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Maritime Military Decision
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Abstract
A complete understanding of decision-making in military domains requires gathering insights from several fields of study. To
make the task tractable, here we consider a specific example of short-term tactical decisions under uncertainty made by the
military at sea. Through this lens, we sketch out relevant literature from three psychological tasks each underpinned by decision-
making processes: categorisation, communication and choice. From the literature, we note two general cognitive tendencies
that emerge across all three stages: the effect of cognitive load and individual differences. Drawing on these tendencies, we
recommend strategies, tools and future research that could improve performance in military domains – but, by extension,
would also generalise to other high-stakes contexts. In so doing, we show the extent to which domain general properties of high
order cognition are sufficient in explaining behaviours in domain specific contexts.
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To comprehensively understand the psychological mecha-
nisms underpinning our behaviour in high stakes, applied,
contexts (e.g. medical, legal, military or financial decision-
making), we must integrate insights from many disparate
fields. In this review, we demonstrate this by exploring
psychological fields (e.g. judgement and decision-making,
category learning, communication) and factors (e.g. cognitive
load, individual differences) relevant to understanding the
process of decision-making (i.e. choosing between different
options) in military contexts. We are particularly interested in
military tasks because the nature of the domain means relying
on multiple actors, at different levels of a hierarchy, where
effective coordination of information across actors is critical,
because the stakes are high (Goodwin et al., 2018). The
general approach we take is to draw domain general insights
from psychology to explore how they apply to a specific
domain, and then generalise back to consider the extent to
which aspects of cognitive processes are found generally in
high-stake, dynamic, real-world contexts,

The review is organised in the following way. We begin by
outlining a particular scenario in maritime military decision-
making. We structure our review by dividing the scenario into
three distinct tasks and considering the relevant psychological
literature of each in turn. We end by identifying and dis-
cussing the key psychological factors that are important to

consider for all three stages and discussing potential areas
where improvements are possible.

The Scenario

So, what do we mean by ‘maritime military decision-mak-
ing’? By definition, maritime decision-making encompasses
all the decisions that might be made at sea, from whether to
enter potentially hostile waters, to whether to stock up the
ship’s freezer at the next port. In this review, we focus on one
specific, narrowly defined, scenario – from which we sub-
sequently draw broad parallels to other areas of high stakes
decision-making. Specifically, we consider the key tactical
decision of whether, where and how a ship engages a nearby
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enemy vessel (Holmes, 2001). For a simplified visualisation
of the scenario, see Figure 1.

A widely accepted prerequisite for making tactical deci-
sions is Maritime Domain Awareness (MDA); an under-
standing of how the ship relates to its surroundings (Carvalho
et al., 2011; Hammond, 2006). One aspect of this requires
commanders (or other decision makers) to have awareness of
the physical locations of surrounding craft as well as other
relevant information such as their type (e.g. whether it’s an
aircraft, submarine or ship) and especially their status (i.e.
whether they are friendly or hostile). Thus, the first task in our
scenario is to determine the status of surrounding entities –
ships, aeroplanes and submarines. Entity status is typically
estimated by integrating position data with information from
the cooperative Automatic Identification System (AIS;
Hammond, 2006). This is a signal emitted by all vessels over
a certain tonnage and includes information such as the
vessel’s identity number, navigation status (at anchor, un-
derway using engines etc.), speed, direction, and details about
course (destination, estimated arrival time etc.).

On a Royal Navy vessel, junior operators situated in the
operations room use available positional and AIS data to
partition the surrounding entities into four categories: ‘un-
known’, ‘neutral’, ‘entity of concern’ or ‘entity of allies’
(‘NATO Joint Military Symbology’, 2017). Unknown is the
default category. New vessels that enter the monitored area
are automatically assigned Unknown, until an operator de-
cides otherwise. Entities might also be assigned to Unknown
if the information available does not exceed the threshold for

one of the other categories. Neutral craft are those which will
not cause harm but are also not able to help if needed (e.g. a
passenger airline). Entities of concern are those likely to be
Hostile and, finally, entities of allies are those which are
Friendly and could possibly provide or require assistance.

Once an entity’s status has been assigned by operators in
the operation room, this information is passed up the chain of
command, firstly to the Principal Warfare Officer who in-
tegrates the information from multiple operators and then
passes up the chain of command to those making tactical
decisions. Tactical decisions involve evaluating which of a set
of possible actions is the optimal one to take, given infor-
mation about classifications and positions of surrounding
entities (Cummings et al., 2010; Kobus et al., 2001; Matthews
et al., 2009). Options are evaluated based on the overarching
goals of the mission as well as the proximity and inferred
intentions of the surrounding entities and other considerations
such as costs and available equipment. Further, these short- and
long-term goals may change over time, as does the surrounding
situation. Thus, the military planner must evaluate and pri-
oritise between conflicting goals, whilst maintaining an up-to-
date awareness and understanding of the situation.

The ‘simple’ scenario which is the focus of the present
review can thus be decomposed into three stages: classifi-
cation of entities’ statuses, communicating that information
up the hierarchy and finally, choosing an appropriate action.
Each of these stages has parallels in areas of psychological
research. In the following, we examine each of these tasks,
and their corresponding literatures, in turn.

Figure 1. Simplified Naval structure shown alongside the principal psychological process shown at that point. Solid arrows represent the
main direction of information flow as considered in the current article. Inclusion of the dashed arrows acknowledges that, in reality, there
will be bidirectional communications.
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Classification of Entities

The classification of entities, as described in the previous
section, closely mirrors work from the categorisation (or
‘category learning’) literature. In a typical experiment in this
field, naı̈ve participants sort stimuli into categories; partici-
pants are shown a stimulus, asked to assign it to a category,
then are given corrective feedback on every trial (Kurtz,
2015). Generally, categorisation studies aim to understand
how participants learn, understand, and generalise the un-
derlying category structure(s), the (usually) experimenter-
defined mapping of stimuli to category labels. The cate-
gory structure is usually chosen to explore the underlying
psychological mechanisms of categorisation (Ashby &
Valentin, 2018; Kurtz, 2015). Thus, these experiments ex-
amine how participants’ performance is affected by varying
the category structure factorially with other features of the
task. For instance the experimenters may add a concurrent
task or increase time pressure by only giving participants a
limited time to respond. These manipulations affect the
‘cognitive load’ of the task – that is, how many cognitive
resources are needed to complete the task effectively.

How are Classification Decisions Made?

In our maritime scenario, operators estimate entity status from
diverse sources of information, principally AIS and position
data. This data can be supplemented by information requested
from others and by knowledge of the combat theatre. Re-
framing this as a categorisation problem, operators infer cat-
egory membership by combining many stimulus dimensions.
These stimulus dimensions could be continuous, such as
bearing; ordinal, such as overall AIS transmission quality; or
discrete, such as destination. This is not only difficult but also
highly consequential as some of the objects of interest may be
fast moving and pose a serious threat (Finger & Bisantz, 2002;
Liebhaber & Feher, 2002; Riveiro et al., 2018). In the fol-
lowing, we will explore the possible mechanisms by which
operators may make these categorisation judgements.

The dominant explanation, seen in many different theo-
retical accounts of categorisation (Pothos & Wills, 2011), is
that operators compare information from every stimulus di-
mension to representations of every category (Nosofsky,
1986; Wills et al., 2020). The entity would then be as-
signed to the category to which it is most similar, where ‘most
similar’ is typically determined geometrically, in terms of
minimising the psychological distance between the stimuli
and the representation of the category (e.g. Nosofsky, 1986).

To the unfamiliar, this account suggests that categorisation
might be a long, tedious, and cognitively demanding process;
not ideal during a high-stakes scenario when an enemy fighter
jet may be flying towards you at speeds surpassing the speed
of sound. However, seminal categorisation research suggests
that increasing the cognitive load (by increasing time pressure
or adding a second task) resulted in participants using more

attributes to categorise (e.g. Kemler Nelson, 1984; Smith &
Kemler Nelson, 1984; Ward, 1983). From these results, re-
searchers inferred that people represent stimuli holistically, as
an undifferentiated ‘mass’. Thus, comparing multiple attri-
butes would be less cognitively demanding that differenti-
ating a single attribute from that representation.

Another theoretical approach argues that whether people
use holistic representations of entities depends on the un-
derlying category structure. The COVIS (COmpetition be-
tween Verbal and Implicit Systems) model of category
learning proposes a dual-system mechanism (Ashby et al.,
1998; Edmunds & Wills, 2016). This theory argues that
simple category structures are learnt using rules based on a
subset of the available information. Structures that are dif-
ficult to verbalise are learnt through an implicit, overall
similarity approach, where stimuli are represented holisti-
cally. Much evidence has been argued to support this per-
spective (for reviews see Ashby & Maddox, 2004, 2011;
Ashby & Valentin, 2017; Smith & Church, 2018). Given that
the operator’s job of classifying an entity as hostile would be
hard to verbalise, this approach supports the seminal research
in recommending (somewhat paradoxically) that the way to
optimise classification in a military setting would be to in-
crease cognitive load.

In contrast, and of critical importance, Wills et al. (2015)
showed two critical findings that conflict with earlier theo-
retical claims. Firstly, participants used a wider range of
strategies than previously supposed (many of them resulting in
reduced accuracy). Secondly, participants were actually more
likely to use fewer dimensions with a greater cognitive load.

In a similar vein, there is no evidence that participants use
different types of stimulus representation depending on the
category structure (for partial reviews see Newell et al., 2011;
Wills et al., 2019). Participants report using rule-based
strategies in both simple and complex categorisation tasks
(Edmunds et al., 2015, 2016, 2019, 2020). For instance they
may categorise using a single attribute or perhaps generate
more complex rules (such as conjunctions or other combi-
nations of single dimension rules). Thus, recent evidence
suggests that participants are most likely to use a subset of the
available information using a rule-like strategy, even though
this type of strategy often results in reduced accuracy.

In sum, the categorisation literature suggests that only
when participants have enough time or resources do they use
all the available dimensions to categorise. The rest of the time
they use a ‘satisficing’ heuristic: they use less of the available
information than would be optimum (Simon, 1947). This
finding is mirrored in the defence literature. For instance
Liebhaber et al. (2000) found that the number of potential
cues available to inform the classification of an entity as a
threat was independent of the actual threat rating given to an
object. That is it appears that military planners classify en-
tities based on a small subset of attributes rather than inte-
grating all the information together. Further, the attributes that
are used depend on the prior knowledge of threat profiles that
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correspond to the available data the military planner has
available to them. Altogether, this work suggests that min-
imising cognitive load may be critical in improving the
performance of operators trying to estimate the status of
surrounding entities.

On What Information are Classifications Made?

The evidence in the previous section suggests that, in both
military and lab settings, it is unlikely that all the available
information at any one time will be used to make a classifi-
cation. Failing to use all the available information could result
in serious errors being made in a defence context. For instance
operators appear to be susceptible to focussing on information
that confirms their initial hypotheses regarding the threat
profile of particular entities (Matthews et al., 2009). Narrowing
the focus of attention to data that is consistent with prior
hypotheses comes at the expense of attending to evidence that
contradicts and undermines the focal hypotheses that the
planner(s) are working with. Thus, failing to incorporate all the
available evidence could have significant negative conse-
quences as potentially relevant information could be neglected.

However, it is also possible that satisficing in this context
is an adaptive way of responding given the considerable time
pressure. After all, sorting and identifying the most valuable
information is key in military decision-making (Mishra et al.,
2015). Therefore, if operators are responding using a subset
of the available information, but that information is almost as
accurate as using all the available information and is made
faster, then this is more efficient overall. In the next section,
we explore whether people are tactical in selecting which
subset of attributes they use.

Do People Classify by Picking the Most Useful
Dimensions, or Choosing at Random?

For both participants in psychology experiments and oper-
ators on Royal Navy warships, the best approach would be to
focus on the information that is most predictive of the out-
come(s). For simple categorisation tasks, there is plenty of
evidence that participants can identify the most predictive
attribute in a unidimensional categorisation task (e.g. Ashby
& Valentin, 2017; Shepard et al., 1961; Nosofsky et al., 1994;
Wills et al., 2015), and can do so quickly (e.g. Nosofsky et al.,
1994; Shepard et al., 1961).

Yet, in the field, operators may have to classify stimuli that
are far more complex, under considerable cognitive load.
Laboratory studies suggest that, when there are many addi-
tional, non-predictive attributes (Vong et al., 2019), or when a
cognitive load is added (Wills et al., 2015), participants are
less likely to find the optimum simple rule and instead rely on
less predictive attribute, resulting in poorer accuracy.

Two other features of our maritime military scenario are
that the information that can be used to make classifications
changes over time, and there is uncertainty in the data

received by the operator (Irandoust et al., 2010; McCloskey,
1996; Potter et al., 2012). Unfortunately, very few catego-
risation experiments have examined scenarios where the
category rule is maintained (for instance Category A repre-
sents small stimuli), but the distribution of stimuli changes
over time (for instance at the beginning of the experiment,
Category A stimuli are about 1 cm, by the end they are around
0.1 cm). Rather, studies have investigated the category
structure changing over time (for instance at the beginning of
the experiment the participant needed to focus on size, later
they needed to focus on orientation). Some have looked at
analogical transfer where participants are first trained on one
category structure and then in a second phase, they must
transfer this knowledge to another set of stimuli, outside of the
range of the training stimuli (Casale et al., 2012; Edmunds
et al., 2020; Soto & Ashby, 2019; Zakrzewski et al., 2018).
Helie et al. (2015) looked at categorisation performance after
the category structure was changed (see also Cantwell et al.,
2015). Navarro et al. (2013) examined whether people could
learn a unidimensional ‘height’ category structure where the
category boundary slowly changed over time. Generally, these
studies show that people are poor at these tasks: participants are
slow to adapt (Navarro et al., 2013), do not take advantage of
previously acquired knowledge (Edmunds et al., 2020), or may
even fail to notice the change (Cantwell et al., 2015; Helie
et al., 2015).

Similarly, uncertainty is rarely explored in the catego-
risation literature, but the limited available evidence suggests
that people find it difficult to incorporate it effectively. For
instance people make slower and less accurate responses when
unsure about category membership (Grinband et al., 2006).
The predictiveness and uncertainty associated with stimulus
features in category learning studies are also closely linked
with reward. Typically, the studies follow the stimulus-
response-feedback protocol (Kurtz, 2015) where reward is
often contingent on the proportion of correct responses. Pre-
dictive dimensions are rewardedmore often, whereas uncertain
dimensions are likely to be rewarded less (or perhaps more
erratically). This area is particularly relevant given the highly
consequential nature of military decision-making.

Given the high stakes in maritime military contexts, the
incentives that may influence classification are preventing or
minimising significant losses. In the lab, the only way to
approximate this ethically is to introduce high stakes by
offering a greater reward for better responding. Fortunately
for the maritime military context (and the ability to generalise
results from the lab to this context) it appears that reward has a
negligible effect of the quality of categorisation.
Schlegelmilch and von Helversen (2020) examined catego-
risation of three-dimensional stimuli, where one stimulus in
each category was rewarded more for a correct answer than
the other stimuli. Generally, they found that adding a high
reward reduced performance on the stimuli with lower re-
wards. However, they also found that the addition of a higher
reward had no effect on participants’ self-reported attention to
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each stimulus dimension. This contrasts with other similar
paradigms where the value of the outcomes modulate at-
tention: predictors of high value rewards receive especially
high levels of attention (Le Pelley et al., 2016). This evidence
suggests that categorisation may only be slightly affected by
reward magnitude. Thus, perhaps the extreme possible
consequences of categorisation in our scenario may not affect
performance. It remains an open question whether the
pressure of anticipating a positive reward and the pressure of
avoiding a negative consequence can be equated in a cate-
gorisation task.

Categorisation: Recommendations, Limitations and
Future Work

Is the categorisation literature useful in providing insights to
help field operators improve classification of entity status?
Generally, the findings reviewed contribute some useful in-
sights. The laboratory evidence suggests that it is unlikely
that operators will use all available data in their categorisation
decisions (e.g. Edmunds et al., 2020; Wills et al., 2015).
Rather, they are likely to focus on a subset of the available
information, probably that which they found worked on
previous occasions (Liebhaber et al., 2000; Matthews et al.,
2009). By being aware of these heuristics, we can design
displays and formulate training to help operators make better
classification decisions. For instance if we know which types
of evidence operators are focussing on, we can predict the
types of errors they will make. In other words, the types of
entities that will be misclassified given the internal repre-
sentation of the category structure they have constructed.
Thus, we can go some way to alleviating errors that might
arise by using suboptimum, but efficient, strategies. Also, the
laboratory evidence from the work examining changes in
category structure over time suggests that operators might fail
to notice changes and thus, may be overconfident in their
judgements. However, this is an extremely tentative con-
clusion that needs to be investigated in future research.

Transferring insights from the general categorisation lit-
erature to maritime operators, requires an assumption that
those laboratory experiments reported in the literature gen-
eralise to the real-world maritime situation. There are,
however, key differences between these situations. Generally,
laboratory studies of categorisation are substantially more
restricted because they must allow researchers to isolate
experimental effects from participants’ prior knowledge. In
contrast, stimuli outside the lab are far more complex, with
many more dimensions. Further, the dimensions in ‘real-life’
stimuli are likely to be correlated (for instance as size goes up,
so does weight) whereas most experimenter-constructed
categories deliberately avoid interactions between dimen-
sions (Rehder & Murphy, 2003).

There are other differences between a typical category
learning study (Kurtz, 2015) and ‘real-world’ classification.

Operators’ estimation of a craft’s status may be influenced by
the status of other surrounding craft and other features of the
environment that are subject to change. Additionally, the
dimensions operators are using to classify entities may be
unreliable and subject to changing levels of uncertainty.
Finally, the data from the AIS signal must be carefully
scrutinised for errors or logical inconsistencies and the reason
for mismatches ascertained (Riveiro et al., 2018).

Therefore, conducting category learning studies with more
complex stimuli and category structures is extremely im-
portant to check that the results generalise to military (and
other high stakes) contexts. Moreover, devising tasks that
incorporate dynamic uncertainty can provide useful insights
into the ways in which people detect (or not) discrepancies in
changing information, and the reliability of the classifications
resulting from it.

Communication

In our scenario, once the incoming data has been classified, it
must be communicated to those who need to use it to make
tactical decisions. Maritime military decision-making is
distributed across individuals and teams (Song & Kleinman,
1994; see Figure 1); information must be passed from op-
erators near the bottom of the hierarchy to commanders near
the top. An added difficulty is that this information may still
be associated with some uncertainty. For instance operators
may only be 80% sure that a craft is friendly or there may be
some uncertainty surrounding the craft’s position or direction.
Failing to acknowledge and appropriately incorporate un-
certainty into decision-making can result in failing to ap-
propriately judge which options are least likely to result in
negative outcomes (Kahneman, 2011; Pizer, 1999; Sunstein,
2002, 2003). This means that it is important for commanders
to consider any uncertainty associated with the information
they are using to make tactical decisions. In other words,
successful maritime military decision-making ought to in-
corporate uncertainty, and clearly. The question is, how are
uncertainties best communicated?

What are the Best Ways of Representing and
Communicating Uncertainty?

The literature suggests three approaches to communicating
uncertainty: verbal probability expressions (VPEs), numeri-
cal uncertainty statements, and visualisations. VPEs add a
verbal qualifier to a factual statement to indicate uncertainty
(Budescu & Wallsten, 1995). Numerical uncertainty state-
ments go a step further and quantify the uncertainty (Joslyn
et al., 2011). The simplest numerical statements simply add
an explicit, numerical estimate of the likelihood of something,
whereas more complex numerical statements might add range
information around a numerical estimate. Finally, uncertainty
visualisations represent uncertainty visually using symbols or
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graphics rather than words or numbers (McDowell & Jacobs,
2017). Common visualisations of uncertainty include Euler
diagrams, frequency grids, glyphs (discrete objects), hybrids
of Euler circles and glyphs, and tree diagrams (see Figure 2
for examples).

These approaches all have their strengths and weaknesses.
For instance VPEs are simple and flexible but also prone to
misinterpretation (e.g. Budescu & Wallsten, 1995; Dhami &
Mandel, 2020; Theil, 2002). Adding numbers tends to increase
precision in understanding but perhaps relies on the com-
municators being proficient in mathematical reasoning
(Dieckmann et al., 2012). Visualisations can help and are often
spontaneously generated by both civilians and military per-
sonnel (King, 2006; B. Tversky et al., 2011; Zahner & Corter,
2010), but the precise format matters. Some visualisations have
been found to aid reasoning, whilst others do not (Zahner &
Corter, 2010). The general principle that appears to underlie
these disparate results is that optimal decision-making is
supported by formats that make uncertainty information easiest
to use. As ‘easiest’ is highly subjective, this means the opti-
mum communication format is considerably impacted by the
attributes of the context, task, and communicators. The focus
of the remainder of this section is on visualisation of uncer-
tainty, which is often the common mode of representation of
uncertainty that appears in military contexts (Chung & Wark,
2016).

Effectiveness of Visually Communicating Uncertainty

The task in the military scenario we have described relies on
operators communicating information to commanders, for the
latter to remain apprised of the spatial-temporal context on
which tactical decisions are based (Carvalho et al., 2011;
Hammond, 2006; John et al., 2000). Practically, commanders
need to quickly understand what an entity is (status), where it
is (position), where it is going (direction) as well as any
uncertainty associated with these dimensions. The research
below indicates that the uncertainty communicated by op-
erators needs to be represented in a manner congruent to the
dimension it is associated with.

Firstly, consider the uncertainty associated with entity
status. This is an inherent property of the entity, and thus, the

literature suggests that its uncertainty is best represented
intrinsically, where features of the extant display are manip-
ulated, such as changing the colour or shape (Kinkeldey et al.,
2014, 2017). In contrast, extrinsic representations of uncer-
tainty add new items to a data display. Finger and Bisantz
(2002) found that participants were more efficient when only
using icons that were degraded to a greater or lesser degree
(representing uncertainty) rather than using them alongside
numerical probability estimates, an additional extrinsic ele-
ment. Kolbeinsson et al. (2015) and Bisantz et al. (2005) also
found superior performance with representations that used
intrinsic representations of uncertainty for status information.

Secondly, consider the assessment of the entity’s position.
Andre and Cutler (1998) showed that spatial uncertainty was
communicated most reliably when it was represented spa-
tially (i.e. matching the task at hand). In one of their tasks,
participants navigated a spacecraft to a goal, whilst avoiding a
meteor. The position of the meteor was noisy, and the authors
explored representing this uncertainty in various formats.
They found a spatial region of uncertainty around the target
(an additional ring) was preferable to other representations
(colour or text).

Thirdly, for the assessment of the entity’s trajectory, again
visualisations that matched the task enhanced communication
of the uncertainty associated with the judgement. Andre and
Cutler (1998) asked participants to control a gun turret and
shoot down hostile, whilst avoiding friendly, entities. Here,
uncertainty was associated with the direction of the craft.
Participants who saw visual representations of this uncertainty
were not as negatively affected when the uncertainty level was
high compared to a version where the uncertainty was displayed
numerically. Along the same lines, John et al. (2000) found that
directional information was superior to text information when
trying to predict where a unit would be in the future.

Thus, this literature suggests that optimal uncertainty
communication in this context might be achieved by com-
bining these representations of position, direction, and status.
Indeed, this is frequently done in military contexts (see Figure
3 ‘NATO Joint Military Symbology’, 2017).

Cognitive Abilities and Prior Experience. Visualisation formats
vary in the amount they challenge cognitive abilities

Figure 2. Examples of uncertainty communications showing the probability of potentially overlapping states in a military context. Here, the
probability that a vessel is hostile (as opposed to Friendly), and the presence/absence of an automatic (but not perfect) warning alarm shown
as (a) Euler diagram, (b) frequency grid and (c) tree diagram.
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(Anderson et al., 2011). Bisantz et al. (2011) used a missile
defence game where participants had to select and destroy
missiles heading towards a city whilst not harming birds or
planes. They found that adding numerical uncertainty infor-
mation to the visualisations did not improve performance.
Finger and Bisantz (2002) found similar results in a task where
participants had to classify moving entities as either friendly or
hostile (see also Bisantz et al., 2005). Others have found that
including numbers can reduce the speed (Andre & Cutler, 1998;
Finger & Bisantz, 2002; Hope & Hunter, 2007) and accuracy
(Andre & Cutler, 1998) of decision making with uncertainty
visualisations (for a review see Kinkeldey et al., 2017).

Some of the practical benefits of using visualisations can
be directly tied to the fact they reduce cognitive load. Hegarty
and Steinhoff (1997) found that participants with lower visual
working memory capacity, compared to those with a higher
working memory capacity, were helped more by diagrams
when solving a mechanical reasoning problem. This suggests
that the diagrams might perform as external or distributed
memory. Additionally, visualisations, compared to verbal,
auditory communications, allow for asynchronous commu-
nication. As mentioned above, maritime military decision
makers are often not in the same place as those gathering and
classifying the information needed for a decision. Thus, to
obtain the required information, decision makers monitor both
an auditory communication channel and visual displays.
Performing a visual task can result in inattentional deafness,
where people fail to hear auditory stimuli because of high
visual perceptual load (Molloy et al., 2015). This suggests that
serious problems may arise by decision makers missing key
pieces of information from one or other of these sources of
information. However, visualisations are easier to understand
and change more slowly. Thus, decision makers can go back
and double-check information they might have missed.

Thus, this literature suggests that by trying to include all
the available uncertainty information simultaneously, we
might increase the cognitive difficulty of the task beyond the
point where communicating uncertainty is useful. However,
people may be able to compensate for this limitation by using
the representation as an external memory store. Indeed, this
might explain why improvements associated with commu-
nication format are moderated by prior experience.

Kirschenbaum et al. (2014) looked at a submarine task where
participants were asked to manoeuvre a submarine to torpedo
another craft. Again, they found that participants performed
better when positional uncertainty was represented spatially
by a ring, rather than numerically in an associated table.
However, in this experiment the benefit was limited to
novices. This contrasts with previous evidence that found that
experienced naval commanders also performed better when
visual uncertainty information was included (Kirschenbaum
& Arruda, 1994). One explanation for this apparent dis-
crepancy is that the failure of spatial visualisations to improve
performance for experts in Kirschenbaum et al. (2014) may
be due a ceiling effect: the experts found the task easy, even
with sub-optimum display formats.

Interpretation Errors and Biases. Although the evidence con-
sistently suggests visualisations as the medium for commu-
nication in our scenario, the specific format of those
visualisations still needs to be carefully considered. This is
because in the literature there is no overall superior pictorial
representation of uncertainties that has marked facilitative
effects on decision-making performance (Binder et al., 2015;
Böcherer-Linder & Eichler, 2017; Micallef et al., 2012;
Spiegelhalter et al., 2011). For instance the use of icons (or
glyphs) has been shown to be generally effective in some
studies (Zikmund-Fisher et al., 2014) but not others (Sirota
et al., 2014). There is also not clear evidence that Euler
diagrams are reliably effective in generating superior decision
making (Micallef et al., 2012; Sirota et al., 2015; Sloman
et al., 2003). Similarly, the use of roulette wheels in some
studies only show marginal improvements (Brase, 2014;
Starns et al., 2019), whereas others show significant superior
performance as compared to tree-diagrams and text-only
representations (Yamagishi, 2003). Others again have
shown that tree diagrams are extremely effective as compared
to other visual aids and text-only information (Binder et al.,
2015; Friederichs et al., 2014). This demonstrates the ne-
cessity to consider the requirements of the specific individual
context when designing an appropriate visualisation.

The existence of cognitive biases is an important issue to
consider when selecting a visualisation format. Here we
consider three biases. Deterministic construal error is where
someone misinterprets an uncertainty communication as a
deterministic one (for alternatives see Gigerenzer et al., 2005;
S. Joslyn & Savelli, 2010; Juanchich & Sirota, 2016; Morss
et al., 2008, 2010; A. H. Murphy et al., 1980; Sink, 1995).
The closely related containment error is where people per-
ceive uncertain, fuzzy boundaries as representing fixed, de-
terministic points (Brown, 2004; Lundström et al., 2007;
MacEachren et al., 2005; Ruginski et al., 2016). Finally,
anchoring might guide the qualitative nature of such a
construal (e.g. Broad et al., 2007; Oppenheimer et al., 2008;
Tversky & Kahneman, 1973; Turner & Schley, 2016). Thus,
the most effective visualisations will be those which mini-
mises the likelihood of these errors being made.

Figure 3. Example of a symbol that incorporates position, speed
and direction in a single icon. Taken from ‘NATO Joint Military
Symbology’ (2017). The direction of the arrow represents
direction, and the length represents speed.
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Correcting biases. Identification of such biases can aid
with the design of visualisations such that participants are
guided towards the correct inferences and away from in-
correct inferences (see also Card et al., 1999; Padilla, 2018).
Some ways of doing this have begun to be explored. The
basic approach is to use features of attentional processes to
design visualisations for which questions about the un-
derlying data can be answered more easily, more accurately
or faster (Jänicke & Chen, 2010). In other words, designing
the visual representation so that it matches the demands of
the task (Vessey, 1991; 1994; 2006; Vessey & Galletta,
1991).

Human visual attention can be broadly defined as two
processes: one bottom-up and stimulus-driven, the other top-
down and goal-driven (Corbetta & Shulman, 2002; Petersen
& Posner, 2012). Bottom-up attention is driven by external
stimuli (Padilla, 2018) and is typically characterised as au-
tomatic, unconscious, and physiologically based (Connor
et al., 2004). Visualisations can leverage bottom-up atten-
tion by manipulating the salience of visualisation components
(Padilla, 2018). Visual salience is the degree to which an item
stands out from those nearby (Jänicke & Chen, 2010). These
items might ‘pop-out’ due to differences in colour, shape,
orientation, size or movement (Fabrikant et al., 2010; Haroz
& Whitney, 2012).

However, bottom-up attention is often modulated by
top-down processes. Top-down attention involves delib-
erately searching for features in relation to a goal and is
thought to be slow, conscious and effortful (Connor et al.,
2004). Haider and Frensch (1999) found that task-
redundant information tends to be ignored at the per-
ceptual rather than the conceptual level. Visualisations
that do not comply with existing schemas are generally
less effective (Padilla, 2018), whereas those that respect
commonly inferred meanings are more effective (Norman,
1988; B. Tversky et al., 2011). For example if designing a
coloured ‘danger’ scale in the UK, it would be misleading
to provide a key whereby green represented a dangerous
location and red the safest location, since this is contrary to
people’s common expectations (Wogalter et al., 2002).
However, the opposite would be true in China where red is
more likely to have positive connotations (e.g. He, 2009;
Yu, 2014).

The interaction of top-down and bottom-up processes can
also improve how people interpret and use uncertainty in-
formation. Bisantz et al. (2009) tested the degree to which
people agreed (with no instruction) on the mapping of dif-
ferent levels of saturation, brightness and transparency to
uncertainty. They found good agreement between individuals
that greater brightness, saturation, and opaqueness (i.e. more
‘intense’ colouring) was typically associated with more
certain information. However, this result was found to be
driven predominantly by the degree of contrast between the
target object and the background, and to be qualified by the
requirements of the task. Objects with greater contrast against

the background were perceived as more relevant for the task
at hand. That is if the task was to identify uncertain data
points, greater contrast (and therefore visual saliency) was
seen as representing greater uncertainty. This highlights the
importance of considering the key requirements of the
decision-maker (Doyle et al., 2019; Griethe, 2006; Hegarty
et al., 2016; Kinkeldey et al., 2014; 2017; Loucks, 2003; Pang
et al., 1997) who will be using the visualisation, such that the
most task-relevant information can be highlighted within an
uncertainty visualisation.

Communication: Recommendations, Limitations and
Future Work

Is the communication literature useful in providing insights
to help recommend how to represent uncertainty to military
personnel? There are important insights from the vast lit-
erature on communication of uncertainty that can be applied
to the military domain. The literature on effective com-
munication suggests that the optimum format is one that best
matches the information to be communicated. Thus, visu-
alisations are likely to be superior for communicating the
status, position and direction of surrounding entities to
decision makers. In this maritime military context, visual-
isations are less likely to be misunderstood and additionally
allow for asynchronous communication, thereby reducing
the cognitive load associated with understanding incoming
information.

Do laboratory experiments examining communication of
uncertainty generalise to military contexts? The literature
allows us to infer some general principles to be considered
when designing displays for use in military contexts. How-
ever, the literature also suggests that it is very hard to predict
exactly which factors are most important given a particular
scenario, with a variety of personnel with different back-
grounds. So, selecting the precise format these visualisations
should take requires some finesse and further experimental
study. Interpretation of visualisations can still be subject to
cognitive biases, whether general pitfalls or those due to
communicators’ unique abilities or background. One
approach to minimising misunderstanding is to take ad-
vantage of attentional processes. Visualisation designs
need to make sure that both top-down and bottom-up
attentional processes support optimal performance in
tasks. This means that the information that is conceptually
most important to the task should be the most salient
(Vessey, 1991; 1994; 2006; Vessey & Galletta, 1991). This
principle has shown to be effective in work by Hegarty
et al. (2010). When trying to predict weather, participants
were better able to use the (task-relevant) pressure in-
formation on a map when this information was highlighted
with colour, rather than task-irrelevant temperature in-
formation. When these attentional processes are aligned,
people will not have to work to inhibit irrelevant
information.
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Making Decisions

So far in our scenario, the operators have determined the
statuses of surrounding entities and communicated this in-
formation, along with the associated uncertainty, to a key
decision-maker (e.g. the Captain or their delegated Com-
mander). In the final stage, the decision-maker must now
decide what action to take (Szeligowski, 2018). They might
decide to change course, engage an enemy craft, commu-
nicate with other vessels or do nothing (Lipshitz & Strauss,
1997). In the following, we review the literature relevant to
making these types of dynamic decisions.

Dynamic Decision-Making

This scenario has much in common with tasks in the so-called
dynamic decision-making literature (for reviews see Holt &
Osman, 2017; Osman, 2010, 2011). Studies in this area are
concerned with investigating how decision makers cope with
an environment where events and their probabilities change
over time. Dynamic decision-making is also iterative. It re-
quires sequential decision-making, where each decision taken
generates an outcome that requires a further decision to be
made (making the decisions interdependent over time). The
outcomes of the decisions change over time, their effects are
cumulative and any changes experienced can result directly
from the decisions made as well as independently of them (i.e.
endogenous properties of the system; Brehmer, 1992; Dörner
& Schaub, 1994; Holt & Osman, 2017; Osman, 2010). Thus,
whether or not the changes experienced are stable or unstable
(Osman, 2011), whether the outcomes of decisions are ex-
perienced in real time or only periodically (frequent vs. in-
termittent outcome feedback; Osman et al., 2017), whether or
not the goals of the decision process are highly specific or
general (Osman, 2008a), and whether or not the outcomes of
the decisions taken also included additional information
(augment positive vs. negative feedback, financial costs and
benefits; Osman, 2012b); all of these features have impli-
cations for the effectiveness of the decisions made.

Here, we will discuss the literature about three key factors
that affect decision-making in dynamic contexts. Firstly, how
the goals of the task influences decision-making. Secondly,
we consider the uncertainty inherent in the task. Finally, we
discuss the role of feedback in dynamic tasks.

Goals. Research, both in dynamic and military decision-
making, has shown that goals can have a substantial impact
on the way people make decisions. Generally, studies have
shown that in highly uncertain dynamic contexts, specifying a
precise, static goal, such as controlling an outcome to precise
criteria (for instance aiming for a chemical level of 5) leads to
good decision-making performance in achieving that goal.
However, when the decision-maker is required to adapt their
decision-making to new goals in the same decision-making
context, their performance suffers. In contrast, when the goals

are broader to start with, then the decision-maker is better able
to sample relevant information from the decision context to
learn plans of actions to a variety of goals theymight face in the
future (Burns & Vollmeyer, 2002; Locke & Latham, 2006;
Osman, 2008a; 2008b; 2008c; 2012a; Vollmeyer et al., 1996).
Moreover, when the costs (e.g. financial penalties) in failing to
reach the goal are high, this can lead to highly erroneous
decisions over time, regardless of whether the dynamic changes
to the outcome are stable or unstable. The reason for this is that
the decision-maker is overly concerned with minimising the
negative consequences which leads to sub-optimal sampling
of the information and poorer decision-making over time
(Kerstholt, 1996; Kerstholt & Raaijmakers, 1997).

These findings are echoed in the military literature. Indeed,
goals can substantially influence situational awareness (van
Westrenen & Praetorius, 2014). The military distinguishes
between strategic, tactical and control decisions, each of
which focus on different goals. Strategic decisions concern
selecting the means to achieve a goal (e.g. ordering tugs),
tactical decisions aim to deploy the means to achieve af-
fordances (e.g. positioning the tugs or overtaking), and
control decisions concern selecting the means to achieve a
desired state (e.g. realising a speed and direction). Thus, the
information a decision-maker needs to be aware of critically
depends on the type of decision they are making.

However, unlike existing psychological research, military
scenarios often have many competing goals at different
levels. For instance typically the commander has been briefed
on the overarching goals of the mission as well as more
specific goals that their vessel is responsible for. In addition,
they are responsible for the smooth running of the ship as well
as other considerations such as limiting running costs. Thus,
the psychological literature still has some ways to go before
being able to completely understand how competing goals
with varying stakes attached may impact decision-making in
such a complex environment.

Uncertainty. Making good decisions in our dynamic decision-
making scenario also requires dealing appropriately with
uncertainty. Riveiro et al. (2014) examined dynamic decision-
making in an air defence task. In this task, participants had to
protect a radar station, whilst at the same time monitoring a
map of the region to detect possible aerial threats. Practically,
the decision makers had to identify and prioritise targets of
interest to be communicated to a higher authority to deter-
mine the appropriate countermeasures. They found that un-
certainty information helped participants make a final
judgement more swiftly, although it had no effect on decision
accuracy. In other words, in this task uncertainty appeared to
make participants more confident their decisions.

However, in other military tasks, uncertainty appears to
interact in unpredictable ways with expertise. Kobus et al.
(2001) examined experts and non-experts in developing a
battle plan in a dynamic tactical scenario. They found that the
level of uncertainty interacted with experience in predicting
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time to gain situational awareness and time to execute their
plan. They found that for both high and low uncertainty
conditions, experts took more time to gain situational
awareness than non-experts. However, in the high uncertainty
condition, experts were much faster to then execute their plan,
although the level of experience made no difference when
uncertainty was minimal. John et al. (2000) also found that
increasing uncertainty influenced tactical decisions. How-
ever, in contrast to Kobus et al. (2001), they only found this
for less experienced Marines in Combat Operation Centres:
the less experienced officers tended to adopt a ‘wait and see’
approach showing greater levels of caution.

Perhaps part of the reason for these disparate results may
come from how uncertainty is communicated to (and thus
understood by) participants. These studies examine uncer-
tainty using different tasks and thus, present the information
in differing ways. This is an issue as many studies have found
that themore salient the uncertainties around data are, the lower
the confidence in decisions, and the greater the likelihood of
making more conservative decisions (Finger & Bisantz, 2002;
Riveiro et al., 2014; Svenson et al., 2010). Therefore, the
differences between these studies could be driven by an in-
teraction between the salience of information and expertise.
After all, experts are obviously more experienced with the task.
However, they may not have experience with how exactly the
abstract research task is presented to them.

Dynamic tasks can also change their contingencies over
time and there is preliminary evidence that participants are
sensitive to this. When the fluctuations in outcome are
moderately stable, decision makers tend to make small
conservative changes to the system (Osman & Speekenbrink,
2011). In contrast, when experiencing large noisy fluctuations
to the outcomes over time, decision makers often made
multiple and dramatic changes simultaneously. It is important
to note that, in these experiments, decision makers learn to
make more effective decisions over time through extensive
repeated exposure to the task environment.

In sum, the effect of uncertainty on performance varies
with the attributes of the participants and the method by
which uncertainty is communicated. These factors need to be
explored in much greater depth before we can determine how
best to facilitate optimum performance.

Feedback. Optimum decision-making requires decision
makers to understand which options lead to which outcomes
with what probabilities and select the option that draws them
closest to their goal. Receiving feedback is an important part
of learning these relationships. In several studies the findings
show that outcome feedback (i.e. simply finding out the
actual effects on the outcome experienced because of a de-
cision taken) leads to better performance than the presence of
either positive or negative feedback (i.e. value judgments
attached to the outcomes; Osman, 2012a; Osman et al., 2017).
The presence of positive or negative feedback has similar
effects to decision makers being aware of the high stakes

attached to their decisions, namely that they are overly fo-
cused on achieving positive feedback or reducing negative
feedback than focussing on what information is relevant in
achieving a desirable outcome over time. This aligns with a
substantial body of literature looking at the role of feedback in
many other decision-making contexts (for a review, see
Kluger & DeNisi, 1996). This work suggests that unless the
decision-making task is simple, additional feedback other
than outcome feedback can, at best, add little additional
benefits to decision-making performance, and at worst, im-
pair decision-making performance.

The probabilistic nature of dynamic decision-making tasks
adds an additional hurdle to interpreting feedback. Feedback
on a single trial is not particularly diagnostic due to the large
role chance may play on achieving an outcome. Rather, what
is most important is the success of decisions over time. One
way of adapting feedback to prevent overweighting of the
outcomes on single trials is to give feedback intermittently.
That is, providing feedback (as well as reward information,
financial benefits, financial costs; or social rewards and costs)
periodically at set intervals, rather than every time a decision
is made. Unexpectedly, however, direct comparisons of the
effect of intermittent versus consistent feedback show that
overall dynamic decision-making performance suffered un-
der intermittent outcome feedback (Osman et al., 2017). This
is consistent with other work that shows intermittent feedback
does not perform well, even with non-probabilistic outcomes
(Le Pelley et al., 2019; Smith et al., 2014).

Decision-Making: Recommendations, Limitations and
Future Work

Are laboratory studies on dynamic decision-making useful in
providing insights to help recommend what strategies to
adopt when facing military contexts? Work examining
decision-making in dynamic contexts reveals that, whilst
people can learn to manage uncertainty and to determine
plans of action that require regular interaction with an en-
vironment that is constantly changing, there are factors that
contribute to less effective decision-making. Directing de-
cision makers to focus on achieving highly specific outcomes,
especially in a decision-context that they are unfamiliar with,
can overly constrain what they learn, and lead to less adaptive
decision-making in the long run. Feedback has a significant
role to play in guiding the way in which decision makers act
in dynamic environments, because the environments often
present a high level of uncertainty. Therefore, signals about
the efficacy of decisions taken do provide useful guidance as
to how to proceed, but can also overly constrain the focus of
attention onto specific, narrow, features of the decision
problem of the decision problem at the expense of other
useful information.

Do laboratory experiments examining dynamic decision-
making generalise to military contexts? Although the ex-
perimental research above suggests that participants can be
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quite successful at dynamic decision-making tasks, there is
one key (and likely obvious) difference between the exper-
imental and military contexts that needs to be addressed. The
dynamic decision-making scenarios are far simpler than the
decision environments seen in military examples. For in-
stance in Osman et al. (2017) participants manipulated the
proportions of three inputs to control a single output. In
contrast, military decision-making is only becoming more
complex as the sophistication, complexity, volume and
quality of information on which to base decisions increases
(Mishra et al., 2015; Riveiro et al., 2014; Szeligowski, 2018;
van Westrenen & Praetorius, 2014). This difference in
complexity has implications for interpretation of the results.
For example within a simplified laboratory setup it is rea-
sonable simple to determine whether a particular decision was
optimal or not. Outside the lab, it is much more difficult.

One approach to judging whether a decision was optimum
or not is to look at the strategy that people use to come to their
decision. Military decision makers are trained to weigh the
pros and cons of each possible option and to select the al-
ternative that leads to the best outcome (Kobus et al., 2001;
Lipshitz & Strauss, 1997). However, the evidence suggests
that often military decisions in the field are not optimal in this
sense (Kobus et al., 2001; Riveiro et al., 2014). In a quali-
tative study exploring military decision-making, Kaempf
et al. (1993) reported that 95% of operators use sub-
optimum strategies based on matching the situation to past
experiences. However, it is difficult to tell whether this is an
appropriate way of dealing with uncertainty. After all, de-
cision makers are limited. They can be limited by gaps in
knowledge, computation capacity (e.g. Frühling, 2014; van
Westrenen & Praetorius, 2014; Yang et al., 2009), and moti-
vational factors, such as time pressure (e.g. Frühling, 2014) and
competing goals (Hammond, 2006; T. Murphy, 2010; van
Westrenen & Praetorius, 2014). Further, given the dynamic
nature of the environment, it may be the case that using a sub-
optimum strategy or heuristic that provides a quick answer
may be better than carefully weighing the evidence, given that
the scenario may change in that time. This is especially so as
decisions in dynamic scenarios are interdependent: if the ship
goes down because you failed to take prompt action, there will
not be an opportunity to fix the mistake.

One possible way future research might attempt to judge
the efficacy of decisions, and thereby improving training and
understanding, is by using causal models. We know from the
empirical literature is that causal representations are essential
in developing plans of actions in learning, decision-making
and reasoning (Bramley et al., 2017; Meder et al., 2014;
Sloman & Lagnado, 2015). By mathematically modelling the
causal relations of a problem, we can better determine the
optimal solution. This may be especially important given that
there are a host of biases and heuristics found even when
studying decision making in static environment (Kahneman,
2011). In addition, fleshing out causal models has been shown
to reduce bias (Krynski & Tenenbaum, 2007).

We could also use causal models as a decision-support
tool. Much recent work in military decision-making talks
about using decision-support tools. However, much of this
work focuses on uncertainty visualisation, including uncer-
tainty information so that it can be used in decision-making
(e.g. Bisantz et al., 1999), rather than tools to help people
make decisions. One approach to improving decision makers’
understanding of the underlying causal structure of the
system is to use visualisations to represent that system. Some
researchers have begun to explore the effectiveness of dia-
grams that represent the available options and their associated
probabilities in improving decision-making (e.g. Bae et al.,
2019; Hänninen et al., 2014; Laskey et al., 2011; Pilato et al.,
2012; Riveiro et al., 2014; Snidaro et al., 2015; Svenson et al.,
2010; Zhang et al., 2008). Generally, these representations of
the available options help decision makers improve their
decision-making. However, like the visualisations mentioned
above, they can still be subject to misinterpretations. Without
training, the decision-maker is liable to impose their own
understanding of the decision-problem and re-interpret the
diagram to support their own preconceptions.

General Discussion

In this review, we aimed to fully explore the psychological
processes involved in a complex decision-making task.
Specifically, we focussed on a simplified military scenario:
how information is gathered and used in short-term tactical
decisions (Figure 1). To make the task tractable, we firstly
divided this overarching scenario into three parts (classifica-
tion, communication and choice) and then examined in detail
the relevant literature at each stage. Like many other decision-
making tasks, the complexity of the psychological processes
involved in the scenario is demonstrated by the wide range of
literature reviewed, from basic perceptual processes to the
high-level influences of goal format. However, two core
psychological factors repeatedly emerged as key factors in
performance: cognitive load and individual differences.

Throughout the three stages, we consistently found that
task performance was related to participants’ ability to deal
effectively with cognitive load. For instance in the com-
munication literature the most successful uncertainty com-
munications are those that minimise the amount of cognitive
effort required for understanding (e.g. Andre & Cutler, 1998;
Finger & Bisantz, 2002; Kirschenbaum et al., 2014). Partic-
ipants also tend to ignore uncertainty information. Deter-
ministic construal errors (Gigerenzer et al., 2005), containment
(MacEachren et al., 2005) and anchoring (Broad et al., 2007)
are all examples of biases where participants mistakenly treat
uncertain information as certain and thereby reduce the amount
of information they must consider. Further, adding more in-
formation does not necessarily improve understanding or
performance (e.g. Andre & Cutler, 1998; Bisantz et al., 2011;
Finger & Bisantz, 2002; Hope & Hunter, 2007; S. L. Joslyn &
Grounds, 2015).
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In categorisation and decision-making tasks, the role of
cognitive load emerges as a tendency to satisfice: to use less
of the available information than would be optimum (Simon,
1947). For instance in categorisation the evidence suggests
participants are most likely to use simple rules based on a
subset of the available information (e.g. Edmunds et al., 2015,
2018, 2019; Rehder & Hoffman, 2005a; Wills et al., 2015,
2020). Similarly, in dynamic decision-making participants will
systematically vary one variable at a time to work out the
underlying causal structure of a dynamic task (e.g. Osman &
Speekenbrink, 2011; Osman et al., 2017). Therefore, at all
levels of the scenario, people are likely to try and minimise the
amount of information they use at any one time, at least when
learning to figure out what is relevant in the task at hand.

There is nothing wrong with this approach. After all,
expertise is often associated with subjectively evaluating the
cognitive load of a task as less. However, by considering this
tendency carefully we can leverage it to improve performance
in these tasks in military contexts: both by using them to
promote desirable behaviour and devising strategies to at-
tenuate undesirable behaviours. Some ways of doing this
have begun to be explored. For instance in the communi-
cation literature some have leveraged features of attentional
processes to design visualisations for which questions about
the underlying data can be answered more easily, more ac-
curately or faster (Jänicke & Chen, 2010). In other words,
designing the visual representation so that it matches the
demands of the task (Vessey, 1991; 1994; 2006; Vessey &
Galletta, 1991). This suggests that similar approaches may be
fruitful in categorisation and decision-making experiments.
For instance one could include explicit instructions to attend
to a specific, randomly selected attribute every so often to
avoid participants focussing on a small subset of the available
information.

These results also suggest that cognitive load is likely to be
a key factor to consider in other complex decision-making
tasks. The literature we reviewed here suggests that one
approach to improving performance is by leveraging any
small opportunity to reduce load. Such an approach will be
beneficial in any high stakes, high load decision making
context. For instance the effectiveness of the compounding
influence of numerous small changes (e.g. changing visual
displays and alert sounds) to reduce load has been demon-
strated within medical decision making (Phansalkar et al.,
2010). Further, the literature reviewed here suggests that it is
often difficult to know a priori which method of communi-
cation is most intuitive given a task. Thus, running (ade-
quately powered, Bartlett et al., Under review) user studies
that compare communication formats in scenarios as repre-
sentative as possible is likely to improve final outcomes. For
instance military exercises could be used as an opportunity to
test different ways of representing information. There is a
similar move in medical fields: virtual reality training is
becoming more common and more realistic (Ruthenbeck &
Reynolds, 2015).

Another tendency that has emerged from the literature is
that task performance can vary greatly due to differences
between individuals. Although overall there is a tendency to
try and minimise the amount of information needed to
complete a task, people vary in the information they select to
use (e.g. Edmunds et al., 2015; Haider & Frensch, 1996).
Similarly, the success of particular uncertainty communica-
tion formats often depends on attributes of the recipient such
as their background (e.g. Brun & Teigen, 1988; Doupnik &
Richter, 2003; Harris et al., 2013), expertise (e.g.
Kirschenbaum & Arruda, 1994; Kirschenbaum et al., 2014;
Willems et al., 2020), expectations (e.g. Norman, 1988;
Padilla, 2018; B. Tversky et al., 2011; Wogalter et al., 2002),
cognitive skills (e.g. Hegarty & Steinhoff, 1997). Thus, in
some way, successful maritime military decision-making
requires adapting to the individual differences of the per-
sonnel involved.

So, how do we overcome the difficulties raised by indi-
vidual differences? Perhaps the most obvious answer is
through training. Training is a core part of the military or-
ganisation and for the most part these training procedures are
extremely effective. However, when it comes to decision-
making there still appears to be a discrepancy between the
strategies that military personnel are trained to use (Kobus
et al., 2001; Lipshitz & Strauss, 1997) and those they actually
use (Kaempf et al., 1993). Personnel are trained in how to
determine the optimum option (Kobus et al., 2001; Lipshitz &
Strauss, 1997). By weighing the pros and cons, personnel
are likely to gain a deeper understanding of the situation
and thereby, improve their decision-making (Osman &
Speekenbrink, 2012). However, this strategy is not con-
sistent with how people make decisions: personnel will
very rarely have the time or resources to consider every
possible action. Rather, the evidence suggests that they
focus on key information and the similarity to past events
and choose the best seeming option.

To some extent, the mismatch between the optimal
strategy given in training and the ad-hoc strategies generated
in the moment may be alleviated by many rounds of training
operations. By repeating the same thing over and over,
personnel can now use their imperfect strategy (matching to
past experience), which will hopefully also match the opti-
mum solution. However, this approach does not take into
consideration that, due to their differences, people may in-
terpret these training opportunities differently and thus, in-
advertently learn different representations of the task. This
suggests that perhaps more individualised training routines
may help in making sure that military personnel are all on the
same page. Indeed, work on developing more individualised
training has begun in the decision-making literature. For
instance Parpart et al. (2015) developed active learning al-
gorithms that could better determine participants’ strategies
whilst completing the task. Future work could take these
algorithms and use them to guide participants to the optimum
solution.
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Again, this suggests that individual differences need to be
carefully considered in other complex decision-making tasks.
The literature suggests that assuming that everyone uses the
same approach (even broadly) in psychological tasks is
something that needs to be demonstrated using appropriate
evidence.

Other Factors

This review focused on the flow of information from the
bottom of the hierarchy to the top. It implied that the end of
the scenario occurs when the commander decides what to do.
However, military hierarchies are not one-way systems; in-
formation also travels from the top to the bottom, usually via
orders (Szeligowski, 2018). Thus, decision-making is not the
end of the scenario, rather command is. In other words, a
commander’s success depends not only on making the op-
timum choice but also on implementing it effectively. This
highlights a final key factor that influences behaviour in this
scenario which we have avoided discussing in the current
work: interpersonal dynamics. However, the scope of this
literature is wide and would take too much space to explore
here, although this is something critically important for future
work. After all, making a good tactical decision but being
unable to implement it because your crew has mutinied would
in the end be equivalent to an incredibly poor decision.

Conclusion

To conclude, maritime military decision-making is an in-
credibly complex task. However, by drawing together diverse
research from three different fields (categorisation, commu-
nicating uncertainty and dynamic decision making) we have
gained a much greater understanding of the general ten-
dencies that affect performance at each stage. Throughout the
three tasks, the evidence shows that people generally try to
minimise cognitive load by simplifying the complex envi-
ronment around them, but that the way they do this varies
between individuals. By identifying these two features of
complex decision making, we can, in future, exploit them to
improve performance in maritime military decision-making
as well as other high-stakes scenarios.
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