
Vol.:(0123456789)

Air Quality, Atmosphere & Health 
https://doi.org/10.1007/s11869-025-01713-8

Hybrid graph convolutional LSTM model for spatio‑temporal air 
quality transfer learning

Sooraj Raj1 · Jim Smith1 · Enda Hayes2

Received: 21 July 2024 / Accepted: 3 February 2025 
© The Author(s) 2025

Abstract
The short-term air quality forecasting models serve as an early warning system for local agencies, aiding in prepar-
ing mitigation strategies against severe pollution episodes. This paper explores the application of Transfer Learning to 
enhance short-term air quality forecasting model accuracy when labelled data is limited or missing, as often occurs with 
newly installed monitoring stations or due to sensor malfunctions. These monitoring stations are typically installed in 
areas of high exposure, like roads or urban/industrial areas, due to recurrent peak episodes or to monitor background 
pollutant levels generally. Forecasts with greater reliability, even when there is limited historical data available due to 
the recent installation of the monitoring station for example, are expected to enable the swift implementation of proac-
tive measures to prevent significant pollution episodes from happening. The proposed method leverages knowledge from 
spatially neighbouring air quality monitoring stations to achieve the multi-modal spatial-temporal transfer learning to 
the target station, exploring multivariate time series data available from neighbouring monitoring stations. This study 
employed historical air quality data from spatially adjacent monitoring stations identified in South Wales, UK. The study 
evaluates the predictive capabilities of four base models and their corresponding transfer learning variants for estimating 
NO2 and PM10 pollutant levels, which are the most difficult pollutants to meet objectives and limit values in the UK’s 
air quality strategy. The paper highlights the importance of capturing spatial patterns from different monitoring stations 
along with temporal trends when it comes to air quality prediction. Our experiments demonstrate that transfer learning 
models outperform models trained from scratch on air quality multivariate time series prediction problems in a low data 
environment. The proposed hybrid Graph Convolutional-LSTM model, making use of a novel Granger causality-based 
adjacency matrix for the new site, has significantly outperformed other baseline models in predicting pollutants, achieving 
notable improvements in prediction accuracy of approximately 8% for PM10 and 7% for NO2 values, as reflected in the 
RMSE values. It has also demonstrated the potential for data-efficient approaches in spatial transfer learning by reducing 
the need for large datasets by incorporating prior causal information.
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Introduction

Combining more precise short-term forecasting with epi-
sode-specific air quality management is expected to enable 
the proactive deployment of mitigation strategies to prevent 
peak episodes from happening. These measures, for exam-
ple, can include limiting traffic speed for reduced emissions, 
delaying high-emitting industrial activities, or scheduling 
them for lower background pollution levels. They can also 
help develop improved urban air quality information and fore-
casting systems, enhancing the capabilities of local authori-
ties to successfully predict and describe air contamination 
episodes in advance on a day-to-day basis. A successful air 
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quality forecasting model should be able to capture both tem-
poral recurring patterns - short time variations, long-term 
periodicity and spatial correlations for accurate predictions. 
Deep Learning models enable accurate short-term air quality 
forecasting by learning complex trends influenced by vari-
ous variables, including transportation, industrial and home 
emissions, industrial operations, and meteorological elements 
like wind direction and speed (Liao et al. 2020). However, in 
many practical cases, with the recent installation of the moni-
toring stations or information missing due to sensor failures, 
the scarcity or significant gaps in labelled training data is a 
typical issue with air quality forecasting. New Air Quality 
monitoring stations are typically placed in areas of concern 
where exposure exists due to frequent peak episodes or to 
monitor background pollutant levels in general. In both these 
scenarios, applying transfer learning techniques from nearby 
monitoring stations allows valuable insights about future air 
quality values to be gained rapidly with minimal new data 
from the target monitoring station.

Although Deep Learning architectures are proven effective 
in problems like multi-variate time series forecasting, their pre-
dictive capabilities are significantly reduced when the amount 
of data available is insufficient for effective training as the net-
work fails to capture useful patterns and trends (Dhole et al. 
2021). To alleviate this problem, the transfer learning methods 
leveraging knowledge from spatially neighbouring air quality 
monitoring stations to help accomplish the target prediction 
task are proposed in this paper. In general, transfer learning 
enables a machine learning model trained to address one prob-
lem to be modified or improved to address another – a portion 
of the model’s knowledge from the previous task is applied 
to solve a new task. Transfer learning helps us solve the data 
insufficiency issue that arises when models are expected to 
learn patterns from sparse datasets by allowing us to apply the 
knowledge that a pre-trained model has learnt from a related 
but different dataset. Moreover, training a model from scratch 
takes a lot of computational resources and time. Compared 
to training from randomly initialised models, knowledge 
transfer minimises the number of training examples needed 
to complete a given task, cutting training time and improv-
ing accuracy (Otović et al. 2022). In this paper, we propose a 
hybrid GCN-LSTM model, which utilises a Granger causality-
based adjacency matrix derived for the new site to incorporate 
prior causal information. This approach enables the model to 
efficiently handle spatial transfer learning scenarios in lim-
ited data environments, resulting in substantial reductions in 
time, energy, and environmental costs typically associated with 
training new models from scratch.

Related work

Various studies have proposed utilising graph structures 
to represent the spatial relationships between monitoring 

stations and incorporating them into the model. In a recent 
study, the authors (Qi et al. 2019) proposed a hybrid model 
integrating Graph Convolutional Networks (GCNs) and 
LSTMs to capture the spatiotemporal variations in PM2.5 
levels. Within the proposed model’s spatio-temporal block, 
the spatial weight matrix/adjacency matrix is derived 
based on the spatial distances between air quality monitor-
ing stations. This adjacency matrix and graph signals con-
sisting of the air quality historical observations are used 
to extract spatial features by a graph convolution layer. In 
the next step, the graph signals are concatenated to form 
the input of the LSTM layers. Finally, the output of LSTM 
is treated as the input of a fully connected layer, and the 
output of fully connected layers is the prediction of PM2.5 
mass concentration at a desirable time. In this study, by 
just using physical distance to calculate the graph adja-
cency matrix, the model might ignore any topological/ter-
rain features of the landscape. Another limitation is that, 
though the authors compared the performance of the mod-
els against several state-of-the-art methods across various 
time intervals, the proposed GCN-LSTM model is found 
to be not evaluated against other established hybrid models 
like CNN-LSTMs. In another study, the authors (Ge et al. 
2021) proposed a multi-scale spatio-temporal graph con-
volution network consisting of a multi-scale block, several 
spatio-temporal blocks and a fusion block. The authors 
claim the multi-scale blocks and spatio-temporal blocks 
form a multi-scale spatio-temporal graph convolution net-
work and capture the temporal dependencies and spatial 
correlations jointly. Within the proposed model, the graph 
convolution layer captures the spatial correlations of air 
quality by collecting neighbours’ information. The tempo-
ral convolution layer captures the temporal dependencies 
of air quality by stacking multiple layers of dilated causal 
convolution. It uses the residual connection to expand the 
receptive field on the temporal dimension. The authors 
have evaluated the model against several state-of-the-art 
methods across various time intervals, and it demonstrated 
superior performance, with significant improvements in 
prediction accuracy. However, the adjacency matrix in this 
study is defined according to the spatial distance between 
pairs of stations.

The proposed method of utilising an adjacency matrix 
centred on causality in our study, as opposed to reliance on 
spatial distance between monitoring stations in contrast to 
earlier studies, is expected to provide several advantages 
when applying graph convolutional models to air quality 
data. Causality-based adjacency includes the directional 
relationship between stations, capturing how changes in 
one station’s readings affect others. In air quality research, 
directional pollutant transport is especially significant, 
often influenced by wind patterns or geographical features. 
The distance-based adjacency, where the assumption of 
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symmetric influence is made with closer stations having 
a stronger influence, may not accurately represent real-
world dynamics like, for example, the pollutants being 
driven by wind patterns. A distance matrix overlooks intri-
cate relationships, potentially the indirect links or placing 
excessive emphasis on nearby stations that are not causally 
significant. Temporal dependencies and actual interactions 
among variables can be reflected by causality matrices 
derived from data using methods such as Granger causal-
ity. Factors like weather, industrial emissions, and regional 
geography are taken into account here, which cannot be 
attributed solely to distance.

Convolutional Neural Network (CNN) models are trained 
using a dataset with enough observations, referred to as the 
source dataset. These models typically utilise earlier layers 
to learn simpler patterns and later layers to learn more com-
plicated patterns from the dataset (Tajbakhsh et al. 2016). 
Therefore, the initial layers of CNNs are generally respon-
sible for detecting and identifying generic characteristics, 
and it is assumed that these generic features useful for solv-
ing one problem can be leveraged to address another. This 
allows the freezing of parts of the initial layers (so that their 
weights don’t change during further training) and fine-tuning 
of the remaining layers using a target dataset containing a 
small number of samples (Jmour et al. 2018; Ribani and 
Marengoni 2019; Soekhoe et al. 2016). However, with the 
time series problems, though several related datasets exist, 
the degree of relevance between them and the target dataset 
usually appears ambiguous. Blindly transferring knowledge 
from less relevant datasets to the target one is expected 
to drag the prediction performance. Using transfer learn-
ing techniques to create a forecast for a target time series 
has been explored in some previous studies. A deep LSTM 
model with fully connected layers for demonstrating transfer 
learning to predict future residential scale electricity loads 
at hourly granularity is used by authors (Laptev et al. 2018). 
Though LSTMs are good at exploring temporal trends, it is 
found that spatial dependencies are not effectively captured 
by this model (Yin et al. 2020). In another study, the authors 
(Fong et al. 2020) considered transfer learning using LSTMs 
to predict air pollutant concentrations at different air quality 
monitoring stations. While the approach involves transfer 
learning and reusing the pre-trained base LSTM network 
for related air quality datasets, it does not explicitly explore 
spatial dependencies between different monitoring stations. 
In air pollution forecasting, capturing spatial dependencies 
is important because specific geographical features of neigh-
bouring locations can influence pollution levels at one loca-
tion. A different approach with transfer learning to the air 
quality forecasting problem is applied to tackle the lack of 
enough labelled datasets for newly installed monitoring sta-
tions in another study (Dhole et al. 2021). The authors of this 
study offer a system that transfers the information gathered 

from several source stations to a specific station of interest, 
giving a cumulative forecast. This ensemble approach allows 
each model to generate a prediction on the test data of the 
target dataset, and then it combines these individual predic-
tions using the Exponential Weights Algorithm (EWA) was 
proposed to investigate the impact of transferring knowledge 
from 10 models pre-trained on multiple source datasets to 
a given target. However, this method is found to be compu-
tationally expensive and inefficient as we need to re-train 
multiple deep learning models from different monitoring sta-
tions to achieve the ensemble approach and to achieve the 
goal of transferring spatial information from neighbouring 
stations to a specific station of interest.

Research objective and graph convolutional 
neural networks

In an ideal approach, we should be able to achieve the multi-
modal spatial-temporal transfer learning to the target station, 
exploring multivariate time series data available from differ-
ent neighbouring monitoring stations. To explicitly explore 
spatial dependencies, additional techniques can be incorpo-
rated into the approach. For example:

•	 Spatial Convolutional Layers: Integrate convolutional 
layers into the LSTM architecture to extract spatial fea-
tures and capture spatial patterns in the data (Huang and 
Kuo 2018; Zhang et al. 2020).

•	 Graph Structures: Utilise graph structures to represent the 
spatial relationships between monitoring stations and incor-
porate them into the model (Qi et al. 2019; Get et al. 2021).

By incorporating these techniques, the approach can bet-
ter capture and utilise the spatial dependencies in the data 
efficiently, leading to improved air pollutant concentration 
predictions at different monitoring stations. However, it’s 
wrong to assume that every other variable influences a single 
variable’s anticipated value, and many advanced deep learn-
ing models applied to multivariate time series forecasting 
problems tend to focus on the specific causal relationship 
among the variables (Duan et al. 2022). However, consider-
ing such prior causal information is crucial when deploying 
a spatial transfer learning paradigm to the new target dataset 
with limited/missing entries.

We can represent the causal relationships among multi-
ple spatial pollutant variables by constructing a multivariate 
times series graph, with each variable as a node and each edge 
indicating a causal link between them. This study employs 
Graph Convolutional Neural Network (GCN) filters for time 
series spatial feature extraction (Fig. 1). They aggregate fea-
tures from their own nodes and neighbours to generate the 
node’s representation, learning feature embeddings and graph 
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patterns using varying perception scales. Then, the GCN is 
used to resolve the forecasting issue from the generated graph 
based on the spatial multivariate times series.

Our work uses the weights trained from the base mod-
els as the initial weights for training the model on the new 
related dataset. Transfer learning is implemented as fine-tun-
ing with a weight initialisation approach (Fong et al. 2020) 
in this paper, and the idea is that the weights from the base 
models are already trained with useful features and patterns 
from the initial task or dataset and can then be fine-tuned 
for the new task or dataset with less data and training time 
(Pinto et al. 2022; Bird et al. 2020). In order to assess how 
well the Transfer Learned models considered in this research 
performed, we chose to fine-tune the whole network with 
pre-trained weights of the base models, as it is found that 
re-training the whole network almost always leads to better 
results (Otović et al. 2022; Fawaz et al. 2018).

Hybrid GCN‑LSTM model

The proposed hybrid model uses GCN and LSTM layers to 
perform forecasting over a graph consisting of multivariate 
time series.

The GCN layer consists of three main steps:

1.	 Computing node representations by multiplying the 
input features with a trainable weight matrix.

	   Let X be the input feature matrix of shape (Num_N, 
Num_F), where Num_N is the total number of nodes and 
Num_F is the number of input features per node. Let W1 
be the trainable weight matrix of shape (Num_F, D), where 
D is the desired dimensionality of the node representations. 
The node representations R1 are computed as follows:

	   This transformation applies learnable weights to the 
features of each node independently, without consider-
ing neighbours.

(1)R1 = X ∗ W1

2.	 Computing aggregated messages for each node - by first 
gathering features from neighbouring nodes defined as 
the graph’s edges by the adjacency matrix and then cal-
culating the mean of these neighbour representations. 
Each element now corresponds to the aggregated mes-
sage from the neighbouring nodes for each specific node 
in the graph. These aggregated messages are further 
multiplied with a trainable weight matrix.

	   Let A be the adjacency matrix of shape (Num_N, 
Num_N), where Num_N is the total number of nodes 
and A (i, j) = 1 represents the link between nodes i to 
j. Let R1 be the node representations from the previous 
step. Let W2 be the trainable weight matrix of shape 
(D, H), where H is the dimensionality of the aggregated 
messages. The aggregated messages M2 are computed 
as follows with (A * R1) representing the element-wise 
multiplication between the adjacency matrix A and the 
node representations R1:

	   This step lets the node listen to its neighbours and 
incorporate relational/contextual information.

3.	 Generating node embeddings by concatenating the 
weighted node representations derived from step 1 with 
the weighted aggregated messages from neighbouring 
nodes derived in step 2.

	   Let R1 be the node representations from step 1, 
and M2 be the aggregated messages from step 2. The 
node embeddings E are generated by concatenating the 
weighted node representations with the weighted aggre-
gated messages:

	   This concatenation step enriches the final node 
embedding by combining local features from the node 
and its neighbours’ contextual features.

In order to improve the prediction accuracy, it’s equally 
important to consider the temporal patterns in the data 

(2)M2 = (A ∗ R1) ∗ W2

(3)E = [R1, M2]

Fig. 1   CNN kernel operates on 
regular structures and graph 
convolutional kernels operate 
on graph structures (Lin et al. 
2021)
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along with the spatial patterns from neighbouring nodes. To 
achieve this, the hybrid model - consisting of graph convolu-
tion layers applied to the input features and then the output 
from the graph convolutional layers, i.e., the node embed-
dings (from step 3) fed to the LSTM layer is considered 
in this paper. The LSTM layer is expected to capture any 
sequential/temporal patterns, along with graph convolutional 
layers, which explore spatial patterns in the data. The model 
topology is shown below in Fig. 2.

Let E be the node embeddings from the GCN layers. The 
LSTM layer is used to capture temporal patterns. Assuming 
a single-layer LSTM, the hidden activation states A< t> and 
cell states C< t> at each time step t are computed as follows:

Here, Et represents the node embeddings at time step t, 
A(t−1) the previous hidden activation state, and C(t−1) the 
previous cell states.

Figure 2 shows the proposed hybrid GCN-LSTM model 
annotated with tensor shapes used in our experiment.

Deriving adjacency matrix using granger 
causality

An adjacency matrix is used to define the neighbourhood of 
each node in a Graph Neural Network. By using the adjacency 
matrix, a GCN can learn to aggregate information from the 
neighbouring nodes of each node in the graph. The group of 
nodes that are immediately connected to a node is referred to 
as its neighbourhood. One common strategy is to treat a moni-
toring station that greatly aids in forecasting the air quality at 
the target area if it is situated in close proximity to the desti-
nation. However, the geographic distance loses information 
when monitoring stations are spread off from one another, and 
all distances could have comparable values then. It is signifi-
cant to remember that a variety of factors, each with a unique 

(4)A<t>,C<t> = LSTM
(

E<t>,A<t−1>,C<t−1>,

)

pattern of influence on air quality values, affect the spatial 
correlations of air quality. These factors include industrial, 
urban, rural areas where these monitoring stations are located 
and road traffic variations, and more. Accurately predicting air 
quality can be difficult if geographical correlations are repre-
sented by a single component, like geographic distance. (Ge 
et al. 2021). In order to tackle this, we explored the novel idea 
of applying Granger Causality tests to derive the adjacency 
matrix for the air quality values from spatially neighbouring 
monitoring stations in this paper.

Granger Causality is a statistical technique that is widely 
used to determine the causal relationships between time series 
(Shojaie and Fox 2022). It is used to test whether one time 
series, denoted as Xi, Granger-causes another time series, 
denoted as Xj. In mathematical terms, the Granger causality 
test can be defined as follows:

Given two time series, Xi and Xj, with observations at time 
steps t = 1, 2, …, T, the Granger causality test involves estimat-
ing autoregressive models for both series and comparing the 
goodness of fit with and without including the lagged values of 
Xi as predictors of Xj (Foresti et al. 2006, Rodriguez-Caballero 
et al. 2014).

The null hypothesis of the Granger Causality test is that Xi 
does not Granger cause Xj, meaning that the past values of 
Xi do not provide any additional information for predicting 
Xj beyond what is already captured by the lagged values of 
Xj. The alternative hypothesis is that Xi does Granger-cause 
Xj, indicating that the past values of Xi provide significant 
additional information for predicting Xj.

To perform the Granger causality test, we estimate two 
autoregressive models: one with only the lagged values of Xj 
as predictors (restricted model) and another with the lagged 
values of both Xj and Xi as predictors (unrestricted model).

Let AR (Xj, p) represent the autoregressive model of Xj 
with lag p, and AR(Xj, Xi, p) represent the autoregressive 
model of Xj with lag p, including the lagged values of Xi as 
predictors.

The models can be expressed as follows:

(5)AR(Xj, p) ∶ Xj(t) = cj + Σ�j, k ∗ Xj(t − k) + �j(t) (restricted model)

(6)
AR(Xj, Xi, p) ∶ Xj(t) = cj + Σ�j, k ∗ Xj(t − k) + Σ�j, k ∗ Xi (t − k) + �j(t) (unrestricted model)

where cj is the intercept, βj, k and γj, k are the coefficients for 
the lagged values of Xj and Xi, respectively, and εj(t) is the 
error term.

Let SSR_restricted represent the squared residual sum 
values for the restricted model, and SSR_unrestricted rep-
resent the squared residual sum values for the unrestricted 
model. Given a regression model with observed values yi and 

predicted values ȳi for i = 1, 2, …, n, the residual for each data 
point is defined as the difference between the observed value 
and the predicted value:

The sums of squared residuals (SSR) are then calculated 
as:

(7)�i = yi − yi
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The distinction between the restricted and unre-
stricted models lies in the predictors used to calculate 

(8)SSR = Σ(�i2) = Σ(yi − yi)2 the predicted values, In the restricted model, only lagged 
values of Xj are used as predictors, while in the unre-
stricted model, both lagged values of Xj and Xi are used 
as predictors.

The F-statistic is computed as:

(9)F = ((SSRrestricted − SSRunrestricted)∕p)∕(SSRunrestricted∕(T − p − 1))

Fig. 2   Hybrid GCN LSTM 
Model with annotations show-
ing size of dataflows at different 
stages
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where p is the number of lagged variables added to the unre-
stricted model compared to the restricted model and T is the 
total number of observations.

Determining the significance level to evaluate the prob-
ability of null hypothesis rejection involves comparing the 
F-statistic to the critical value derived from the F-distribu-
tion with the suitable degrees of freedom. Here null hypoth-
esis rejection suggests the evidence of Granger causality, 
indicating that the lagged values of Xi provide additional 
information for predicting Xj. Hence the test assesses 
whether including the lagged values of Xi significantly 
improves the prediction of Xj.

By applying Granger causality to the multivariate time 
series, we expect to derive an adjacency matrix that repre-
sents the causal relationships between the variables in the 
time series. We believe the adjacency matrix derived in this 
manner will capture the prior and important spatial causal 
information of the dataset, especially in a low-data environ-
ment. We propose constructing the adjacency matrix using 
Granger causality with the following steps:

1.	 Set a lag value (the number of past values of the time 
series that is under analysis for usefulness in forecast-
ing another) for the Granger Causality test. In our case, 
we tuned this as a hyperparameter, and it’s set as 24 
(Appendix 2).

2.	  Apply the Granger Causality test, which considers a 
pair of time series from the multivariate time series as 
input and performs a series of hypothesis tests (as shown 
above) to determine whether the set number of lag val-
ues of one of the time series Granger causes the other 
time series.

3.	 If the first time series Granger causes the second time 
series, the entry in the adjacency matrix denoting the 
link is set to 1, indicating a directed edge from the first 
time series to the second time series. Otherwise, the 
entry is set to 0.

Repeat steps 2–3 for all pairs of individual 
time series in the multivariate time series

Granger Causality test estimates vector autoregressive 
(VAR) models for each possible combination of variables 
and lags up to the maximum lag order. The algorithmic com-
plexity involves estimating each VAR model by solving a 
set of k (k = maximum lag order) linear equations with n 
coefficients (number of time series variables). Hence, it’s 
computationally efficient in quickly deriving prior causal 
relationships between the variables.

Granger causality tests assume that the input series are 
stationary to avoid spurious causality. Hence, a prerequisite 
for performing the Granger Causality test is that for any 

time series to have a predictive causality on another time 
series, both must be stationary. Before conducting Granger 
causality tests, we tested and confirmed stationarity in the 
variables between each time series considered using the 
Augmented Dickey-Fuller (ADF) procedure (Ventosa-San-
taulària and Vera-Valdés 2008). Even if spurious causalities 
are derived by the Granger Causality test between a pair of 
series creating the wrong edge, the GCN part of the model 
has the ability to learn and ignore the neighbouring informa-
tion from irrelevant edges. The following common strategies 
can be applied if the considered series for Granger causality 
fails the stationarity check (Hyndman and Athanasopoulos 
2013) - If the series has trends or unit roots, differencing can 
be applied to make it stationary. Log transformation or Box-
Cox transformation can be applied if the variance is non-
constant. If differencing alone doesn’t entirely remove the 
trends, detrending the series explicitly using linear regres-
sion or moving average can also help.

The new Adjacency Matrix for the Newport Road site 
is specifically derived using Granger Causality in this way 
to capture the prior causal information of the new location. 
Once a new adjacency matrix is calculated, it becomes the 
foundation for graph propagation and determines how the 
model combines the information from neighbouring nodes. 
When applying transfer learning as a weight initialisation 
scheme for GCN-LSTMs, the creation of node representa-
tions and computation of aggregated messages begin with 
the pre-trained weights and the new adjacency matrix. Here, 
the pre-trained weights of the GCN layers, which primar-
ily drive feature transformation, retain information from the 
source graph. The new adjacency matrix (A′) defines each 
node’s latest set of neighbours, altering the scope of infor-
mation aggregation and influencing the aggregation of mes-
sages and how the embeddings evolve. The new adjacency 
matrix ensures the embeddings are adapted to the target 
graph structure. The aggregated messages M2 are computed 
as follows, with (A′ * R1) representing the element-wise 
multiplication between the adjacency matrix A′ and the node 
representations R1:

Here, the pre-trained weights in ŵ still retain general 
knowledge about how to aggregate and transform features.

Methodology

Dataset

For training the base models, the study utilised air qual-
ity data from the AURN (Automatic Urban and Rural Net-
work) monitoring stations located in Port Talbot Margam, 

(10)M2 = (A� ∗ R1) ∗ ŵ2
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Swansea, Narberth, and Cardiff Centre in the United King-
dom. We used all the available pollutant values tracked by 
these monitoring stations along with 3 modelled metrologi-
cal inputs –wind direction, wind speed and temperature cap-
tured by each of these monitoring stations for the continuous 
11 years (spanning from 2011 to 2022), totalling 42 input 
features as part of the experimentation. Since these indi-
vidual features have different ranges, we applied Standard 
Scaler as a pre-processing step.

NO2 and PM10 are two of the pollutants for which achiev-
ing current objectives and limit values within the Air Quality 
Strategy is found to be the most challenging (DEFRA 2023). 
In Wales, out of the 44 declared AQMAs, 43 are based on 
consistently elevated NO2 pollution (originating from road 
transport), with the exception of Port Talbot, which has been 
declared as AQMA due to PM10 emissions from local indus-
try. As a result, this research focuses on reliable short-term 
forecasting of the pollutants - PM10 and NO2, which are also 
responsible for the majority of AQMA declarations in the 
UK. The data from 2011 to 2021 is used for training the 
base models, and the data from 2022 is used as the test set. 
The specific pollutant values chosen in this study and their 
strong relationship with meteorological values have been 
extensively analysed in our previous study (Raj et al. 2022).

In order to smooth the data and make it relate better to 
what policy decision-makers are interested in, a rolling aver-
age of 24 h of PM10 and Nitrogen Dioxide (NO2) for Port 
Talbot are considered as targets for training and prediction 
of the base model. It is modelled as a multivariate one-step 
regression problem to predict future value (12 h in advance) 
of one pollutant variable at a time (PM10 or NO2) with all 
pollutant values and metrological values from all stations for 
the past 24-hour window provided as inputs.

In this study, the trained base models for predicting roll-
ing average values of PM10 and NO2 were further examined 
to determine their usefulness for transfer learning to a rela-
tively new AURN monitoring station. Specifically, the study 
focused on the neighbouring and newly established Newport 
Road, Cardiff monitoring station, for which pollutant and 
modelled meteorological data were only available from 2019 
onwards. The data from 2019 to 2021 of the Newport Road 
monitoring station is used to re-train the Transfer Learned 
models. Data from 2022 is used as the test data to estimate 
the Transfer learned model’s performance, i.e., to forecast 
the 24-hour rolling average values of PM10 and NO2 12 h in 
advance on unseen data.

The input variables used from the base model target sta-
tion and the transfer learning model target station are plotted 
in Appendix 3 to visualise the generic patterns of pollutant 
values and meteorological values.

We have not used the conventional N-fold cross-valida-
tion as: (i) the dataset is reasonably large, (ii) there may be 
underlying annual and seasonal patterns in the time series 

data that N-fold cross-validation (even using different years 
for testing) would ignore (iii) for training and testing it is 
more realistic if the data represents a continuous sequence 
and (iv) repeating results for the same train/test split allows 
us to compare the reliability of different models better. 
Though one year of test data is reasonably large enough, it 
may not capture long-term downward trends of pollutants. 
For example, certain events or trends (e.g., pandemics, natu-
ral disasters, or policy changes) occurring in a specific year 
might skew the results and make the test set unrepresentative 
on exceptional occasions.

Baseline models

We compared the performance of the proposed hybrid GCN-
LSTM model in predicting the future air quality values with 
three baseline models: - a stacked LSTM model, a Transformer 
model, a Transformer attention model and a hybrid 2DCNN-
LSTM model. To prevent overfitting, the dropout layers are 
added to the models for regularization. The following base 
model topologies and the respective hyper parameters were 
optimised for the best prediction accuracy using Grid Search 
methodology with the early stopping criterion for the valida-
tion loss set as Mean Squared Error (MSE) with a patience of 
5 epochs, where if the validation loss does not improve after 
five consecutive epochs, training ends. The hyperparameters 
fine-tuned for each model are explained in Appendix 2.

•	 Stacked LSTMs:
	   LSTM networks are the most popular type of Recur-

rent Neural Networks (RNN) used for time series forecast-
ing tasks and they effectively address issues of vanishing/
exploding gradients in standard RNNs to learn long- and 
short-term dependencies in sequence data. They are suc-
cessfully applied on air quality forecasting problems before 
(Reddy et al. 2018; Freeman et al. 2018; Li et al. 2017) 
and also to time series transfer learning (Fawaz et al. 2018; 
Fong et al. 2020) problems. We have considered the stacked 
LSTM model as a baseline for our comparison study.

–	 Topology: Input layer with 42 features, 2 LSTM hid-
den layers with 16 nodes each and an output dense 
layer with 1 node predicting a single time step 12 
hours in advance.

–	 LSTM cell state and hidden state activation: Tanh, 
Recurrent Activation: Sigmoid.

–	 Input window size: 24, Dropout: 0.2, Batch size: 168.

•	 Transformer:
	   Transformers were originally devised for natural 

language processing tasks. Due to their sophisticated 
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attention mechanisms, they stand out in managing 
sequential data. This feature also makes them apt for 
conducting time series tasks (Wen et al. 2022).

	   The transformer block constructs an input sequence’s 
continuous representation, or embedding, via an 
encoder function, and it consists of:Layer Normalisa-
tion- which normalises the input layer, expediting train-
ing and stabilising the network. Multi-Head Attention- 
Facilitating simultaneous attention to diverse aspects of 
the input data from various representation subspaces at 
different positions. Feed Forward Network- A straight-
forward neural network applied individually to each 
position, enhancing the model’s capacity to learn com-
plex patterns. In our case a 1D convolutional layer with 
ReLU activation is applied to learn features and another 
1D convolutional layer is applied to transform the fea-
tures back to the original dimension.

–	 Layer Normalisation- which normalises the input 
layer, expediting training and stabilising the net-
work. Multi-Head Attention- Facilitating simulta-
neous attention to diverse aspects of the input data 
from various representation subspaces at different 
positions. Feed Forward Network- A straightforward 
neural network applied individually to each posi-
tion, enhancing the model’s capacity to learn com-
plex patterns. In our case a 1D convolutional layer 
with ReLU activation is applied to learn features and 
another 1D convolutional layer is applied to trans-
form the features back to the original dimension.

–	 Topology: Our Transformer model is constructed 
by stacking 4 layers of the Transformer encoder, to 
deepen the network and enhance its learning capac-
ity. Subsequent to the Transformer blocks, a Global 
Average Pooling layer is implemented to reduce out-
put dimensionality, streamline the model and focus on 
pivotal features. Finally, the output layer is composed 
of a dense layer with a linear activation function, tai-
lored to predict a single time step 12 hours in advance.

–	 Input layer is with 42 features, dimensionality of each 
attention head which determines the complexity and 
richness of the attention patterns that each head can 
learn is set to 128, number of attention heads which 
leads to better-represented vectors is set to 42, the 
size of the hidden layers in the feed-forward network 
inside the transformer is set to 84 and Number of 
units in the Dense networks after the encoder layer is 
set to 256 following hyper parameter tuning.

•	 Hybrid Graph Transformer Attention:
	   The Graph Convolution layers from the proposed 

Hybrid GCN-LSTM model detailed in section  3 are 

combined with the aforementioned Transformer Atten-
tion model, replacing the LSTM layers to evaluate the 
performance of a Hybrid Transformer Attention model. 
The output of the graph convolution layers is reshaped 
into shape - (batch size, number of nodes, input sequence 
length, 2 x Number of node embedding size) and fed to 
the transformer model with attention head size set to 128, 
number of attention heads set to 42, the size of the hidden 
layers in the feed-forward network inside the transformer 
is set to 84 and the number of units in the dense networks 
after the encoder layer set to 256.

•	 Hybrid 2DCNN-LSTM:
	   Since CNN and RNN can extract spatial and temporal 

features from data, respectively, combining these two 
methods for better prediction in time series has been suc-
cessfully explored previously (Yin et al. 2020; Oehmcke 
et al. 2018; Kim et al. 2018). We have applied a hybrid 
Convolutional LSTM architecture (Huang et al. 2018; 
Zhang et al. 2020) as another baseline model for compar-
ison and made some modifications on CNNs inspired by 
the paper (Hoseinzade et al. 2019). We applied 2D-CNN 
layers in the hybrid architecture for initial feature extrac-
tion. To extract spatial features, filters with kernel size 
(1 × number of nodes) are utilised and these filters cover 
all the features from a single time step and can combine 
them into a single higher-level feature. The subsequent 
2D-CNN layer with kernel size (3,1) combines extracted 
features of different time steps to construct higher-level 
features for aggregating the available information in adja-
cent time periods. Finally, an LSTM layer is applied to 
extract any longer-term dependencies in the sequence 
data.

–	 Topology – Input layer with 42 features, 2 x 2D 
convolutional layers with 8 filters each and kernel 
sizes (1,42) followed by (3,1). This is followed by 
an LSTM layer with 8 nodes and, finally, an output-
dense layer with 1 node predicting a single time step 
12 hours in advance.

–	 Convolution layer activation: ReLU.
–	 LSTM cell state and hidden state activation: Tanh, 

Recurrent Activation: Sigmoid.
–	 Input window size: 24, Dropout: 0.2, Batch size: 168.

Comparison metrics and hypothesis tests

We evaluated the performance of regression models consid-
ered in this study using Root Mean Square Error (RMSE) 
and performed 10 runs of each combination with the same 
train /test split but with different seeds for the initial network 
weights. To compare the effectiveness of different algo-
rithms considered in this study, we used mean differences 
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of RMSE values, calculated over 10 runs for each model 
considered. We used the Mann-Whitney Wilcoxon test with 
the Bonferroni correction at a 95% level to assess the statisti-
cal significance of any observed differences in performance.

Results

We compared the prediction performance of 3 Models 
and Transfer Learned models under consideration on roll-
ing average values of both the pollutants - NO2 and PM10 
separately.

Models considered

We initially compared the prediction performance of the 
baseline models considered. The rolling average values of 
PM10 and Nitrogen Dioxide (NO2) from the past 24 h for 
Port Talbot monitoring station are considered as targets for 
training and prediction. For the comparison, the data from 
2011 to 2021 is used for training the models and the data 
from 2022 is used as the test set.

The observations indicate (Fig. 3):

–	 Both GCN-LSTM and 2DCNN-LSTM models were 
found to be better than LSTM, Transformer Attention 
and Graph Transformer Attention models when forecast-
ing both NO2 and PM10 values.

The given observations suggest that:

–	 Incorporating spatial patterns, either through graph 
convolutional structures in the case of GCN-LSTM or 
through convolutional structures in the case of 2DCNN-
LSTM, is more beneficial than solely relying on cap-
turing temporal patterns using stacked LSTM or Trans-
former models. In contrast, both the LSTM model, and 
Transformer model primarily focus on capturing tempo-
ral dependencies in the data. While they are both capa-
ble of capturing some temporal patterns, it is found to 
be not fully exploiting the spatial information present in 
the data. It’s can also be observed the proposed hybrid 
GCN-LSTM model is found to be performing better than 
the GCN-Transformer Attention model considered in this 
study. Similar results were observed with Transformer 
models on time series problems in previous studies as 
well (Zeng et al. 2023). Due to the poor baseline per-
formance, we have omitted the stacked LSTM models, 
Transformer Attention and Graph Transformer Attention 
models from further analysis while executing Transfer 
Learning.

Effectiveness of transfer learned hybrid GCN‑LSTM 
model

We have analysed the effectiveness of the proposed hybrid 
GCN-LSTM transfer learning model against CNN-LSTM. 
As explained in Section 6.2, the data from 2019 to 2021 of 

Fig. 3   Performance comparison of base models
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the Cardiff Newport Road monitoring station is used for 
re-training the Transfer Learned models. Data from 2022 
is used as the test data to estimate the Transfer learned 
model’s performance on unseen data.

It is observed that (Fig. 4):

–	 The Transfer Learned hybrid GCN-LSTM models with the 
Adjacency Matrix specifically derived using Granger Cau-
sality for Cardiff-Newport Road site, are significantly more 
effective (p < 0.001) in forecasting both the pollutants than 
the other two Transfer Learned models compared in this 
study. The model has achieved a significant improvement 
in predictive accuracy, with an 8% increase in PM10 and a 
7% increase in NO2, as measured by RMSE values.

The given observation suggests that.

•	 Significant superiority of Granger Causality-based adja-
cency matrix: Among the Transfer Learned models, 
the one utilising the Adjacency Matrix derived using 
Granger Causality for the Cardiff-Newport Road site 
stood out as significantly more effective. The significance 
level of p < 0.001 indicates a strong statistical difference.

•	 Capturing prior causal information: The proposed hybrid 
GCN-LSTM model with the Granger Causality-based 
adjacency matrix is found to be effective in capturing 
prior causal information. In a low data environment, 
where the available historical data is limited for training 
(data from 2019 to 2021 in our case), leveraging this 
prior causal information is found to be particularly valu-
able comparing the base models.

Effectiveness of transfer learning over training de 
novo

To analyse the effectiveness of transfer learning strategy, we 
have compared the top performing models: GCN-LSTM and 
2DCNN-LSTM starting from weights taken from models 
trained at the Port Talbot base station (transfer learning) with 
randomly initialised weights.

The observations indicate:

–	 The transfer learned models were more effective than 
their counterpart models trained from scratch. (Fig. 5)

–	 Transfer Learned models achieve convergence in only 
about half the number of epochs (15–20 epochs) required 
by models initialised using random weights (35–40 
epochs).

The findings from these observations can be summarized 
as follows:

•	 Improved performance of transfer learned models: Fig. 6 
demonstrates that the transfer learned models outper-
formed their counterparts trained from scratch. This 
improvement is statistically significant, indicating that the 
knowledge and generic feature extractors learned from the 
base dataset (Port Talbot) are still relevant and beneficial 
for forecasting pollutant values at the new site. The trans-
fer learned models leverage the learned features, such as 
daily/weekly patterns and the effects of factors like wind, 
rain, wind direction, or temperature, to capture the com-
plexities and disruptions in pollutant plumes.

Fig. 4   Performance comparison of transfer learned models
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•	 Faster convergence with transfer learning: The trans-
fer learned models achieved convergence in a signifi-
cantly shorter number of epochs compared to models 
initialised with random weights. Typically, transfer 
learned models require approximately 15–20 epochs 
to converge, while models with random weights require 
35–40 epochs. This faster convergence indicates that 
the pre-trained weights provide a good initialisation 
point, allowing the model to quickly adapt and fine-
tune to the specific characteristics of the new site. As 
a result, transfer learning not only improves perfor-
mance but also reduces training time, which can be 
advantageous in scenarios with limited computational 
resources or time constraints.

Effectiveness of (re)learned graph adjacency 
matrices

The additional analysis conducted as an ablation study com-
pares the effectiveness of the proposed Granger Causality-based 
adjacency matrix derived specifically for the Cardiff-Newport 
Road site with the adjacency matrix derived for the base model.

The results indicate (Fig. 6).

–	 The newly derived adjacency matrix specific to the Car-
diff-Newport Road site is significantly more effective on 
the Transfer Learned model than using the adjacency 
matrix derived for the base model.

Fig. 5   Performance comparison of models trained using weights initialised via transfer learning and initialised to random values

Fig. 6   Performance comparison when adjacency matrix is derived for new vs. using base data adjacency matrix
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For further visualisation, the directed edges towards 
NO2 and PM10 values for base and newly derived adjacency 
matrix using Granger Causality where the causal relation is 
represented as a directed edge with value = 1 from row index 
parameter to column index parameter is shown in Fig. 7.

Out of the monitoring stations considered in this study, Port 
Talbot monitoring station tracks industrial background, Nar-
berth tracks rural background, Cardiff tracks urban background, 
and Swansea and Newport Road track roadside background 
(Fig. 8 shows the geographical locations of the monitoring sta-
tions). It can be observed that the adjacency matrix infers some 
non-obvious causal relationships, and some typical examples 
of these causal relationships are shown in Figs. 9 and 10. For 
example, it can be observed the meteorological inputs from 
the Cardiff monitoring station - Temperature, Wind speed and 
Wind direction have a causal effect on NO2 values of spatially 
neighbouring Newport Road site, but only Temperature and 
Wind speed from Cardiff have a causal effect on NO2 values 
of Port Talbot site. The PM10 values of Newport Road have a 
causal effect from Ozone, CO and SO2 values from neighbour-
ing Cardiff, but PM10 moving average values in Port Talbot 
only have a causal effect from Ozone values of Cardiff. These 
typical examples show how site-specific prior causal informa-
tion due to unique factors caused by local and spatial emission 
sources, weather patterns and geographical features could be 
incorporated into the adjacency matrix, hence contributing to 
improved forecasting performance by the GCN-LSTM model.

Transfer learning performance when more data 
is added

We have also checked what happens in each step when incor-
porating additional data for deriving an adjacency matrix by 
Granger Causality for GCN models and for re-training both the 
base models. We gradually included past data from 2019 to 2021 
in a step-by-step manner with increments of 3 months for retrain-
ing the base models and deriving an adjacency matrix in the case 
of GCNs (for example using the data from 01 October 2021 for 
re-training the base models as a first step and then adding data in 
the increments of 3 months i.e., data from 01 July 2021 onwards 
for retraining in the next step). At each step, we evaluated the 
Transfer Learned models using data from 2022 as a test set to 
assess their performance on unseen data. We have also calculated 
the hamming distance of the adjacency matrix in each step from 
that of the adjacency matrix derived with just 3 months data.

It is observed that (Fig. 11):

–	 Both the Transfer Learned models had significantly better 
performance when more data was added for re-training 
the base models as expected.

–	 We have also done a paired t-test to find if the observed 
performance difference between the two models is statisti-
cally significant. It’s observed the better performance of 

GCN-LSTM is statistically significant for both the pollut-
ants - NO2 (P-value: 0.011) and PM10 (P-value: 2.897e-07).

–	 It is observed as more and more data is added Hybrid 
2DCNN-LSTM model’s performance is found be 
improving faster than GCN-LSTM with both pollutant 
values. W.r.t to NO2predictions, the performance differ-
ence between the models became insignificant when data 
from 2019–2021 is added for training.

–	 Hamming distance of Granger causality-based adjacency 
matrix at each step from the adjacency matrix derived 
with just 3 months of data shows the adjacency matrix 
starts converging from 12 months of data.

Our analysis also observed that there was no statistically 
significant prediction improvement while re-training the 
GCN-LSTM base model with the whole dataset (data from 
2019 to 2021) using the adjacency matrix derived with the 
whole dataset and the adjacency matrix derived with just the 
previous year’s data (data from 2021) with respect to both 
the pollutants considered here.

Execution time

We have compared the model execution speeds and the range 
of number of epochs required to converge a solution, with 
an early stopping criteria for the validation loss (with the set 
patience of 5 epochs where there is no improvement) with 
NVIDIA Tesla T4 GPU provided by Google Colab as the 
computational resource. It’s observed hybrid GCN-LSTM 
models converge into a solution with half the execution 
required by 2DCNN-LSTMs (Table 1).

We have also checked computing time (without using 
any specific hardwarde accelerators like GPUs) required 
for GCN-LSTM to derive adjancency matrix using Granger 
Causlaity for the whole transfer learning dataset with that 
from 1 year of past data (as it’s found the adjacency matrix 
derived using Granger Causality converges with just 1 year 
of past data as shown in Section 7.5) (Table 2).

Key findings

The key findings can be summarised as follows:

•	 Importance of spatial patterns: Extracting spatial pat-
terns, either through graph convolutional structures in 
the case of GCN-LSTM or through convolutional struc-
tures in the case of 2DCNN-LSTM, is significantly more 
beneficial than solely relying on capturing temporal pat-
terns using stacked LSTM or Transformer models.

•	 Capturing prior causal information: The proposed hybrid 
GCN-LSTM model with the Granger Causality-based 
adjacency matrix is found to be effective in capturing 
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Fig. 7   Edges of the adjacency 
matrix affecting the predicted 
pollutants of base model 
vs. transfer learned model 
(Abbreviations are shown in the 
Table 1, Appendix 1)
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Fig. 8   Geographical loca-
tions of monitoring stations 
considered

Fig. 9   Causal relations to NO2 and PM10 in Port Talbot

Fig. 10   Causal relations to NO2 and PM10 in Newport Road, Cardiff
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prior causal information. GCNs are specifically designed 
to operate on graph-structured data and utilise the graph 
connectivity information. GCNs leverage the adjacency 
matrix to perform graph convolutions, enabling them to 
propagate information and capture relationships between 
nodes. This makes them suitable for incorporating prior 
causal information when multivariate time series data rep-
resented as graphs. In a low data environment, where the 
available historical data may be limited, leveraging this 
prior causal information is found to be particularly valu-
able since it makes the learning process faster and/or easier 
by automatically filtering out irrelevant links, whereas the 
CNN tends to learn this over time but it needs more data 
and training epochs for achieving that. The convolutional 

layers use a predefined kernel to scan over the input data 
and extract local features by aggregating information from 
nearby spatial locations but it doesn’t have a mechanism to 
incorporate the prior causal dependencies encoded like in 
the adjacency matrix of GCN before training the model.

•	 Improved performance of transfer learned models: The trans-
fer learned models leveraging the learned features, such as 
daily/weekly patterns and the effects of factors like wind, 
rain, wind direction, or temperature, to capture the com-
plexities and disruptions in generic pollutant plumes, out-
performed their counterpart models trained from the scratch.

•	 Significant superiority of Granger Causality-based adja-
cency matrix: Among the Transfer Learned models, 
the one utilizing the Adjacency Matrix derived using 
Granger Causality for the Cardiff-Newport Road site 
stood out as significantly more effective. The analysis 
suggests that this model outperformed the other two 
models in capturing the temporal and spatial causal rela-
tionships between different locations. The significance 
level of p < 0.001 indicates a strong statistical difference.

Discussion

Implementing deterministic predictive models in untested 
geographic areas poses significant challenges, especially in 
regions with distinctive pollutant characteristics and lim-
ited emission data. On the other hand, deep learning mod-
els with a data-centric approach are often more adaptable 
and capable of learning from historical data and adjusting 
quickly to new situations, provided reliable sensor data and 
robust real-time data collection are in place. The experi-
mental outcomes demonstrated that spatio-temporal transfer 

Fig. 11   Performance comparison of transfer learned models when more data is added step by step

Table 1   Execution time comparisons

Model Training speed Number of 
epochs for 
convergence

2DCNN-LSTM (Base model) 20ms 40–50
GCN-LSTM (Base model) 9ms 40–50
2DCNN-LSTM (Transfer Learning) 9ms 30–40
GCN-LSTM (Transfer Learning) 25ms 20–25

Table 2   Granger causality adjacency matrix computing time

Model Training speed Number of 
edges derived

Full past data (3 years data from 
2019 to 2021)

20ms 1180

Past year data (data from 2021) 9ms 1106
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learning implemented in this study by employing the GCN-
LSTM model with a unique Granger Causality adjacency 
matrix was highly efficient. The results showed that these 
techniques can successfully transfer models trained in one 
area to another, even with limited additional data available. 
Significant differences in air quality data exist across regions 
due to variations in industrial activity, traffic patterns, popu-
lation density, and vegetation. A model that has been trained 
or tested in one area may not be applicable to other regions. 
The model’s effectiveness will be skewed towards identify-
ing distinct pollution sources (such as a particular industrial 
type or prevailing transportation mode) if the area has dis-
tinctive pollution sources. Based on the current modelling 
experiments and results, though they are confined to the 
South Wales region in the UK, the proposed approach can 
be assessed in other geographical locations with diverse cli-
matic conditions in future experiments to ensure the results 
are replicable in varied geographic and climatic conditions.

Conclusion

Combining precise short-term forecasting with episode-specific 
air quality management is expected to enable the proactive 
deployment of mitigation strategies to prevent peak episodes 
from happening. They can also help develop improved urban 
air quality information and forecasting systems, enhancing 
the capabilities of local authorities to successfully predict and 
describe air contamination episodes in advance on a day-to-day 
basis. New air quality monitoring stations are typically posi-
tioned in areas of concern to mitigate the effects of frequent 
peak episodes or to track overall background pollutant levels. In 
such cases, employing transfer learning techniques for air qual-
ity forecasting from nearby monitoring stations results in quick 
insights into future air quality readings with a relatively small 
amount of additional data from the target monitoring station. 
Experimental results from this study show that transfer learn-
ing effectively improved multi-variate time series prediction 
performance, with the transferred learned models outperform-
ing models trained from scratch in a low data environment. 
This study compared the prediction performance of five base 
models (Stacked LSTM, Transformer, Hybrid 2DCNN-LSTM, 
GCN-Transformer and GCN-LSTM) on forecasting NO2 and 
PM10 pollutant values. The GCN-LSTM, GCN-Transformer 
and 2DCNN-LSTM models were found to outperform the 
temporal models - LSTM and Transformer, highlighting the 
importance of capturing spatial patterns from different moni-
toring stations in addition to temporal trends when it comes to 
air quality prediction. Among the transfer learned models, the 
hybrid GCN-LSTM model with the Granger Causality-based 
adjacency matrix explicitly derived for the new site was found 
to be statistically more effective when forecasting with both 
the pollutants considered. GCNs are specifically designed to 

operate on graph-structured data and utilise the graph con-
nectivity information. GCNs leverage the adjacency matrix 
to perform graph convolutions, enabling them to propagate 
information and capture relationships between nodes, mak-
ing them suitable for incorporating prior causal information 
when multivariate time series data is represented as graphs. The 
results also suggest that prior causal information is essential 
in deploying a spatial transfer learning paradigm. Deriving an 
adjacency matrix using Granger Causality as proposed in this 
study, is found to be good at extracting this prior causal infor-
mation from a spatio-temporal dataset. It is particularly useful 
in transferring knowledge in low-data environments, where 
Deep Learning models struggle to capture useful patterns and 
trends, and the predictive capabilities of these models are com-
promised due to inadequate training data.

Appendix 1 
Table 3.

Table 3   Abbreviations used in the adjacency matrix binary heatmap

PT_NO PortTalbot_Nitric oxide
PT_NO2 PortTalbot_Nitrogen dioxide
PT_NOx PortTalbot_Nitrogen oxides as nitrogen dioxide
PT_PM10 PortTalbot_PM10 particulate matter
PT_PM2.5 PortTalbot_PM2.5 particulate matter
PT_WD PortTalbot_Modelled Wind Direction
PT_WS PortTalbot_Modelled Wind Speed
PT_Temp PortTalbot_Modelled Temperature
SW_NO Swansea_Nitric oxide
SW_NO2 Swansea_Nitrogen dioxide
SW_NOx Swansea_Nitrogen oxides as nitrogen dioxide
SW_PM10 Swansea_PM10 particulate matter
SW_PM2.5 Swansea_PM2.5 particulate matter
SW_WD Swansea_Modelled Wind Direction
SW_WS Swansea_Modelled Wind Speed
SW_Temp Swansea_Modelled Temperature
PB_Oz Pembroke_Ozone
PB_NO Pembroke_Nitric oxide
PB_NO2 Pembroke_Nitrogen dioxide
PB_NOx Pembroke_Nitrogen oxides as nitrogen dioxide
PB_SO2 Pembroke_Sulphur dioxide
PB_PM10 Pembroke_PM10 particulate matter
PB_WD Pembroke_Modelled Wind Direction
PB_WS Pembroke_Modelled Wind Speed
PB_Temp Pembroke_Modelled Temperature
CR_NO Cardiff_Nitric oxide
CR_NO2 Cardiff_Nitrogen dioxide
CR_NOx Cardiff_Nitrogen oxides as Nitrogen Dioxide
CR_SO2 Cardiff_Sulphur dioxide
CR_CO Cardiff_Carbon monoxide
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Appendix 2

Table 4.

Table 4   Hyperparameter tuning

Model Hyperparameters Tuning Range Chosen optimum value

Stacked LSTMs Dropout [0.2,0.3,0.4] 0.2
Batch Size [128,168,336] 168
Input window size [24,72] 24

Transformer Attention Head size [64,128] 128
Number of attention heads [42,84] 42
Batch Size [168,336] 168
Input window size [24,72] 24
Dropout [0.2,0.3,0.4] 0.3

GCN-Transformer Attention Input window size [24,72] 24
Node embedding size [5,10,20] 10
Head size [64,128] 128
Number of attention heads [42,84] 42
Batch Size [168,336] 168
Dropout [0.2,0.3,0.4] 0.3

2DCNN-LSTM (Spatial model) Dropout [0.2,0.3,0.4] 0.3
Batch Size [168,336] 336
Input window size [24,72] 24

GCN-LSTM (Spatial model) Dropout [0.2,0.3,0.4] 0.3
Batch Size [168,336] 168
Input window size [24,72] 24
Node embedding size [10,20] 20
Granger Causality Lag value (K) [1,6,12,24] 24

CR_PM10 Cardiff_PM10 particulate matter
CR_WD Cardiff_Modelled Wind Direction
CR_WS Cardiff_Modelled Wind Speed
CR_Temp
NPR_NO

Cardiff_Modelled Temperature
Newport Road_Nitric oxide

NPR_NO2 Newport Road_Nitrogen dioxide
NPR_NOx Newport Road_Nitrogen oxides as nitrogen dioxide
NPR_PM10 Newport Road_PM10 Particulate Matter
NPR_WD Newport Road_Modelled Wind Direction
NPR_WS Newport Road_Modelled Wind Speed
NPR_Temp Newport Road_Modelled Temperature

Table 3   (continued)
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Appendix 3 – Input variable plots

Input variables of the base model target monitoring station 
and transfer learning target monitoring station are plotted 
below. For brevity only 4 years ranging from 2019 to 2022 
is plotted here (Fig. 12 and 13).

Fig. 12   Input variables from Port Talbot monitoring station
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