
 This	work	has	been	submitted	to	the	IEEE	for	possible	publication.	Copyright	may	be	transferred	without	notice,	after	which	this	version	may	no	longer	be	accessible.		  

  
Abstract— We introduce the conceptual formulation, design, 

fabrication, control and commercial translation with IoT 
connection of a hybrid-face social robot and validation of human 
emotional response to its affective interactions. The hybrid-face 
robot integrates a 3D printed faceplate and a digital display to 
simplify conveyance of complex facial movements while providing 
the impression of three-dimensional depth for natural interaction. 
We map the space of potential emotions of the robot to specific 
facial feature parameters and characterise the recognisability of 
the humanoid hybrid-face robot's archetypal facial expressions. 
We introduce pupil dilation as an additional degree of freedom for 
conveyance of emotive states. Human interaction experiments 
demonstrate the ability to effectively convey emotion from the 
hybrid-robot face to human observers by mapping their 
neurophysiological electroencephalography (EEG) response to 
perceived emotional information and through interviews. Results 
show main hybrid-face robotic expressions can be discriminated 
with recognition rates above 80% and invoke human emotive 
response similar to that of actual human faces as measured by the 
face-specific N170 event-related potentials in EEG. The hybrid-
face robot concept has been modified, implemented, and released 
in the commercial IoT robotic platform Miko (My Companion), 
an affective robot with facial and conversational features currently 
in use for human-robot interaction in children by Emotix Inc. We 
demonstrate that human EEG responses to Miko emotions are 
comparative to neurophysiological responses for actual human 
facial recognition. Finally, interviews show above 90% expression 
recognition rates in our commercial robot. We conclude that 
simplified hybrid-face abstraction conveys emotions effectively 
and enhances human-robot interaction.  
 

Index Terms— Affective Robot, Brain-Robot Interface, 
Emotional Response, Event-Related Potential, Facial Expression, 
Human-Robot Interaction  

I. INTRODUCTION 

A. Research context 
 Affective social robots are gaining increasing interest in 

research and social applications. However, achieving smooth 
human-robot interaction still has significant challenges such as 
robots to become trustworthy to humans through the 
incorporation of emotional compatibility in their interactions 
[1-4]. Humanoid social robots provide means to investigate 
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social cognition, engage with, and support human mental 
health. 

It is now well-accepted that humans respond better to robots 
that behave empathetically towards them, which involves the 
capacity to recognise emotion and respond accordingly [5-11]. 
Pioneering work, in particular by Brazeal and Ishiguro [4, 12-
14], grounded this field of study with a very strong body of 
literature now available on affective human-robot 
communication (see [7, 8, 15, 16] for recent surveys). Industry 
translation has also begun in areas such as service and 
hospitality, highlighted by the opening of the Henn-na Hotel in 
Nagasaki in 2015, though challenges in reliability and 
acceptance by humans remain unresolved [17]. 

For a successful natural human-robot collaboration, social 
robots must adopt a multimodal approach with capability to 
show facial expressions, speech, gestures, access online 
knowledge, understand context and intent, be aware of 
surroundings and adapt their behaviour accordingly. This can 
be achieved by connecting social robots to the Internet of 
Things (IoT) and cloud services to enhance their social and 
emotional capabilities [18-20] while improving security [21]. 
IoT based social robots have been proposed for use in education 
[22], special needs education [23], in healthcare for cognitive 
therapy [24] and assistive and care services [19, 21, 25] all of 
which require an emotional connection, empathy and trust with 
users. There has been relatively less research on embedding 
sensory information from IoT to develop interactive social 
robots for detecting and responding to emotions using visual 
expressions. 

The expression of realistic robotic emotion calls for the 
fusion of numerous disciplines, including systems design, user 
experience, artificial intelligence and electro-mechanical 
hardware integration. Ekman and Friesen [26] described and 
tested the assumption of universality in human interaction, 
asserting six primary emotions: happy, sad angry, afraid, 
surprise and disgust. Ekman proposed that all human 
expressions can be represented by a combination of six basic 
expressions according to the Facial Action Coding System 
(FACS) [27]. Thus, emotions can be characterised by using 
continuous scales or a three-dimensional ‘affect space’ to 
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mathematically represent facial expressions using axes, such as 
arousal, valence, and stance. The configuration of a face is also 
important for its recognition. When designing humanoid social 
robots, care should be taken to avoid reaching the ‘uncanny 
valley’ [28], a state in which robot’s appearance becomes eerily 
human-like leading to negative emotional response including 
revulsion and discomfort by humans. 

Expressive behaviour of robotic faces, however, also require 
complex mechatronic design and control [29]. Full facial 
actuation and control, despite many successful applications, 
remains an issue limiting widespread adoption. This has 
motivated a significant body of research aimed at simplification 
for cost and ease of use (e.g. [30-33]). A plateau is also being 
approached regarding the degrees of freedom that can be 
conveyed by robot’s facial expressions; additional human-like 
emotive conveyance such as pupil dilation, which is often 
overlooked, can reveal the emotional state and intention behind 
expression present further challenges to be addressed.  

Finally, while human-robot affective communication is a 
maturing field, empirical assessment of human-robot affective 
interactions has not been fully addressed. There is a paucity of 
research in human emotional response to the robot’s facial 
expressions as compared to affective communication with 
virtual avatars [15]. Recent investigations, such as the 
implementation of the FACS [32] offer significant potential for 
empirical assessment, however direct analysis of physiological 
response also holds significant potential in this realm.  

It is interesting to investigate the effects of robot interactions 
on human physiological responses using 
electroencephalography (EEG) or functional magnetic 
resonance imagining (fMRI) to assess engagement. Wang’s 
[33] pioneering work compared human-robot interaction to 
human-human interaction using detailed fMRI and showed that 
human-robot interaction elicited stronger feelings of eeriness 
than human-human interaction, though their experiments were 
limited to colour images. Recognising emotion and facial 
expressions involve several task-specific neuron sources [34] 
and different parts of the brain activate in response to different 
facial expressions [35]. The right hemisphere of the brain plays 
an important role in processing emotions [36, 37]. A common 
method of assessing neurophysiological response in EEG is by 
studying Event-Related Potentials (ERP) which are positive or 
negative voltage deflections time-locked to stimulus onset [38]. 
N170, a negative potential occurring 170 ms after stimulus 
onset is a well-documented face-specific ERP component that 
occurs in response to visual face stimulus [39, 40]. The N170 
ERP component has been attributed to the face-specific 
structural encoding stage occurring before the recognition of 
face and is reported to be unaffected by emotional content 
within expressions[37, 41]. Different methods such as [42] can 
be used to isolate regions of brain activity in response to ERPs. 
These established neurophysiological studies also hold 
intriguing potential for empirical quantification of human 
response to a robot’s expressions [43]. 

B. Scope of work 
The goal of our ongoing work is to develop a practical 

approach to design simplified affective robots capable of 
emotive conveyance and to validate this approach through 
quantification of robotic interaction with humans using 
conscious (behaviour) and subconscious (neurophysiological) 
response measures. This work is motivated by pragmatic 
considerations for widespread use where highly actuated faces 
are not viable due to cost and maintenance constraints. We aim 
to design simpler robotic faces that evoke comparable human-
like interaction. Facial expressions, in particular, are typically 
conveyed through highly advanced digital graphical platforms 
or complex physical actuation displaying realistic facial 
movement which are not only very complex to program and 
maintain but are also sometimes off-putting to users. 
Identification and canonical abstraction of features of a robotic 
face that evoke similar responses from humans as a fully 
actuated (ideally an actual human) face have significant 
potential to enable broader and more accessible use of social 
robots [7].  

In this study, we extend our past research [43, 44] to 
introduce a complete hybrid-face affective robotic system to 
convey human-like facial emotions without the complexity of 
full facial actuation. We present the robot design, modelling of 
affect space emotions, validation through empirical 
(neurophysiological) assessment of human response during 
robot interaction, and simplification of the concept to deliver a 
complete commercial IoT robot system (‘Miko’ – ‘my 
companion’) that is in use today for affective robot interaction 
with children. This development provides a basis for the larger 
goal of developing mechanically simple platforms for human-
robot engagement as well as a method to quantify, 
physiologically, human response to affective robots.  

Our aim is to 1) demonstrate the capacity of our two robot 
systems with simplified digital affective face to visually convey 
emotions to a human observer and 2) quantify their conscious 
and subconscious responses to these emotions while 
demonstrating similarity between neurophysiological response 
to human and robotic emotive conveyance, ultimately to answer 
how effective are these robots in conveying emotions? 

The scope of this study encompasses: 1) the development of 
a hybrid-face humanoid robot capable of emotive response by 
modelling of emotion affect space, and integrating pupil 
dilation in expressions; 2) testing of hybrid-face through 
mapping human response to the robot qualitatively 
(interview/feedback) and quantitatively (EEG); 3) applying the 
findings from the hybrid-face robot to develop the commercial 
affective IoT social robot Miko, and 4) testing emotion 
conveyance of Miko in the same manner established by hybrid-
face robot qualitatively (interview/feedback) and quantitively 
(EEG). In this paper, we present the successful development of 
the simplified hybrid-face affective robot, its translation to a 
commercial robot Miko and validate their affective face designs 
through qualitative analysis of human physiological response. 

II. HYBRID-FACE AFFECTIVE ROBOT  

A. Design of Hybrid-Face Affective Robot 
The hybrid-face robot shown in Fig. 1(a) combines a digital 



face with a static 3D printed human visage-like structure (Fig. 
1(b)). It is designed to provide the flexibility of a digital 
countenance with some of the benefits of a full-featured, fully 
actuated face.  

 
Fig. 1. Hybrid-facer robot and its facial expressions. (a) The hybrid-face robot 
with a faceplate and digital display (b) 3D printed faceplate. (c) Facial 
expressions of the hybrid-face robot. (d) Hybrid-face robot’s thirteen degrees 
of freedom: left and right eyebrow angle 𝐵!"	and 𝐵!#; left and right eyebrow 
vertical height 𝐵$"	and 𝐵$#; left and right eyelid openness 𝐿"	and 𝐿#; eye pitch 
and yaw 𝐸%	and 𝐸&; pupil size 𝑃; mouth corner vertical height 𝑀$; mouth width 
𝑀'; top lip openness 𝑀(; and bottom lip openness 𝑀) for emotion depiction. 

The hybrid-face robot consists of eyebrows, eyelids, 
eyeballs, and mouth, with a total of thirteen degrees of freedom 
(DoF) (Fig. 1(d)). These thirteen values characterise the facial 
expression at any given time. The hybrid-face was programmed 
in the OpenGL environment and rendered using Face3D. 

We propose two types of affect space representations to 
generate emotions for the hybrid-face robot – categorical affect 
space and three-dimensional affect space, described below. We 
also added eye blinks, subtle twitching and constant motion of 
eyes to make the hybrid-face robot more dynamic, expressive, 
realistic and likeable. Further details of the hybrid-face robot 
affect space design summarised below are given in our previous 
work [44].  
1) Categorical Affect Space Emotion Representation 

The categorical affect space represents the robot’s facial 

expression by a linear combination of its basis expressions. Our 
set of basis expressions, extended from Breazeal's work [45], 
consists of happy, sad, angry, afraid, surprise, tired, stern, and 
disgust (B = {𝑏%⃗ !, 𝑏%⃗ ", … , 𝑏%⃗ #}),	each of which is a vector 
containing thirteen values corresponding to thirteen degrees of 
freedom of a hybrid-face.  

An expression 𝑒, is created by a weighted linear combination 
of variances of different expressions from neutral expression 
(𝑏%⃗ $ −	𝑏%⃗%) added to the neutral expression 𝑏%⃗%.  

𝑒 = 	./0𝑏%⃗ $ −	𝑏%⃗%1	𝑤%%⃗ $

#

$&!

3 +	𝑏%⃗% 

Where, n is a number of basis expressions, weight vector with 
a weight corresponding to each basis expression is 𝑤%%⃗ =
[𝑤!, 𝑤", … , 𝑤#], 𝑤$ 	𝜖	[0, 1]. Fitzpatrick [46] and Bruce [47] 
have shown that such emotions can be used in sophisticated 
human-robot interactions.  
2) Three-Dimensional Affect Space Emotion Representation 
We developed a three-dimensional affect space for the hybrid-
face robot inspired by Breazeal [45]. Unlike typical two-
dimensional affect space with arousal and valence axes [48, 
49], we use three dimensions with arousal, valance, and stance 
axes (Fig. 2), capable of capturing the vast majority of facial 
expressions [48, 50]. The three axes are characterised by six 
basis expressions	𝐵 = {𝑏%⃗ '())*, 𝑏%⃗ +(, , 𝑏%⃗ +-.).$+/ , 𝑏%⃗ 0$./, , 𝑏%⃗ (#1.*,
𝑏%⃗ (2.($,}, with pairs of opposite expressions on each end of axis: 
valence axis with happy and sad, arousal axis with surprise and 
tired, and stance axis with angry and afraid. Each expression is 
a linear combination of three basis expressions, one on each of 
the axes. 

 
Fig. 2. Three-dimensional affect space represented by axes of arousal (high or 
low), valence (positive or negative) and stance (open or closed). 

The representation of an expression 𝑒 at a location 𝑥⃗ =
[𝛼	𝛽	𝛾]3, 𝛼, 𝛽, 𝛾	𝜖	[−1,+1]	in the 3D affect space is given by 
the linear combination of variances of basis expressions along 
three axes from neutral expression (𝑏%⃗ $ −	𝑏%⃗%) as follows: 

𝑒 = max(𝛼, 0) (𝑏%⃗ '())* − 𝑏%⃗%) + max(−𝛼, 0) (𝑏%⃗ +(, − 𝑏%⃗%) +	 

	max(𝛽, 0) (𝑏%⃗ +-.).$+/ − 𝑏%⃗%) + max(−𝛽, 0) (𝑏%⃗ 0$./, − 𝑏%⃗%) + 

	max(𝛾, 0) (𝑏%⃗ (#1.* − 𝑏%⃗%) + max(−𝛾, 0) (𝑏%⃗ (2.($, − 𝑏%⃗%) + 𝑏%⃗% 
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where the maximum function max negates the contribution of a 
basis expression if 𝑥⃗ is closer to its opposite basis expression. 
Unlike Breazeal's work, we have placed angry and afraid 
expressions on the positive and negative end of the stance axis 
to simplify the affect space.  

B. Participants 
To assess conscious and subconscious responses to the 

hybrid-face robot, we performed tests with 19 healthy 
participants (22 - 58 years, 9 female and 10 male). This group 
of participants was selected from a wide age range and diverse 
professions to better resemble the population that social robots 
would have to engage with. All 19 participants participated in 
behavioural response experiments out of which 12 participants 
also took part in neurophysiological response experiments. 
Ethical approval for the study was obtained from the University 
of Bristol Ethics Committee and all participants gave informed 
written consent. 

C. Behavioural Response to Hybrid-Face Robot 
1) Emotion recognition experiment 

A forced-choice expression recognition task [12, 51, 52] was 
conducted for qualitative assessment of recognition of the 
hybrid-face robot emotions. Participants were shown different 
expressions (happy, sad, angry, afraid, surprise, tired, stern and 
disgust) in a random order for 4 s each and were asked to select 
the best matching emotion from a provided list of above eight 
emotions. Several instances of each expression were repeated 
with different combinations of static expression, expression 
with realism features (blinks and twitches) and expression with 
animation i.e. transitioning from the neutral expression.  
2) Pupil dilation experiment 

This experiment investigated the relationship between pupil 
dilation and implied emotion from the hybrid-face to quantify 
empirical values of pupil dilation for each emotional 
expression. We aimed to investigate whether pupil dilation 
values improve emotion recognition rates if the robot face 
showed pupil dilation size that humans may innately associate 
with a ‘universal standard’ for each emotion.  

Seated 1 m away from the robot, participants were not asked 
to recognise an emotion for the expression but provide their 
subjective opinion to three pupil dilation sizes; the minimum 
(when the pupil dilation began to suit the face), the target (when 
the pupil dilation matches the expression) and the maximum 
(when the pupil dilation begins to mismatch with the facial 
expression). To quantify participant’s subjective expectations 
of pupil dilation to the eight robot facial expressions, each 
expression was presented initially with a minimal pupil dilation 
that increased over time to a maximum. The digital pupil 
dilation of the robot was increased gradually at a rate of 0.6 
mm/s from a minimum 10 mm diameter to a maximum 40 mm 
diameter, on a white sclera of 85 mm diameter surrounding a 
blue iris with a 45 mm diameter.  

D. Neurophysiological response to Hybrid-Face Robot 
Drawing from physiological studies on the quantification of 

neural response to human emotion, EEG experiments were 
conducted to validate the subconscious response of humans to 
robot emotions. The purpose was to investigate if robotic 
emotion conveyance could evoke comparable neurological 

responses to human emotion conveyance such as face-specific 
N170 ERP. To validate our ERP experimental paradigm and 
provide a baseline with N170 response evoked by human faces, 
we conducted a pre-pilot with a subset of three participants (see 
Appendix I). Participants were shown pictures of human faces 
[53] with different standardised emotions according to FACS 
on a monitor and their EEG was recorded.  
1) Experimental Design 

Participants seated 1 m away from a monitor and hybrid-face 
robot (Fig. 3), were naïve to the research question and were 
asked to observe stimuli. Neurophysiological response to 
structured facial expressions and the effect of emotion 
presentation with context (hybrid-face robot) or without context 
(digital face on monitor) was studied. For the experiment with 
the face on a monitor, a fixation cross was presented for a 
random duration around 2 s followed by an emotion stimulus in 
random order for 1 s. A blank screen was displayed for 1 s 
between trials. The experiment with hybrid-face robot followed 
the same structure, only the stimulus was presented on the 
hybrid-face robot which provided additional configurational 
information. Twenty-five EEG trials were recorded for each 
emotion during robot and monitor conditions. 

 
Fig. 3. EEG experiment setup with the participant seated in front of hybrid-face 
robot and monitor. 
2) EEG Recording 
EEG was recorded using a 16 channel 24bit g.tec USBAmp 
(g.tech medical engineering, Schiedlberg, Austria), sampled at 
256 Hz with online bandpass-filtering between 0.10-30Hz. 
Electrodes were placed at Fp1, Fpz, Fp2, F3, Fz, F4 (frontal), 
C3, Cz, C4 (central), T7, T8 (temporal), P7, P3, Pz, P4, P8 
(parietal) and Oz (occipital) locations according to 10-20 
international system with reference at left ear lobe and ground 
at Fpz. Electrode impedance was kept below 20 kΩ. 
3) ERP Analysis 

EEG was filtered between 0.1-20 Hz using a zero-phase shift 
digital low pass filter. Artefacts were removed by rejecting 
trials with amplitude greater than ±70 µV on channels Fp1 and 
Fp2 and by visual inspection. The artefacts removed EEG was 
segmented into epochs -100 ms to 400 ms after the stimulus 
onset. The grand average ERP was extracted by averaging of 
the time locked trials across subjects and each stimulus. We 
characterised the latency of N170 ERP component by averaging 
percentiles from minimum amplitude within 130-190 ms post-
stimulus time window.  

E. Results of Hybrid-Face Robot Experiments 
1) Behavioural response to the hybrid-face robot 

Table. I shows the confusion matrix of average emotion 



recognition accuracies from forced-choice experiments under 
all conditions (static, realism, animation and their 
combination). Happy, sad and surprise expressions had the 
highest recognition accuracies. However, stern was confused 
with tired and angry, angry was confused with stern, afraid was 
confused with sad, and disgust was confused with surprise, 
possibly due to the similarity between the expression features. 
Poor identification of emotion disgust is well noted in the 
literature [24-26], however, we observed lowest accuracies for 
afraid and stern with the hybrid-face robot. 

TABLE I. CONFUSION MATRIX OF OVERALL EMOTION RECOGNITION 
ACCURACIES (%) FOR HYBRID-FACE ROBOT  

 
Table. II shows correct emotion recognition percentages 

under animation, realism and static conditions. Animation 
showing transition of emotion from neutral expression 
decreased recognition rates for angry, afraid, tired and 
disgusted, possibly due to unnatural speed of animations. 

TABLE II. EMOTION RECOGNITION ACCURACIES (%) FOR HYBRID-FACE 
ROBOT IN STATIC, ANIMATION (TRANSITIONING FROM NEUTRAL) AND 

REALISM (BLINKS AND TWITCHES) CONDITIONS  

 
2) Effect of pupil dilation on emotion recognition 

The results for pupil dilation experiment, recorded as the 
percentage of iris diameter, are presented in Fig. 4(a). The pupil 
dilation for a given expression was recorded for three interest 
points; minimum, target and maximum pupil dilation. 

 
The pupil dilation for the happy expression is consistently 

greater than neutral expression across the three interest points. 
Surprise is the only other emotion to provide an equally large 
dilation percentage comparable with happy. Angry has 
consistently the smallest pupil size across all interest points. 
The ideal target size of pupil dilation for the neutral expression 
was consistent at 25% of the iris diameter. 

Results indicating the difference between expected pupil 
dilation for emotional face diagrams as a percentage of total iris 
diameter relative to neutral, the relationships can be suggested; 
happy (+3 to +8%), stern (-2%), angry (-3 to -5%), afraid (-3%), 
sad (+4%) and disgust (+1 to +3%). The results for tired vary 
inconsistently across interest points. Results for the three 
interest points suggesting these relationships are presented as 
percentages of the total iris size to allow for comparison and 
across emotions (Fig. 4(b)). 

 
The results across the three interest points for other emotions 

vary around neutral and between happy and angry expressions. 

While small differences between grand-average results for each 
emotion can be due to with-in variation, an overall relationship 
between pupil dilation and the happy, angry and neutral face 
diagrams is demonstrated. 

 
Fig. 4. Pupil dilation results. (a) Grand-average results for pupil dilation 
expectations to match emotion for three interest points: minimum, target and 
maximum presented as percentage of the total iris size. (b) Grand-average 
results for pupil dilation to match emotion for three interest points illustrated on 
the image of iris for comparison.  

 
3) Physiological ERP response to the hybrid-face robot  

A clear face-specific N170 ERP was observed in the parietal 
region for hybrid-face robot emotions. The grand-average N170 
ERP amplitudes and waveforms are presented in Fig. 5 for each 
emotion at the P8, for both robot and screen sources. This ERP 
response was similar to N170 ERP response to pictures of 
human facial expressions as described in Appendix I.  

Statistical significance of different expressions and effect of 
context presentation on ERP was assessed using Analysis of 
Variance (ANOVA). Facial expressions with strong positive or 
negative emotions evoked a larger ERP response than neutral. 
Angry emotion showed highest amplitude (AngryMONITOR 
(F(1,259)=3.03, p=0.083), AngryROBOT (F(1,259)=4.43, 
p=0.036). The differences in the amplitude and latencies of 
N170 for different emotions within the same stimuli 
presentation source (monitor or robot) were not statistically 
significant. However, differences in amplitude of N170 
between the two stimuli presentation sources were statistically 
significant (F(1,17)=11.73 p<0.01). The topography of EEG 
showing N170 in the two stimuli presentation sources for 
different emotions is shown in Appendix II. An average delay 
of 7 ms was also observed between two presentation sources. 



 
Fig. 5. N170 ERP response to hybrid-face robot expressions. (a) Comparison of 
N170 ERP amplitudes between stimulus sources (monitor and hybrid-face 
robot) for all emotions at P8. (b) Grand-averaged ERP waveforms for digital 
expressions presented on the monitor (without context) at P8. (c) Grand-
averaged ERP waveforms for digital expressions presented on the hybrid-face 
robot (with context) at P8. 

III.  TRANSLATION OF HYBRID-FACE SYSTEM FOR MASS-
MARKET SOCIAL ROBOT  

The hybrid-face robot concept has been validated for its 
capacity to convey different emotions successfully as shown by 
the qualitative assessment with strong recognition rates by 
humans and by quantitative assessment of face-specific N170 
ERP neurophysiological responses in the brain. These results 
provide a basis for full translation of the hybrid-face concept in 
the development of a commercial social robotic platform. The 
next subsections detail the development and testing of an 
application of a hybrid-face in a IoT social robot dubbed Miko 
‘My Companion’, executed by Emotix Inc (Mumbai, India). 
Despite its simplicity, a full hybrid-face robot with all 3D facial 
features was not practical as a stand-alone device for mass-
market. A further simplified version of the face and expressions 
was necessary without compromising recognition rates and 
human response to emotions, while improving likeability.  

A. Design of Miko Social Robot 
Miko robot is an intelligent IoT based social robot designed 

for educational purposes (https://miko.ai/in). Miko draws upon 
the hybrid-face robot concept to improve human-robot affective 
interaction. The first-generation robot we have produced, Miko 
I, is simplified from the original hybrid-face robot and consists 
of eyes which can show different emotions to facilitate 
communication. The hybrid face of Miko I itself is placed on its 
head which also has ears and a curved surface, giving an illusion 
of depth (Fig. 6). Design choices such as the curved hybrid-
face, colour, ears, and shape were chosen through qualitative 

experiments with customers and tools such as Quality 
Functional Deployment (QFD). Development of Miko I was 
guided by a user centric design approach involving feedback 
from over 300 young school students. Students were able to 
identify majority of the Miko expressions and always correctly 
identified whether the emotion associated to the displayed 
expression was positive or negative. Sound cues helped 
identification of emotions; however, a clear visual 
representation of expression was found to be more important. 
Communication with Miko I occurs through IoT connectivity 
via an app that allows users to talk and send various emotions 
using different emoticons. Miko I displays received emotions 
along with audio and light stimuli as well as small movements 
matching the emotions. The range of emotions for Miko I, 
drawing from the hybrid face, are shown in Fig. 6.  

 
Fig. 6. Miko I social robot with a curved display resembling a 3D structure of 
a face showing different emotions. 

In this study, we focus on the recognition and 
neurophysiological response of emotions displayed on the 
hybrid-face of Miko I to validate its capacity to evoke human 
emotive response. Having established a procedure for response 
validation, we execute this procedure with Miko I and compare 
its response to that of the full hybrid-face robot with 13 DoF.  

The depiction of emotions of Miko I is simplified and do not 
show the gradation/transition depending on parameters as with 
the full hybrid-face robot. While more complex transitions and 
emotions may be incorporated in future releases, we wish to test 
if the simplified emotions in Miko I provide comparable 
conveyance and recognition to human-human interaction via 
behaviour and neurophysiological (N170 ERP) studies. 

B. Participants 
To assess conscious and subconscious responses to Miko I 
robot similar to hybrid-face robot, we performed tests with 
two groups of healthy participants. A group of 15 participants 
(19 - 29 years, 5 female and 10 male) participated in the 
behaviour response experiments with Miko I and a second 
group of 10 participants (22 - 29 years, 1 female and 9 male) 
participated in the neurophysiological response experiments. 
Ethical approval for the study was obtained from Imperial 
College London Science, Engineering and Technology 
Research Ethics Committee and all participants gave informed 
written consent. 

C. Behavioural Response to Miko I Robot 
We repeated the behavioural analysis with emotion 

recognition task on Miko to qualitatively assess recognition of 



different expressions shown by Miko. The experiment structure 
was the same as the forced-choice experiment conducted with 
the hybrid-face robot described in section II.C.1. To avoid 
response bias, subjects who had never interacted with robot 
Miko were selected.	Participants were given a list of the same 
emotions and after each emotion shown by Miko, they were 
asked to select the best matching emotion. Emotions were sent 
to Miko manually from its companion mobile app and each 
emotion was displayed for 4 s with several repetitions in 
random order. In this experiment, the movement of Miko was 
constricted but the sound and light stimulus occurring along 
with the facial expressions were kept on, that might help in 
emotion recognition. The recognition rate of different Miko 
expressions were recorded. 

D. Neurophysiological response to Miko I Robot 

The aim of this experiment was to study whether Miko I robot 
with simplified facial features shows face-specific N170 ERP 
neurophysiological response to different emotions similar to the 
full hybrid-face robot.  
1) Experimental design 

Miko I was placed approximately 90 cm away from the 
participants on a desk. The experiment setup is similar to the 
one shown in Fig. 3. Neurophysiological responses to four 
emotions: angry, happy, sad and surprised were tested. We 
selected these four emotions because they are far apart on the 
three-dimensional affect space axes (see Fig. 2) and showed 
strong N170 ERPs with the hybrid-face robot. The emotions 
were sent to Miko I via its companion mobile app manually at 
the beginning of each EEG trial. During each EEG trial, Miko 
I displayed the emotion for 4 s followed by a break of 4 s. The 
order of the sent emotions was randomised to avoid anticipation 
of the next emotion. A camera co-registered with EEG 
recording was placed facing Miko I that recorded Miko’s 
emotions which was later used to extract the exact time of onset 
of the stimulus (emotion) shown by Miko I. During a 4 s break 
period, Miko showed neutral expression and blinked regularly. 
The movement of Miko was restricted and the lights and sounds 
presented by the Miko during different emotions were switched 
off as they provide additional multimodal stimuli. 
2) EEG Recording 

EEG was recorded using TMSi Porti amplifier and EEG cap 
with passive electrodes (TMSi, Oldenzaal, The Netherlands). 
16 unipolar channels of EEG were recorded from the locations 
Fp1, Fp2, Fpz, F3, F4, Fz (frontal), C3, C4, Cz (central), T7, T8 
(temporal), P3, P4, Pz, Poz (Parietal) and Oz (occipital) 
according to the 10-20 international system. Channel AFz was 
used as common ground. EEG was recorded at 2048 Hz and 
downsampled to 256 Hz during analysis. 60 EEG trials were 
recorded for each of the four emotions for each participant. 
3) ERP Analysis 

EEG was filtered between 0.1-45 Hz using 4th order zero-
phase shift band-pass filter to remove DC offset and high-
frequency noise. Artefacts were removed using Independent 
Component Analysis from EEGLAB toolbox [54]. The 
independent components containing mostly ocular artefacts 
were identified manually and removed. The artefacts removed 
EEG was segmented into epochs -100 ms to 400 ms after the 
stimulus onset. The stimulus onset was extracted from the video 

of Miko emotion changes. The video was recorded at 26 fps and 
hence the stimulus resolution obtained was 38.46 ms. The mean 
of the 100 ms pre-stimulus was used as the baseline for 
normalisation. Any trial with an amplitude above ±70 µV was 
excluded from further analysis. Each trial was then filtered 
between 1-5 Hz to obtain the ERPs. The N170 ERP for each 
emotion was extracted through the grand average of time locked 
EEG trials across all subjects. 

E. Experimental Results of Emotive Response to Miko I 
1) Behavioural response to Miko I 

Table. III shows the confusion matrix of Miko I emotion 
recognition accuracies by participants in percentage during 
forced-choice emotion recognition experiment. The 
expressions happy, sad, angry and tired showed the highest 
recognition rates. Other expressions showed lower recognition 
rates. Particularly, participants confused stern with disgusted 
more than half of the times and showed the lowest recognition 
rates. Other emotions that were generally confused were stern 
with tired, disgusted with surprised, and surprised with afraid. 
Interestingly, the recognition rate of emotion afraid in Miko I 
showed significant increase compared to the hybrid-face robot.  
TABLE III. CONFUSION MATRIX OF EMOTION RECOGNITION ACCURACIES (%) 

FOR MIKO ROBOT 

 
Overall the results of recognition were in agreement with the 

results of the hybrid-face robot. Recognition accuracies were 
higher for happy, angry and sad and lower for stern and disgust 
than the corresponding recognition accuracies for the hybrid-
face robot. We hypothesize this small difference is a result of 
loss of mouth, which might add critical information for 
recognition of stern and disgust.  
2) Physiological ERP Response to Miko Robot 
All participants showed distinct changes in neurophysiological 
markers in response to Miko I robot depicting different 
emotions. We observed ERP component N170, which is 
consistent with identification of faces in EEG in response to 
Miko I emotions. Grand-average ERP responses to different 
emotions in channels Pz, Poz and Oz are shown in Fig. 6. Strong 
ERPs were observed in parietal regions as expected. This shows 
that the Miko I robot with simplified facial features also 
successfully evoked responses that are typically obtained by 
observing fully articulated face with all the features such as 
mouth and eyebrows, which is the direct response documented 
to human facial expressions. Emotion surprised showed 
strongest N170 in Poz and Oz, whereas happy had highest N170 
in Pz. ERPs of different emotions between 150 – 250 ms were 
not significantly different as determined by ANOVA, 
consistent with the hybrid-face robot. Thus, responses to Miko 
I were similar to those observed for the hybrid-face robot and 
simplification of facial features did not decorate recognition or 
emotional response.  



 
Fig. 7. N170 ERP responses to Miko I expressions. (a) Grand-average N170 
ERP waveform for all emotions together at Pz, Oz and POz. (b) Grand-average 
N170 ERP waveform for individual emotions at Pz, Oz and POz. 

IV. DISCUSSION 

A. Summary of findings 
In this study, we designed, validated emotional response, 

simplified, and commercially translated a hybrid-face robotic 
system. We investigated and quantified human physiological 
response to digital facial expressions from two versions of the 
robot: a hybrid-face robot research platform and Miko I, its 
simplified version commercial release.  

Human-robot interaction and cooperation requires trust. 
Trust is typically achieved in human interactions using 
emotions and similar approach could enhance human-robot 
engagement by enabling robots to convey emotions via facial 
expressions. An optimal balance must be achieved between 
realistic appearance and iconic appearance of robot. The state 
space for developing affective robot face is huge, hence based 
on pragmatic approach, we have made assumptions to simplify 
this space to create a hybrid-face robot that gives illusion of 
depth without compromising the simplicity of design and 
implementation. Since developing a fully actuated face was not 
practical, we simplified it by developing a hybrid-face with 
similar features. This hybrid-face was still not practical for 
commercial applications and hence we simplified it even 
further to develop Miko I robot, which still captured the core of 
human-robot interaction as contrasted to established human-
human responses (face-specific N170 ERP). 

We assume that there are different levels of abstraction for 
developing a facial robot in increasing order as follows: human 
face, fully actuated face, hybrid face, simplified hybrid face and 
digital avatar. Intuitively, people respond better to a face that 
shows depth. Hence, we designed hybrid-face robots that gave 
perception of depth with faceplate without actuation on the 
face. By studying participants’ conscious response and then 
evaluating their subconscious response (through ERP), we 
found that not actuated depth-based robots give comparable 
human-like affective responses as seen from similar face-
specific N170 ERP, which is a well-established response to 
human faces [39]. Our experimental design also allowed 
participants to move their head and explore three-
dimensionality of the robot which can be paralleled to real 

human interaction. Including depth in the design of hybrid-face 
robot helped in building the context, which is important to 
enhance human-robot interactions. Though we found the depth 
in representation of the robot’s face is useful pragmatically to 
create better affective experience, further work will be needed 
to quantify its effect. 

B. Hybrid-face robot validation  
First, we examined the utility of hybrid-face robot with 3D 

printed faceplate and digital display as a platform for human-
robot engagement. As an attempt to verify the functionality of 
the hybrid-face robot, and to gain insights into mathematical 
representations of affective potential, emotion recognition 
experiments were carried out. Participants were able to identify 
different emotions with high accuracies. The animation and 
realism features could be fine-tuned in the future work to 
increase expression recognition. The hybrid-face design is very 
flexible and adaptable to incorporate new expressions. 

We demonstrated the ability of the digital facial expressions 
to effectively convey emotion to a human observer by recording 
event-related potentials in EEG to determine the perception of 
digital emotion. We found significant difference in ERP due to 
the context presentation using monitor and the hybrid-face 
robot, thus depth shows differences in physiological response 
to face. We ensured that participants were naive to the research 
questions to avoid bias in face processing known to occur due 
to context and manipulation by an emotionally laden task [55]. 

A distinctive N170 component was reliably identified in the 
grand-average response from all participants, for all hybrid-face 
robot emotions. The digital facial expressions were able to 
modulate the ERP response despite having low information 
bandwidth. Our results are consistent with previous studies of 
the human response to conveyed emotion which state both 
pleasant and unpleasant expressions evoked a larger N170 ERP 
response than neutral expression and this change in activity is 
located on the right parietal brain area (Appendix II Fig. 9). 
These results are in line with other trials conducted with human 
images (including our ERP validation in Appendix I Fig. 8), 
though our results for the robot’s facial expressions are 
modulated with a lower amplitude and increased latency, 
congruent with a similar study by Dubal [56], who found that 
robot expressions are encoded as early as human faces but 
evoke a later and muted response. This indicates that several 
neuron clusters associated with internal features and head 
detection maybe engaged requiring additional time to acquire 
configural information. Positive emotions were evoked earlier 
than negative, which follows the current literature. This work 
confirms the trend by extending physiological responses to 
human expressions produced by more than forty-four muscles 
on the face to very simplified robot expressions. 

An average delay of ~7 ms occurred in physiological 
responses between the two sources of computer monitor and the 
hybrid-face robot. This might be caused due to the increase in 
configural information or a delay as attention is refocused to the 
hybrid face. While a fixation cross was presented on the 
monitor, subjective comments from participants noted that 
focusing attention was easier and more natural for the hybrid 
face with head and ears, which helped setting the configuration 
parameters.  

These results show considerable promise because 



participants were able to identify most of the expressions and 
responded positively to hybrid-face robot interaction. 
Participants quickly accepted digital facial expressions causing 
their attention to evolve beyond robot’s physical characteristics. 
Thus, we propose a novel method to quantify human-robot 
engagement using empirical N170 ERP measure.    

Pupil dilation is an often overlooked dimension of non-verbal 
communication that can influence perceived emotion. We 
added pupil dilation to the hybrid-face robot in the attempt to 
improve conveyance of emotions by increasing the degrees of 
freedom without adding actuation based on our pragmatic 
assumptions. Inclusion of pupil dilation feature is inconclusive 
currently and it is difficult to determine whether it helps with 
the confidence of emotion recognition and requires further 
investigation. Participants noted that they were not aware of 
how dramatic the effect of pupil size was on the overall 
demeanour and interpretation of robot’s expressions. Varying 
the size of the iris may impact the expected dilation of the pupils 
for different emotional expressions. The current eye colour of 
the digital face provides a definite contrast between the light 
blue iris and black pupil, that even with increased pupil dilation, 
gives the appearance of a cold stare for some facial expressions. 
The results from this experiment provide average estimations 
of pupil dilation to robot’s facial expression that will help 
improve emotion recognition rates in further experiments. 

C. Simplification of Hybrid-Face Robot for mass market  
Acceptability of engaging with the hybrid-face robot by 

human participants and high recognition rates of different 
emotions presented by the hybrid-face robot was promising. 
However, the hybrid-face approach was still not viable for 
incorporating in a commercial product which required further 
simplified face. Thus, the hybrid-face robot influenced the 
development of a commercial social robot Miko I capable of 
affective conversations by creating further abstractions of 
emotion representation. Here, we studied Miko’s ability to 
convey different emotions and human response to those 
emotions and compared those with the results of the hybrid-face 
robot by repeating the same set of experiments. Even though 
Miko I had simplified facial features with just two eyes, the 
behavioural and physiological experiments showed comparable 
results to a full hybrid-face robot. Thus, Miko I was able to 
convey emotions successfully using static, singular expressions 
with eyes only, simplifying affect space representation. Miko I 
has integrated IoT capabilities to enable affective engagement 
with children for educational purposes. The conversational 
ability of Miko I which is not investigated in this study may 
benefit greatly from using the appropriate expressions to enrich 
the affective information content in the conversation and 
enhance engagement with humans. Similar to hybrid-face, 
participants reported that the curvature and ears on Miko I 
representing facial structure providing contextual information 
helped in associating with the humanoid form and in 
recognising expressions. 

The physiological study of human responses to Miko 
emotions also showed a distinct face-specific N170 ERP 
component during all the emotions. This validates the findings 
of simplified hybrid-face principle and its translation to Miko I. 
The amplitude of N170 was smaller because our EEG itself had 
an overall smaller amplitude. The latency of N170 could not be 

estimated accurately because the stimulus was extracted from a 
video with a resolution of 38.46 ms. Strongest ERP was 
obtained for emotion surprised which was represented by 
bigger eye size than other emotions, however, participants 
showed some uncertainty in recognition of this emotion. Thus, 
experiments with Miko showed a successful practical 
application of hybrid-face in affective social robot with IoT and 
demonstrated evoked response to human-robot affective 
interaction on a physiological level. 

Based on these findings, we argue that simplified robotic 
platforms fusing static mechanical design and digital encoding 
can evoke conscious and subconscious emotive response in 
human beings comparable to human-human interaction. 

V. CONCLUSIONS 
We have presented a complete project life cycle, from 

concept, to design, implementation, testing, validation, and 
commercial translation of hybrid-face robotic system capable 
of evoking human-like affective response in users. A first 
generation affective hybrid-face robot is developed to help 
researchers design intelligent systems capable of ensuring 
mutual trust, safety, and effective cooperation with humans. We 
successfully applied this hybrid-face to develop a commercial 
IoT social robot, Miko I, by providing it with the ability to 
integrate affective information in its interactions. The 
qualitative and quantitative assessment of both the hybrid-face 
robot and its application to Miko I demonstrated that human 
participants were able to recognise the emotions conveyed by 
the robots with high accuracy and also showed physiological 
face-specific N170 ERP response in their EEG which is 
typically obtained with observing human faces. This validated 
the effectiveness of emotion conveyance by social robots.  

In summary, new contributions of this investigation include: 
• Establishing that ‘hybrid face’ robots are comparable to 

human faces for emotional state conveyance 
• Derivation of a canonical set of facial degrees of freedom, 

including pupil dilation, for deployment of affective 
robotics in real-world environments with IoT connectivity 

• Introduction of two models - categorical and affect space - 
for representing robotic expressions 

• Introduction of the use of empirical recording of EEG 
physiological response as a tool to quantitatively assess 
human response to robotic emotions; demonstration that 
EEG mapping of subconscious response to human-robot 
visual affective interaction correlates to that of human-
human visual affective interaction 

• Presented a useful approach for practical commercial 
translation of affective IoT human-robot interface systems 
leading to a new mass market robotic product 

Emotix has, since the time of these experiments, released a 
new robot with greater autonomy (Miko II) drawing on these 
findings. Future work will involve implementing Miko II and 
other forms of the hybrid-face robot to accelerate learning in 
children and as a support tool for the elderly in isolation.  



APPENDIX 
I. COMPARISON OF N170 ERP RESPONSE TO HYBRID-ROBOT 

FACE AND PICTURES OF HUMAN FACES 
Fig. 8 shows comparison of N170 ERP response to hybrid-face 
robot and pictures of human facial expressions taken from 
Japanese Female Facial Expression database [53] with FACS 
expressions in three participants. This was conducted with a 
small subset of participants to validate our ERP paradigm and 
observe whether human faces show the expected face-specific 
N170 response. A strong N170 ERP is obtained for human faces 
as well as for the hybrid-face robot.  

 
Fig. 8. Comparison of grand-averaged N170 ERP response to digital face 
presented on monitor and hybrid-face robot, and pictures of a human face.  

II. EEG TOPOGRAPHY MAP OF DIFFERENT STIMULI  
Fig. 9 outlines multiple views of EEG topography showing 
spatial location of N170 ERP response to neutral, happy, sad 
and angry expressions for computer monitor and robot stimuli 
sources. The digital expressions presented on monitor evoked 
larger N170 ERP as compared to expressions on robot. 

 
Fig 9. EEG topography of evoked negative N170 ERP response to expressions 
neutral, happy, sad and angry presented on monitor and hybrid-face robot.  
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