67, 147, 241]. Such explanations should take into
account the diverse road user requirements, such as those with impairments, language barriers,
or those who are distracted.

7.3.2 Comprehensibility. Comprehensibility is the capacity of an explanatory agent to represent
its knowledge in a human-understandable way [94]. For the message to be comprehensible, it must
be easily understood with minimal cognitive effort. This property highly depends on the audience,
and the context since comprehensibility is a subjective concept. We have gathered four factors that
support comprehensibility:

Clarity—refers to the degree to which the resulting explanation is explicit. This property is
particularly relevant for high-priority messages. The interface should adopt commonly used
icons and filter out irrelevant traffic features to mitigate the risk of ambiguity [156]. Additionally,
explanations should refrain from utilising highly abstracted information for situation awareness
[40]. As highlighted in Section 5.2.2, AV needs to communicate its intentions explicitly to
external stakeholders, leaving no room for interpretation. Moreover, it is crucial to avoid
confusing or misleading those who are not the intended recipients. For instance, a passenger
does not need to understand the information that is intended for the driver. Similarly, if the
message targets pedestrians, it should not perplex other drivers who may happen to see it.
Selection and refinement—pertain to the capacity of an explanatory agent to focus solely on the
critical causes that are sufficient to explain the situation. Typically, humans do not expect an
explanation to contain the complete list of causes of a decision but rather seek an explanation
that conveys the most critical information supporting the decision [172]. When presenting
driving-related information, displays should offer minimal features necessary to justify the
situation [181]. As pointed out in Section 6.2.1, external communication should also consider
non-visual, more inclusive eHMI concepts for the safety of road users who do not have access
to visuals [84, 271].
Informativeness—relates to the ability of an explanatory agent to provide relevant information
to the user without causing cognitive workload [268]. As per the discussion in Section 6.1.2,
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when there is an unusual amount of information to convey, multimodality could be a solution
to not overwhelming users by loading one sensory modality.
Simplicity/Parsimony—refers to the complexity of the resulting explanation. A parsimonious
explanation is a simple explanation. The optimal degree of parsimony may vary depending on
the user. For example, novice drivers may benefit from more detailed semantic information,
while experienced or elderly drivers may find a simpler message more helpful [156]. Therefore,
the explanation system should be adaptable to accommodate the specific needs and preferences
of both the driver and the occupants.

7.3.3 Interactivity. Despite its significance, bidirectional interactivity remains a relatively less
explored feature within the realm of explanation communication involving HMIs, as revealed in
Table 4.The practical methodologies in two-way interactivity are mainly limited to technical-centric
works that explore visual question-answering [4, 167, 203]. However, bidirectional interactivity
involves gaining insight into the target audience, including their goals, needs and preferences [27].
By knowing the users, the interactive experience can be tailored to suit their context, behaviour
and personality. We have identified three elements to consider for an interactive explanatory agent:
engagement, empathy and anthropomorphism.

Engaging—Designing for engagement means making it responsive and adaptive to the users’
inputs, actions and contexts. This involves an explanation method to reason about prior inter-
actions to interpret and respond to users’ follow-up questions. This is important for creating
a rapport with the users, which is also beneficial for the initial trust-building process. Then,
the users should be able to control the level of engagement they prefer [43]. Regarding other
road users, communication should provide a form of acknowledgement, showing the vehicle is
aware of them, as described in Section 6.2.1. This could include a mechanism for bidirectional
communication by responding to gestures [40]. In a V2X context, messages could be sent to
HMIs of other agents to enable interactive communication.
Empathic—Empathic design involves designing for emotion, making explanations expressive
and personality-driven. This involves action, emotion and gesture recognition and utilising
physiological inputs (e.g., thermal, olfactory, gustatory, cerebral, or cardiac signals) to synthesise
data, adapt suitable modalities and refine interactions [103]. The explanatory agent should
identify additional relevant user characteristics (e.g., age, gender, cultural background) to address
empathic interface requirements. This could also be beneficial to the conceptual trust-building
process (See Section 2.1.1).
Anthropomorphic—By leveraging anthropomorphic features such as attractiveness, person-
alisation, ethnicity and facial similarity, explanatory agents can create more engaging and
user-friendly experiences. Implementing elements such as voice, tone, language, humour
and emotion recognition can contribute to a human-like relatable experience [80, 216, 262].
According to the analysis in Section 6.2.3, anthropomorphic signals such as facial expressions or
pictographs could be adapted to communicate the vehicle’s intention for external stakeholders
[37, 241].

Implementing an explainable AV that can adjust conspicuousness based on message priority
requires thorough consideration during the design and deployment phases. Moreover, the emphasis
on comprehensibility and interactivity adds further complexity to the implementation process.
Therefore, there are several important risks and implications associated with these tasks that should
be kept in mind, as follows:

User adaptation and familiarity—Adjusting the communication channel’s conspicuousness may
require users to adapt to new modes of information processing and response [16]. Ensuring that
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users are adequately trained and familiar with the AV’s communication interfaces and protocols
is crucial to facilitate quick and appropriate responses to messages of varying priorities [58].The
system could integrate training modules to guide users through the communication interfaces
and protocols. Supplementary training resources, such as user manuals, interactive tutorials and
simulation exercises, can be provided to ensure comprehensive understanding and readiness.
Sensory overwhelm and alert fatigue—Using multimodal communication in AVs can lead to
sensory overwhelm and alert fatigue [168]. Overexposure to alerts may result in habituation,
causing desensitisation to urgent alerts and delayed reactions in critical takeover scenarios
[73]. Drawing from Section 4.2.1, continuous exposure to messages may overwhelm the user or
even foster overreliance on the notifications, leading to complacency and reduced engagement
with the driving environment. Striking a balance between the urgency of the message, sensory
tolerance and the user’s cognitive load is crucial to prevent undue stress without compromising
the user’s ability to maintain situational awareness.
Ambiguity in explanations—Explanations must align with the AV’s driving behaviour. Inconsis-
tencies between the provided explanations and the AV’s actions can result in confusion—relates
to both internal and external communication. This may lead users to draw wrong conclusions
or take incorrect actions. To avoid confusion and misunderstanding of the system’s status,
various visual feedback strategies and symbols have been proposed [53, 181]. Nonetheless,
further research is required to explore the use of multimodal communication, especially in
high-pressure or noisy driving conditions, to determine if it contributes to ambiguity.
User diversity—As discussed in Section 2.1.1, there are differences in how people of different
ages, genders and cultures perceive and trust AV technology [63, 155, 206, 274]. Further research
requires consideration of these factors, along with digital literacy, cognitive abilities, and so
forth, to ensure the information is easily understandable and identifiable by the intended
stakeholders—to whom it was addressed.
Technological reliability and redundancy—Depending on the communication channel’s reliability,
there may be a risk of technical failures or malfunctions, leading to a lack of timely and effective
message delivery [67, 96]. Implementing robust redundancy mechanisms and regular system
checks are essential to minimise the risk of communication failures and ensure that critical
messages reach the user promptly and reliably.
Empathic and anthropomorphic design challenges—Incorporating empathic design elements that
rely on accurate emotion and gesture recognition presents technical challenges, emphasising
the need for reliable systems to prevent misinterpretation of user emotions [145, 159]. Addi-
tionally, implementing anthropomorphic features to improve the user experience can raise
ethical and psychological concerns related to humanising the AV system. This necessitates
a balance between creating relatable experiences and avoiding potential user discomfort or
confusion [248].

The literature reviewed in Sections 5 and 6 shows that most user-centric approaches have
actively engaged with human-subject studies to understand potential users’ expectations and
concerns regarding the explanation generation process [9, 30, 37, 186, 269]. Moreover, engaging
with community representatives and advocacy groups can help understand local communities’
specific needs and preferences. Their guidance can inform the implementation of inclusive design
practices and accessible communication modalities for a broad spectrum of users. However, there is
a need to balance localisation and standardisation. While localisation addresses specific community
needs, standardisation ensures consistency and avoids confusionwhen usersmove between different
vehicles or regulatory environments. Ideally, a combination of both approaches should be pursued,
where universal standards are implemented to promote clarity and safety while allowing for some

ACM Transactions on Human-Robot Interaction, Vol. 14, No. 3, Article 39. Publication date: March 2025.



39:32 S. Tekkesinoglu et al.

degree of customisation to address local and individual requirements. In addition, collaboration
with multidisciplinary experts, including human factors specialists, cognitive psychologists, UX
designers and HCI specialists, is essential in optimising AV interface design and developing effective
communication systems [53, 61, 222].

Other significant bodies to engage with include driver training and transportation safety or-
ganisations. They can facilitate the development of effective training programs and guidelines for
users to familiarise themselves with the AV’s communication interfaces and response protocols.
Consultation with transportation safety regulators and authorities is necessary to ensure that
the communication features align with existing safety standards and guidelines. Other regulatory
authorities and standards organisations also play a significant role in ensuring compliance with
industry regulations and safety standards for AV communication systems.

7.4 Continuous Learning and Improvement
The review provided in Sections 4–6 lacked discussions on how existing explanation concepts
address the ongoing evolution of AV systems alongside the changing user needs. A continuous
learning mechanism is necessary to ensure the system’s explanation generation improves over
time. User feedback integration, self-adaptive strategies and incremental updates are some essential
aspects to take into account for continuous learning and improvement.

Feedback integration—The continuous learning process involves integrating user feedback into
the learning process. By understanding user responses, concerns and suggestions, the system
can adjust its explanation strategies to meet users’ evolving needs and preferences and enhance
the system’s overall performance [13, 78]. Recent advancements in integrating large language
models into AVs set a paradigm shift, demonstrating the potential for continuous learning and
personalised engagement [45, 46, 237]. Thereby, users can enjoy a more seamless and intuitive
interaction with AVs.
Self-adaptive strategies—As discussed in Section 2.1.1, sociocultural context conditions human
cognition and perception, and thus, the explanation needs of users may differ across cultures
[124]. As AVs traverse cultural boundaries, they may need to adjust their behaviour to align with
the norms and expectations of each culture encountered [170, 201]. With continuous learning,
the system would adapt strategies in response to changing environments by monitoring shifts
in user behaviour and updating knowledge with fresh data points in real-time.
Incremental updates and upgrades—Continuous learning also involves the integration of in-
cremental updates to the system’s architecture, algorithms, explanation techniques and data
processing [143]. By doing so, the system remains up to date with the latest advancements
in the field and can leverage SotA techniques to improve its performance and capabilities.
However, these enhancements may not be available immediately, as manufacturers typically
release updates and upgrades at set intervals, ranging from several months to a year. A key
challenge is also the lifespan of vehicles—often up to 20 years—requiring manufacturers to
provide ongoing support for updates over extended periods. Ensuring compatibility will be
crucial to maintaining performance throughout the vehicle’s lifecycle.

Integrating continuous learning mechanisms in an explainable AV system has several benefits but
also poses implications related to data processing and model performance. Collecting and analysing
user feedback data may raise concerns about privacy and security. Ensuring robust data encryption,
anonymisation techniques and secure data storage protocols are essential to protect sensitive
user information from unauthorised access and misuse [234]. Related to this, regular auditing
of the learning models and data sources is important to identify and mitigate any algorithmic
bias resulting from continuous learning [12, 114, 151]. On another note, continuous learning may
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impact trust if users perceive the system’s decisions as unpredictable or inconsistent. Providing
clear and transparent explanations for the system’s continuous learning processes and decision-
making criteria can help users build a better mental model of the system [60, 74]. Concerning the
model performance, continuous learning may introduce system instability, leading to unexpected
behaviours or unintended consequences that could compromise user safety and trust. Implementing
rigorous testing and validation procedures, along with effective fail-safe mechanisms, is crucial to
ensure the stability and reliability of the AV system throughout the continuous learning process
[123]. Finally, it is worth noting that engaging with relevant stakeholders, including data privacy
and security experts, regulatory authorities and industry specialists, is important to mitigate the
potential risks and implications.

8 Conclusions
In this study, we conducted a literature review to assess the SotA research in explainable au-
tonomous driving. The study addressed several research questions related to the explanatory task,
information and means of communication. Our analysis revealed that several factors, including
stakeholders, driving operations and level of autonomy, influence the explanatory task. We dis-
cussed situations requiring explanations by contrasting proactive and reactive explanations based
on their criticality—either situations that pose an immediate danger or harmless but questionable
driving behaviours. Regarding explanatory information, we identified three layers of transparency:
goal, reasoning and projection, elucidating them further based on the level of autonomy and
stakeholder needs. Finally, we evaluated how the explanatory information is conveyed to internal
and external stakeholders. We highlighted three critical design considerations: conspicuousness,
comprehensibility and interactivity. While current approaches facilitate one-way interaction, our
analysis underscores the need for further research into bidirectional interactivity, allowing users
to actively engage with the system and provide feedback. Considering the lack of a systematic
design approach, we suggested a roadmap to address all key design elements. By considering
RRI principles, our roadmap emphasises the importance of understanding diverse requirements
for explanations. It pinpoints critical design elements related to explanatory tasks, information
and communication, as identified in the review: understanding the audience, generating timely
explanations and communicating human-friendly explanations. Notably, our roadmap integrates
continuous learning aspects, a dimension often overlooked in existing literature. The roadmap
concerns both the internal and the external stakeholders; therefore, the suggestions can be adapted
and applied to the research relating to both areas.
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