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Overview

• Symbolic vs Computational AI

• Feed Forward Neural Networks

• Binary

• Multi-class

• Hopfield Networks

• Graph Neural Networks



Symbolic VS Computational AI

Symbolic AI (GOFAI)

Inspired by ideas of the mind and  building on 

thousands of years of philosophy about:

• World models, absolute truths

• Types of logic, facts and rules

Reasoning with symbols that represent entities.

If class(X) == class(A1) => B1

Inflexible – how to create a rule that is general 

to any arbitrary stimuli?

Computational AI (ML)

Inspired by ideas of problem solving arising 

from natural computational processes:

• The brain

• Darwinian evolution and genetics

Reasoning with numbers that represent entities.

 

Data driven – how to create a model if meaning 

is derived from arbitrary (data) stimuli?

Model?A1 B1



Feed Forward NN (MLP)

RELNET - Barns and Hampson (1993) and several 

others used this method.

Tovar and Torres-Chavez (2012) pointed out a flaw in 

its design. The input pattern for the 'sample marking 

duplicator' is identical for all input stimulus sets for a 

given task.

Binary, Go/No Go and EVA(3) - Valid, but different 

formulation of the problem which drastically 

simplifies it from multi-class to binary yes/no outputs.

(1) Barnes, D. and Hampson, P.J. (1993) Stimulus Equivalence and Connectionism: Implications for Behavior Analysis and Cognitive Science.

(2) Tovar, A.E. and Chávez, A.T. (2012) A Connectionist Model of Stimulus Class Formation with a Yes/No Procedure and Compound Stimuli.

(3) Ninness, C., et al. (2018) The Emergence of Stimulus Relations: Human and Computer Learning.



Binary Problem - Replicating EVA

(1) Tovar, A.E. and Chávez, A.T. (2012) A Connectionist Model of Stimulus Class Formation with a Yes/No Procedure and Compound Stimuli.

(2) Ninness, C., et al. (2018) The Emergence of Stimulus Relations: Human and Computer Learning.

Set Pair a1 (1) b2 (2) c1 (3) c2 (4) b1 (5) a2 (6) labels

Train a1-b1 1 0 0 0 1 0 1

Train a1-b2 1 1 0 0 0 0 0

Train b1-c1 0 0 1 0 1 0 1

Train b1-c2 0 0 0 1 1 0 0

Train a2-b2 0 1 0 0 0 1 1

Train a2-b1 0 0 0 0 1 1 0

Train b2-c2 0 1 0 1 0 0 1

Train b2-c1 0 1 1 0 0 0 0

Test a1-c1 1 0 1 0 0 0 1

Test a1-c2 1 0 0 1 0 0 0

Test a2-c2 0 0 0 1 0 1 1

Test a2-c1 0 0 1 0 0 1 0



Binary Problem - Replicating EVA

(1) Tovar, A.E. and Chávez, A.T. (2012) A Connectionist Model of Stimulus Class Formation with a Yes/No Procedure and Compound Stimuli.

(2) Ninness, C., et al. (2018) The Emergence of Stimulus Relations: Human and Computer Learning.

Reaches 100% accuracy.

But not always!

Changing the ‘pattern’ can 

make it easier/harder.



Multi-class Problem

Set Pair 0 1 2 3 4 5 6 7 8 9 10 11 12 13 labels

Train 9 --> 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1

Train 11 --> 13 0 0 0 0 0 0 0 0 0 0 0 1 0 1 13

Train 0 --> 4 1 0 0 0 1 0 0 0 0 0 0 0 0 0 4

Train 12 --> 7 0 0 0 0 0 0 0 1 0 0 0 0 1 0 7

Train 5 --> 10 0 0 0 0 0 1 0 0 0 0 1 0 0 0 10

Train 8 --> 3 0 0 0 1 0 0 0 0 1 0 0 0 0 0 3

Train 2 --> 6 0 0 1 0 0 0 1 0 0 0 0 0 0 0 6

Train 1 --> 9 0 1 0 0 0 0 0 0 0 1 0 0 0 0 9

Train 13 --> 11 0 0 0 0 0 0 0 0 0 0 0 1 0 1 11

Train 4 --> 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Test 7 --> 12 0 0 0 0 0 0 0 1 0 0 0 0 0 0 12

Test 10 --> 5 0 0 0 0 0 0 0 0 0 0 1 0 0 0 5

Test 3 --> 8 0 0 0 1 0 0 0 0 0 0 0 0 0 0 8

Test 6 --> 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2



Multi-class Problem

Never reaches 100% accuracy.

Some training data (~70%) is 

‘memorised’.

There is no pattern to apply to 

test data.



Hopfield Networks

Hopfield NN(1) are fully connected networks that 

allow for the retrieval and completion of a ‘memory’ 

using an incomplete or noisy version.

Each neuron (or node) is connected to all other 

neurons with a unique strength (weight).

The information, or memories of a Hopfield are 

stored in the strength of these connections.

The weight between 2 neurons, A and B, is the 

extent to which the output of A will contribute to the 

activation of B, and vice versa.

(1) Hopfield, J.J. (1982) Neural networks and physical systems with emergent collective computational abilities



Hopfield Networks

Set Pair 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Train 9 --> 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1

Train 11 --> 13 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 1

Train 0 --> 4 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Train 12 --> 7 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 1 -1

Train 5 --> 10 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 -1

Train 8 --> 3 -1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1

Train 2 --> 6 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1

Train 1 --> 9 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1

Train 13 --> 11 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 1

Train 4 --> 0 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Test 7 --> 12 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1

Test 10 --> 5 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1

Test 3 --> 8 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Test 6 --> 2 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1



Graph Neural Networks

Graph Neural Networks (GNN)(1) can operate 

on graph-structured data and are well suited to 

relational learning.

Typical tasks for GNNS:

• Graph – property

• Node – type/class/property

• Edge – relation type/presence

Graph properties are encoded into 

embeddings (numerical representations) and 

used to infer missing properties.

Can consider the problem of relational 

symmetry as nodes, representing stimuli, and 

edges, the relations between them.

(1) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M. and Monfardini, G. (2009) The Graph Neural Network Model. IEEE Transactions on Neural Networks



Graph Neural Networks

(1) Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M. and Monfardini, G. (2009) The Graph Neural Network Model. IEEE Transactions on Neural Networks

Data TestTrain

Nodes (stimuli) are encoded as one-hot, e.g. Node ‘3’ = [0, 0, 0, 1, 0, ….]



Graph Neural Networks

Some results for the link predictions task 

using the using the GraphSAGE 

(SAmple and aggreGatE) architecture.

14 Stimuli – Same split:
• Acc = 95% ROC = 0.975

14 Stimuli – Different splits*:
• Acc = 95% ROC = 1.0

Increasing number of stimuli:

Range 8 to 128 - doubling has relatively 

small impact on performance.

(1) Hamilton, W.L., Ying, R. and Leskovec, J. (2017)“Inductive Representation Learning on Large Graphs.”

*Currently data split is random, which can lead to ‘unfair’ training/test sets.



GNN Final Thoughts

GNNs have potential to overcome some of the limitations 

in other NN architectures:

• Representing more complex stimuli or relations (e.g. 

transitive).

• Infers the relationship between stimuli, instead of the 

data examples themselves (inductive vs transductive).

• Could be included in a more ‘dynamic’ system e.g 

Equivalence Projective Simulation (EPS)(1).

BUT..

Link prediction is not the full solution – only predicts if there 

is a relation between pairs of stimuli.

Most likely a ‘hybrid’ combination of link and/or node 

classification is also required.

(1) Mofrad, A.A., Yazidi, A., Hammer, H.L. and Arntzen, E. (2020) Equivalence Projective Simulation as a Framework for Modeling Formation of Stimulus Equivalence Classes.
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