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ABSTRACT: Proteinoids, or thermal proteins, are produced by heating amino
acids. Proteinoids form hollow microspheres in water. The microspheres
produce oscillation of electrical potential. Actin is a filament-forming protein
responsible for communication, information processing and decision making in
eukaryotic cells. We synthesize randomly organized networks of proteinoid
microspheres spanned by actin filaments and study their morphology and
electrical potential oscillatory dynamics. We analyze proteinoid−actin networks’
responses to electrical stimulation. The signals come from logistic maps, the
Lorenz attractor, the Rossler oscillator, and the FitzHugh−Nagumo system. We
show how the networks attenuated the signals produced by these models. We
demonstrate that emergent logical patterns derived from oscillatory behavior of
proteinoid−actin networks show characteristics of Boolean logic gates, providing
evidence for the computational ability to combine different components through
architectural changes in the dynamic interface. Our experimental laboratory study paves a base for generation of proto-neural
networks and implementation of neuromorphic computation with them.

■ INTRODUCTION
Thermal proteins�proteinoids�are generated by subjecting
amino acids to elevated temperatures until reaching their
melting point, thereby initiating polymerization to form
polymeric chains. Polymerization occurs within the temper-
ature range of 160−200 °C, without the presence of a solvent,
initiator, or catalyst, and in an inert atmosphere. Amino acids
with trifunctional properties, such as glutamic or aspartic acid
or lysine, undergo cyclization at high temperatures, functioning
as solvents and initiators for the polymerization of other amino
acids.1,2 This uncomplicated thermal condensation reaction
allows the production of proteinoids with either acidic or basic
characteristics. A proteinoid can be expanded in an aqueous
solution at moderate temperatures (approximately 50 °C),
resulting in the formation of microspheres.2 These micro-
spheres are typically hollow and often contain an aqueous
solution. The proteinoid microspheres maintain a steady state
membrane potential 20 to 70 mV without any stimulating
current. Some microspheres in the population display the
opposite polarization steadily.3 Electrical membrane potentials,
oscillations, and action potentials are observed in the
microspheres impaled with microelectrodes. These micro-
spheres exhibit action-potential like spikes. The electrical
activity of the microspheres also includes spontaneous bursts
of electrical potential (flip-flops), and miniature potential
activities at flopped phases.4 The electrical properties of
behavior of proteinoids microspheres inspired Sydney Fox and

colleagues in early 1990s to propose these structure as proto-
neurons, replacements of Oparin used coacervate protocols.5

Actin is a type of cytoskeletal protein that has the ability to
form filamentous networks.6−8 Actin is a protein that is
abundantly expressed in all eukaryotic cells.9 It plays a crucial
role in cellular functions by forming an intracellular scaffold,
actuators, and pathways for information transfer and
processing. There is supporting evidence indicating that actin
may serve as a conduit for electrical potential and ionic
waves,10 as well as participating in quantum protein
transitions,11,12 alongside its established roles in mechanical
force transmission and signaling cascades. Both experimental
observations and modeling efforts have demonstrated the
ability of actin to function as biowires capable of conducting
ionic waves.10,13−18 Actin filaments, being polyelectrolytes
surrounded by counterions, possess the capability to transmit
signals or sustain ionic conductances.10,19

Based on the above, we have proto-neurons made of
proteinoid microspheres and proto-axons/dendrites made of
actin filaments. Therefore, we can make a proto-neural
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network. Actin filaments are engineered through controlled
polymerization inside the proteinoid microspheres, rather than
emerging spontaneously. A key idea is to design and prototype
in laboratory conditions a proto-neural network where
proteinoid microspheres are spanned by actin filaments. We
believe that endogenous and induced electrical oscillations of
proteinoids can be transferred via actin filaments, thus allow
information propagation, processing and computation.
Biological organisms utilize oscillatory dynamics at many

levels to process information, perform computations, and exert
control.20−27 Networks consisting of interconnected oscillators
enable a wide range of tasks, including the regulation of
biological cycles, encoding of brain information, and facilitating
movement.28−32 Transferring these abilities to artificial systems
continues to be a significant obstacle. Utilizing the intricate
biochemical complexity seen in live systems, bio-inspired
methods offer promising avenues for exploiting oscillatory
dynamics.33−35 Composite materials that combine biological
molecules with synthetic structures offer a fascinating
foundation for building oscillator networks.36−39

Previous research into the integration of synthetic
architectures with cytoskeletal assemblies has demonstrated
the possibility for coordinated behaviors useful in computa-
tional applications.40−42 Notably, the networks generated by
cytoskeleton polymer actin demonstrate the realization of
fundamental logic gates, highlighting the assemblies’ ability to
implement advanced Boolean logic.43−46 Beyond simple
electrical coupling, reaction−diffusion processes enable
communication channels that take advantage of actomyosin
contractility and diffusion, opening up new possibilities for the
development of unconventional computing systems.47−49

These studies highlight bio-hybrid materials’ diverse and
dynamic capabilities in information processing.50,51 However,
it is worth noting that the majority of these studies have
exclusively concentrated on a single cytoskeletal component,
ignoring the different cooperation lengths and timelines that
are inherent in biological systems. Future research should
address this limit. It should seek a better understanding of the
synergistic interactions of various cytoskeletal elements in
novel computing.
The integration of proteinoid−actin networks will provide a

convincing framework for combining biological and abiotic
components to produce functionalities that are beyond the
capabilities of each alone. In addition to experimental
implementations of bio-inspired models, these hybrid systems

provide a two-way flow of knowledge between theoretical
frameworks and direct empirical data. As observed in the
molecular modeling of a proteinoid peptide containing L−
glutamic acid, L−phenylalanine, and L−aspartic acid (Figure
1), energy optimization reveals significant backbone con-
firmation and secondary structuring. The proteinoid−actin
network we have developed combines proteinoid microspheres
that have undergone thermal processing with rabbit
cytoskeletal filaments (Figure 2). This innovative approach

brings together two important aspects of cellular architecture-
localized compartmentalization and networked connectivity.54

The proposed connections are expected to involve carboxyl
groups on proteinoids binding with amino groups on actin,
resulting in strong amide bonds by carbodiimide bioconjuga-
tion.55

Figure 1.Molecular modeling of a thermal proteinoid peptide consisting of L−glutamic acid, L−phenylalanine, and L−aspartic acid. The proteinoid
is visualized with 11 amino acid residues showing backbone ribbon structure along with element color−coded atoms (Gray�Hydrogen, Red�
Oxygen, Blue�Nitrogen, Brown�Carbon). By designing the proteinoid model and minimizing its energy to −1442.88 kJ/mol via the ChimeraX
modeling system, a stable conformer was confirmed.52 When incorporated as a soluble network with cytoskeletal components, these nanoscale
proteinoid confirmations likely underpin the electron mobility, capacitance, and self-assembly profiles that initiate the emergence of complex
oscillatory phenotypes at larger scales.

Figure 2. Model depicts the integration of a rabbit muscle actin
filament with a thermal L−Glu:L−Phe:L−Asp proteinoid. The actin
structure shows the distinctive helical arrangement of globular actin
subunits. One end of the filament is closely associated with the
proteinoid membrane interface, indicating potential binding sites such
as surface carboxyl groups that allow bioconjugation. For clarity, the
structures include backbone traces as well as element color-coded
atoms for both components. Understanding interfacial structural
features at the proteinoid−actin interface can aid in linking
conformational alignment to productive conduction channels
activated by the composite. Generally, multi-scale views highlight
the architectural integration of biological cytoskeletal components
with synthetic protocell-like compartments in order to construct
hybrid bio-materials for unconventional computing applications. The
structure of the Actin filament was found and subsequently modified
based on data from.53
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■ METHODS AND MATERIALS
Preparation of Proteinoid−Actin Networks. Actin

Binding Protein Spin-Down Assay Biochem Kit comprising
rabbit skeletal muscle actin was purchased from Cytoskeleton,
Inc. The amino acids L−Aspartic acid, L−Phenylalanine, and
L−Glutamic acid were acquired from Sigma-Aldrich and used
without additional purification. Upon procurement, the
thermal polycondensation technique was implemented for
proteinoids synthesis as described by Mougkogiannis et al.56

Equimolar mixtures of L−Aspartic acid, L−Phenylalanine and
L−Glutamic acid were heated at 180 °C for 30 min under
nitrogen atmosphere with constant stirring. Alongside the
amino acid mixtures, rabbit skeletal muscle actin was
introduced in a 1% w/w ratio during the thermal polymer-
ization process. The proteinoids formed were separated from
excess reactants via lyophilization and stored at room
temperature for subsequent analyses. The proteinoid−actins’
morphology was characterized by capturing scanning electron
micrographs using a Quanta 650 microscope. Prior to SEM
imaging, the samples were gold-coated to enhance their
conductivity and optimize imaging quality.
Recording of Electrical Activity. Subdermal electrodes

made of platinum−iridium coated stainless steel (manufac-
tured by Spes Medica S.r.l) were inserted into proteinoid−
actin samples, with a spacing of roughly 10 mm between them.
The Pico Technology ADC-24 data logger, with its high
resolution and 24-bit analog−digital converter, accurately
recorded the activity of electrodes. The study utilized an
Ossila Instruments manual potentiostat (Model: T2006A) to
conduct open potentiometry examination. The approved
measurement protocols were followed during the experiments.
Probing Proteinoid−Actin Networks with Quasi-

Chaotic Inputs. In this section, we investigate how our
biohybrid networks process complex, unpredictable signals. We
can test the networks using chaotic patterns from math models
(logistic maps, Lorenz attractors, and Rossler systems). This
will evaluate their ability to process diverse inputs. This
approach helps us understand whether these networks can
reliably process irregular signals, similar to biological neurons.
To evaluate proteinoid−actin networks’ response to a wide
range of electrical stimuli we decided to probe them with
quasi-chaotic sequences of voltage values generated by logistic
maps and Lorenz attractors.
Logistic Maps. Utilizing discrete logistic maps as a

framework for generating controlled chaotic voltage patterns
offers a clear and approachable starting point before delving
into the more complex realm of proteinoid compositions in
higher dimensions. The logistic map, renowned for its one-
dimensional discrete bifurcation dynamics, adheres to the
difference equation

=+x x x(1 )n n n1 (1)

The logistic map exhibits diverse dynamic phenomena such as
stable points, sites of divergence, chaotic patterns, periodic
intervals, and complexities in development that depend on the
growth rate factor μ.
To stimulate proteinoid−actin networks with logistics maps

we converted value x() to voltage as follows. We use numbers
between 0 and 1 (fractions) because the logistic map is
mathematically defined to operate in this range. To generate
the desired waveforms, we iterate the Logistic difference eq
10,000 times, starting from randomly selected starting values

between 0 and 1. This process produces pseudorandom
numbers that exhibit sensitivity to these initial conditions. By
setting the bifurcation parameter, μ, a value of 3.8, we ensure
the appearance of fully developed chaos that extends across the
entire unit interval. This has been confirmed by our analysis
using Lyapunov metrics. In order to convert these disordered
fractions into voltage signals, we apply a linear scaling process
that adjusts them to predetermined upper and lower limits
(−500 to +500 mV).
Instead of concentrating on tracking individual waveforms,

we employ an input−output analytic approach that compares
statistical features. This integration between mathematically
constructed randomness and biophysical stimulation protocols
enables the control of emergent bio-electronic systems.
The input voltages we provide systematically adjust the μ

factor, which in turn affects the responses generated by the
chemical reaction network inside the gate. By alternating
between low and high values of μ, the system has the ability to
provide either consistent fixed concentration outputs or
complex signals exhibiting significant fluctuations. The
integration of feedback loops that redirect output states back
into the system, resulting in the dynamic adjustment of growth
parameters, enables the development of autonomous or self-
contained chaotic circuits. These circuits can create random-
like numbers. But, their main purpose here is to make complex,
deterministic voltage patterns. They help us understand how
our proteinoid−actin networks process and respond to
irregular, unpredictable signals. We have assessed the
Lyapunov exponent, which quantifies the level of chaos in a
system, using different increments of μ. Furthermore, besides
quantitatively confirming the existence of deterministic chaos
through positive Lyapunov values, it also emphasizes the
complex reorganization of microenvironments when they are
significantly deviated from homeostasis. Examining higher-
dimensional systems using continuous dynamics provides a
more accurate portrayal of the collaborative interactions
among components of a system.
Chaotic oscillators offer a means to computationally analyze

fluidic phenomena through controllable and dynamic trans-
formations.57−59 These oscillators are math models. They
generate unpredictable but deterministic signal patterns, like
complex fluid flows in nature. Using such oscillators, we can
study how our proteinoid−actin networks react to various
irregular inputs. This will help us understand their information
processing. We utilize a Proteinoid−Actin Baker’s Map that
incorporates stretching and folding principles to mathemati-
cally simulate spiking.60 This paradigm of chaos serves as a
method of validation by connecting to the experimental
proteinoid−cytoskeletal system. By monitoring the movement
of particles during repeated fold−stretch cycles induced by
varying input voltages, we can accurately measure the degree of
chaos and the efficiency of mixing. Lyapunov exponents are
used to calculate the sensitivity of a system, while entropy
scores provide a measure of global dispersal.61 In our
experiments, we drive the proteinoid−actin networks with
chaotic signals. The networks’ response should show Lyapunov
characteristics like those of the input signals. This would mean
the system is a consistent signal processor. Lyapunov
exponents measure how nearby trajectories diverge in the
network’s response. They should correlate with the chaotic
properties of the driving signals. This will let us assess how well
the network preserves and processes complex input patterns.
Testing different input amplitudes helps to find nonlinearity. It
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also allows for the analysis of mobility vectors. These can link
macro-manifestations to microscopic reconfigurations. Non-
linearity has key signatures in the system’s response: (1)
Output changes are not proportional to input changes.
Doubling the input amplitude does not simply double the
output. (2) New frequencies appear in the output that were
not in the input signal. (3) The system responds differently to
equal-magnitude positive and negative inputs. We look for
these indicators when analyzing our proteinoid−actin net-
works. We examine their responses to different input
amplitudes. In general, studying well-known chaotic systems
as test models can provide valuable insights into the
computational capabilities of emergent proteinoids.
Lorentz System. Chaotic dynamics offer rich possibilities for

exploring complex signal propagation in engineered biomate-
rials. Studying chaotic dynamics does more than create random
patterns. It helps us to develop materials that process
information like biological systems. It also helps in creating
sensitive biosensors and adaptive materials. By studying how
our proteinoid−actin networks tackles chaos, we can create
materials with brain-like processing.62 This may lead to new
biological computers and smart biomaterials that respond to
their environment. This is key for making artificial neural
networks. They should mimic the complexity and adaptability
of biological systems.63 To subject proteinoid−actin networks
to chaotic stimulation we adopted the Lorentz system,
consisting of three coupled differential equations64 first derived
to model atmospheric convection65

=

=

=

x
t

y x

y
t

x z y

z
t

xy z

d
d

( )

d
d

( )

d
d (2)

Here x, y, and z denote system states, while σ, ρ, and β
represent empirically derived parameters. The Lorentz frame-
work’s spreading trajectories and topological transitivity in
phase space lend rich chaotic dynamics66�an intriguing
driving stimulus for nonlinear biomaterials. By interfacing
Lorentzian waveforms with proteinoid−actin composites, we
explore whether microscale cytoskeletal couplings can regulate
macroscale input volatility. Quantifying signal transformations
via time-series analyses and spectroscopy spotlights the
construct’s emergent spatiotemporal filtering response. The
algorithmic generation of voltage time series with chaotic
volatility is possible by numerically integrating a set of
equations known as the Lorenz system.
The parameters of the Lorenz ordinary differential equation

were assigned the values σ = 10, β = 8/3, ρ = 28, which are
rooted to generate chaotic attractors. The starting state vector
was defined as y0 = [0; 1; 1.05]. The time evolution was
calculated using a fourth-order Runge−Kutta solver with a step
size of 0.01 over a duration of 100 s. The chaotic input
waveform driving proteinoid−actin dynamical experiments was
derived from the x-component of the simulated Lorenz
trajectory. Similar methodologies have been employed to
generate chaotic stimuli with exponential divergence by
substituting corresponding vector fields and parameter settings
into the integrator schema mentioned above, using versions
such as the Rössler attractor. Using an ensemble of computer-

generated waveforms from various chaotic systems helps to
demonstrate the ubiquity of microscale signal analysis
characteristics that are engaged through the bio-composite
interface.
Algorithmically generated discrete binary bit streams were

used to investigate the integrated bio-interface. The spiking
patterns, which are combinations of random 0s and 1s, can be
effectively imitated and used for thresholding operations. Using
MATLAB’s built-in rand() function, binary strings were
generated with a resolution of 1 ms, encompassing a time
range of 50−100 s. Unlike chaotic signals for Lyapunov
exponent calculations, these binary patterns serve a different
purpose. They let us test the network’s basic signal processing.
We want to see if it can distinguish between discrete states and
maintain consistent thresholding behavior. This provides a
foundational understanding of the system’s reliability before
proceeding to more complex chaotic analysis. The code was
seeded to guarantee the reproducibility of pseudo-random
sequences. The process of converting into impulse trains
entails representing 1’s as a 100 ms increase in channel
amplitude to +500 millivolts, while 0s are represented as a 100
ms decrease in channel amplitude to −500 millivolts. This
process generates random patterns of stimulation consisting of
spikes and periods of silence. These controlled binary inputs
are a calibration tool. They establish the system’s baseline
response and signal-to-noise ratio. They augment, but are
distinct from, the chaotic analysis used for Lyapunov exponent
calculations.
In order to quantify sensitivity to initial conditions,

Lyapunov exponents calculate the exponential divergence
rate in phase space between adjacent trajectories. They were
computed by an algorithm adapted from Wolf et al.61

implemented in MATLAB. We use two complementary
approaches in our experiment. First, we calculate the Lyapunov
exponents of our input chaotic signals. This characterizes their
inherent complexity. Next, we analyze our proteinoid−actin
network’s response to the signals. We do this by measuring the
Lyapunov exponents of its output signals. By comparing the
Lyapunov exponents of the input and output, we can tell if the
network preserves, amplifies, or dampens the chaos in the
driving signals. This lets us see how well our biointerface
transmits complex time patterns. Placing point pairs above a
minimum separation threshold (0.001 V) and separated by a
fixed number of steps along the data series (in this case, 50),
the procedure selects them iteratively. The ratio of successive
divergence magnitudes for qualifying pairs approximates the
Lyapunov exponent along local vector lines. Prior to analysis,
input and output traces underwent smoothing through the
implementation of a Savitzky−Golay FIR filtering (order 2,
frame length 15). Assuring numerical instability, the value of ϵ
was configured to 10−5. These parameters find a balance
between data conditioning and intra-model integrity, which is
crucial for valid Lyapunov analysis.
Rössler Attractor. The Rössler system defines a continuous-

time dynamical system exhibiting chaotic oscillations useful for
exploring complex biosignals. First studied by Otto Rössler,67

it is governed by the set of coupled ordinary differential
equations
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Where x, y, z denote system states and a, b, c represent
control parameters originally set at a = b = 0.2, c = 5.7 to yield
a chaotic attractor.68 The system displays outward spiraling
trajectories that twist across dimensions�generating contin-
uous broadband oscillations prime for probing bio-inspired
interfaces. By combining Rössler waveforms with emergent
proteinoid−actin dynamics, we exploit the complexity that
arises from both built living materials and intended chaotic
systems. The primary goal here is to test how accurately our
proteinoid−actin networks can reproduce and process different
types of complex input signals. The input is the Rössler
system’s spiraling trajectories. They are test signals with known
properties. By seeing how well our bionetwork can mimic these
patterns, we can assess its potential as a signal processing
system. We can also understand its limits in reproducing
different dynamic behaviors. This helps us assess whether these
networks could potentially serve as biological computing
elements. The process of measuring mutual transformations by
examining the connections between attractor projections and

architectural reconfigurations highlights unconventional paths
of computation that exist in both domains.
Stimulating Proteinoid−Actin Systems with Output of

FitzHugh−Nagumo Model. The FitzHugh−Nagumo model
provides a simplified representation of neuronal excitation and
propagation dynamics. As originally demonstrated for
Hodgkin−Huxley models of action potential generation,69

the FitzHugh−Nagumo equations capture essential excitation
and recovery processes via coupled fast and slow variables70

=

=

v
t

cv v a v w

w
t

v w

d
d

( )(1 )

d
d

( )
(4)

Where v denotes the fast activation variable, and w
represents the slow recovery variable. The parameters a, c, ϵ,
and γ dictate excitability thresholds, time scales and other
dynamics. Above a critical input current, autonomous
oscillations emerge mimicking repetitive neuronal spiking.71

Interfacing such model biological oscillators with protei-
noid−actin networks could enable insightful investigations into
coupled excitable systems across scales. Exploring modalities
from electrical to chemical couplings, and relating synchroni-
zation motifs to microscopic cytoskeletal rearrangements can
spotlight unconventional bio-computation pathways. The rich
FitzHugh−Nagumo dynamics, from excitability to birhythmic-

Figure 3. Scanning electron micrographs depict the varied structures observed in L−glutamate−L−phenylalanine-L−aspartate (L−Glu:L−Phe:L−
Asp) proteinoids combined with actin filaments during the process of self-assembly. (A) (size bar = 2 μm) shows tiny neuronal ganglion-like
structures that exhibit significant roundness and inter-connectedness, mimicking rudimentary cognitive substrates. (B) (with a size bar of 1 μm)
exhibits a significant level of intricacy in the branching of the network, showcasing early formations of myelinated architectures. (C) (with a scale
bar of 1 μm) shows a complex arrangement of fascicles, which are surrounded by a sheath-like structure. (D) displays proteinoid microspheres of
approximately 20 μm in size, observed in the proteinoid−actin suspensions. The scale bar in the image indicates a length of 20 μm. The visualized
microstructure motifs collectively display a range of shapes, starting from fragmented nucleation and progressing to more complex oligomers. These
structures are created through nonlinear reaction−diffusion processes that determine the arrangement of molecules and their curvature.
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ity, should manifest detectable transformation signatures when
interfaced with the integrated biomaterial platform.

■ RESULTS
Our research first investigates the diverse morphological
properties expressed in self-organized proteinoid−actin
composites using microscopic imaging techniques. By
“morphological properties,” we mean the physical character-
istics visible under a microscope. These include the size, shape,
surface texture, and arrangement of the proteinoid micro-
spheres. We also mean the organization and connections of the
actin filaments between these structures. These features help us
see how the fragments assemble into networks. Following
topological characterization, we explore opportunities harness-
ing these fibrous protein networks to implement two categories
of chaotic dynamics systems amenable for unconventional
computing: (1) discrete-time systems with discontinuous state
updates and (2) continuous-time systems with smooth state
evolutions. Both modalities provide rich reconfigurability for
complex pattern generation, nonlinear transformations, and
logic operations.
Elucidating Proteinoid−Cytoskeletal Network Mor-

phologies via Scanning Electron Microscopy. The
scanning electron micrographs presented here reveal nontrivial
alignments of proteinoid architecture when in contact with
cytoskeletal filaments. These alignments are observed in

various structures, including organized ganglion-forming
clusters (Figure 3A), early myelinated branching complexes
(Figure 3B), higher order encapsulated fascicular ensembles
(Figure 3C), and even large 20 μm spheres (Figure 3D) that
are not present in controls.
The electron micrographs displayed in Figure 4 demonstrate

the complex and dynamic structure of the actin cytoskeletal
network. This structure has the ability to spontaneously form
spherical micro-protrusions even in the absence of proteinoids.
An analysis of the morphological patterns in different figures
reveals significant distinctions: actin nanostructures and
neighboring microdomains are connected by limited basal
attachments. Nevertheless, when actin is combined with
proteinoids, it exhibits significant overall connectivity with
templated spheres and its surroundings in composite systems.
This confirms that when appropriate conjugation conditions
are used, large-scale scaffolds are created.
The absence of inherent connections in isolated actin

emphasizes that manufactured interactions enable strong
interlinking. In the absence of deliberate conjugation
procedures, the self-assembly of various biomolecules may be
limited to specific interactions rather than forming integrated
structures. The previous observations of the large intercon-
nected network and branching connections provide support for
our conjugation methods in creating integrated composites of
proteinoid and actin.

Figure 4. Microspheres formed by the hierarchical organization of the actin cytoskeletal network at many scales. (A) This scanning electron
micrograph highlights the intricate nano-structured actin fibers that make up the biosynthetic networks. The scale bar represents a length of 2 μm.
(B) Spontaneous formation of microspherical protrusions occurs within the dynamic actin networks, with a diameter of around 10 μm. (C)
Surveying the perspective of many microparticles embedded within the continuous fibrous mesh, with a scale bar of 50 μm. (D) A detailed
examination at high magnification shows the presence of both smooth and collapsed/buckled spheres. The scale bar represents a length of 5 μm.
Overall, complementary imaging techniques provide a clear understanding of the many structures found at the nanoscale level of proteins and the
larger spherical assemblies formed by the cytoskeletal component. An important difficulty in understanding the mechanisms of productive signal
processing in dynamic biomaterial composites is the correlation of morphological cues across domains with the formation of coordinated excitation
and conductivity.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c10488
ACS Omega 2025, 10, 4952−4977

4957

https://pubs.acs.org/doi/10.1021/acsomega.4c10488?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c10488?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c10488?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c10488?fig=fig4&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c10488?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


The present study demonstrates that actin nanostructures
create minimum basal attachments intrinsically throughout
microdomains, as evidenced by comparing the morphological
motifs of the Figures 3 and 4. Nevertheless, actin does exhibit
significant overall interconnectedness between self-assembled
spheres and their surroundings when combined with

proteinoids. This confirms that the use of carbodiimide
linkages in engineered conjugation allows for the creation of
strong connections at multiple scales.
Automated image analysis (Figure 5) offer swift quantifica-

tion of topology, including the segmentation of individual
fibers and the measurement of their cross-sectional geometries.

Figure 5. Digital image processing and quantification of proteinoid−actin fiber architectures. (A) Original micrograph compared against threshold-
binarized version to highlight detected edges. (B) False-colored connected component labeling employed to distinguish individual fiber regions.
(C) A comparison between the binary and Canny edge filter outputs for smoothing and sharpening. (D) A histogram of computed cross-sectional
areas that indicates appreciable length variability with a mean of 14,732.6 nm and a standard deviation of 6150.47 nm. The automated image-to-
data process enables rapid topological characterization down to single fiber resolution. Correlating morphological, electrical, and microscopic data
may help clarify the mechanistic driving factors that link across measurement modalities in the dynamic bio-synthetic network.

Figure 6. Temporal evolution of the voltage dynamics in the L−Glu:L−Phe:L−Asp: Actin filament system. (A) displays the complete time series of
the input voltage plotted against time. The input voltage, shown in (B) for the time interval of 0−20 s, has an average of 1.44 V and a standard
variation of 2.07 V. It fluctuates with an estimated alternate frequency of 3.92 Hz. (C, D) Respectively depict the entire series and the 0−20 s
interval of the output voltage plotted against time. The output voltage has a mean of 0.02 V and a standard deviation of 0.06 V. The estimated
frequency of “peaks per second” is 3.87 Hz. The statistical analysis and distributions of the input and output voltages indicate the presence of
inherent diversity and complexity in the active proteinoid−actin network.
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The application of thresholding separates fibers from the
background prior to performing polygon-bounded linked
component labeling, which allows for the identification and
numerical size of microstructures. The calculated empirical
area distribution demonstrates significant variability at the
individual unit level. The average length reaches 14,732.6 nm,
while the standard deviations cover similar magnitudes at
6150.5 nm. The question of whether quantified variability is a
result of random self-assembly or if it contains meaningful
information about the environment’s history from a structural
memory standpoint requires further exploration. The observed
variations in shape are most likely caused by the fundamental
conduction processes occurring at the core. Nevertheless,
employing in situ imaging could assist in precisely determining
the spatial distribution of hypothesized architectonic motifs
that exhibit mixed conducting, insulating, and semi-conducting
properties.
Discrete Logistic Map. The composite L−Glu:L−Phe:L−

Asp:Actin proteinoid−cytoskeleton network was analyzed
using transient electrical profiling by stimulating proteinoid−
actin networks with voltage derived from logistic maps.
A composite system consisting of proteinoid microspheres

(L−Glu:L−Phe:L−Asp) combined with actin cytoskeletal
filaments, was developed. The electrical properties of this
integrated bio-hybrid network were studied using transient
stimulus−response analysis. The stimulus particularly featured
voltage signals that were algorithmically generated via the
chaotic Logistic Map mathematical series. Quantifying the
signal processing capacity can be accomplished by analyzing
the dynamic proteinoid−actin response to controllably random
voltage waveforms obtained from chaotic systems. This
approach builds on methods from neuroscience and nonlinear
dynamics. Chaotic inputs have been used to study information
processing in biological neural networks.72,73 Similarly, in
neural networks and reservoir computing, chaotic signals help
evaluate a system’s computing power.74 We can assess the
potential of our proteinoid−actin networks as biological
computing elements. We will use established principles to do
this.
This analysis revealed a complex dynamical landscape that is

characterized by frequent state fluctuations, phase transitions,
and signal transformations. The programmed input voltage
signals applied (as shown in Figure 6A) exhibit significant
oscillatory patterns, with an average peak magnitude of 1.44 V
(standard deviation: 2.07 V) with a dominant frequency of
around 3.92 Hz.
On the other hand, the output voltages measured in

proteinoid−actin networks (as shown in Figure 6C)
demonstrate significantly reduced average values of approx-
imately 0.02 V (with a standard deviation of 0.06 V). However,
they still maintain a spectrum profile comparable to the input
throughout the observation period.
For example, there is a typical frequency of 3.87 Hz within

the first 20-second interval, as depicted in Figure 6D. The
presence of a mismatch between the input and output voltage
distributions suggests that there is a notable nonlinearity in the
conductivity processes of proteinoid−actin. This interpretation
follows from basic principles in electrical testing of materials. A
linear system would keep proportional relationships between
input and output signals. In biological and bioinspired systems,
input−output mismatches are common. They occur in ion
channels75 and protein-based conductors.76 The variations
indicate voltage-dependent changes in the material’s con-

ductivity. Other protein-based electronic devices show similar
nonlinear behavior. In them, the current does not follow
Ohm’s law with applied voltage.
The structural network undergoes transitions between quasi-

metastable configurations based on the inherent activation of
collective variable photochromic and chemomechanical feed-
back mechanisms, which are currently not operationally
connected to applied signals. The observed variations in
signaling are most likely caused by changes in the
morphological state, which actively control the movement of
electrons. Additional in situ microscopy and spectroscopic
techniques can be utilized to precisely identify the locations of
conductive paths and establish a relationship between the
changes in morphology and electrical data.
Our analysis of the chaotic input oscillations and observed

outputs from the integrated proteinoid−actin network
demonstrates a substantial degree of dynamic modification
and signal filtering (see Table 1). In contrast, the average peak

voltages of the input logistic map oscillations are 1.44 V with a
standard deviation of 2.07 V. The system outputs have
significantly lower average voltages of approximately 0.02 V,
with a closely controlled standard deviation of 0.06 V. The
amplitude may be diminished, but the output frequencies
nearly replicate the spectral density of the input signals,
notably targeting frequencies around 3.87 and 3.92 Hz
respectively.
As shown in Figure 7, the cross-correlation analysis

confirmed that the bioabiotic composite system was actively
processing propagating stimuli. Near-unity maximum correla-
tion, paired with exact temporal alignment at zero lag,
confirmed real-time interference of input chaotic drive
sequences and output voltage signature transformations.
The presence of differences in voltage, as well as the

occurrence of abrupt increases, indicate the occasional
activation of electrical pathways that may be influenced by
temporary alterations in the immediate environment, partic-

Table 1. Analyses of Chaotic Input Oscillations and
Subsequent Output Voltage Responses in an Integrated
System Containing Thermally Processed L−Gly:L−Phe:L−
Asp Proteinoid and Actin Filamentsa

voltage (V)

metric input output

mean 1.44 0.02
std. dev. 2.07 0.06
median 1.81 0.04
max 4.60 0.17
min −3.24 −0.19
frequency [Hz] 3.919 3.874

aThe imposed input pattern follows a discretized logistic map
equation with variable degrees of chaos depending on the tunable μ
growth parameter. Similarly, the composited proteinoid−actin
network exhibits observable electrical modifications such as amplitude
suppression and spectrum rearrangement, as seen by dominant
frequency modes that mimic the input signals. Such macroscale
dynamic adaptations point to widespread morphological reconfigura-
tions occurring within the integrated bio-ionic substrate. Further
microscopic experiments could reveal conductive routes and correlate
morphological changes with electrical measurements. Detailed
explorations of the causality between input and output increase our
ability to consciously program emergent logic operations by
successfully utilizing proteinoids’ natural computing potential.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c10488
ACS Omega 2025, 10, 4952−4977

4959

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c10488?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


ularly changes in the structure. We hypothesize that the
transient formation of pore-like structures or the infiltration of
water-rich regions, which enable localized electrical short

circuits, may be the mechanistic characteristics that explain the
observed preservation of meta-stability. The kinetics of ion
channel formation and regulation are crucial in biological

Figure 7. Transcendental input chaotic waveforms, derived from the principles of discrete logistic map dynamical systems, are juxtaposed against
the empirical output voltage time series for a bio-abiotic composite comprising L−Glu:L−Phe:L−Asp proteinoid and actin filaments. While signal
coupling analysis is a standard method in systems characterization, its application to proteinoid−actin composites represents a novel approach
developed in this study. Substantial signal coupling is validated through our cross-correlation analysis (A) the maximum correlation magnitude
approaches unity at an exact zero time lag. This pinpoint temporal alignment intimates the existence of an inherent convolution kernel that
encapsulates input−output nonlinearity with no noticeable delays. A finer understanding of frequency-dependent dispersion can be obtained
through Fourier analysis. Our interpretation of minimal anti-correlated periods as indicators of multi-stable morphological transitions is a new
insight derived from this work, not previously reported in proteinoid systems. Notwithstanding, the strong evidence of high positive input−signal
coupling (B) lends considerable support to the significant participation of the bio-abiotic composite. This therefore prompts a more nuanced
exploration via spectroscopy and microscopy to accurately localize emergent activation. The quantitative verification of the precision and
synchronicity in input−output relationships, and the brief instances of independent dynamics, underscore the robustness of these transduction
symphonies�a harmonious orchestration of biological and informatics elements.

Figure 8. Figure displays the results of a frequency-domain analysis, comparing the spectra of the (A) input and (B) output signals for a combined
thermal proteinoid and actin filament sample. The dominant frequency mode (circled in the graph) for the chaotic map oscillations in the input
signal is located at 0 Hz, with an average amplitude of −41.87 dB and a standard deviation of 7.31 dB. Conversely, when examining the substrate
output signals using spectrum analysis, a significant reduction of −72.32 dB on average (with a standard deviation of 7.06 dB) is observed. The
significant decrease in voltage can be ascribed to intermittent increases in resistance inside the internal network of the composite. The surges can be
intensified by the limitations on ion movement as they are transported via several water-based and structurally varied microdomains that
continuously rearrange when stimulated. The comparison indicates a wide-ranging connection between input and output frequencies, supporting
the hypothesis that various dissipative phase transitions play a crucial role in structural reconfigurations.
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components, as they allow for flexible responses while
maintaining homeostatic balance.
This study uses frequency-domain profiling (as shown in

Figure 8) to show a broad spectral correlation between input
chaotic forces and output voltage responses from the bio-
composite. Corresponding dominating modes with a preva-
lence at 0 Hz indicate significant participative pathways.
Nonetheless, there are significant filtering effects, resulting in
an average output energy level of −72.32 dB, a more than 30
dB decrease from the −41.87 dB input level. This significant
voltage decrease is most likely the result of brief resistance
spikes within the suspension. These could be due to
transportation restrictions caused by dynamic internal changes
in aqueous and morphological microdomains under stimula-
tion. Domino-cascade dynamics at the micro-level could
support the concept that transient short-circuit effects
periodically disturb the composite’s overall end-to-end
conductivity. Regardless of the precise mechanisms causing
these signal alterations, the rapid Fourier transform analysis
provided herein provides strong quantitative evidence for the
substantial relationship between input and output across the
composite.
This paves the way for more precise waveform shaping and

spectral matching tactics by informing impedance state
memory training. Figure 9 presents a conceptual demon-

stration of a biological AND−OR logic circuit, which is
implemented using the dynamic proteinoid−cytoskeletal
material composite. The input layer of the stimulus integrates
voltage signals that undergo transformation across communi-
cation networks linked to output networks. Computational
patterns arise when binary input combinations (A,B = 0,0, 0,1,
1,0, and 1,1) are systematically applied as voltage signals. While
our current experimental results demonstrate the circuit’s
response for the case A = 0, B = 1, a complete characterization
of all input combinations is needed to fully validate the
computational model. This limitation of our current
implementation requires further investigation to verify the
circuit’s behavior across all possible input states. The prototype
device utilizes waveform signatures that are processed through
adaptive hierarchical restructuring, spanning molecular to
ensemble scales, to encode combinations of bit 1.
The addition of proteinoid−actin nodal inputs, which are

influenced by chaotic oscillations derived from the Discrete
Logistic Map, enables the replication of different digital logic
processes, as evidenced in Table 2.
The key breakthrough that allows for complex signal analysis

through proteinoid−actin architectural adaptations is the

conversion of continuous analogue drive sequences into
discrete digital logic representations, which can then be
processed through computation. In order to achieve this, we
utilize Oscillatory Threshold Logic (OTL) operations in the
following manner:

• Input conditioning: Obtain raw voltage signals either
through external stimulation or as spontaneous changes
in the membrane potential of the biocomposite material
(e.g Figure 6).

• Digitization: Set an appropriate voltage discrimination
threshold based on statistical signal spread. Fluctuations
in voltage that surpass the threshold indicate events akin
to digital logic HIGH. The time intervals spent below
the specified threshold are assigned a value of 0 with
logic LOW.

• Computation: Combine consecutive periods that exceed
the threshold into bit-1 segments, while categorizing
below-threshold epochs as bit-0 segments (see eqs 5−7).

Through this procedure, the raw proteinoid−actin responses
are transformed into digital words that align with the
resolution of stimulus drives for computation, using established
frameworks of Boolean algebra.
Thresholding Function: Let the raw voltage signal be

denoted as x(t). then the thresholding operation can be
defined as

l
moo
noo

=x t
x t

( )
1 if ( )

0 otherwise (5)

Where θ represents the discrimination voltage threshold
calculated based on signal statistics.
Boolean Operations: The thresholded bit sequence

=b t x t( ) ( ) can undergo Boolean operations similar to
digital logic circuits. For example�OR Gate Sum Output Y

=Y A B (6)

AND Gate Carry Output C
=C A B (7)

Where ∨, ∧ represent OR, AND operations and A, B are
individual bit input streams generated by thresholding
underlying oscillator signals. By grouping together consecutive
segments of bit-1 in the processed waveforms, we can identify
and interpret them as durational epochs with a HIGH value.
This interpretation is based on the input drive sequences and
can be seen as temporal logic words.
The truth table encodings validate the accurate correlation

between input combinations and their corresponding sum or
carry bit outputs. For the half adder, the biomaterial composite
performs real-time pattern discrimination in response to the
asynchronous stimuli A and B, enabling precise calculation of
the summation or carry digits. The 4-input full adder design is

Figure 9. Proteinoid-cytoskeletal network can be used to simulate an
AND−OR logic circuit. The integrated biomaterial composite
performs basic calculations by connecting an input layer, which
receives stimulus voltages (bits A, B), to a proteinoid transmission
network. This network is then coupled to cytoskeletal networks at the
response layer to adjust observed waveforms. The given example with
A = 0 and B = 1 produces an output encoding of 0 + 1 = 1. This is
determined by identifiable waveform patterns that represent logic bits
and are processed at various sizes, from micro to macro, through
hierarchical morphological adaptations.

Table 2. Truth Table for Binary Half Adder and Two-
Oscillator Full Adder

inputs outputs

A B sum carry

0 1 1 0
inputs outputs

A B C D sum carry

0 1 0 1 1 0
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expanded by include the prior carry C and an auxiliary chaotic
input D. This enables the processing of complicated rhythmic
waveforms to provide the necessary arithmetic combinations.
The estimated input Lyapunov exponent of −0.000073

confirms the chaotic dynamics of the produced waveform from
a Discrete Logistic Map. The multiple order of magnitude
reduction confirms the bio−abio interface functions to filter
significant degrees of noise and instability from the input, even
though it is still positive at 0.001058, indicating chaos. To sum
up, the integrated platform exhibits strong evidence of filtered
chaos according to the Lyapunov quantification.
The conducted principal component analysis (PCA) reveals

significant and structured alterations in signal characteristics
within the integrated bio−abiotic interface (as depicted in
Figure 10). This is supported by the observed clusters formed
by the input and output voltage data. Our PCA mainly
separates signal components from residual variations. It does
not find relationships between the dual inputs. Still, it is a first
step at reducing dimensions. The dominant principal
component (PC1) captures predictable variations, highlighting
net energy deficits in the proteinoid−actin network. The
secondary orthogonal component (PC2) accounts for only
2.25% of the variance. It likely represents system noise and
measurement errors, not meaningful higher-order relationships
between inputs. A more sophisticated analysis framework
would be needed to properly characterize dual-input
interactions and their computational significance. This
limitation in our current analytical approach suggests the
need for additional methods to fully understand the system’s
computational capabilities.
Proteinoid−Actin Network Baker Transform. For an

L−Glu:L−Phe:L−Asp proteinoid−actin composite system,
Table 3 provides a summary of our comparison of important
statistical metrics describing the input chaos oscillations and
the corresponding output voltage responses. The input is a
Bakers Map transformation-generated chaotic sequence with a

mean of −4.97 V, a standard deviation of 0.45 V, and a median
of −5 V, spanning a range of ±5 V. On the contrary, the
proteinoid−actin filament network converts this input into an
output signal of reduced amplitude, narrowed to the range of
−0.27 to 0.05 V, and characterized by an exceptionally small
standard deviation of 0.02 V. The actin cytoskeleton’s dynamic
couplings with the protein microspheres mediate molecular-
scale reconfigurations in the bio−abiotic interface, as
evidenced by this suppression of disorder (as measured by
metrics such as a 5-fold reduction in signal variability).
Moreover, the input and output spectra exhibited negligible
variation in the dominant frequency peaks (2.5 Hz), indicating
that the living material composite transmitted ac signals in an
optimized manner. In general, the analysis of voltage statistics
and the retention of band-limited spectral content provide
evidence that the dynamic bio-composite interface facilitates
stable transduction of complex waveforms.
Figure 11 shows that input chaotic voltage oscillations (A)

have significant amplitude fluctuations of about ±5 V, with a
mean of −4.97 V and a standard deviation of 0.45 V. The
combined proteinoid−actin system (C), on the other hand,
exhibits significant suppression in both the voltage range and

Figure 10. Dimension reduction via principal component analysis (PCA) by comparing output voltage time series data with an input chaotic map
for a proteinoid−actin composite computing interface. (A) The principal component 1 (PC1) accounts for 97.75% of the total variance, whereas
the orthogonal PC2 represents the unexplained residual variation of 2.25%. (B) Distinguishing input and output voltage profiles, two data clusters
cause output signals to compress as they approach lower magnitudes along PC1. Additional investigation may reveal the secondary PC dimensions,
which encode computational signal transformations implemented by the dynamic bio−abiotic layer in an explicit manner. PCA typically verifies the
presence of interpretable variance structure in stimulus−response records, thereby providing evidence for the substantial nonlinearity introduced by
the integrated platform.

Table 3. Analysis of Input Chaos Oscillations and Output
Voltage Responses for a L−Glu:L−Phe:L−Asp Proteinoid−
Actin Composite System under a Bakers Map
Transformation

voltage (V)

metric input output

mean −4.97 −0.21
std. dev. 0.45 0.02
median −5.00 −0.21
max 5.06 0.05
min −5.05 −0.27
frequency [Hz] 2.49 2.44
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variability. The output signal has a significantly lower mean
value of −0.21 V, with a standard deviation of only 0.02 V.
This signifies a significant reduction in signal variation. The
architectural reconfigurations of the protein microspheres, in
combination with conformational changes in the actin
cytoskeleton inside the living composite material, are
responsible for the clamping of input chaos. This creates a
nonlinear transfer function that applies selective filtering to the
upstream signal. Furthermore, the input and output spectra
maintain the dominating frequency mode at 2.5 Hz.
The frequency relationships show a consistent pattern

between input and output signals across both networks. Both
Figures 6 and 11 demonstrate a remarkably similar frequency
reduction of approximately 0.05 Hz from input to output (3.92
→ 3.87 and 2.49 → 2.44 Hz respectively), despite their
different operating frequencies and input patterns. This
consistent frequency shift suggests a fundamental characteristic

of the proteinoid−actin network’s signal processing capability,
possibly related to its intrinsic relaxation time constants. The
preservation of this relationship across different input patterns
(simple oscillations vs Baker’s Map) and amplitudes (1.44 V vs
−4.97 V) indicates a robust and predictable filtering property
of the network, independent of the input complexity.
Figure 12 depicts the use of cross-correlation analysis to

compare the input chaotic sequence to the output voltage time
series for the proteinoid−actin hybrid interface under a Bakers
Map dynamical system. At zero lag, the correlation coefficient
reaches 0.40, indicating tight input−output signal coupling in
the absence of temporal skew. However, the decreased
correlation value compared to previous logistic map analyses
shows stronger signal deconvolution, with Bakers stretching
and folding transforming applied voltage waveforms beyond
simple mirroring. While fast Fourier analysis can provide finer
spectrum dispersion insights, minimal anti-correlated regimes

Figure 11. Characterization of input chaos oscillations and output voltage dynamics in a L−Glutamic acid:L−Phenylalanine:L−Aspartic acid
thermal proteinoid system integrated with actin filaments under a Baker’s Map transformation. The input voltage time series (A) displays a mean
value of −4.97 V with a standard deviation of 0.45 V, fluctuating at an approximate frequency of 2.49 Hz. In comparison, the output voltage (C) is
markedly suppressed to −0.21 V average with 0.02 V deviation and dominant spectral mode at 2.44 Hz. Panels (B, D) show the pulse response. A
brief +2 V pulse is applied to the system (B). This causes a biphasic output response: an initial positive deflection followed by sustained negative
polarization (D).

Figure 12. Cross-correlation analysis contrasting input chaotic sequence against output voltage time series for proteinoid−actin hybrid interface
under a Bakers Map dynamical system. (A) A maximum correlation of 0.40 occurs at precisely zero lag, evidencing tight input−output signal
coupling absent appreciable temporal skewing. (B) However, the lower correlation value compared to prior logistic analysis hints at greater
deconvolution of signals, with the Bakers stretching and folding transforming applied voltage waveforms beyond simple mirroring.
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most likely indicate occasional decoupling as proteinoid
structures rearrange into partially conductive vs insulating
states when exposed to strong driving conditions. Despite the
Bakers map’s very irregular input sequences, the quantified
cross-correlation demonstrates strong bio−abiotic participa-
tion in signal transport.
Figure 13 shows the findings of principal component

analysis (PCA) on the input and output voltage profiles of
the proteinoid−actin system driven by a chaotic Bakers Map
signal. The first principal component (PC1) accounts for
69.74% of the total data variation. In contrast, the second
principal component (PC2) is responsible for the remaining
30.26% variability. Compared to previous logistic map

analyses, PC1 contains a smaller share of the total variability.
This shows that the synthetic biology interface exhibits
enhanced dimensionality and more complicated nonlinear
transformations when subjected to intensive folding and
stretching dynamics under the Bakers map. The tightly limited
output variations, particularly along PC2, support the bio-
composite’s role in converting intense input oscillations into
stable steady-state responses. Overall, the PCA breakdown
demonstrates that the integrated proteinoid−actin system can
successfully mediate signal transfer even during severe,
multidimensional chaos driving episodes.
Driving the integrated proteinoid−actin material composite

with input from a chaotic Bakers map system demonstrated the

Figure 13. Principal component analysis of input and output voltage profiles for the proteinoid−actin system under a Bakers Map Chaos
transformation. (A) PC1 explains 69.74% of the total variance, while PC2 accounts for 30.26% residual variability. (B) The results suggest increased
dimensionality and more complex nonlinear transformations enacted by the synthetic biology interface in response to intense folding and stretching
dynamics.

Figure 14. Chaotic Bakers map transformation drives the input and output voltage dynamics of a proteinoid−actin system. (A) The input signal
data (N = 50,004) show fluctuations of more than 100 dB, with a mean of −57.75 dB and a standard deviation of 6.94 dB. (B) In contrast, the
proteinoid−actin filament interface suppresses and regularizes the signal, limiting output changes to within 100 dB and resulting in a substantially
higher mean (−13.98 dB) and lower variability (standard deviation 7.88 dB). This quantifies how the constructed bioabiotic network operates as a
nonlinear filter, converting extreme input chaos into regular, steady-state dynamics�a critical component for using proteinoid−cytoskeletal
networks for unconventional computing.
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hybrid interface’s ability to prevent severe deviations during
steady-state transformation. As indicated in Figure 14A, the
voltage input sequence had a mean of −57.75 dB, a standard
deviation of 6.94 dB, and a range greater than 100 dB.
However, transducing these signals through the dynamic
proteinoid−actin network resulted in condensed output
dynamics (Figure 14B), with an average of only −13.98 dB
and reduced variability (standard deviation = 7.88 dB). The
limited 100 dB span demonstrates the bio−abiotic composite’s
considerable regularization in relation to input extremes.
The input signal from the Bakers oscillator exhibits a low

positive Lyapunov exponent of 0.002, suggesting chaotic
behavior with a growth rate of approximately 0.2% for
neighboring trajectories. Nevertheless, the proteinoid−actin
composite results in a more unfavorable output Lyapunov
exponent of −0.0027. The increased negativity indicates the
process of regulating and suppressing chaotic extremes through
the use of a material interface influenced by biology. More
precisely, the increased divergence rate of the output measures
the speed at which disturbances decrease rather than rise
within the dynamic nonlinear medium. The shift from a wide
range of input to a limited range of output phase space flow
emphasizes the bio-composite’s active involvement in control-
ling and adjusting output. The emergence of chaotic
regularization functionality is likely due to architectural
reconfigurations that are interconnected across many scales,
ranging from local proteinoid conformations to modifications
in the cytoskeletal network. These collective changes serve to
limit extreme behaviors.
Overall, quantifying the >43 dB increase in mean signal

strength with confined fluctuations demonstrates the inte-
grated material’s emerging role in translating wildly fluctuating
inputs into an orderly bounded output. To use this for
productive modulation, measure voltage changes and correlate
them to microscopic reconfigurations of proteinoid micro-
structures associated with actin cytoskeletal movements.
Elucidating these structure−function interactions is critical to
understanding how the designed hybrid material handles

multidimensional chaos. More optimized bio-mimetic net-
works can be constructed by integrating materials-directed
assembly with study of collective electrical patterns, leveraging
chaos for computational operations ranging from pattern
extraction to prediction.
Lorentz Oscillator in Proteinoid−Actin System. The

dynamic proteinoid−actin biomaterial system can be tuned to
chaotic voltages generated by a Lorentz oscillator, which allows
to analyze proteinoid−actin system’s response to unpredictable
stimuli. As seen in Figure 15, the input oscillations
demonstrate significant variability with a standard deviation
of 4.09 V. However, when transmitted over the bio−abiotic
interface, the output is constrained within a range of 0.25 to
−0.35 V, effectively reducing variations by a factor of 30. This
process measures the reduction of input extremes by utilizing
cytoskeletal coupling to create a stable and condensed range.
Table 4 provides additional details on the voltage statistics

that support the presence of substantial nonlinearity caused by
molecular rearrangements in the proteinoid−actin composite.
Figure 16 demonstrates the cross-correlation between the
input and output time-series, confirming that the coordination
occurs in real-time rather than through delayed trans-
formations using an intrinsic convolution functionality.

Figure 15. Using an integrated proteinoid−actin composite system to convert the input Lorentz oscillator voltage. (A) The input voltage time
series displays significant variability with erratic fluctuations (standard deviation = 4.09 V, mean = −0.31 V). (B) The proteinoid−actin network
stabilizes the input signal, resulting in a bounded output with a reduced standard deviation of 0.13 V and a range of −0.35 to 0.25 V. The input
signal has multiple frequencies. The proteinoid−actin network mainly modulates the amplitude of oscillations. It does not change their dominant
frequency. This stabilization shows that the bio−abiotic interface can limit extremes to a narrow range. It does this using cytoskeletal coupling
dynamics to modulate erratic input signals.

Table 4. Analysis of Input Lorentz Oscillator Voltage and
Output Response for a Proteinoid−Actin Compositea

voltage (V)

metric input output

mean −0.31 −0.02
std. dev. 4.09 0.13
median −0.43 0.00
max 10.17 0.25
min −9.13 −0.35
frequency (Hz) 0.16 0.54

aThe output exhibits suppression of input voltage fluctuations,
consistent with molecular reconfigurations at the dynamic bio−abiotic
interface.
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The primary component decomposition in Figure 17
demonstrates the process of reducing multiple dimensions of
input data into a single output mode, achieved by dimensional
condensation by the living material. When analyzing the
frequency domain (Figure 18), it is observed that the
integrated biomaterial undergoes complex oscillations through
various nonlinear mechanisms. This is confirmed by spectral
remodeling and intensity attenuation. To understand these
mechanisms better, simultaneous spectroscopy and microscopy
are required. In summary, the quantitative analyses confirm

that the designed bio−abiotic interface effectively controls
volatility to promote organized outputs.
The Lorenz signal input has a negative Lyapunov exponent

value of −0.000014, which signifies sensitivity to beginning
conditions and the presence of chaotic aperiodicity. Trans-
mission over the proteinoid−actin interface leads to an
increased negative in the output Lyapunov exponent,
specifically reaching −0.000271. The higher divergence rate
indicates that the bio-inspired composite is contributing to
greater chaotic regularization. More precisely, a negative
output metric indicates that perturbations are quickly reduced

Figure 16. (A) Output voltage response of a proteinoid−actin composite system cross-correlation analysis with (B) input waveforms from a
Lorentz chaos oscillator. Maximum correlation near unity (0.975) occurs at zero latency, indicating delay-free real-time input−output coupling
across the dynamic bio−abiotic interface in accordance with an inherent convolution kernel and nonlinear transduction. Intermittent decouplings
are indicative of minimum correlations, which may be attributable to conformational changes; therefore, microscopy is required to identify the
molecular origins of transient conduction loss. In general, nanosecond-scale coordinated excitation and precise temporal alignment provide
evidence for substantial biomolecular involvement in determining the emergent electrical response of the composite to the complex driving stimuli
generated by the Lorentz chaotic system.

Figure 17. (A) Principal component analysis (PCA) of input and output voltages for a proteinoid−actin interface under Lorentz chaotic
oscillations. The initial principal component (PC1) explains 98.71% of the overall variance in the data, while PC2 reflects the remaining 1.29%. (B)
As the biocomposite converts complex multidimensional inputs into a single bounded output mode, the extreme integration of variability along
PC1 demonstrates its capacity for dimensional compression. The significant decrease in dimensions, which surpasses previous folding and
stretching methods, provides confirmation for the emergent filtering capability of the engineered living material to utilize cytoskeletal coupling
dynamics to leverage disorder within a well-organized manifold.
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rather than amplified as signals pass through the proteinoid−
cytoskeletal material, which is undergoing dynamic reorganiza-
tion. This supports the idea that the interface architecture plays
a significant role in effectively controlling and regulating
unpredictable inputs to produce a limited range of outputs.
By fine-tuning the external Lorenz parameters to operate

near critical regimes and observing the resulting microscopic
reconfigurations, we gain valuable insights into the complex

structural mechanisms underlying the conversion of analog
chaos into coherent bound oscillations within the biological
substrate. The shifted Lyapunov indicators, in particular, serve
as quantitative measures showcasing the potential of biological
control in harnessing and directing randomness toward
unconventional computing applications. Such understanding
opens up new avenues for leveraging the inherent capabilities

Figure 18. (A) Characterization of chaotic input oscillations and (B) proteinoid−actin voltage responses in the frequency domain. The input FFT
exhibits a peak at −70.14 ± 12.78 dB, which is equivalent to a mean oscillation power of −70 dBV, specifically at a dominant frequency value of
approximately 0.8 Hz. The bio−abiotic interface, on the other hand, inhibits and shifts the principal spectral modes to a value of −95.72 ± 11.43
dB. This average input−output power reduction of 25 dB represents the dynamic material interface’s attenuation. The narrower frequency
dispersion of ±11 dB observed in the nonlinear response further emphasizes the regularization function of cytoskeletal coupling. The absence of
phase-aligned peaks is the most obvious indication that input processing has occurred delocalized beyond space-time pathways. In order to
determine whether the spectral remodeling indicates microscopic or global reconfigurations, proteinoid−actin imaging and local conductivity
spectroscopy at excitation frequencies that maximize conformational transformations are required. In general, the analyses provide evidence that the
biomaterial architecture significantly modifies the inputs via a variety of nonlinear frequency coupling signatures that require further investigation
by means of spectro-microscopy studies.

Figure 19. (A) Input Rössler attractor oscillations are transformed by an integrated proteinoid−actin composite. The input voltage time series
exhibits chaotic variations, with an average of 0.13 V and significant variability, as indicated by a standard deviation of 2.46 V. (B) Panel B provides
a zoomed-in view of the initial segment of Panel A, allowing for a more detailed observation of the time-domain oscillatory dynamics. Conversely,
the proteinoid−actin system standardizes the input to a higher frequency of 1.49 Hz compared to the input frequency of 0.69 Hz. The output is
limited within the range of −0.21 to 0.21 V, with a standard deviation of only 0.11 V. The synthetic bio-interface’s ability to decrease voltage
changes by over 20-fold clearly illustrates its involvement in stabilizing irregular rhythms.
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of biological systems in facilitating advanced computational
paradigms.
Stimulating Proteinoids with Rössler Attractor.

Driving proteinoid microstructures with chaotic Rössler
attractor rhythms demonstrates voltage regularization capa-
bilities mediated by cytoskeletal coupling dynamics, as
illustrated in Figure 19. Quantitatively, the input oscillations
(standard deviation −2.46 V) experience over 20-fold
clamping (0.11 V output) into a stable tight domain spanning
−0.21 to 0.21 V. Table 5 contains additional data
demonstrating significant condensing of input extremes by
the bio-composite interface.

Figure 20 shows cross-correlation analysis, with near-unity
maximums and sub-millisecond lags showing real-time
coordination of proteinoid conformations to modify upstream
rhythmic complexity.
Extending analysis using principal component decomposi-

tion in Figure 21, a prominent 98.78% pattern represents
dimensional collapse from several inputs to a single output.
Spectral characterization in the frequency domain (Figure 22)
indicates matching fingerprints�19 dB average attenuation
and narrower dispersion, which follow ubiquitous signal
modifications. Overall, the quantitative assessments confirm

that an orderly bound develops from chaos as a result of the
dynamic bio−abiotic architecture’s remarkable regularization
to effectively harness randomness. Correlating spectral−
temporal motifs with microscopic rearrangements, as well as
simultaneous multi-modal data, is required for further
understanding.
The input Rössler signal has a negative Lyapunov exponent

of −0.000038, which indicates sensitivity to beginning
conditions and chaotic dynamics. We use the convention
that a negative Lyapunov exponent means convergence of
trajectories. A positive Lyapunov exponent means divergence.
A zero value means neutral stability. This sign convention
holds that negative values indicate a loss of information about
initial conditions due to trajectory convergence. However,
transmission over the proteinoid−actin composite interface
reduces the Lyapunov exponent to −0.000609. This implies an
even stronger convergence of trajectories, reflecting the
system’s ability to stabilize chaotic inputs more effectively.
This increased divergence rate change supports extra chaos
suppression capabilities derived from the bio-inspired material.
Specifically, the output is 17 times more negative. The
Lyapunov metric represents quick dampening of signal
perturbations rather than explosive exponential development
when inputs pass through the adaptive proteinoid−cytoskeletal
network. The quantitative divergence shift provides evidence
for the synthetic biology components’ productive manipulation
of randomness into order.
The increase in output frequency from 0.69 to 1.49 Hz

during Rössler oscillation processing can be explained by the
chemical and structural properties of the proteinoid−actin
composite. The input voltage changes the morphology of the
proteinoid structures. The connected actin filaments respond
through a mechanochemical coupling. The higher output
frequency likely emerges from several key mechanisms. First,
the natural resonance frequencies (ωn) of the proteinoid
microspheres, which are determined by their size (∼0.5−2
μm) and elastic properties (κ). Second, the characteristic
relaxation times (τ) of actin filament reorganization (∼10−3 s).
Third, the electrochemical response rates (α) of the amino
acid components (L-Glu:L-Phe:L-Asp) that form the proteinoid

Table 5. Analysis of Input Rössler Oscillations and Output
Voltage Response for a Proteinoid−Actin Composite
Systema

voltage (V)

metric input output

mean 0.13 0.01
std. dev. 2.46 0.11
median −0.13 0.03
max 5.66 0.21
min −4.39 −0.21
frequency (Hz) 0.69 1.49

aThe output exhibits regularization of input fluctuations, consistent
with molecular reconfigurations enacted by the dynamic bio−abiotic
interface.

Figure 20. (A) Cross-correlation analysis of (B) input Rössler attractor waves and output voltage responses in a proteinoid−actin architecture. The
cross-correlation coefficient reached a high value of 0.976 at a lag of −2, indicating a small delay of less than a millisecond.
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structure. This frequency doubling suggests the proteinoid−
actin system is a biochemical frequency multiplier. Each input
oscillation triggers multiple responses. This is due to the
complex interplay between protein dynamics and ionic
movements. The consistency of this frequency transformation
( fout ≈ 2.16f in) at different input amplitudes shows it is an
intrinsic property of the biomolecular architecture, not a
simple filtering effect.
System complexity and signal attenuation have a hierarchical

relationship across multiple scales. At the molecular level, the

L-Glu:L-Phe:L-Asp proteinoid microspheres (∼μm scale)
dampen signals. Their viscoelastic properties give a base
attenuation of ∼10 dB. This effect is amplified when coupled
to the actin filament network. Its complex structure adds
dampening mechanisms through cytoskeletal reorganization.
This caused the observed 19 dB total attenuation. The system’s
ability to dampen oscillations scales with its complexity. Single
proteinoid microspheres show limited amplitude reduction.
The proteinoid−actin composite improves signal regularity. It
does this by syncing molecular reconfigurations across the

Figure 21. (A) Principal component decomposition of the input Rössler oscillations and corresponding output voltages of the proteinoid−actin
system. (B) The matrix decomposed is the covariance matrix of the combined input−output voltage data. The primary principal component (PC1)
explains 98.78% of the entire variation, whereas PC2 accounts for the remaining 1.22% of fluctuations. (B) There are two clearly identifiable groups
that represent input and output patterns. The process of converting biological and non-biological signals results in a compression of signals toward
lower levels along the first principal component (PC1). The occurrence of this dimensional collapse suggests the presence of explicit computational
encoding inside secondary dimensions. The significant reduction of variability by PC1 confirms the emergence of nonlinearity caused by the
dynamic biological interface.

Figure 22. Characterization of (A) input and (B) output in the frequency domain of Rössler attractor oscillations connected to a proteinoid−actin
composite. The frequency domain analysis was used to investigate the properties of the input and output signals in the proteinoid−actin composite
system. The input FFT showed a peak at −82.09 ± 9.13 dB, indicating a wide power distribution at different frequencies. Transduction propagating
from the Rossler chaotic attractor system as inputs to the proteinoid−actin composite network resulted in a shift and reduction of dominant
frequency modes to an average level of −101.30 ± 8.02 dB, representing a 19 dB attenuation in the output signal statistics. This reduction implies
that the cytoskeleton link regulates spectral extremes. The absence of identifiable peaks in the output spectra indicates that the data was processed
without using localized space-time alignments. To determine whether the observed remodeling is due to global or microscopic remodeling, spectro-
microscopy investigations at frequencies that cause significant conformational changes are required.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c10488
ACS Omega 2025, 10, 4952−4977

4969

https://pubs.acs.org/doi/10.1021/acsomega.4c10488?fig=fig21&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c10488?fig=fig21&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c10488?fig=fig21&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c10488?fig=fig21&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c10488?fig=fig22&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c10488?fig=fig22&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c10488?fig=fig22&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c10488?fig=fig22&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c10488?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


network. This structure−function relationship explains why
simpler input patterns (Figure 6) show less attenuation than
complex Rössler oscillations (Figure 22). In the latter, multiple
dampening mechanisms can engage simultaneously.
Driving Proteinoid−Actin Architectures via Fitz-

Hugh−Nagumo Rhythms Reveals Signatures of Excit-
ability Transfer. Our preliminary findings describe the
complex inherent dynamics of the prototypical FitzHugh−
Nagumo nonlinear oscillator model. As seen in the phase space
analysis (Figure 23), the trajectories vary from stationary

points to autonomous repeating oscillations merely by
changing the input drive value. At c = 1, outward spiralling
rapidly settles into a quiescent condition. However, increasing
the stimulus to c = 2 causes the system to follow a continuous
cyclic trajectory in phase space, which mimics the initiation of
recurrent neural spikes. The transition from resting to
rhythmic spiking demonstrates the model’s adaptability in
capturing essential characteristics of excitability and pacing
mechanisms. Importantly, the pictures quantify signature
alterations in both transient outward spiralling and steady-
state orbit diameters in response to changing input drivers.
After determining the baseline model behavior, we investigate
modulatory effects when linking the FitzHugh−Nagumo
system to proteinoid−actin networks. Changes in phase
portrait features, which bridge the molecular and physiological
scales, should indicate reconfigurations at the bio-composite
interface. Detecting transformations or distortions in baseline
limit cycle oscillations provides a useful approach for

quantifying stimulus−response effects that propagate through-
out both synthetic and natural bio-molecular systems.
The integration of the proteinoid−actin biomaterial with

simulated FitzHugh−Nagumo irregular oscillations demon-
strates the ability of the created network to effectively regulate
far from equilibrium states (Figure 24). The input voltages
ranging from −0.12 to 0.11 V (with a standard deviation of
±0.0450 V) experience a significant reduction in variability by
a factor of 6, while also showing a more than 7-fold increase in
average amplitude when converted by the bio-composite. The
observed voltage of 0.0212 ± 0.0176 V provides evidence for
the effective filtering ability achieved by the interaction
between the cytoskeletal and proteinoid components.
Interfacing the FitzHugh−Nagumo model oscillator with the

dynamic proteinoid−actin composite implements bio-inspired
coupling using a synaptic-like sigmoid modulation scheme71

=
+ +S x( )

1
1 em x c( ) (8)

As displayed in Figure 25, this coupling function transforms
subthreshold input events (V1in) into proportional output
voltage changes in V1out, mimicking neural activation profiles.
However, upon crossing the midpoint threshold (c = 0.5 V),
V1out is driven to spike rapidly�much like formal action
potentials. The steep sigmoid slope, governed by parameter m,
enforces switch-like all-or-none firing dynamics. Thereby,
strong V1in spike crossings propagate to evoke synchronized
V1out spiking, while weaker fluctuations decay through the bio-
composite network. The emergent responsiveness shows that
proteinoid architectures can be neuron-like. They can be
excitable when connected to model oscillatory systems.
Further study of spike profile changes vs coupling

parameters can clarify ways to optimize proteinoid excitability
in unconventional computing devices. Examining various
sigmoid functions also helps. It compares the efficiency of
linear, thresholding, and probing synchronization in the input−
output layers. This shows the biocomposite’s ability to store
information during complex oscillatory drive experiments.The
recorded input voltage data consists of two channels denoted
by

=V t1 ( ) first input voltage time seriesin (9)

=W t1 ( ) second input voltage time seriesin (10)

Similarly, the output voltage traces are represented as

=V t1 ( ) first output voltage time seriesout (11)

=W t1 ( ) second output voltage time seriesout (12)

According to the truth table analysis (Table 6), the input
node activation states V1in and W1in are transformed in a
nonlinear way through the proteinoid−actin composite,
resulting in output voltage signals V1out and W1out. The
research examines the input and output patterns over 2000+
time steps, revealing oscillations that are apparent in the
occasional transition between active (1) and inactive (0) states.
Nevertheless, the outputs demonstrate activation even when

both inputs are inactive, confirming the functionality of
Oscillatory Threshold Logic (OTL) operations, in which
subthreshold inputs can elicit outputs when combined. This
validates fundamental principles of Oscillatory Threshold
Logic (OTL), which employs voltage epochs below or above
the threshold to add timing-based binary data to oscillatory

Figure 23. Phase plane analysis of the FitzHugh−Nagumo model
dynamics. Trajectories are simulated from an initial resting state (0, 0)
with system parameters maintained at a = 0.1, ϵ = 0.1, and γ = 0.1.
Two input intensities are used: (A) c = 1 and (B) c = 2. Both
examples have transitory dynamics that involve outward spiralling
before settling into a stable limit cycle oscillation. The limit cycle
diameter increases as the input drive increases to c = 2, as do peak
amplitudes and activation variables. The portraits demonstrate the
model’s adaptability, ranging from resting states to autonomous
oscillations under appropriate excitatory impulses, similar to the
change from quiescence to repeated spiking during neural activation.
Quantitative investigation of phase space features as input drives are
systematically varied yields insights into excitation thresholds, bi-
stability regimes, and other complicated dynamics, highlighting the
model’s relevance for studying coupled oscillators at different sizes.
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Figure 24. Propagation of voltage oscillations from the FitzHugh−Nagumo system through a composite material consisting of proteinoids and
actin. (A) The input time series consists of 100,006 data points showing chaotic oscillations ranging from −0.12 to 0.11 V, with a mean of −0.0034
V and a standard deviation of 0.0450 V. (B) On the other hand, the dynamic biological interface limits the extremes to a range of −0.056 to 0.087
V, resulting in stable output statistics at 0.0212 ± 0.0176 V. The transformation entails a decrease in signal variance by more than 6 times,
accompanied by an increase in average waveform amplitude by more than 7 times. The voltage regulation mechanism is supported by the effective
filtering achieved by the interaction between cytoskeletal and proteinoid microstructures, which helps to process irregular patterns of stimulation.
To gain a deeper understanding, it is necessary to analyze how changes in the waveform at different stages relate to the shifts between locally-
independent and globally coordinated states of the bio-composite network, as it processes complicated information.

Figure 25. FitzHugh−Nagumo waveform (V1in) is fed into the proteinoid−actin composite output (V1out) by a sigmoid coupling method. The
sigmoid function adjusts V1out in proportion to V1in by employing a smoothing thresholding response (refer to eq 6), imitating the synaptic
communication channels seen in brain networks. The upper panel shows the full voltage range (±3 V) of the input−output dynamics, while the
lower panel presents a magnified view of the same signals focused on the fine-scale voltage fluctuations (±0.15 V) to highlight the subtle coupling
effects. This strategy, which takes inspiration from biological systems, establishes a connection between small input fluctuations below a certain
threshold and corresponding variations in the output. Nevertheless, when the halfway threshold (c = 0.5 V) is crossed, there is a sudden and
decisive increase in V1out, which triggers neuronal action potential firing patterns. The high sigmoid slope, determined by the parameter m, closely
resembles the binary spiking behavior known as all-or-none. As a result, powerful V1in spike crossings spread via the bio-composite interface to
control synchronized V1out spikes, whereas less intense sub-threshold events diminish with time. In summary, the regulated changes in dynamics
provide evidence that the combined proteinoid−actin structure can exhibit activation responsiveness similar to that of actual biological neurons.
Measuring changes in the timing, forms, and frequencies of spikes for different levels and types of sigmoid coupling can assist in optimizing
unconventional computing patterns that utilize proteinoid excitability.
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carrier signals suitable for logic operations. These operations
are performed by applying hysteretic thresholds on wave
amplitude.77−80 Essentially, OTL expands on neuron-inspired
spiking patterns by allowing for the adaptation of logic gates
through the adjustment of discrimination voltages, rather than
relying on separate solid-state gates. Consequently, the
implementation of OTL involves the application of a threshold
to proteinoid−actin response timeseries. In this approach,
contiguous intervals that surpass the threshold are assigned a
value of +1, indicating bit-1. Conversely, segments that fall
below the threshold are assigned a value of −1, signifying bit-
0.81 When thresholded signals are inputted into conventional
logic primitives such as AND/OR, it results in parallel Boolean
propositions.
The direct correspondence between input and output states

demonstrates that, even with the emergence of excitation, the
bio-composite network maintains the capacity to accurately
encode upstream drive sequences into proportional down-
stream activations within the framework of an OR-gating OTL
scheme. The implemented Oscillatory Threshold Logic (OTL)
computes bitwise OR operation between thresholded input
and output node activations as elaborated by

= V W V WOTL ( 1 1 ) ( 1 1 )in in out outthr thr thr thr (13)

Consequently, the occurrence of spike events in either the
input or output registers will result in a combined gate
activation, effectively executing an OR proposition. Such a
phenomenon enables the generation of emergent excitation
even in the absence of corresponding input, as evidenced by
sporadic output coordination. The scheme efficiently encodes
structured representations activated through architectural
reconfiguration logic that analyses familiar signals into specific
patterns dictated by interior restructuring.
Let us consider the following logical equations employing

oscillatory activity of the proteinoid−actin network

=V V f V1 1 ( 1 )out in in (14)

=W W f W1 1 ( 1 )out in in (15)

= V WOTL 1 1output out out (16)

Where: V1in, W1in are the input voltage time series, V1out,
W1out are output voltage signals, f() represents the oscillatory
thresholding function, ∧ = AND logic operator, ∨ = OR logic
operator.
The thresholding function f(x(t)) is implemented with the

following experimental parameters: The voltage threshold θ is
set to 0.5 V, determined by the average resting potential of the
proteinoid−actin network (∼ 0.0212 V) plus two standard
deviations (2 × 0.0176 V). This threshold value correlates with
the physical properties of the proteinoid microspheres,
specifically their membrane capacitance and the actin
filaments’ reorganization potential. The input voltage function
x(t) varies between −0.12 and 0.11 V, with temporal dynamics
governed by the FitzHugh−Nagumo parameters (a = 0.1, ϵ =
0.1, γ = 0.1). The thresholding function outputs

l
moo
noo

=
> >

f x t
x t t

( ( ))
1 if ( ) for

0 otherwise
min

(17)

where τmin = 100 ms represents the minimum duration
required for stable conformational changes in the proteinoid−
actin network. This temporal constraint ensures that only
sustained suprathreshold events trigger state changes, filtering
out transient fluctuations.
The input voltage time series V1in and W1in first undergo a

thresholding function f() that essentially implements a spike
detection based on amplitude. As defined in the eqs 14, 15, 16,
f(x) outputs a 1 if the input voltage x exceeds parameter τ,
representing the spike threshold level. Otherwise f(x) outputs a
0 for subthreshold inputs.
This thresholding mimics neuronal spiking behavior�

outputting a discrete spike event when input crosses a
membrane potential firing limit. The thresholded signals
f(V1in) and f(W1in) then undergo an AND operation with
their respective raw inputs. Thereby the outputs V1out and
W1out will activate both when raw input is present and it
crosses the firing threshold to elicit a spike.
Finally, an OR operation takes the one of the output states

or both of them delivers the overall OTL output. In this way, a
suprathreshold event in either input OR output layer will
register a positive OTL result. This parallels neuronal logic
operations underlying decisions based on collective firing
patterns across neural networks in the brain.
The logic gate activation heatmap (Figure 26) demonstrates

how erratic output spiking continues despite inert inputs across
the proteinoid−actin interface. The underlying architecture
appears to allow for bursts of coordinated high-intensity micro-
events across input and output gates, as shown in the periodic
vertical activation slices. To determine whether such
phenomena represent global synchronization or localized
micro-domain coordination, the logic fabric evolution must
be cross-correlated with microscopic cytoskeletal rearrange-
ment. This can reveal whether apparent spontaneous logic
switches are due to structural changes such as filament
rotations or density fluctuations. Overall, using the dynamic
bio-interface as an adaptable logic processor gives a framework
to decode emergent computing from the bottom−up.

■ DISCUSSION
We have designed a system of proteinoid microspheres
spanned by actin filaments, called proteinoid−actin system.

Table 6. Truth Table Analysis for Input Node Activation
States V1in, W1in and Output Node Activations V1out, W1out,
Subject to Oscillatory Threshold Logic (OTL)
Transformations across a Proteinoid−Actin Networka

time step V1in W1in V1out W1out OTL output

1 1 0 1 0 0
2 1 0 1 0 0
3 1 0 1 0 0
4 1 0 1 0 0
5 1 0 1 0 0
10 1 0 1 0 0
25 1 0 1 0 0
50 1 0 1 0 0
100 1 0 1 0 0
500 1 0 1 0 0
1000 1 0 1 0 0
1500 0 0 1 0 0
2000 0 1 1 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

aOTL implements logical OR operations by thresholding sinusoidal
input drives, enabling spike frequency modulation mappings.
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The complex microstructures observed in scanning electron
micrographs of self-assembled proteinoid−actin composites
provide compelling evidence of complex morphological
emergence that exceeds mere random aggregations. As noted
by distinguished biologist George Wald many years ago,
certain molecular primordial soups possess inherent organizing
properties encoded within their underlying physics, enabling
them to spontaneously engage in lifelike architectural self-
construction without the need for external biological
machinery.82 Our current findings not only support the
existence of these inherently exploitable “self-assembly”
phenomena across different length scales, but also establish
their presence in non-living polypeptides interfacing with
cytoskeletal filaments. Through quantifying the shape land-
scapes formed by these assemblies, we can establish links
between configurational free energy sinks and recurrently
selected archetypal templates that facilitate efficient informa-
tion propagation. Ultimately, by examining the relationships
between molecular stacking forces, emergent curvatures, and
computational utility, we can establish a crucial foundation for
advancing dynamic biological fabrics into artificial cognition
substrates.

We investigated the effects of driving the integrated
proteinoid−actin system with chaotic rhythms on the
modulation of extremes at the bio−abiotic interface. We
observed that oscillatory inputs originating from various
systems such as Logistic maps, Lorentz attractor, and Rössler
attractor demonstrate a substantial regularization of voltage
due to the composite structure. Quantitatively, the stability of
the signals experiences significant improvement, resulting in
the clamping of variations by more than 20 dB under certain
circumstances. Here, “stability” means less noise and variability
in the output signal. It does not refer to a fixed point in the
phase space of the dynamical system. This use focuses on the
system’s ability to suppress chaos and maintain signal
coherence. Figures 8−22 showcase the quantitative character-
izations of the clamping effect that occurs during the
transmission of chaotic waveforms through the proteinoid−
cytoskeletal interface. There has been a notable change in the
average input voltage levels, transitioning from the initial values
of approximately 0 V/−80 dB to confined ranges of 0/−100
dB. The significant 20 dB improvement in signal condensation
underscores the proteinoid−cytoskeletal interface’s capacity to
convert complex waveforms into a more succinct and
controllable form. The data show a consistent pattern: chaotic
biomolecular networks naturally transform into organized
electrical signals without the need for external circuits. This
observation of emergent signal regularization by bio-molecular
matrices aligns with coordinated phenomena noted through
independent efforts interfacing distinct chaos generating
systems with specialized biocomposite formulations.83,84 In
addition to steady-state statistics, the preserved frequency
alignment confirms real-time monitoring, eliminating any
delays between input and output motifs. Notably, it is
observed that different chaotic drivers induce similar
suppression, indicating the presence of common volatility
containment mechanisms directed by materials. While the
enhanced smoothness appears to mimic a filtering process, a
closer examination reveals additional calculations enabled by
cytoskeletal reconfiguration. Cross-correlation analysis reveals
windows of output autonomy, suggesting the presence of
complex intra-mesh logical operations despite the passive
nature of the stimulus. To establish links between emergent
conduction pathways and structural transitions in activation
cascades, simultaneous multi-shot imaging techniques are
necessary. The consistent and pronounced optimization of
signals demonstrates the functional significance of the
proteinoid−cytoskeletal network, which exhibits local disorder
and global synchronization. The classification of the diverse
logical representations made possible through tunable
architectural couplings paves the way for the development of
bio-inspired circuits that incorporate rational engineering
design concepts into synthetic biological substrates. Further-
more, by integrating molecular tools for programmable self-
construction with order templates derived from physical
theory, the exploration of the mutually beneficial hybridization
of biomolecular complexity and classical dynamical models is
expected to continue.
The dynamic interplay between proteinoid structures and

the actin network, driven by various chaotic rhythms, uncovers
a consistent pattern in signal regularization within the bio-
derived interface. Through quantitative analysis, we observe
that the input Lyapunov exponents confirm the highly irregular
waveforms generated by discrete logistic maps and multi-
dimensional Rössler attractor trajectories, which exhibit

Figure 26. Heatmap depicting the activation states of input
thresholding gates, output gates, and the overall OTL gate across
the analyzed time period. When the gate is activated, the red color
indicates a logic “High” or 1 state, whereas black indicates an inactive
logic “Low” or 0. The input gates V1in and W1in exhibit synchronized,
high-intensity activity throughout the first phase. Despite the
quiescent inputs, the output gates V1out and W1out show periodic
sparse activation characteristics. The y-axis represents five distinct
logic gates arranged vertically from top to bottom: V1in, W1in, V1out,
W1out, and OTL, while the x-axis shows the temporal evolution over
10,000 time steps. The pattern reveals three distinct temporal phases:
an initial period of intense switching (0−2000), an intermediate phase
of reduced activity (2000−4000), and a final phase of sustained
activation (4000−10,000). This demonstrates the OTL’s ability to
produce output spikes via internal oscillator ring coupling and
proteinoid−actin dynamics, rather than exclusively stimulus-driven
feedforward pathways. Periodic vertical activation slices depict
synchronized gate bursting under the control of underlying limit
cycle regimes. The new temporal patterns suggest a complex interplay
between the gates. The OTL acts as a decision-making unit. It
combines the rapid switching of the input gates and the controlled
output response. The heatmap shows how, over time, a balance of
coordination and segregation of input sensing and intrinsic output
spiking arises across the biocomposite interface.
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exponential divergence amplification of small perturbations.
However, the transmitted outputs demonstrate more negative
exponent values, indicating enhanced suppression effects. The
significant reduction in divergence rates, up to 17−fold, verifies
the microscale coordination that actively constrains oscillations
within well-defined boundaries despite external volatility. This
improved smoothness, resembling linear filtering, is attributed
to the productive modulation facilitated by proteinoid
architectural adaptations and cytoskeletal network reconfigura-
tions that collectively harness randomness. The emergence of
orderly representations from underlying disorder positions
these bio-composite networks as promising candidates for
unreliable logic gate arrays that exploit noise. By interpreting
the disorder-to-order transitions through the lens of cellular
non-equilibrium thermodynamics, we establish a framework
for bridging conservation principles with dissipative signaling,
thereby contextualizing our observations. Generally, quantify-
ing Lyapunov metrics provides a robust signature to classify
modulation effects across dynamical regimes, paving the way
for materials optimization that balances plasticity and robust-
ness�two fundamental characteristics of biological computa-
tion.
The findings of our study indicate that the composite

proteinoid−actin system displays several oscillatory phenom-
ena, such as synchronization and phase-locking.85,86 Employing
these features for unconventional computing87 is a promising
method of utilizing the complex nature of biochemicals for
information processing.88−90 The bio-composite oscillator
networks represent a progression toward upcoming bio-
inspired technologies, drawing inspiration from the adaptable
dynamics observed in biological systems across many sizes.91,92

The application of the FitzHugh−Nagumo system, which
emulates neuronal waveforms, provides further evidence of the
activation responsiveness displayed by proteinoid architectures,
akin to that observed in formal neurons. FitzHugh−Nagumo
inputs are not essential for observing spiking dynamics. But,
they are a valuable, biologically relevant model for probing the
system’s behavior under neuron-like stimulation. Other input
signals, like simple oscillatory or chaotic waveforms, may also
evoke similar dynamics. But, the FitzHugh−Nagumo system
ensures compatibility with bioinspired signal processing.
Specifically, when examining the sigmoid coupling system, it
becomes evident that subthreshold fluctuations result in V1out
output variations that are directly proportional. However,
surpassing the excitation threshold gives rise to rapid and
distinct spiking profiles, characteristic of neuronal firing
patterns. This regulatory behavior supports the notion that
proteinoid microspheres possess excitability comparable to that
of the nervous system, under the influence of specific chemical
or electrical stimulation methods. Moreover, the maintained
synchronicity in timing and spectral alignment affirms the real-
time tracking capabilities of the integrated bio-composite
interface. This highlights its ability to swiftly analyze and
interpret signals, eschewing the need for slower processing
methods. By extending the concept of excitability to activation
cascades within networks, we can gain insights into the
formation of coordinated logic gate motifs and the
spontaneous emergence of ordered outcomes in intercon-
nected heterogeneous architectures. Heatmap visualizations
provide evidence that short periods of time exhibit
synchronized bursting, involving sensory, transmission, and
gating nodes simultaneously. Exploring whether these out-
breaks lead to the synchronization of reorganization at a local

or global scale within the composite structure can elucidate
how molecular level changes influence computation patterns at
the systems level. In summary, the diverse range of measured
responses and excitability support the notion that the
proteinoid−actin network possesses versatile signaling capaci-
ties. Pursuing optimization strategies for configurable logic
operations and leveraging self-organized bio-molecular path-
ways for decision-making present exciting prospects to harness
the principles of biological complexity in unconventional
computing applications.
Overall, the results demonstrate that specialized nonlinear

mechanisms play a crucial role in translating diverse external
inputs into a structured and limited frequency response. The
observed clamping effect and the significant shift in input
voltage averages highlight the productive modulation function-
ality of the proteinoid−cytoskeletal interface. This interface
effectively transforms chaotic waveforms into concise and
manageable representations without the need for external
shaping circuits.
The analysis of variance partitioning further elucidates the

proteinoid architectural reconfigurations and cytoskeletal
transitions that contribute to the transformation of unpredict-
able inputs into controlled and stable states. These
reconfigurations and transitions work in conjunction to create
cohesion and coherence between biomolecules, which
ultimately affect the electrical transmission of the dynamic
structure.
The presence of stable co-excitation at the nanosecond time

scale and the absence of long anti-correlated regions indicate
cohesive interactions between biomolecules, both in connected
and disconnected proteinoid microstates. This cohesive
behavior extends to locked filamentous regimes, reinforcing
the notion of global coordination between the biological and
non-living components of the system. Real-time microscopy
research can further elucidate the link between reported
response dynamics and structural changes at the proteinoid−
actin biocomposite interface.
The nonlinear characteristics of the integrated platform are

confirmed through similarities in input−output patterns.
Moreover, the observation of intermittent decoupling and
partially conductive versus insulating states suggests that
proteinoid architectures undergo complex conformational
changes under extreme driving conditions. These changes
give rise to emergent nonlinearity, which governs the input−
output signal changes observed.
The study also highlights the role of proteinoid architectural

reconfigurations in selective filtering or convolution effects on
upstream driving variables. The observed electrical modifica-
tions, including amplitude suppression and spectral alignment
in the output, point to molecular reconfigurations mediated by
the dynamic bio−abiotic interface.
The observed relationship between signal magnitudes and

their standard deviations requires careful consideration. Our
initial experiments found that standard deviations often
exceeded peak magnitudes. This may raise doubts about the
signal’s reliability. However, this variability shows an important
trait of our proteinoid−actin system. It can actively process
and regularize inputs. For example, in the Rössler oscillation
experiments, the input signal had a high variability (std. dev.
2.46 V) compared to its mean (0.13 V). The output had a
much lower variation (std. dev. 0.11 V, mean 0.01 V). This 20-
fold drop in signal variance shows that the biocomposite
network is an effective signal conditioner. The high initial
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standard deviations thus represent the complex, chaotic nature
of our input signals rather than measurement uncertainty. The
system’s consistent ability to reduce these variations across
different input patterns (FitzHugh−Nagumo, Baker’s Map,
Rössler) proves it can process signals reliably. This is despite
the high variability in the input signals.
In summary, the results presented in this study shed light on

the complex mechanisms by which the proteinoid−cytoskeletal
interface modulates input signals. The findings have significant
implications for the fields of signal processing and bio-inspired
computing. More research is needed to understand the
processes behind chaotic matter reconfiguration. We should
explore its potential for bioinspired architectures.

■ CONCLUSIONS
This study showcases the emergence of oscillatory events at
the boundary of a composite system consisting of proteinoid
microstructures combined with cytoskeletal actin networks.
Our investigation discovered that the proteinoid−actin net-
work has the ability to respond to a wide range of signals, from
chaotic rhythms to rhythmic biosignals, in order to drive this
dynamic bio−abiotic architecture.
To formalize our understanding of the system’s mechanistic

behavior, we propose that its response to various chaotic input
signals can provide insights into its computational principles.
For example, simple periodic inputs could establish a baseline
for the system’s dynamics. Chaotic inputs could reveal its
ability to reduce noise, remain stable, and process nonlinearly.
These observations could help build a theoretical model. It
would identify critical parameters, like frequency coupling and
amplitude modulation. These govern the network’s emergent
behavior. They include trajectory convergence within phase
space.
Our work shows we can process a single input signal.

However, we need to test it more to prove we can do multi-
input Boolean operations. Our early results with logistic map
transformations show promise. But, scaling these networks for
complex tasks poses challenges. These include: maintaining
signal integrity across larger networks, ensuring reliable
threshold behavior over multiple gates, and achieving
consistent input−output relationships. Future work should
focus on: (1) characterizing two-input logic operations, (2)
developing protocols for network scaling, and (3) creating
metrics for reliability in larger proteinoid−actin assemblies.
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J. Handbook of Unconventional Computing: VOLUME 2: Implementa-
tions; World Scientific, 2022; pp 103−148.
(47) Wang, S.; Wolynes, P. G. Active Contractility in Actomyosin
Networks. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 6446−6451.

(48) Popov, K.; Komianos, J.; Papoian, G. A. MEDYAN:
Mechanochemical simulations of contraction and polarity alignment
in actomyosin networks. PLoS Comput. Biol. 2016, 12, No. e1004877.
(49) Koenderink, G. H.; Paluch, E. K. Architecture shapes
contractility in actomyosin networks. Curr. Opin. Cell Biol. 2018,
50, 79−85.
(50) Artmann, S.; Tsuda, S.; Zauner, K.-P. Information-Theoretic
Aspects of Control in a Bio-Hybrid Robot Device, Artificial Life XI:
Proceedings of the Eleventh International Conference on the
Simulation and Synthesis of Living Systems; MIT Press, 2008.
(51) Tsuda, S.; Zauner, K.-P.; Gunji, Y.-P. Computing Substrates and
Life, Explorations in the Complexity of Possible Life; IOS Press, 2006.
(52) Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Meng, E. C.;
Couch, G. S.; Croll, T. I.; Morris, J. H.; Ferrin, T. E. UCSF
ChimeraX: Structure visualization for researchers, educators, and
developers. Protein Sci. 2021, 30, 70−82.
(53) Xue, B.; Leyrat, C.; Grimes, J. M.; Robinson, R. C. Structural
basis of thymosin-β4/profilin exchange leading to actin filament
polymerization. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, E4596−E4605.
(54) Veres, D. V.; Gyurkó, D. M.; Thaler, B.; Szalay, K. Z.; Fazekas,
D.; Korcsmáros, T.; Csermely, P. ComPPI: a cellular compartment-
specific database for protein-protein interaction network analysis.
Nucleic Acids Res. 2015, 43, D485−D493.
(55) Nakajima, N.; Ikada, Y. Mechanism of amide formation by
carbodiimide for bioconjugation in aqueous media. Bioconjugate
Chem. 1995, 6, 123−130.
(56) Mougkogiannis, P.; Phillips, N.; Adamatzky, A. Transfer
functions of proteinoid microspheres. Biosystems 2023, 227-228,
No. 104892.
(57) Ghanami, S.; Farhadi, M.Fluidic Oscillators’ Applications,
Structures and Nechanisms-A Review. In Challenges in Nano and
Micro Scale Science and Technology; University of Sistan and
Baluchestan, 2019; Vol. 7, pp 9−27.
(58) Baghaei, M.; Bergada, J. M. Fluidic oscillators, the effect of
some design modifications. Appl. Sci. 2020, 10, No. 2105.
(59) Tabeling, P.; Chabert, M.; Dodge, A.; Jullien, C.; Okkels, F.
Chaotic mixing in cross-channel micromixers. Philosophical Trans-
actions of the Royal Society of London. Series A: Mathematical. Phys.
Eng. Sci. 2004, 362, 987−1000.
(60) Baker, G. L.; Gollub, J. P. Chaotic Dynamics: An Introduction;
Cambridge University Press, 1996.
(61) Wolf, A. Quantifying Chaos with Lyapunov. In Chaos;
Princeton University Press, 1986; Vol. 273.
(62) Rizik, L.; Danial, L.; Habib, M.; Weiss, R.; Daniel, R. Synthetic
neuromorphic computing in living cells. Nat. Commun. 2022, 13,
No. 5602.
(63) Chvykov, P.; Berrueta, T. A.; Vardhan, A.; Savoie, W.; Samland,
A.; Murphey, T. D.; Wiesenfeld, K.; Goldman, D. I.; England, J. L.
Low rattling: A predictive principle for self-organization in active
collectives. Science 2021, 371, 90−95.
(64) Lorenz, E. N. In The Statistical Prediction of Solutions of
Dynamical Equations, Proceedings of the International Symposium on
Numerical Weather Prediction; AMS, 1962.
(65) Lorenz, E. N. Deterministic nonperiodic flow. J. Atmos. Sci.
1963, 20, 130−141.
(66) Sparrow, C. The Lorenz Equations: Bifurcations, Chaos, and
Strange Attractors; Springer Science & Business Media, 2012; Vol. 41.
(67) Rössler, O. E. Chaotic behavior in simple reaction systems. Z.
Naturforsch. A 1976, 31, 259−264.
(68) Rössler, O. E. The chaotic hierarchy. Z. Naturforsch. A 1983,
38, 788−801.
(69) FitzHugh, R. Impulses and physiological states in theoretical
models of nerve membrane. Biophys. J. 1961, 1, 445−466.
(70) Nagumo, J.; Arimoto, S.; Yoshizawa, S. An active pulse
transmission line simulating nerve axon. Proceed. IRE 1962, 50, 2061−
2070.
(71) Borresen, J.; Lynch, S. Oscillatory threshold logic. PLoS One
2012, 7, No. e48498.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c10488
ACS Omega 2025, 10, 4952−4977

4976

https://doi.org/10.1186/s13408-020-00086-9
https://doi.org/10.1038/s41567-019-0598-1
https://doi.org/10.1038/s41567-019-0598-1
https://doi.org/10.1016/j.ceb.2004.12.007
https://doi.org/10.1371/journal.pcbi.0020030
https://doi.org/10.1371/journal.pcbi.0020030
https://doi.org/10.1007/BF00197312
https://doi.org/10.1007/BF00197312
https://doi.org/10.1038/scientificamerican1293-102
https://doi.org/10.1038/scientificamerican1293-102
https://doi.org/10.1007/s10699-012-9301-z
https://doi.org/10.1007/s10699-012-9301-z
https://doi.org/10.1038/s41598-018-24670-y
https://doi.org/10.1038/s41598-018-24670-y
https://doi.org/10.1016/j.clinph.2012.01.011
https://doi.org/10.1016/j.clinph.2012.01.011
https://doi.org/10.1523/ENEURO.0153-16.2017
https://doi.org/10.1523/ENEURO.0153-16.2017
https://doi.org/10.1523/ENEURO.0153-16.2017?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.biosystems.2021.104480
https://doi.org/10.1016/j.biosystems.2021.104480
https://doi.org/10.1002/qua.560220719
https://doi.org/10.1002/qua.560220719
https://doi.org/10.1371/journal.pone.0260016
https://doi.org/10.1371/journal.pone.0260016
https://doi.org/10.1088/2632-072X/ac3ad4
https://doi.org/10.1088/2632-072X/ac3ad4
https://doi.org/10.1002/anie.201410139
https://doi.org/10.1109/JPROC.2008.925448
https://doi.org/10.1109/JPROC.2008.925448
https://doi.org/10.1042/ETLS20190016
https://doi.org/10.1042/ETLS20190016
https://doi.org/10.1038/msb.2010.119
https://doi.org/10.1021/acs.chemrev.1c00308?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.1c00308?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/scientificamerican0198-48
https://doi.org/10.1016/j.chempr.2020.06.005
https://doi.org/10.1016/j.chempr.2020.06.005
https://doi.org/10.1016/j.physleta.2015.09.024
https://doi.org/10.1016/j.physleta.2015.09.024
https://doi.org/10.1073/pnas.1204205109
https://doi.org/10.1073/pnas.1204205109
https://doi.org/10.1371/journal.pcbi.1004877
https://doi.org/10.1371/journal.pcbi.1004877
https://doi.org/10.1371/journal.pcbi.1004877
https://doi.org/10.1016/j.ceb.2018.01.015
https://doi.org/10.1016/j.ceb.2018.01.015
https://doi.org/10.1002/pro.3943
https://doi.org/10.1002/pro.3943
https://doi.org/10.1002/pro.3943
https://doi.org/10.1073/pnas.1412271111
https://doi.org/10.1073/pnas.1412271111
https://doi.org/10.1073/pnas.1412271111
https://doi.org/10.1093/nar/gku1007
https://doi.org/10.1093/nar/gku1007
https://doi.org/10.1021/bc00031a015?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/bc00031a015?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.biosystems.2023.104892
https://doi.org/10.1016/j.biosystems.2023.104892
https://doi.org/10.3390/app10062105
https://doi.org/10.3390/app10062105
https://doi.org/10.1098/rsta.2003.1358
https://doi.org/10.1098/rsta.2003.1358
https://doi.org/10.1038/s41467-022-33288-8
https://doi.org/10.1038/s41467-022-33288-8
https://doi.org/10.1126/science.abc6182
https://doi.org/10.1126/science.abc6182
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1515/zna-1976-3-408
https://doi.org/10.1515/zna-1983-0714
https://doi.org/10.1016/S0006-3495(61)86902-6
https://doi.org/10.1016/S0006-3495(61)86902-6
https://doi.org/10.1109/JRPROC.1962.288235
https://doi.org/10.1109/JRPROC.1962.288235
https://doi.org/10.1371/journal.pone.0048498
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c10488?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(72) Rabinovich, M. I.; Varona, P.; Selverston, A. I.; Abarbanel, H.
D. Dynamical principles in neuroscience. Rev. Mod. Phys. 2006, 78,
1213−1265.
(73) Sussillo, D.; Abbott, L. F. Generating coherent patterns of
activity from chaotic neural networks. Neuron 2009, 63, 544−557.
(74) Jaeger, H.; Haas, H. Harnessing nonlinearity: Predicting chaotic
systems and saving energy in wireless communication. Science 2004,
304, 78−80.
(75) Hodgkin, A. L.; Huxley, A. F. A quantitative description of
membrane current and its application to conduction and excitation in
nerve. J. Physiol. 1952, 117, 500−544.
(76) Amdursky, N.; Ferber, D.; Bortolotti, C. A.; Dolgikh, D. A.;
Chertkova, R. V.; Pecht, I.; Sheves, M.; Cahen, D. Solid-state electron
transport via cytochrome c depends on electronic coupling to
electrodes and across the protein. Proc. Natl. Acad. Sci. U.S.A. 2014,
111, 5556−5561.
(77) Solodov, I. Y.; Korshak, B. A. Instability, chaos, and “memory”
in acoustic-wave−crack interaction. Phys. Rev. Lett. 2001, 88,
No. 014303.
(78) Van Den Abeele, K.-A.; Johnson, P. A.; Guyer, R. A.; McCall,
K. R. On the quasi-analytic treatment of hysteretic nonlinear response
in elastic wave propagation. J. Acoust. Soc. Am. 1997, 101, 1885−1898.
(79) Hegazi, E. E.; Rael, J.; Abidi, A. The Designer’s Guide to High-
Purity Oscillators; Springer Science & Business Media, 2006.
(80) Ritz, R.; Gerstner, W.; Fuentes, U.; Leo van Hemmen, J. A
biologically motivated and analytically soluble model of collective
oscillations in the cortex: II. Application to binding and pattern
segmentation. Biol. Cybern. 1994, 71, 349−358.
(81) Whiting, J. G.; de Lacy Costello, B. P.; Adamatzky, A. Slime
mould logic gates based on frequency changes of electrical potential
oscillation. Biosystems 2014, 124, 21−25.
(82) Wald, G. Life and Mind in the Universe. Int. J. Quantum Chem.
1984, 26, 1−15.
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