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Abstract
In software development, Software Fault Prediction (SFP) is essential for optimising resource
allocation and improving testing efficiency. Traditional SFP methods typically use binary-
class models, which can provide a limited perspective on the varying risk levels associated
with individual software modules. This study explores the impacts of Error-type Metrics on
the fault-proneness of software modules in domain-specific software projects. Also, it aims
to enhance SFP methods by introducing a risk-based approach using Error-type Metrics.
This method categorises software modules into High, Medium, and Low-Risk categories,
offering a more granular and informative fault prediction framework. This approach aims to
refine the fault prediction process and contribute to more effective resource allocation and
project management in software development. We explore the domain-specific impact of
Error-type Metrics through Principal Component Analysis (PCA), aiming to fill a gap in the
existing literature by offering insights into how these metrics affect machine learning models
across different software domains. We employ three machine learning models - Support
Vector Machine (SVM), Random Forest (RF), and Extreme Gradient Boosting (XGB) - to
test our approach. The Synthetic Minority Over-sampling Technique (SMOTE) is used to
address class imbalance. Our methodology is validated on fault data from four open-source
software projects, aiming to confirm the robustness and generalisability of our approach.
The PCA findings provide evidence of the varied impacts of Error-type Metrics in different
software environments. Comparative analysis indicates a strong performance by the XGB
model, achieving an accuracy of 97.4%, a Matthews Correlation Coefficient of 96.1%, and
an F1-score of 97.4% across the datasets. These results suggest the potential of the proposed
method to contribute to software testing and quality assurance practices. Our risk-based
SFP approach introduces a new perspective to risk assessment in software development.
The study’s findings contribute insights into the domain-specific applicability of Error-type
Metrics, expanding their potential utility in SFP. Future research directions include refining
our fault-counting methodology and exploring broader applications of Error-type Metrics
and our proposed risk-based approach.
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1 Introduction

The foundation for attaining high-quality software is effective software quality assurance
(SQA). This includes activities such as encompassing formal code inspections, code walk-
throughs, software testing, validation, and verification. These activities together ensure the
aspired software quality is cost-effectively attained by supervising and steering the Software
Development Life Cycle (SDLC) (Rathore & Kumar, 2019).

Despite this, the objective of thoroughly testing a software system is practically impossible
due to the substantial time and resources demanded (Rathore & Kumar, 2016; Hierons et al.,
2009). This problem is underscored by the irregular distribution of faults among software
modules, leading to inefficiencies when testing resources and efforts are evenly expended on
all modules of the system under test (SUT).

To counter this issue, software fault prediction (SFP) has been suggested as a feasible
solution. SFP aims to optimise the allocation of limited SQA resources by predicting the
fault-proneness of software modules or classes. For instance, if only a quarter of resources
are accessible, understanding the most susceptible areas enables testers and developers to
prioritise these resources, concentrating on modules or classes more likely to exhibit faults.
This allows for the creation of robust software within the bounds of constrained time and
budget. Over the past few decades, SFP techniques enabling early detection of faulty software
modules during the SDLC have attracted increasing interest from researchers and software
developers alike.

SFP research employs a wide range of statistical and machine learning techniques such
as Logistic Regression, Naïve Bayes, Multilayer Perceptron, Decision Tree, Support Vector
Machine, etc., to predict the fault-proneness of software modules (Rathore & Kumar, 2016;
Malhotra, 2015). The data employed to train these SFP models, comprising software metrics
and fault data, are typically derived from similar projects or earlier versions of the same
project. Thesemodels are then applied to themodules or classes of a specified SUT to classify
them as either fault-prone or not. The abundance of available software metrics (Bundschuh&
Dekkers, 2008; AlDallal, 2013; Tahir&MacDonell, 2012;Nagappan et al., 2010; Jiang et al.,
2008; Premraj&Herzig, 2011) and open-source data repositories, such asNASA (Petrić et al.,
2016) and PROMISE (Shirabad et al., 2005), has catalysed numerous explorations into SFP.
However, despite recent syntheses of SFP, providing details on its achievements and current
trends, a comprehensive evaluation of various SFP studies and a coherent understanding of
the merits and demerits of existing SFP methods remain elusive (Kamei & Shihab, 2016).

In addition, the concept of software fault proneness presents ambiguity. Faults can appear
at any stage of the SDLC, and some may remain undetected during testing, only to emerge
after release (Rathore & Kumar, 2019). Many SFP methodologies are reliant on binary-
class classification, predicting whether a software module is fault-prone or not (Rathore &
Kumar, 2019, 2016). However, this binary approach grossly simplifies the complexity of
fault prediction. It neglects the fact that some modules are indeed more prone to faults and
demand more attention than others. A more granular representation of faultiness in software
modules, such as the number of faults in amodule, fault-wise ranking ofmodules, and severity
of a fault, would offer greater value to software testers or analysts (Rathore & Kumar, 2019;
Menzies et al., 2008).
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It has been observed that the performance of techniques and methods used for SFP has
plateaued. Merely employing different or seemingly superior techniques does not assure
enhanced performance (Rathore & Kumar, 2019; Menzies et al., 2008). To achieve better
prediction outcomes, additional information needs to be incorporated into the construction of
SFPmodels (Menzies et al., 2011), and innovative approaches to SFP should be contemplated.
To this end, we have previously introduced Error-type Metrics (Phung et al., 2021, 2023),
which effectively capture the patterns of runtime errors observed in Java programs. However,
it is crucial to fully understand the nature of these new metrics and their interactions. If these
metrics exhibit high inter-correlations (multicollinearity), their predictive power could be
compromised, leading to unstable and potentially inaccurate SFP models.

In light of the above, this paper makes several key contributions:

1. Enhanced Risk Categorisation Framework: Building on our previously introduced
Error-typeMetrics (Phung et al., 2021, 2023), we develop a comprehensive risk categori-
sation framework that surpasses traditional binary-class models in SFP. This framework
classifies risks into Low, Medium, and High categories, significantly facilitating the
decision-making process for high-level management. By abstracting the intricacies of
software faults into these categories, our approach aims to streamline risk monitoring
and aligns with project management principles to improve project management effec-
tiveness.

2. Domain-specific Evaluation of Error-type Metrics: Our investigation extends into the
domain-specific impacts of Error-type Metrics across diverse software projects, address-
ing a gap highlighted by Rathore and Kumar (2019) regarding the contextual evaluation
of software metrics. We provide empirical analysis for the impacts of these metrics on
specific open-source software projects.

3. Addressing Multicollinearity in Error-type Metrics: We examine the multicollinearity
among Error-type Metrics before applying them to train SFP models. This investigation,
which was overlooked in our previous study, ensures the reliability and validity of the
Error-type Metrics employed in this study, strengthening the foundation for their use in
SFP.

Given these contributions, our first research question (RQ1) is: How do Error-type Met-
rics impact the fault-proneness of software modules across different domains, and do these
metrics exhibit multicollinearity issues? - By posing this question, we aim to provide a com-
prehensive understanding of the nature and applicability of Error-type Metrics. Specifically,
RQ1 explores whether the impact of Error-type Metrics is consistent across different types
of software or if their relevance is domain-specific. Furthermore, RQ1 aims to identify the
potential multicollinearity issues among these metrics, thereby validating their use in SFP
models.

Our second research question (RQ2) is:Can the integration of Error-typeMetrics enhance
the prediction and categorisation of software modules into risk levels (Low Risk, Medium
Risk, High Risk) with respect to the number of faults? - This question aims to investigate
the potential benefit of combining Error-type Metrics with other software metrics in risk
assessment. The investigation in RQ1 lays the groundwork for RQ2 by assuring that the
integration of Error-type Metrics will not lead to problematic multicollinearity issues.

The remainder of this paper is structured as follows. Section 2 provides an overview of
pertinent literature. Section 3 delineates the methodology for deriving Error-type Metrics.
Our proposed approach is articulated in Section 4. The findings of our experiments and
the comparison of our method against the current state-of-the-art are discussed in Section
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5. Finally, the paper concludes in Section 6 with reflections on the findings and potential
directions for future research.

2 Related work

In this section, we conduct a comprehensive review of associated work in three distinct
categories: software metrics, data quality issues, and model construction approaches.

2.1 Softwaremetrics

Software metrics, understood as a quantitative assessment of software product characteris-
tics, are crucial in evaluating the quality of software products (Fenton & Bieman, 2015).
Each metric is directly linked with specific functional attributes like coupling, cohesion, and
inheritance, and aids in assessing crucial external quality factors such as reliability, testability,
and fault-proneness (Bansiya & Davis, 2002).

There are various softwaremetrics in the literature, notablyObject-Oriented (OO)metrics,
including the Chidamber and Kemerer (CK) metrics suite (Chidamber & Kemerer, 1994),
MOODS metrics suite (Harrison et al., 1998), and the Bansiya metrics suite (Bansiya &
Davis, 2002). On the other hand, Traditional metrics offer a different perspective, including
Size metrics like Function Points (FP), Source Lines of Code (SLOC), and Quality metrics
like Defects per FP after delivery. Additionally, System Complexity metrics (McCabe, 1976)
and Halstead metrics (Halstead, 1977) provide insights into the structural complexity and
computational capabilities.

Some observations based on the review of the literature include: the performance of
software metrics can vary significantly depending on the context; several OO metrics like
Coupling BetweenObjects (CBO), Response for a Class (RFC), andWeightedMethodCount
(WMC) are effective in identifying faults; and a positive correlation exists between size
metrics and fault-proneness, implying larger software systems may be more fault-prone
(Rathore & Kumar, 2019).

Our prior work introduced a new approach using a formal method, namely Stream X-
Machine (Dranidis et al., 2012), to extract Error Specification Machine (ESM) values from
the source code (Phung et al., 2021). The ESMvalues were used to createError-type software
metrics, a novel set of metrics that improved the performance of machine learning models
in predicting fault-proneness (Phung et al., 2023). Error-type Metrics, derived from error-
type models, are applicable across any domain, thus potentially addressing the challenge
of choosing the right combination of metrics for different application domains. A detailed
discussion of Error-type Metrics is presented in Section 3.

2.2 Data quality issues

The success of SFPmodels is significantly influenced by the quality of datasets.While public
repositories such as NASA and PROMISE are conveniently accessible, they may harbour
erroneous or superfluous information that can compromise the effectiveness of classifiers
(Shepperd et al., 2013; Petrić et al., 2016). Despite this, many studies often assume the
adequacy of these datasets, neglecting potential data quality issues (Rathore & Kumar, 2019;
Bhandari et al., 2022).
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One major issue is high-dimensionality, where datasets have an excess of features. This
can degrade classification accuracy and increase computational costs (Bhandari et al., 2022).
Dimensionality reduction methods such as feature selection (e.g., Chi-square, Information
Gain, and Principal Component Analysis (PCA) Wold et al., 1987) and feature extraction
are solutions to this issue (Malhotra, 2015), reducing the feature set or creating a new set of
relevant features by combining existing ones, respectively.

Class imbalance is another challenge, where instances of a “minor class” are outnumbered
by the “major class”. This can bias learning algorithms towards themajor class, compromising
minor class prediction performance (Moreno-Torres et al., 2012; Song et al., 2018). Tech-
niques like resampling methods (e.g., Random Under-Sampling - RUS, Synthetic Minority
Over-sampling Technique - SMOTE), which alter distribution by oversampling the minority
class or undersampling the majority class, can ameliorate this (Wang & Yao, 2013).

Outliers, data points diverging significantly from the general pattern, also pose a quality
issue. In the context of SFP, outliers might represent faulty modules, so they should not be
arbitrarily eliminated (Li et al., 2018).

Lesser-known issues, such as missing data, repeated values, and redundancy, can also
negatively affect classifier performance (Bhandari et al., 2022). Other problems such as high-
class overlap can reducemodel efficacy (Gupta&Gupta, 2017). The simultaneous occurrence
of these issues can greatly impair prediction performance. This necessitates careful data
preprocessing, which should be tailored according to the unique characteristics of the dataset
under study. One objective of this research is to carefully address these data quality issues
before training the SFP models.

2.3 Model construction approaches

SFP models range from binary-class classification to the prediction of fault density or sever-
ity. Binary-class classification models have received the most attention in previous studies
(Rathore & Kumar, 2019; Malhotra, 2015; Alsolai & Roper, 2020; Kumar & Bansal, 2019).
However, to the best of our knowledge, there is limited work focused on predicting fault
density, severity, or error-type proneness, which is essential for a more comprehensive under-
standing of fault proneness in software modules.

In 2005, Ostrand et al. (2005) showcased the effectiveness of Negative Binomial Regres-
sion (NBR) in predicting the number and density of faults in software files, using their fault
and modification history. The approach was able to accurately identify 20% of the files with
the highest predicted number of faults. A similar study by Yu (2012) found that while NBR
was not superior to Binary Logistic Regression in predicting fault-prone modules, it was
efficient in predicting multiple faults within a single module.

Genetic programming (GP) has also demonstrated significant accuracy in fault count pre-
diction, as shown in open-source projects by Afzal et al. (2008) and Rathore and Kumar
(2015). In addition, a comparison of various count models, including the Poisson Regression
model (PR),Zero-InflatedPoissonmodel (ZIP),NegativeBinomialRegressionmodel (NBR),
Zero-Inflated Negative Binomial model (ZINB), and Hurdle Regression model (HR), high-
lighted the superior predictive accuracy of ZINB and HR models in predicting fault counts
(Gao & Khoshgoftaar, 2007).

Rathore and Kumar (2016) explored the potential of Decision Tree Regression (DTR) for
predicting fault count in both intra- and inter-release contexts in open-source projects, with
the DTR-based model showing considerable accuracy. On the other hand, Yang et al. (2014)
suggested that predicting the exact number of faults is challenging due to noisy data in fault
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datasets. They introduced a learning-to-rank (LTR) approach for constructing SFP models,
optimising the ranking performance directly. This method proved to be more robust against
noisy data and could rank the severity level of software modules directly.

Our previous work (Phung et al., 2021) proposed an innovative SFP approach, merging
Stream X-Machine and machine learning techniques to predict whether software modules
are susceptible to specific types of runtime errors in Java programs. However, the study faced
limitations, such as the smaller dataset size and the potential for unintentional mistakes in
the manual extraction of ESM values.

This research distinguishes itself from existing literature and our previous works in several
ways.

Firstly, this study formalises the derivation process of each Error-typeMetric directly from
the source code, providing a detailed mathematical formalism that was previously lacking in
our prior work (Phung et al., 2023).

Secondly, our approach uses traditional machine learning techniques, incorporating Error-
typeMetrics to predict softwaremodules’ severity levels based on fault numbers.Despite deep
learning’s promise (Pandey & Tripathi, 2020; Deng et al., 2020; Qiao et al., 2020; Pandey &
Tripathi, 2021; Wang et al., 2021), its drawbacks - such as the need for large datasets, risk of
overfitting on small datasets, and high computational costs (Pandey et al., 2023) - make it less
suitable for our specific study context. Our research, as outlined in RQ1, assesses the impact
of Error-typeMetrics on fault-proneness in domain-specific open-source projects. Given deep
learning’s challenges with performance and generalisability across diverse projects (Pandey
et al., 2023),we opt for traditionalmodels includingSupportVectorMachine, RandomForest,
and Extreme Gradient Boosting. These models align with our proposed risk categorisation
SFP framework, designed to help high-level managers allocate testing resources efficiently.
It highlights that the balance between informed decision-making and the high computational
demand of deep learning models does not justify their use in this scenario.

Thirdly, we diverge from the trend of relying on public datasets such as NASA and
PROMISE repositories. Instead, we utilise software metrics extracted from actively main-
tained open-source projects provided by the BugHunter Dataset (Ferenc et al., 2020). The
primary reason for not using these public datasets is the absence of source code. Access to
source code is essential for extracting Error-typeMetrics directly from the codebase, as these
metrics require detailed analysis of the source code to capture error-specific characteristics;
without source code access, these metrics cannot be derived. Additionally, previous research
has substantiated concerns about the quality and reliability of the NASA and PROMISE
datasets. Studies by Shepperd et al. (2013) and Petrić et al. (2016) have highlighted issues
such as inconsistent data, missing values, and potential errors within these datasets, which
can adversely affect the performance and validity of predictive models.

A distinguishing feature of the BugHunter Dataset is that it records both the faulty and
fixed states of the same source code, irrespective of the release versions, rather than merely
collating characteristics of source code elements at selected release versions. This approach
is beneficial for tracking modifications in software metrics during bug-fixing activities. The
detailed process of deriving software metrics for the BugHunter Dataset is described in
(Ferenc et al., 2020).

Lastly, we address the critical issues of data quality in SFP. As detailed in Subsection 2.2,
various data quality issues can significantly compromise the effectiveness of SFP models.
In this research, we conduct a comprehensive evaluation of these issues, proposing targeted
strategies to effectively mitigate their impacts.
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3 Error-typemetrics

Building upon our preceding work (Phung et al., 2021, 2023), where we developed a rep-
resentation model for runtime errors, this paper extends these concepts with new theoretical
contributions and practical applications. Previously, we envisioned each error as an operation
performed by one object onto another, mathematically formalised as follows:

A operates on B (1)

In this formula, A and B denote the operands and could either be literals or references.
The term “operates on” signifies an action that operand A enacts on operand B. For instance,
Number A divided by Number B leads to a potential Arithmetic Exception.

Leveraging the information about A, B, and the “operates on” aspect extracted from (1),
we can dissect the characteristics of a particular error. These characteristics allow us to
elucidate what the error is, the mechanism of its occurrence, and the specific context within
which it emerges. Furthering this notion, we utilise (1) to devise a StreamX-Machine (SXM)
representation that characterises a particular type of runtime error. This SXM representation,
alternatively known as an Error Specification Machine (ESM), symbolises each type of
runtime error. An ESM is an octet tuple, comprised of the following elements:

ESMi = (�, �, Q, M,�, F, q0,m0) (2)

Where:

• � is a finite set of input symbols,
• � is a finite set of output symbols,
• Q is a finite set of states,
• M is a (possibly) infinite set called memory,
• � is a finite set of partial functions (processing functions), which map memory-input
pair to output-memory pairs, φ : M × � → � × M ,

• F is the next-state partial function, F : Q × � → Q,
• q0 ∈ Q and m0 ∈ M are the initial state and memory, respectively,
• i ∈ E , where E is a finite set of different types of Java Runtime Error (JRE), represented
as

E = {Arithmetic,

Null Pointer,

Class Cast,

Index Out Of Bounds, . . .}
AnSXM is essentially a finite automatonwith arcs labelled by functions that correspond to

the types. In our previous work (Phung et al., 2021), we presented a state-transition diagram
of the ESM. The associated Finite Automaton (FA) of a Stream X-Machine is denoted as
AZ = (�, Q, F, I , T ) and each ESMi has a corresponding FA, AESMi = (�, Q, F, I , T ).

Given that each ESM is a Stream X-Machine specification, the associated test cases for
each ESM can be generated utilising the state-counting method, a Stream X-Machine testing
approach (Ipate & Dranidis, 2016; Ipate, 2006). As a result, each type of runtime error will
have a distinct set of test suites, computed as per (3) (Ipate, 2006):

Ui =
⋃

q∈Qr

{pq}pre f i x(V (q))Ws (3)

Where:
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• Sr is a non-empty set of realisable sequences such that no state in ESMi is reached by
more than one sequence in Sr ,

• pa is a path in AESMi where pa = φ1 · · · φk ∈ �∗,
• The definition of the set V (q) can be found in (Ipate, 2006),
• Ws is a finite set that separates between separable states of ESMi . Ws is required to be
non-empty,

• ds : Q ↔ Q is a relation on the states of ESMi that satisfies the following conditions:
for every two states q1, q2 ∈ Q, if (q1, q2 ∈ ds) then q1 and q2 are separated byWs . The
relation ds identifies pairs of states that are known to be separated by Ws ,

• The maximal set Q1 · · · Q j of states of ESMi that are known to be pairwise separated
by Ws ,

• i ∈ E , where E represents different types of JRE, as defined in (2),
• Ui is a set of test cases associatedwith each type of JRE. For instance, ArithmeticExcep-
tion can be represented as ESM Arithmetic, which can subsequently generate test cases
for this runtime error.

Furthering our discussion on the characteristics of the errors and their analysis, the current
study introduces a Lemma and its Proof which outline the relationship between the error
model and code patterns. These new additions aim to provide a comprehensive understanding
that was not fully explored in our previous work.

3.1 Formal derivation of error-typemetrics from source code

Lemma 1 In a given software module, the ESM value for a specific JRE matches the cumu-
lative sum of all code patterns that:

1. Align with the pattern illustrated in (1), and
2. Align with one or more test cases corresponding to the specific error, which are generated

as per the pattern outlined in (3).

Proof Assume code_pattern as a function that receives as input a line of code in a software
module and returns true if it aligns with the pattern illustrated in (1) and aligns with one or
more test cases corresponding to the specific error, generated as per the pattern outlined in
(3). Otherwise, it returns false.

For a given software module m with L lines of code, let i signify the i th line of code. Let
ESM_value be a function that gives us the ESM value of a line of code.

The ESM value of a software module can be computed by summing up the ESM values
of each line of code. This is expressed as follows:

ESM_value(m) =
L∑

i=1

ESM_value(i)

Assuming that ESM_value(i) equals 1 if code_pattern(i) is true and 0 otherwise (as
the ESM value of a line of code increases by 1 only if the code pattern aligns with the two
conditions), we have:

ESM_value(i) =
{
1, if code_pattern(i) is true

0, otherwise

Thus, the ESM value of the software module m is the sum of all the ESM values of the
lines of code for which code_pattern(i) is true, which is the cumulative sum of all code
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patterns that align with the two conditions:

ESM_value(m) =
L∑

i=1

ESM_value(i)

=
L∑

i=1

{
1, if code_pattern(i) is true

0, otherwise

Consequently, the ESM values corresponding to various types of JRE within software
modules of a software system can be represented mathematically as follows:

ESM_values =
⋃

m∈S

L∑

i=1

K∑

j=1

matched_pattern (4)

Where:

1. m refers to an individual software module within the software system, denoted by S,
2. i signifies the i th line among the total L lines of code in the software module m,
3. j represents the j th code pattern among the total K code patterns present in the i th line,
4. matched_pattern denotes the pattern within the i th line of code that fulfils the afore-

mentioned two conditions.

This Lemma and its Proof are significant in that they provide a methodical approach to
quantifying the impact of specific code patterns on JREs. They offer a mathematical basis for
understanding how different code constructs contribute to software errors, which is crucial
for the development of more effective SFP models.

3.2 Practical application and universal applicability

To illustrate the practical application of these concepts, consider a scenario where a software
module contains multiple lines of code, each potentially contributing to different types of
JREs. Using the framework established by the Error-type Metrics, we can systematically
analyse each line of code to determine its contribution to the overall fault proneness of the
module.

The intrinsic generic nature of the Error-type Metrics, derived from error-type models,
makes them universally applicable across various software domains. This universality is a
significant advancement over traditional metrics such as LOC, SLOC, KSLOC, and CK
metrics, which often show variable efficacy in different application domains. For instance, in
a project predominantly dealing with database operations, Error-type Metrics can effectively
capture specific error patterns related to database connectivity and query execution, which
might be overlooked by conventional metrics.

4 Methodology

This section outlines our proposed methodology, encompassing a thorough discussion of
the software fault datasets under investigation, the strategy for data labelling and our novel
risk categorisation approach, the selection of evaluation measures, the necessary data pre-
processing techniques used to prepare the datasets and the selection of machine learning
models.
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Table 1 The selected projects and their descriptions

Project Name No. Software Modules kLOC Description

ANTLR v4 469 68 A popular software in language processing. It is a pow-
erful parser generator for reading, processing, executing,
or translating structured text or binary files.

JUnit 351 43 A Java framework for writing and designing unit tests.

OrientDB 5,514 621 A popular document-based NoSQL graph database.
Mainly famous for its speed and scalability.

Elastic Search 18,324 995 A popular RESTful search engine.

4.1 Software fault datasets

In this study, fault datasets are selected from four open-source Java software projects whose
software metrics are obtained from the BugHunter Dataset (Ferenc et al., 2020). These
projects are not only under active maintenance but also represent four distinct domains:
ANTLR v4 operates in the field of language processing; JUnit in software testing; OrientDB
in databases; and Elastic Search in search engines. The rationale for this diverse selection
relates to RQ1, which investigates the impact of Error-type Metrics across different types
of software projects and domains. By choosing projects from different domains, we aim to
explore whether the Error-type Metrics hold consistently across various types of software,
or if their impact is domain-specific. The specifics of these selected projects are further
elaborated in Table 1.

For example, our analysis, provided and discussed in Subsection 5.1, indicates that while
some Error-typeMetrics such as Index Out Of Bounds and Null Pointer are generally impact-
ful across all domains, the Class Cast metric shows a greater impact in projects related to
testing frameworks, such as JUnit. This observation suggests that the project’s domain can
influence which Error-type Metrics are most relevant, affecting their usefulness in fault pre-
diction models.

To ensure a clear understanding of the datasets used in this study, we provide a detailed
description of their structure, common across the four selected projects. Each dataset includes
a set of Independent Variables that consists of four Error-type Metrics and conven-
tional software metrics.

• The Error-typeMetrics correspond with four JREs including Index Out Of Bounds (ESM
IndexOutOfBounds), Null Pointer (ESMNullPointer), Class Cast (ESM ClassCast), and
Arithmetic (ESM Arithmetic).

• The conventional software metrics are measured at the class level and can be found
in Table 2. These metrics are extracted from the BugHunter Dataset and re-validated
using Metrics Reloaded (Ardito et al., 2020). They provide a comprehensive overview
of software module characteristics such as size, complexity, and object-oriented metrics.

The Dependent Variable across all datasets is the Number of Faults, which
quantifies the actual faults found in each software module.

The datasets for the four projects ANTLR v4, JUnit, OrientDB, and Elastic Search are
available as CSV files on GitHub 1. To illustrate the composition of each dataset, Tables 3, 4,

1 https://github.com/dangkhoa0303/Error-type-Metrics-Datasets.git
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Table 2 Class-level software
metric used in this study

Abbreviation Full name

CLOC Comment Lines of Code

LOC Lines of Code

LLOC Logical Lines of Code

NL Nesting Level

NLE Nesting Level Else-If

NII Number of Incoming Invocations

NOI Number of Outgoing Invocations

CD Comment Density

DLOC Documentation Lines of Code

TCD Total Comment Density

TCLOC Total Comment Lines of Code

NOS Number of Statements

TLOC Total Lines of Code

TLLOC Total Logical Lines of Code

TNOS Total Number of Statements

PDA Public Documented API

PUA Public Undocumented API

LCOM5 Lack of Cohesion in Methods 5

WMC Weighted Methods per Class

CBO Coupling Between Object classes

CBOI Coupling Between Object classes Inverse

RFC Response set For Class

AD API Documentation

DIT Depth of Inheritance Tree

NOA Number of Ancestors

NOC Number of Children

NOD Number of Descendants

NOP Number of Parents

NA Number of Attributes

NG Number of Getters

NLA Number of Local Attributes

NLG Number of Local Getters

NLM Number of Local Methods

NLPA Number of Local Public Attributes

NLPM Number of Local Public Methods

NLS Number of Local Setters

NM Number of Methods

NPA Number of Public Attributes

NPM Number of Public Methods

NS Number of Setters

TNA Total Number of Attributes
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Table 2 continued Abbreviation Full name

TNG Total Number of Getters

TNLA Total Number of Local Attributes

TNLG Total Number of Local Getters

TNLM Total Number of Local Methods

TNLPA Total Number of Local Public Attributes

TNLPM Total Number of Local Public Methods

TNLS Total Number of Local Setters

TNM Total Number of Methods

TNPA Total Number of Public Attributes

TNPM Total Number of Public Methods

TNS Total Number of Setters

5, and 6 depict examples from each project, highlighting the Error-typeMetrics alongside the
other software metrics and the corresponding Number of Faults. For instance, in the
dataset corresponding to the JUnit project, each module’s record includes the ESM values
- quantifying specific exception occurrences within the software module - and additional
software metrics such as Lines of Code (LOC), Lack of Cohesion in Methods 5 (LCOM5),
Weighted Methods per Class (WMC), etc.

4.2 Data labelling and risk categorisation approach

This subsection describes the methodologies employed for labelling data and categorising
the risk levels of software modules, which are fundamental to the development of our SFP
models.

As discussed in Subsection 4.1, in this study, the target variable is the Number of
Faults, which quantifies the number of faults within each software module. Each instance
in our dataset corresponds to a unique software module. Hence, when referring to instances,
we are discussing individual software modules under examination.

Our analysis of fault distribution, as shown in as shown in Fig. 1, reveals that the number
of faults varies and is discontinuous across different datasets. For instance, in the ANTLR
v4 dataset, 80.77% of modules have no fault while 18.38% have 1 fault and 0.85% have
2 faults. Similarly, in the Elastic Search dataset, 55.45% of modules are faultless, but the
rest range from 1 to 8 faults, with varying distribution percentages. Also, it can be seen that
most modules contain no or very few faults, as illustrated by the large percentage of modules
with zero faults in all datasets. However, the proportion of modules that contain multiple
faults differs significantly between datasets, suggesting variability in fault-proneness across
different software.

This heterogeneous distribution of faults within each dataset serves as the foundation for
our proposed approach:Risk Categorisation. The strategy for risk categorisation derives from
the statistical concept of quantiles. Specifically, it utilises the distribution of the Risk Ratio
(RRi ), defined by (5) as one minus the ratio of the number of instances (software modules)
with a particular number of faults i to the total number of instances (software modules) in
each dataset.
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RRi = 1 − Ni

Ntotal
(5)

Where:

• RRi represents the Risk Ratio for each number of faults i ,
• Ni denotes the number of instances with i faults,
• Ntotal denotes the total number of instances in each dataset.

We introduce two lemmas to formalise this risk categorisation approach.

Lemma 2 Risk Ratio Uniformity.Given a dataset with Ntotal software modules, the number
of instances with a certain number of faults, i , can be transformed into a risk ratio, RRi ,
such that the distribution of the risk ratios becomes more uniform across the dataset.

Proof Consider a software module with a fault count i , where i ∈ [0, Imax ] with Imax being
the maximum number of faults observed in any software module in the dataset. According
to (5), as Ntotal is a constant for any given dataset, and Ni is a number between 0 and Ntotal ,
the resulting risk ratio RRi will fall in the range [0, 1]. This allows us to compare the risk
across modules and provides a more uniform distribution for risk categorisation.

Lemma 3 Risk Ratio Categorisation. The risk ratios can be categorised into three classes
- High Risk, Medium Risk, and Low Risk - using quantiles. These classes facilitate effective
resource allocation and risk management.

Fig. 1 Fault distributions and risk ratios.
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Proof Let RRi denote the risk ratio of the i th module in the dataset, where i ∈ [1, Ntotal ].
Using quantiles, we classify the risk ratios into three categories:

1. High Risk: RRi ≥ Q3 (where Q3 is the third quartile of the risk ratios).
2. Medium Risk: Q1 ≤ RRi < Q3 (where Q1 and Q3 are the first and third quartiles of

the risk ratios, respectively).
3. Low Risk: RRi < Q1.

With these two lemmas, we formally establish themathematical and logical grounds of our
risk categorisation approach. This approach aims at improving software quality management
by providing a means to identify, classify, and manage risks efficiently. The application of
quantiles ensures that the risk categories balance the distribution of the Risk Ratio. This
data-driven, percentile-based risk categorisation method is a generally accepted statistical
approach for dividing data into groups with similar properties (Khoshgoftaar et al., 2004a, b).

We establish three risk categories:

• High Risk: Software modules that fall into this category have a Risk Ratio in the top
25% of all modules. This categorisation indicates that a comparatively small proportion
of modules contain a significantly higher number of faults. By identifying these High
Riskmodules, developers can allocate their testing resourceswhere they aremost needed.

• Medium Risk: Modules in this category have a Risk Ratio between the first quartile
(the 25th percentile) and the third quartile (the 75th percentile). These modules contain
a moderate number of faults. Identifying Medium Risk modules is also beneficial, as it
enables developers to assign adequate resources without over-prioritising these modules
at the expense of High Risk ones.

• Low Risk: Modules with a Risk Ratio below the first quartile (the 25th percentile) fall
into this category. These modules contain fewer or no faults. With the ability to identify
Low Risk modules, developers can wisely conserve resources, using them instead where
they can have a higher impact on software quality.

This categorisation aligns with the Pareto Principle (80/20 rule), which suggests that a
majority of faults are often found in a minority of the modules (Andersson & Runeson,
2007). While the Pareto Principle traditionally refers to an 80/20 distribution, it is a heuristic
rather than a strict law, and the exact percentages can vary depending on the specific context
and dataset. In our analysis, we observed that the top 25% of modules (High Risk category)
accounted for a substantial portion of the total faults in eachdataset. For example, in theElastic
Search and OrientDB datasets, although approximately 40% of the modules contained faults,
we found that the majority of these faults were concentrated within the top 25% modules
with the highest Risk Ratios. Similarly, in the JUnit dataset, 25% of the modules had faults,
aligning with our High Risk category. Therefore, to harmonise the Pareto Principle with our
empirical findings, we chose a cutoff of 25% for the High Risk modules.

By tailoring actions based on these risk levels - more intensive testing for High Risk
modules and less scrutiny for Low Risk ones - this approach assists high-level managers in
managing risks more effectively by focusing on broader risk categories rather than the exact
number of faults in each module, thereby saving time and effort. This risk-based approach
aligns with risk management principles in project management (Olsson, 2008), enabling
managers to prioritise resources and efforts efficiently.
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Following this categorisation, the Risk Level is used as the new target variable in our
subsequent analyses.

4.3 Evaluationmeasures

To evaluate the performance of the SFP models, we use different types of evaluation mea-
sures including Accuracy, F1-score, Precision, Recall, and Matthews Correlation Coefficient
(MCC).

The incorporation of Risk Level as a target variable provides a nuanced understanding
of a software module’s fault-proneness. However, it is noteworthy that the representation of
risk levels is not uniform across datasets. For example, Fig. 2 shows that for the ANTLR
v4 dataset, an overwhelming majority (80.77%) of modules fall into the Low Risk category,
while 18.38% are categorised as Medium Risk, and a minimal 0.85% are categorised as High
Risk. Similarly, in the Elastic Search dataset, a significant majority (82.81%) of modules are
categorised as Low Risk, 15.99% as Medium Risk, and only 1.20% as High Risk. On the
other hand, the JUnit dataset shows a slightly higher percentage of modules in the Medium
Risk category at 24.29%, with 74.29% being Low Risk and 1.43% as High Risk. Finally, in
the OrientDB dataset, the vast majority of the modules (93.63%) are deemed Low Risk, with
4.70% as Medium Risk, and a relatively small percentage (1.67%) as High Risk.

Fig. 2 Risk level distributions
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The significant class imbalance in these datasets underscores the unequal representation of
risk classes. The majority of instances correspond to the Low Risk level, with Medium Risk
and High Risk making up a considerably smaller portion. Such skewness may potentially
lead to complications when assessing model performance.

Traditional performance measures such as accuracy, precision, and recall may present an
overly optimistic view of the model’s predictive power. For instance, in the ANTLR v4 and
Elastic Search datasets, a model could achieve an accuracy of over 80% by solely predicting
the majority class (Low Risk). Similarly, in the OrientDB dataset, a model could obtain an
accuracy of approximately 93% by predicting only the majority class. However, this would
completely overlook themodel’s ability (or inability) to correctly predict theminority classes,
which in this case, represent higher risk levels and are likely of most interest.

For a more balanced measure, particularly relevant in our context of imbalanced datasets,
the F1-score, being the harmonic mean of precision and recall, is more useful as it ensures
that both false positives and false negatives are taken into account during model performance
evaluation.

Although the F1-score offers a more balanced measure, it is not without limitations.
Particularly in situationsmarked by substantial class imbalance, theMCCproves to be amore
robust and reliable metric (Yao & Shepperd, 2020). The MCC considers both true and false
positives and negatives, providing a more comprehensive evaluation of model performance
across all classes. It would not inflate the performance based on correct predictions of the
majority class alone, but instead, would also account for the model’s ability to correctly
predict the instances of higher risk levels (Medium Risk and High Risk). The MCC can be
calculated using the following formula:

MCC = (T P × T N ) − (FP × FN )√
(T P + FP)(T P + FN )(T N + FP)(T N + FN )

(6)

Where:

• TP (True Positives) - faulty software modules correctly classified as faulty.
• TN (True Negatives) - fault-free software modules correctly classified as fault-free.
• FP (False Positives) - faulty software modules incorrectly classified as fault-free.
• FN (False Negatives) - fault-free software modules incorrectly classified as faulty.

In conclusion, given the considerable class imbalance in our datasets and the necessity
for accurate predictions across all classes, MCC is considered a key measure to evaluate our
models. Therefore, we utiliseMCC as the primarymeasure in the model selection procedures
(e.g., fine-tuning hyperparameters) and report performance on other additional measures -
Accuracy, MCC, F1-score, Precision, and Recall - to ensure a holistic assessment of the
model performances.

4.4 Data Preprocessing

Data preprocessing serves as the foundation for addressing our research questions, RQ1
and RQ2. Each preprocessing step is designed to tackle challenges inherent in software
fault prediction discussed in Subsection 2.2, thereby enhancing the reliability and accu-
racy of our findings. We utilised the scikit-learn (Bisong & Bisong, 2019) and
imbalanced-learn (Lemaître et al., 2017) libraries for implementing the preprocessing
techniques. Here we elaborate on these steps and relate them to the objectives of our research
questions.
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4.4.1 Class encoding

To facilitate machine learning algorithms, we encode risk levels numerically (Low as 0,
Medium as 1, and High as 2) using basic Python mapping functions. This step is crucial
for RQ2, where we aim to predict these risk levels accurately.

4.4.2 Addressing the curse of dimensionality

Our study addresses the “curse of dimensionality”, a common challenge in machine learning
where high-dimensional data can hinder model performance (Goyal & Bhatia, 2021). To
counteract this, we introduce controlled variation into the dataset, specifically targeting the
Error-type Metrics. This is achieved through a custom function which modifies a fraction of
the instances in Error-type Metric columns with the prefix ESM_.

In our experiments, we set a variation fraction of 10%. This means that for each constant
column under the ESM_ prefix, 10% of its instances are altered. The implementation involves
identifying constant columns, and then randomly selecting instances which are modified
with new values. To ensure reproducibility, we use a fixed random seed from the numpy
package (np.random.seed(42)). This process introduces necessary diversity in the data,
mitigating the risk of learning bias from constant values and enhancing model generalisation.

The introduction of this minor but controlled variability in the Error-type Metrics aligns
with theoretical recommendations (Hastie et al., 2001). By doing so, we aim to prevent
overfitting and augment model performance on unseen data, addressing the adverse effects
of high dimensionality while improving the generalisation capability of our models.

4.4.3 Investigating feature insights and handling multicollinearity

Multicollinearity among features can adversely affect machine learning models by inflating
variances and leading to less reliable parameter estimates (Hastie et al., 2001). Therefore,
to investigate potential correlations among Error-type Metrics and address multicollinearity,
we employ Principal Component Analysis (PCA) (Jolliffe, 2002; Jolliffe & Cadima, 2016),
which helps in identifying the principal components that capture themost significant variance,
thereby reducing redundancy among features (Niu et al., 2020).

The rationale for choosing PCA is that PCA is an unsupervised method that does not
require class labels,making it suitable for our exploratory analysis (Karamizadeh et al., 2013).
Alternative methods like Linear Discriminant Analysis (LDA) require class labels and are
more appropriate when maximising class separability (Izenman, 2013), which was not the
primary goal at this stage. Furthermore, PCAhas been effectively employed to enhancemodel
performanceby reducingdimensionality.By transforminghigh-dimensional softwaremetrics
into a lower-dimensional space, PCA aids in mitigating issues related to multicollinearity
and overfitting, thereby improving the predictive accuracy of fault prediction models. For
instance, a study by Mahanta et al. (2024) demonstrated that integrating PCA with ensemble
learning techniques led to significant improvements in defect prediction accuracy. Similarly,
research byDhamayanthi and Lavanya (2019) highlighted the efficacy of PCA in conjunction
with Naïve Bayes for software fault prediction, underscoring its role in enhancing model
robustness and generalisability.

In our experiments, we apply PCA selectively to different subsets of our dataset, specifi-
cally targeting the Error-type Metrics and their interaction features.

Our approach involves setting up the parameters such as n_components = 0.95, which
indicates the amount of variance (95%) we aim to capture in the principal components, and
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random_state = 42 for reproducibility.We have options to apply PCA toError-typeMetrics
(apply_pca_esm), their interaction features (apply_pca_esm_interactions),
and other features (pca_others). The PCA transformation is tailored based on these set-
tings.

For each subset of features, we compute principal components if PCA is to be applied. For
instance, if apply_pca_esm is True, PCA is performed on Error-type Metrics, reducing
them to principal components that capture 95% of their variance. The same process applies
to interaction features and other features in the dataset. If PCA is not applied to a particular
subset, the original features are retained.

This transformation allows us to identify the unique contributions of each Error-type
Metric and their interactions, enabling us to detect underlying correlations and address mul-
ticollinearity. By understanding the variance each original metric contributes, we can more
effectively scrutinise the impact of Error-type Metrics across different software domains,
directly contributing to RQ1.

4.4.4 Feature enrichment

The datasets are then enriched by creating interaction features based on Error-type Met-
ric columns. Particularly, this is done using a custom Python function which generates
new features by pairwise multiplication of these metrics. For example, if the dataset con-
tainsESM_Arithmetic andESM_NullPointer, a new featureESM_Arithmetic_x
_ESM_NullPointer is created. This method is relevant for RQ2 as it aims to uncover
complex relationships between different runtime error types, potentially enhancing the pre-
dictive accuracy of our models. This approach aligns with the principles in (Hastie et al.,
2001), advocating for the inclusion of interaction terms in predictive models to capture more
nuanced relationships between variables.

4.4.5 Feature scaling

Non-constant columns in the dataset undergo scaling usingscikit-learn’sPowerTrans-
former employing the Yeo-Johnson transformation to ensure an equal contribution of each
feature to the learning algorithms (Riani et al., 2023; Hastie et al., 2001). The transformed,
Gaussian-like data aids in improving the performance of many machine learning models.
This transformation is particularly vital for RQ2, where the goal is to predict risk levels
across diverse software projects.

4.4.6 Class balancing

Addressing the significant class imbalance in our datasets is crucial for building effective
SFPmodels, as detailed in Subsection 4.3. Common techniques for handling class imbalance
include random oversampling and undersampling. However, random oversampling can lead
to overfitting due to the duplication of minority class instances, while random undersampling
may result in the loss of valuable information by removing instances from the majority class
(He & Garcia, 2009).

We choose the Synthetic Minority Over-sampling Technique (SMOTE) for its bal-
ance of simplicity and effectiveness. SMOTE generates synthetic samples by interpolating
between existing minority class examples, effectively mitigating overfitting without dis-
carding important data (Chawla et al., 2002). Although more sophisticated algorithms like
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Borderline-SMOTE(Hanet al., 2005),ADASYN(Heet al., 2008), andSMOTEENN(Batista,
2004) offer refined resampling processes, they introduce additional complexity and compu-
tational overhead (Fernández et al., 2018). Additionally, its proven efficacy in SFP scenarios
further supports our choice. Studies have demonstrated that SMOTE improves classifica-
tion performance in SFP by effectively handling class imbalance (Gupta et al., 2024; Pak et
al., 2018; Tamanna et al., 2022). Its ability to enhance model accuracy without significant
drawbacks associated with other methods makes it particularly suitable for our research.

In this study, we employ SMOTE from the imbalanced-learn library (Lemaître et
al., 2017), using its default settings and setting random_state to 42 for reproducibility.
Notably, SMOTE is applied solely to the training set tomaintain the integrity of the evaluation
process, ensuring that performance on the test set remains unbiased and accurately reflects
the model’s ability to generalise to unseen data.

4.4.7 Nested cross-validation

To ensure a robust measure of expected performance, particularly crucial for the predic-
tive models in RQ2, we employ nested cross-validation (CV) through scikit-learn’s
GridSearchCV and StratifiedKFold modules into our evaluation pipeline. Nested
CV serves as a robust mechanism for both hyperparameter tuning and performance evalua-
tion, providing a more reliable performance estimate for the model on unseen data (Cawley
& Talbot, 2010). The technique comprises an outer loop to estimate the generalisation error
and an inner loop for model selection, such as hyperparameter tuning. This approach pre-
vents information leakage from the test set to the model training process, ensuring unbiased
performance estimates.

In our experiments, for the outer loop of the nested cross-validation, we set n_spli ts to 5.
This determines the number of folds for the outer loop, ensuring a comprehensive and robust
generalisation error estimation. For the inner loop, which focuses on model selection and
hyperparameter tuning, n_spli ts is set to 3. For both loops, we set shu f f le to True. This
ensures that the data is shuffled before being split into folds, contributing to the randomness
and thereby enhancing the robustness of the cross-validation process. The use of ‘shuffle’ is
particularly important in scenarios where data might have an implicit order that could bias
the validation process.

Stratified K-Fold cross-validation is particularly chosen over standard K-Fold cross-
validation to ensure that each fold is a good representative of the whole dataset. It maintains
the same proportion of each target class as the complete dataset in each fold. This is espe-
cially crucial for RQ2, where the distribution of risk levels (Low, Medium, High) must be
consistent across all folds to get an accurate estimate of model generalisation performance.
Furthermore, StratifiedKFold provides a more reliable performance evaluation for
imbalanced class distribution, which is often the case in SFP scenarios. This method ensures
that each fold has the same distribution of classes, thereby preventing any single class from
being over-represented or under-represented. Although it can be computationally demand-
ing, the use of StratifiedKFold is justified in our context where an accurate estimate
of generalisation performance is paramount.

4.5 Selection of machine learningmodels

The choice of machine learning models in our research methodology is essential, particularly
for addressing RQ2. Informed by comprehensive studies in the field, such as those by Rathore
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andKumar (2019) andMalhotra (2015), our selection ofmodels is grounded in both historical
performance and current best practices in SFP.

Malhotra (2015) identified several machine learning techniques as predominant in SFP,
including C4.5 in the Decision Tree category, Naïve Bayes in Bayesian learners, Multi-layer
Perceptron in Neural Networks, and Random Forest in Ensemble learners. Notably, Random
Forest (RF) was highlighted for its significant usage (59%) in the Ensemble learners category,
alongside its proven effectiveness in SFP scenarios. The five techniques that performed the
best in SFP have been C4.5, NB, MLP, Support Vector Machine (SVM), and RF.

Drawing from this insight, we have selected SVM, RF, and Extreme Gradient Boosting
(XGBoost or XGB) for our study. The choice of SVM and RF is directly influenced by their
historical performance and noted effectiveness in the domain of SFP. SVM is renowned for
its robustness in high-dimensional spaces, making it suitable for datasets with a large number
of features, such as those in our study. RF, being one of the most effective models in SFP
as per the cited studies, offers excellent performance and interpretability, which are critical
in understanding fault prediction dynamics. Additionally, we incorporate XGB, an advanced
implementation of gradient boosting algorithms, known for its ability to handle imbalanced
datasets effectively. This choice is particularly relevant given the imbalanced nature of fault
data in software projects.

To tailor these models to our datasets effectively, we configured them based on the sizes
of the datasets:

• Small Models are for datasets with fewer than 500 instances.
• Medium Models are suitable for datasets with 500 to 10,000 instances.
• Large Models are designed for datasets with more than 10,000 instances.

This configuration ensures that each model is optimally configured to the specific charac-
teristics of the dataset size, enhancing performance and interpretability.

4.5.1 Support vector machines (SVM)

SVMs are highly effective in classification tasks, particularly in high-dimensional spaces,
due to their ability to find an optimal hyperplane for class separation (Cortes&Vapnik, 1995).
For our study, the SVM models were configured with a radial basis function (RBF) kernel.
The regularisation parameter C was varied across different models:

• Small Models: C [0.1, 1, 10].
• Medium Models: C [1, 5, 10].
• Large Models: C [1, 5, 10, 50].
These configurations, particularly the regularisation parameter C , are chosen to balance

the trade-off between classification boundary and misclassification rate.

4.5.2 Random forest (RF)

RF’s robustness to overfitting and its capability to capture complex relations in data make it
suitable for our study (Breiman, 2001). The RF model in our study was configured with a
range of hyperparameters:

• Small Models: n_estimators [10, 50, 100], max_depth [3, 5], min_samples_
split [5, 10], min_samples_leaf [5, 10].
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• Medium Models: n_estimators [100, 200], max_depth [5, 10], min_samples_
split [5, 10], min_samples_leaf [5, 10].

• LargeModels:n_estimators [500],max_depth [10, 20],min_samples_split
[5, 10], min_samples_leaf [5, 10].
These settings help in tuning the RF model to effectively handle different dataset com-

plexities and sizes.

4.5.3 XGBoost (XGB)

XGB is renowned for its performance with imbalanced and high-dimensional datasets (Chen
& Guestrin, 2016) making it highly relevant for our study. In our experiments, XGB was
configured with various hyperparameters:

• Small Models: n_estimators [10, 50, 100], learning_rate [0.01, 0.1], max_
depth [5, 10].

• Medium Models: n_estimators [100, 200], learning_rate [0.01, 0.1], max_
depth [5, 10].

• LargeModels: n_estimators [500], learning_rate [0.001, 0.01], max_depth
[10, 20].
These configurations enable XGB to handle the distinct challenges presented by different

sizes of datasets, particularly in terms of balancing bias and variance.

5 Experimental results

This section presents our study’s findings, addressing the two research questions outlined
in Section 1. We then compare our approach with existing methodologies and discuss the
potential limitations.

5.1 Impact of error-typemetrics andmulticollinearity investigation (RQ1)

This subsection addresses the first research question (RQ1), exploring the impact of Error-
type Metrics across different software domains and investigating potential multicollinearity
among these metrics. As described in Section 4.4, we used Principal Component Analy-
sis (PCA) to identify the unique contributions of each Error-type Metric and to deal with
multicollinearity.

We applied this analytical approach to four software project datasets: ANTLR v4, Elastic
Search, JUnit, and OrientDB. The PCA results, illustrated in Fig. 3, highlight four principal
components across all four datasets that account for 95% of the variance.

5.1.1 Multicollinearity among error-type metrics

To evaluate the presence and extent of multicollinearity among Error-type Metrics, we
employed Pearson’s correlation test (Sedgwick, 2012) within each dataset. The results from
the Pearson’s correlation test, detailed in Table 7, together with the PCA findings depicted
in Fig. 3, fulfil two purposes: they enhance our comprehension of the Error-type Metrics
by identifying the most significant metrics and elucidating which components account for

123



    7 Page 26 of 41 Software Quality Journal             (2025) 33:7 

Fig. 3 PCA results on error-type metrics

the greatest variance. This holistic strategy not only assists in identifying instances of multi-
collinearity that correlation coefficients alone might not reveal but also conducts an in-depth
analysis of the interactions among Error-type Metrics across various datasets. Such analysis
yields critical insights into both the singular and collective impacts of these metrics on the
precision and efficiency of the models.

We formulate our hypothesis testing framework as follows:
Null Hypothesis (H0): There is no significant linear correlation between the Error-type

Metrics. This suggests that any observed correlation is due to random chance.
Alternative Hypothesis (H1): There is a significant linear correlation between the Error-

type Metrics. This indicates a true relationship between the metrics, beyond random chance.
This analysis is crucial in understanding the relationship between different Error-type

Metrics and how they collectively influence the principal components identified in our PCA
analysis. Significant correlationsmay indicate potential multicollinearity issues, while low or
insignificant correlations suggest that each Error-type Metric contributes unique information
to our models. The Pearson’s correlation test results are illustrated in Table 7.

In the ANTLR v4 dataset, PC1, accounting for 53.81% of the variance, is significantly
influenced by ESMClassCast and ESMNullPointer, with a Pearson correlation of 0.65. This
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Table 7 Pearson correlation coefficients between error-type metrics

Dataset Metric Pair Pearson Coefficient p-value

ANTLR v4 ESM_IndexOutOfBounds & ESM_NullPointer 0.53 < 0.001

ESM_IndexOutOfBounds & ESM_ClassCast 0.46 < 0.001

ESM_IndexOutOfBounds & ESM_Arithmetic 0.16 0.0004

ESM_NullPointer & ESM_ClassCast 0.65 < 0.001

ESM_NullPointer & ESM_Arithmetic 0.15 0.001

ESM_ClassCast & ESM_Arithmetic 0.13 0.0037

Elastic Search ESM_IndexOutOfBounds & ESM_NullPointer 0.40 < 0.001

ESM_IndexOutOfBounds & ESM_ClassCast 0.38 < 0.001

ESM_IndexOutOfBounds & ESM_Arithmetic 0.22 < 0.001

ESM_NullPointer & ESM_ClassCast 0.48 < 0.001

ESM_NullPointer & ESM_Arithmetic 0.23 < 0.001

ESM_ClassCast & ESM_Arithmetic 0.20 < 0.001

JUnit ESM_IndexOutOfBounds & ESM_NullPointer 0.45 < 0.001

ESM_IndexOutOfBounds & ESM_ClassCast 0.06 0.2282

ESM_IndexOutOfBounds & ESM_Arithmetic 0.05 0.3868

ESM_NullPointer & ESM_ClassCast 0.24 < 0.001

ESM_NullPointer & ESM_Arithmetic 0.05 0.3505

ESM_ClassCast & ESM_Arithmetic 0.18 0.0008

OrientDB ESM_IndexOutOfBounds & ESM_NullPointer 0.47 < 0.001

ESM_IndexOutOfBounds & ESM_ClassCast 0.38 < 0.001

ESM_IndexOutOfBounds & ESM_Arithmetic 0.25 < 0.001

ESM_NullPointer & ESM_ClassCast 0.70 < 0.001

ESM_NullPointer & ESM_Arithmetic 0.31 < 0.001

ESM_ClassCast & ESM_Arithmetic 0.24 < 0.001

strong correlation suggests a combined influence on PC1. PC2, which accounts for 23.61% of
the variance, is predominantly influenced by ESMArithmetic, showing a distinct correlation
pattern with other metrics.

The Elastic Search dataset reveals that PC1, contributing 49.64% to the total variance,
is shaped by ESM ClassCast and ESM NullPointer with a correlation of 0.48. The distinct
influence of ESMArithmetic on PC2, accounting for 21.48% of the variance, is evident from
its unique correlation with other metrics.

For JUnit, PC1, covering 39.13% of the variance, is influenced by ESM NullPointer and
ESM IndexOutOfBounds with a correlation of 0.45. PC2, accounting for 27.22% of the
variance, shows distinct contributions from ESM ClassCast and ESM Arithmetic, indicated
by a lower correlation of 0.27.

In OrientDB, PC1, which accounts for 56.64% of the variance, is largely influenced by
ESM ClassCast and ESM NullPointer, with a correlation of 0.70. The significant impact of
ESM Arithmetic on PC2, which accounts for 20.86% of the variance, is reinforced by its
distinct correlation patterns.

Overall, the outcomes of the Pearson’s correlation test, as presented in Table 7, show
various degrees of correlation strengths between the Error-type Metrics, accompanied by
different levels of statistical significance. In specific datasets such as ANTLR v4 and Ori-
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entDB, we observe strong correlations between certain pairs of metrics, evidenced by very
low p-values (for instance, ESMNullPointer & ESMClassCast in ANTLR v4 with a correla-
tion of 0.65 and a p-value of< 0.001), signifying a substantial linear relationship and leading
to the rejection of the null hypothesis for these combinations. Such significant correlations
suggest these metrics have a collective impact on the principal components. On the other
hand, certain metric pairs across the datasets display moderate to negligible correlations,
indicated by higher p-values. A case in point is the JUnit dataset, where ESM IndexOut-
OfBounds & ESM ClassCast show a weak correlation (correlation: 0.06, p-value: 0.2282),
hinting at their distinct contributions to the principal components. In these instances, the null
hypothesis, positing no significant linear correlation, remains tenable.

The detection of both robust and minimal correlations among various Error-type Metric
pairs, validated by their respective p-values, reveals a complex landscape of relationships.
Some metrics exhibit significant interconnections, whereas others appear relatively indepen-
dent. This intricate pattern of metric interrelations deepens our insight into the individual and
combined roles of Error-type Metrics in influencing the principal components. It affirms our
analytical strategy, demonstrating that despite certain significant correlations among pairs
of Error-type Metrics, the overall diversity in their information contribution helps address
concerns about pervasive multicollinearity within these metrics.

5.1.2 Domain-specific impact of error-type metrics

In our investigation of the domain-specific effects of Error-typeMetrics on SFP, we employed
the Kruskal-Wallis test (Ostertagova et al., 2014), a non-parametric method ideal for com-
paring multiple independent groups. This test is particularly apt for our analysis as it does
not require the data to follow a normal distribution, making it well-suited for evaluating the
principal component scores obtained from the PCA of Error-type Metrics. Our hypothesis
testing framework was established as follows:

Null Hypothesis (H0):The distributions of principal component scores are the same across
different datasets, indicating no significant domain-specific variations in the impact of Error-
type Metrics.

Alternative Hypothesis (H1): There is at least one dataset whose principal component
scores’ distribution significantly differs from others, suggesting domain-specific variations
in the impact of Error-type Metrics.

Applying the Kruskal-Wallis test to the scores of each principal component across the
four datasets (ANTLR v4, Elastic Search, JUnit, and OrientDB) was essential for identifying
any significant disparities in their distribution, a key step in assessing the variable impact of
Error-type Metrics across software domains.

The findings, as documented in Table 8, provided the following insights:

• The p-values for PC1 and PC2 were found to be 0.5251 and 0.1431, respectively, indi-
cating that the distributions of these components do not significantly differ across the

Table 8 Kruskal-wallis test
results for principal components

Principal Component Statistic p-value

PC1 2.2349 0.5251

PC2 5.4260 0.1431

PC3 4.3493 0.2261

PC4 8.4559 0.0375
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datasets. This result supports the uniformity in the effect of Error-type Metrics across
various software domains, affirming the null hypothesis for these principal components.

• Similarly, PC3 showed no substantial domain-specific variation in the impact of Error-
type Metrics, as evidenced by a p-value of 0.2261, further aligning with the null
hypothesis.

• Contrastingly, PC4 exhibited a notable exception with a p-value of 0.0375, falling below
the conventional alpha threshold of 0.05 for determining statistical significance. This
outcome suggests a significant difference in the distribution of PC4 scores across the
datasets, warranting the null hypothesis’s rejection for this component. This indicates
meaningful domain-specific variation in the influence of Error-type Metrics for PC4,
underscoring the importance of a detailed comprehension of these metrics across various
software environments.

Overall, the outcomes from the Kruskal-Wallis test primarily reinforce the view that, for
the majority of principal components, the impact of Error-type Metrics on SFP models does
not significantly diverge across different software domains. Nonetheless, the distinct finding
for PC4 underscores the presence of domain-specific disparities in the influence of these
metrics, shedding light on the nuanced and variable nature of applying Error-type Metrics
in diverse software contexts and underscoring the critical need for a contextually aware
application of these metrics in SFP.

5.1.3 Implications and summary

The implications of our findings in the context of Error-type Metrics’ influence on SFP and
their correlation behaviours are significant. The key implications are as follows:

• Independence of Error-type Metrics: Pearson’s correlation analysis revealed that while
some Error-type Metrics are strongly correlated (e.g., ESM NullPointer and ESM Class-
Cast in ANTLRv4with a correlation of 0.65), others are weakly correlated. This suggests
that, despite some relationships, each metric largely retains predictive independence,
enhancing their utility in SFP models without significant multicollinearity concerns.

• Domain-Specific Relevance of Error-type Metrics: The Kruskal-Wallis test indicated
domain-specific variations in the impact of Error-type Metrics (e.g., a significant result
for PC4 with a p-value of 0.0375). Certain metrics have a more pronounced influence in
specific software environments; for instance, the Class Cast metric showed a substantial
impact in the JUnit dataset. This allows for a tailored application of these metrics in
different software contexts.

• Enhanced Fault Prediction Models: Recognising the unique contributions of Error-type
Metrics enables the development of more accurate SFPmodels. Understanding eachmet-
ric’s specific impact across various environments helps practitioners allocate resources
effectively and focus on the most relevant error types, aligning with the need for context-
specific evaluation as emphasised by Rathore and Kumar (2019).

5.2 Predicting risk level using error-typemetrics (RQ2)

This subsection focuses on the second research question (RQ2), which investigates the effi-
cacy of Error-type Metrics in predicting the risk level of software modules. We employ
three machine learning models - Support Vector Machines (SVM), Random Forest (RF), and
XGBoost (XGB) as discussed in Subsection 4.5 - for this purpose.
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5.2.1 Model performance and insights

The comparative analysis of SVM, RF, and XGB on four diverse datasets - ANTLR v4,
Elastic Search, JUnit, and OrientDB, as shown in Table 9 and Fig. 4, is illustrative of the
different performance facets of these machine learning models.

For theANTLRv4 dataset, XGBoutperforms the othermodelswith an accuracy of 92.2%,
demonstrating its capability to correctly classify a higher percentage of instances. The MCC
score for XGB is 0.887, which surpasses the MCC scores for SVM (0.741) and RF (0.755),
pointing to a higher correlation between the observed and predicted classifications. In terms
of the F1-score, XGB again leads the race with a score of 0.921, as opposed to SVM and RF,
which lag at 0.821 and 0.833, respectively.

For the Elastic Search dataset, a similar pattern is seen, with XGB dominating with the
highest accuracy of 94.8%, an MCC of 0.923, and an F1-score of 0.947. However, RF also
exhibits strong performance, with an accuracy of 92.6%, MCC of 0.890, and F1-score of
0.926. SVM, although performing better than in the ANTLR v4 dataset, still falls behind
with an accuracy of 82.5%, MCC of 0.739, and F1-score of 0.821.

The trend of XGB outperforming the other models continues in the JUnit dataset. XGB
reports an accuracy of 91.3%, an MCC of 0.873, and an F1-score of 0.912. The RF model
performs competitively but still falls short with an accuracy of 84.9%, MCC of 0.774, and
an F1-score of 0.848. The performance of SVM is lower, with an accuracy of 84%, MCC of
0.762, and an F1-score of 0.838.

In the OrientDB dataset, XGB performs exceptionally well with an impressive accuracy
of 97.4%, an MCC of 0.961, and an F1-score of 0.974. The RF model also shows good
performance with an accuracy of 95.1%, an MCC of 0.928, and an F1-score of 0.951. The
SVM model trails behind with lower scores: an accuracy of 85.6%, an MCC of 0.786, and
an F1-score of 0.857.

The comparative analysis conducted on the ANTLR v4, Elastic Search, JUnit, and Ori-
entDB datasets not only showcases the intrinsic strengths of SVM, RF, andXGB inmanaging
varying data complexities but also highlights how the size of the dataset influences the
performance of these models. Throughout the analysis, a clear pattern is observed where

Table 9 Performance comparison of SVM, random forest, and XGBoost across different datasets

Dataset Model Accuracy MCC F1-score Precision Recall

ANTLR v4 SVM 0.824 0.741 0.821 0.826 0.825

RF 0.835 0.755 0.833 0.835 0.835

XGB 0.922 0.887 0.921 0.930 0.922

Elastic Search SVM 0.825 0.739 0.821 0.822 0.825

RF 0.926 0.890 0.926 0.927 0.926

XGB 0.948 0.923 0.947 0.950 0.948

JUnit SVM 0.840 0.762 0.838 0.842 0.840

RF 0.849 0.774 0.848 0.849 0.849

XGB 0.913 0.873 0.912 0.920 0.913

OrientDB SVM 0.856 0.786 0.857 0.864 0.856

RF 0.951 0.928 0.951 0.953 0.951

XGB 0.974 0.961 0.974 0.974 0.974
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Fig. 4 Performance comparison of SVM, random forest, and XGBoost across different datasets
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XGB consistently surpasses both SVM and RF across all examined datasets. This prevailing
trend is largely attributed to the size of the datasets, which varies from the smaller JUnit
dataset, containing around 300 instances, to the significantly larger Elastic Search dataset,
with approximately 18,000 instances.

An important insight, as depicted in Fig. 4, is the evident direct relationship between
the size of the dataset and the performance of the models. Notably, models trained on larger
datasets, like OrientDB and Elastic Search, outperform those trained on smaller datasets such
as JUnit and ANTLR v4. This suggests that an increase in dataset size markedly boosts model
accuracy and dependability. For example, the leap in XGB’s accuracy from the JUnit to the
Elastic Search dataset by about 3.5% (from 91.3% to 94.8%), and an even more impressive
increase from JUnit to OrientDB by about 6.1% (from 91.3% to 97.4%), exemplifies this
point. The trend is similarly reflected in the MCC and F1-Score, which increase by approxi-
mately 0.088 and 0.062, respectively, from JUnit to OrientDB, illustrating XGB’s adeptness
at discerning and leveraging complex data relationships to minimise prediction errors.

XGB’s gradient boosting framework, which builds models sequentially to amend prede-
cessors’ errors, greatly benefits from the rich diversity and size of data in larger datasets,
as demonstrated by its exceptional outcomes on the OrientDB and Elastic Search datasets,
highlighted by accuracy rates of 97.4% and 94.8%, MCC scores of 0.961 and 0.923, and F1-
Scores of 0.974 and 0.947, respectively. Conversely, SVM, despite certain improvements,
consistently shows lower performance across the datasets. SVM’s performance on JUnit, the
smallest dataset, results in an MCC of 0.762, and this performance dips further on the larger
Elastic Search dataset to 0.739, indicating SVM’s scaling challenges. This can be partly
attributed to SVM’s computational demands and the criticality of the kernel and regulari-
sation parameter tuning. Furthermore, the implementation of SMOTE, intended to balance
the dataset, introduces synthetic points that may not entirely replicate the minority class’s
true distribution. SVM’s performance is particularly sensitive to these synthetic instances,
potentially degrading its efficacy. This, combined with SVM’s scalability issues on larger
datasets, contrasts sharply with the adaptability and efficiency of ensemble techniques like
RF and XGB.

Furthermore, the analysis points out that RF, while typically outperforming SVM, shows
a positive but more modest increase in correlation with dataset size. For instance, RF’s
performance improvement from the smaller JUnit dataset to the larger Elastic Search dataset,
from an MCC of 0.774 to 0.890, signifies a 15% uplift, demonstrating RF’s ability to handle
large datasets without overfitting. However, this improvement is relatively modest when
compared to XGB’s performance boost in the same datasets, indicating a 5.7% increase in
MCC. Such comparisons highlight that although RF benefits from larger datasets, enhancing
its accuracy and consistency, it does not reach the high-performance benchmark set by XGB.
For example, on the OrientDB dataset, RF achieves an MCC of 0.928, commendable yet
slightly below XGB’s peak score of 0.961, with a relative difference of about 3.6% favouring
XGB. This subtle difference further illuminates the slight variances in their ability to exploit
large datasets for improved predictive accuracy.

5.2.2 Implications and summary

The implications of these results are manifold:

1. The performance of XGB indicates that Error-type Metrics can be useful predictors for
software fault-proneness, providing support for RQ2.
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2. The lower performance of SVM compared to RF and XGB suggests that linear models
may not capture the complexity of Error-type Metrics as effectively as ensemble or
boosting methods. This insight may be valuable for practitioners when choosing a model
for software risk prediction.

3. The application of SMOTE formitigating class imbalance appears to enhance ourmodel’s
ability to identify high-riskmodules, which is important for prioritising quality assurance
efforts.

In summary, by leveraging Error-type Metrics, we have developed a model that shows
promise in predicting faults across different risk categories. This capability could make our
approach a useful tool for researchers and practitioners in software engineering, contributing
to the field of SFP.

5.3 Comparison with state-of-the-art approaches

Our research integrates Error-type Metrics and a refined risk-based classification system into
SFP models, exhibiting competitive performance with state-of-the-art SFP approaches that
commonly use traditional metrics such as complexity, churn, or code metrics (Malhotra,
2015).

We break from convention by employing Error-type Metrics, verified in our prior study
(Phung et al., 2023), offering a nuanced prediction framework. We assign software modules
to three risk categories - Low Risk, Medium Risk, and High Risk - improving the granularity
of fault distribution understanding compared to conventional binary-class models. The use of
fault datasets sourced from open-source software projects, as opposed to widely used bench-
mark datasets from repositories like NASA and PROMISE, enhances the practical relevance
of our work. The key distinctions between our study and existing SFP methodologies are
shown in Table 10. In what follows, we discuss a detailed comparison of our study with each
of these state-of-the-art approaches.

The study by Goyal (2022) employed a Neighbourhood-based Under-Sampling (N-US)
algorithm, primarily focusing on the binary-class classification of fault-prone modules. Their
model yielded an impressive AUC score of 95.6% and an accuracy of 96.9% using five
different SFP classifiers (Artificial Neural Network - ANN, SVM, Decision Trees, K-Nearest
Neighbour, and Naïve Bayes) on the NASA repository datasets. However, our XGB model,
using a more nuanced risk-based classification and SMOTE to counter class imbalance,
demonstrated consistent accuracy, MCC, and F1-score exceeding 96% across all datasets.

Rhmann et al. (2020) utilised software change metrics for fault prediction and evaluated
various machine learning models (RF, Multi-layer Perceptron - MLP, and Decision Tree)
and Hybrid Search-Based Algorithms (Fuzzy-AdaBost Del Jesus et al., 2004 and Logitboost
Otero and Sánchez, 2006) on Android project data. Their results positioned Logitboost as
the leading algorithm with 0.822 precision and 0.992 recall, while the RF model yielded
precision and recall scores of 0.616 and 0.618 respectively. However, our approach improved
these performance measures: our RF model achieved over 83% in both precision and recall,
escalating to over 91% in the OrientDB and Elastic Search datasets. Our XGB ensemble
model outperformed all others with precision and recall rates exceeding 92%, reaching peak
values of up to 97%.

Yang et al. (2014) proposed an innovative application of the learning-to-rank (LTR)
approach for SFP on real-world datasets (Yang et al., 2014). Their study’s primary evalua-
tion metric was the fault-percentile-average (FPA), which calculates the average proportion
of actual faults in the top m (m = 1, 2, · · · , k) modules relative to all faults. FPA has been
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shown to correspond closely with the area under the Alberg diagram, a method proven to be
effective for assessing software fault prediction models’ ranking ability (Ohlsson & Alberg,
1996;Weyuker et al., 2010). The LTRmodel demonstrated strong performance, achieving an
FPA of up to 0.787. In contrast, our study implementedMCC as the primary metric for model
selection and reported the results in terms of accuracy, MCC, F1-score, precision, and recall.
Despite the methodological differences, our XGBoost model demonstrated exceptional per-
formance, achieving scores of up to 92% across all metrics and datasets. This suggests that
our risk-based approach may offer an effective alternative to conventional ranking-based
methods in SFP.

In conclusion, despite methodological differences with conventional approaches, our SFP
models, especially XGB, demonstrated consistently superior performance across all perfor-
mance measures, underscoring the promise of our approach.

5.4 Threats to validity

This empirical study, like all others, is potentially influenced by various validity threats
affecting the generalisability and applicability of our results.

External validity Our experiments were based on four popular open-source software sys-
tems. While these systems have broad utility and span a range of application domains, they
do not encompass the entire spectrum of possible software systems. Therefore, our study’s
results may not be directly transferable to other software systems, especially those from dif-
fering domains or differing scales. Future studies should incorporate a wider software system
range to further validate our results.

Construct validity This research predominantly usedError-typeMetrics.Although they pro-
vided a robust framework for the SFP approach in this study, they are not without limitations.
Their effectiveness can vary depending on the complexity and specific characteristics of the
software being analysed. Also, while we have performed thorough analyses to ensure these
metrics did not exhibit multicollinearity issues, the way faults were counted, based on the
version control commits, might introduce observational errors. The commit logs may reflect
zero faults in a software module, even though latent faults may persist. This discrepancy
could impact the accuracy of the prediction models. We acknowledge this limitation and
have made efforts to mitigate this risk by using the most reliable and current data available.
However, the interpretation of commit logs and the attribution of faults to software modules
may have been influenced by subjective decisions, introducing potential bias.

An additional consideration is the 25% cutoff used for defining the High Risk category
in our risk categorisation approach. This threshold was determined based on the fault dis-
tributions observed in our datasets and aligns with our empirical findings, as discussed in
Subsection 4.2. While this cutoff is consistent with the notion that a majority of faults are
often found in a minority of modules - an idea related to the Pareto Principle (Andersson &
Runeson, 2007) - it may not be universally applicable. Different datasets might exhibit vary-
ing fault distribution patterns, necessitating adjustments to the cutoff rate to accurately reflect
fault concentration. Therefore, the applicability of the 25% cutoff is limited to the datasets
used in this study, and future research should consider revising the cutoff when applying the
approach to other datasets.

Internal validity The main internal threat concerns the preprocessing techniques employed
to address the class imbalance. Although we utilised the SMOTE technique, other methods
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such as ADASYN, Borderline-SMOTE, and random oversampling could potentially provide
better results. The optimisation of parameters for the SMOTE technique andmachine learning
models was specific to our datasets, which might not produce similar performance with
different datasets.

Conclusion validity Our model selection was largely informed by the MCC performance
measure. Despite its effectiveness, alternative evaluation metrics, such as Receiver Operat-
ing Characteristic curve (AUC-ROC) or Precision-Recall curves, might offer more nuanced
insights into model performance and should be considered in future research (Chicco &
Jurman, 2020).

6 Conclusion

This research introduced an SFP approach, demonstrating a novel application of Error-type
Metrics for risk categorisation of software modules into Low, Medium, and High Risk with
respect to the number of faults.

A major contribution of this research is the exploration of the domain-specific impact of
Error-type Metrics in SFP. This addition addresses a gap in existing literature, identified by
Rathore and Kumar (2019), regarding the need for context-specific evaluation of software
metrics. Our work offers empirical evidence to validate the utility of domain-specificmetrics,
enriching the toolkit for practitioners in different software environments.

Another significant contribution of this work lies in the utility of Error-type Metrics for
making informed resource allocation decisions. Our methodology enables the identification
of the top 25%of softwaremodules that are classified as High Risk. This is not only beneficial
for developers in optimising the allocation of testing resources but also greatly aids high-level
management. By enabling granular classification into Low, Medium, and High-Risk cate-
gories, our approach abstracts the complex details of software faults into more digestible risk
categories. This simplification potentially facilitates easier risk monitoring and aligns well
with the principles of project management, thereby streamlining decision-making processes
and enhancing the effectiveness of project management.

To validate our approach, we addressed the issue of potential multicollinearity among
Error-typeMetrics and evaluated the performance of threemachine learningmodels - Support
Vector Machine (SVM), Random Forest (RF), and Extreme Gradient Boosting (XGB). The
results showed that XGB significantly outperformed SVMandRF, yielding impressive scores
(up to 97.4% of accuracy, 96.1% of MCC, and 97.4% of F1-score) across different datasets.
The RF model also showed strong performance, further substantiating the effectiveness of
our approach. The performance, however, may vary with different datasets.

Despite our contributions, this research is limited by several threats to validity discussed
in Subsection 5.4. In future work, we plan to address these threats by further investigating
them to ensure the validity and generalisability of our approach. Additionally, we will expand
our research to include more industrial projects across diverse domains. This expansion will
enhance the generalisability and practical applicability of our findings, potentially validating
our current results in a broader context and uncovering new insights and challenges specific
to industrial software projects.
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