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Abstract: This research aims to find an optimal balance between privacy and performance in fore-
casting mental health sentiment. This paper investigates federated learning (FL) augmented with a
novel data obfuscation (DO) technique, where synthetic data is used to "mask" real data points. Bidi-
rectional Encoder Representations from Transformer (BERT) is used for sentiment analysis, forming
a new framework, FL-BERT+DO, that addresses the privacy-performance trade-off. With FL, data
remains decentralized, ensuring that user-sensitive information is retained on local devices rather
than being shared with the FL server. The integration of BERT gives our system an enhanced feature
of context sense-making from text conduct, and our model is extremely proficient in emotion catego-
rization tasks. The experiments were performed on combined (real and replica synthetic) datasets
containing emotions and showed significant enhancements compared to baseline methods. The pro-
posed FL-BERT+DO framework shows the following metrics: prediction accuracy, 82.74%; precision,
83.30%; recall, 82.74%; Fl-score, 82.80%. Further, we assessed its performance in the adversarial
setup using membership inference and linkage attacks to ensure the privacy-preserved performance
did not suffer deeply. It demonstrates that, even for large datasets, providing privacy-preserving
prediction is possible and can significantly improve existing methods of addressing personal issues,
like mental health support. Based on the results of our work, we can propose the development
of secure decentralized learning systems that are capable of providing high accuracy of sentiment
analysis and meeting strict privacy constraints.

Keywords: FL; data obfuscation; data privacy; predictive analytics; mental health support

1. Introduction
1.1. Background and Motivation

Digital platforms are increasingly taking a role in supporting healthcare, leverag-
ing computer software, Internet of Things (IoT) devices, sensors, social media platforms,
and emerging technologies to analyze individuals’ online emotional expressions. Perform-
ing accurate sentiment analysis becomes an essential requirement for the success of these
platforms. Sentiment analysis algorithms evaluate people’s emotions in their social media
posts and messages, offering assistance at times. However, a key concern arises: safe-
guarding individuals’ information while utilizing these algorithms. Modern data-driven
strategies are predominantly dependent on centralized systems for gathering, storing,
and analyzing data, which inherently jeopardizes the privacy and confidentiality of user
data. Centralized systems pose a challenge because if something goes awry, unauthorized
parties could compromise or access a substantial amount of data. Therefore, conventional
methods of handling data do not adequately ensure privacy and accuracy. Innovative
approaches are then necessary to address these issues. As machine learning (ML) continues
to grow in popularity, protecting user privacy has become a crucial concern, particularly in
applications like sentiment analysis that rely on sensitive personal data. FL offers a solution

Electronics 2024, 13, 4650. https:/ /doi.org/10.3390/ electronics13234650

https://www.mdpi.com/journal/electronics


https://doi.org/10.3390/electronics13234650
https://doi.org/10.3390/electronics13234650
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0001-9380-0079
https://doi.org/10.3390/electronics13234650
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13234650?type=check_update&version=3

Electronics 2024, 13, 4650

20f21

by allowing multiple devices to collaboratively train a model without sharing raw data,
reducing privacy risks. However, FL still faces challenges in ensuring complete privacy,
as information can potentially be inferred from the shared model updates. Traditional
methods such as DP address this by adding noise to the data, which can lead to a noticeable
drop in model performance, creating a challenging trade-off between privacy and accuracy.
The authors of [1] defined some weaknesses in FL models, including data heterogeneity,
communication problems, and privacy issues. They suggested a method to improve FL
systems by increasing the efficiency of the aggregation technique and the security of the
communication protocol.The work in [2] was primarily centred on decentralized FL (DFL),
which offers a mechanism that minimizes the dependency on the central server and offers
privacy improvements. The authors drew attention to features such as optimization, secu-
rity, and scalability, advancing the network topologies and proposing adaptive algorithms
to upgrade the efficiency of DFL. These papers offer very valuable information concerning
further improvement of the FL frameworks for use in practice.

This paper explores a new approach to balancing privacy and performance in FL by
incorporating DO. In contrast to FL. with DP, where noise is added to protect data, FL with
DO obscures specific details in the data themselves to maintain privacy while preserving
more of the model’s accuracy. We compare these two methods in the context of a sentiment
analysis task, using them to train a federated version of the BERT model.

Our study evaluates the effectiveness of FL-BERT+DO by examining both its predictive
performance—measured through accuracy, precision, recall, and F1 score—and its capabil-
ity to safeguard user data without sacrificing model efficacy. To rigorously test the system’s
privacy resilience, we conducted two privacy attacks: membership inference attacks [3] and
linkage attacks [4]. The results demonstrate that FL-BERT+DO achieves a more optimal
balance between privacy and accuracy compared to the baseline FL-DP method.

The proposed approach seeks to revolutionize health support into an impactful process
while upholding user confidentiality. It tackles the following challenges:

*  Monitoring: The system ensures mental health monitoring through digital engage-
ment, providing regular feedback and identifying potential crises early on.

®  Privacy Protection: Individual privacy is protected by using FL and data obfuscation
mechanisms to secure the data used in interactions.

By characterizing mental health crises, the model’s predictive capabilities may help
anticipate such crises before they occur. The focus of healthcare is increasingly more
proactive than reactive. This work demonstrates how predictive analytics applications in
sectors like mental health might benefit from the combination of FL with privacy-enhancing
technology. Large-scale mental health support models may be trained with it since the
suggested approach maintains accurate forecasts while resolving privacy concerns. This
opens the door to more effective and privacy-shielding advancements in the field of mental
health treatment in the future.

1.2. Contributions

Overall, this research contributes to the field of mental health support and privacy-
preserving data analytics in the following crucial ways:

*  Novel integration of FL and data obfuscation privacy: This study presents a novel
approach (FL-BERT+DO) that integrates DO [5] techniques into the local clients’
dataset of FL [6] to enhance privacy protection while maintaining model performance
and BERT for sentiment analysis.

¢ Continuous and adaptive monitoring of mental health: A framework that can help
with continuous and adaptive monitoring of mental health non-stop. Based on the
model feedback, an alert can be triggered if a user is in a mental crisis. This approach
is pretty proactive rather than reactive.

e  Privacy vs. accuracy trade-off: A comprehensive evaluation of FL-BERT+DO’s effec-
tiveness demonstrates how it achieves a better balance between privacy and model
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accuracy compared to the traditional FL approaches, particularly the baseline FL-DP
(LDP+CDP) [7], achieving robust privacy protections against membership inference
and linkage attacks, validated by ROC-AUC scores.

e  Empirical evaluation, proof of concept, and POC evaluation: This paper is not limited
to presenting the concept; it also provides evaluation on a bigger dataset to prove that
the FL and DP model can be used in a sensitive field like mental health. The empirical
evaluations confirm that such a system can be implemented for sensitive information
as well.

2. Related Work

There still exist challenges when it comes to building and using sentiment analysis,
especially in the context of social media text. A number of recent papers also underscore
certain important methodological shortcomings that can hamper the sharpness and trans-
portability of measures. These emerge from issues of their unstructured nature, language
complexity, and computation, which make sentiment analysis a demanding task.

One of the main problems revealed is the problem of how to work with informal
language, which often includes slang, misspelled words, and improper grammar, which are
inherent in the texts of social networks. Challenges such as handling big and unstructured
data were reviewed by [8] with reference to the differences in style, tone, and polarity that
influence sentiments and emotions in written communication. In response to this, several
approaches to sentiment analysis have been developed as adaptive models that will adjust
models according to new data arriving and the new trends in the language being used.
These techniques are applied where the target networks must be fine-tuned for applications
of transfer learning, domain adaptation, and continual learning to the subtle differences
within informal language conversations [9]. Moreover, the work with highly unstructured
and noisy data remains an issue due to the lack of clear inter-model compatibility; i.e., the
models might not perform well in a different setting even with a minimal level of retraining.
The need to sustain high computational overhead and the continuous requirement for
large labelled datasets make these systems challenging to maintain in the long term. Thus,
the ability to achieve effective, highly flexible performance in the context of the informal
and dynamically changing sample text remains only a subject for further experimentations
and optimizations. This is made worse by the fact that there are few or no annotated
datasets for these aspects of language, making sentiment analysis challenging at the global
level [10]. Furthermore, different from traditional data in textual format, information on
social media usually contains symbols, idioms, sarcasm, and other features that are not
easy for the model to grasp [11].

The second main difficulty is inherent in the nature of short texts or those a few sen-
tences long; this often causes the omission of word frequency and basic word associations.
Widespread word occurrences and insufficiency are discouraging feature vector represen-
tations and frustrating for emotional recognition, as noted by [12]. Ref. [13] reported the
limitations in deep learning (DL) frameworks to refine and capture language and enhance
precision. Progress has been made in the recent work on ensemble models to overcome
these issues, but the model still struggles with the contextual relationships of the words,
especially for words that are outside of the vocabulary (or) often encountered in evolving
contexts, including the COVID-19 pandemic. The choice of appropriate classification algo-
rithms for SM data is still challenging, and the encoding should provide fine-granularity
representation that covers the contextual meaning contained in texts [14]. Refs. [15,16]
discussed multimodal sentiment and emotion analysis, with the use of physiological re-
sponses and stress data being a challenge. These models need complex techniques to
estimate emotion in a step-by-step manner. Therefore, these datasets entail even more
difficulties; in addition, it is also common to use data whose origin is diverse, and this also
complicates the situation. Refs. [12,13] pointed out that recent developments in hybrid and
ensemble methods can bring solutions to some of these issues. These methodologies are



Electronics 2024, 13, 4650

40f21

still far from perfect and are plagued by the variability in social media language and the
computational cost of analyzing large amounts of data.

Emotional analysis, a vital component in natural language processing (NLP), has been
investigated using DL approaches for different languages [17]. DL (DL) and ML (ML)
are particularly effective at processing complex textual data related to mental health. FL
fundamentally changes the training process by decentralizing it. This allows data to remain
on local devices, while only model modifications (gradients) are sent to a central server.
These changes are then combined by the server to enhance the global model. By removing
raw data from the central server, this decentralized approach improves privacy and lowers
the danger of data breaches [18]. Additionally, FL allows for the addition of noise to model
updates using methods such as DP. Because of this, it is more difficult to extract certain
data points from the combined data [19]. However, this added noise can sometimes lower
model accuracy, creating a trade-off between privacy and performance. For example, FL's
decentralized approach has been used in mobile keyboard emoji prediction. This is shown
in the work of [18], where decentralized training protects user privacy by keeping data
on local devices. Similarly, ref. [20] introduced the FedHome system, which integrates FL
with cloud and edge computing for health monitoring, aiming to enhance privacy while
reducing the communication burden.

As explained in [19], the impact of increased privacy protections often reduces NLP
models’ effectiveness. To tackle these limitations, ref. [21] proposed a privacy-preserving
FL framework using bitwise quantization and local DP. Their framework supports NLP
tasks, achieving a balance between privacy and accuracy. However, they did not discuss
other performance metrics for evaluations. Other work, such as [17,22], has demonstrated
notable improvements in sentiment analysis accuracy through the use of DL techniques like
convolutional neural networks (CNNs) and long short-term memory (LSTMs), though often
without addressing privacy. Furthermore, ref. [23] conducted a comprehensive review
of ML algorithms, concluding that while models like support vector machines (SVMs)
can achieve high accuracy, they may introduce significant privacy risks when relying on
centralized data processing.

The interpretability issue is the biggest problem of using the Tensor Fusion Network
for sentiment analysis because of its size and structure [24]. Dependence on accurate
Multimodal Opinion Sentiment Intensity (CMUMOSI) data limits the practical use of
these components, especially when dealing with noisy or sparse inputs. Also, exactly the
speaking disturbances such as fuzziness or conflicting signals were shown to be detri-
mental to performance. This also limits its use, especially in environments with heavy
computational constraints.

The unpredictability of FL can cause biases or inconsistencies in the final model.
For that reason, ref. [25] stated that while combining different data types can enhance model
robustness and fill information gaps, it may be unfeasible in resource-limited settings. FL's
distributed nature also introduces communication overhead due to frequent exchanges
between devices and the central server, which can cause network congestion, especially in
bandwidth-constrained environments [20]. Additionally, IoT devices, which are frequently
used in federated environments, pose distinct security issues. As noted by [26], IoT devices
are often targets for cyberattacks. This situation makes it harder to protect FL. models.
This calls for robust security protocols and risk management strategies to support FL's
application in privacy-sensitive domains like mental health. IoT sentiment analysis employs
data from connected devices regarding the moods and opinions of users with the ultimate
goal of enhancing service delivery. However, it has the following difficulties: One of the big
concerns is related to data privacy because some data might be leaked during the analysis.
Another challenge is the Non-IID (non-Independent and Identically Distributed) nature of
data because they are collected from different users, which may lead to bias in sentiment
interpretations. Real-time analysis is hampered by communication barriers, which include
low bandwidth and latency. In addition, the information on which ML algorithms are based
can be unbalanced or insufficient, which leads to rather high inaccuracy in determining
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positive or negative tonality in IoT applications and less effectiveness of sentiment analysis
in this regard [20].

A practical way to categorize the approaches to sentiment analysis is to use categorical
sentiment analysis and dimensional sentiment analysis, as they refer to different angles
of the classification of sentiment. Categorical sentiment analysis involves categorizing
text into arrangements, including positive, negative, or neutral sentiments, or sharpening
up categorizations like anger, happy, sadness, fear, and so on. Earlier approaches used
rule-based systems and conventional ML algorithms like naive Bayes and the support
vector machine (SVM), though basic sentiment categorizations were fairly accurate [17].
Further development has been incorporated for sentiment analysis using CNNs and LSTM
for DL architectures since the ConvNet models and LSTM network capture text contexts
and sequential presence to maximize sentiment forecasting.

In mental health applications, categorical sentiment analysis has been employed in
several cases to identify emotional states and possible disorders from text content, blogs,
forums, or chat, for instance, online therapeutic sessions. However, categorical data present
their main disadvantage through the distinct separation of emotional reactions, which can
oversimplify complex mental states.

Dimensional sentiment analysis on the other hand depicts feelings along the quantita-
tive axes, including valence (positive-negative), arousal (calm—excited), and dominance
(control-submission). This means there is another possibility to present the intensity and
mixture of the values of emotions [27]. Emotional pattern gives a more detailed picture of
how one feels, especially for the evaluation of mental health disorders, because emotions
are often not binary but rather exist within a spectrum [28].

Dimensional sentiment analysis has the potential for use in mental health contexts
since it can show changes in feeling within the period while spotting the basic intensity level.
This freedom helps address the limitations of categorical models in covering certain ideas,
including comorbidity and overlapping of symptoms in disorders like depression and
anxiety [29]. Nevertheless, applying dimensional models to real-world problems is some-
times an intricate numerical process that may raise concerns in terms of understandability
and data consumption.

The studies carried out in the recent past have made great advances in emotion
classification and especially in mental health diagnosis. Previous conventional models,
including the BoW model and LSA, failed in handling complex emotional contexts. Ref. [30]
proposes a novel bi-directional LSTM and convolutional neural network (BiLSTM-CNN)
structure in order to classify the emotion in psychiatric social texts where the authors
reveal how the use of both LSTMs and CNNs can improve feature extraction by capturing
temporal and spatial features at the same time. The addition of mechanisms such as GloVe
and Word2Vec also enhanced the model performance since they offer an improved concept
of word relations. However, to enhance the accuracy of emotion detection, recent works
have incorporated multi-task learning, as well as attention mechanisms. However, there
are problems that have not been solved yet; for example, one still can only use rather small
and not very diverse datasets, and the set fits the model in a specific domain excessively
often. The findings of this study suggest that there is still much to be accomplished to
improve sentiment analysis research, including a focus on the language of the future,
the need for better and more diverse corpora, and more refined frameworks, as well as the
practical problems of interpreting and extrapolating the results of these techniques. These
are significant developments for enhancing emotion detection systems, especially where
practical use, such as in mental health, is contemplated [30].

A composite DP model incorporates DP with other privacy mechanisms, including
cryptographic or statistical ones in order to improve the security level of the data. In FL, this
framework guarantees the privacy of raw data in training the model across decentralized
devices or IoT systems, and it addresses data leakage and inference attacks. The novel
algorithm that is presented within this research work offers an optimal solution to the
problems of data security, model accuracy, and computational complexity and is well suited
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to cross-loT platform knowledge sharing. However, the primary limitation of this approach
is the privacy vs. performance scenario trade-off. Strict privacy preservation sometimes
entails the minimization of data attributes and thus produces noisy data that affect the
best model performance. However, increasing the amount of exposure for performance
optimization increases leakage and the model is susceptible to being attacked through
an inference attack. This trade-off offers an important problem of privacy-preserving
approaches for IoT applications because choosing the correct amount of privacy and
performance is critical for a safe training model. On that account, although safeguard-
enhancing frameworks of hybrid DP to offer protection to sensitive data in FL exist, there
is the need to balance privacy and performance so that the FL model does not sacrifice
efficiency for security and vice versa [31].

In response to these limitations, our research proposes FL-BERT+DO, which builds
upon these insights by prioritizing both privacy and model accuracy. This framework
is designed to address the existing privacy concerns while also aiming to maintain high
predictive performance, particularly in critical applications like mental health support.

While FL presents a viable framework for balancing privacy with analysis capabilities,
its limitations and challenges warrant careful consideration, particularly when applied in
domains requiring stringent data protection measures.

To balance accuracy and privacy, we introduce a novel framework that surpasses
existing models in performance, as detailed in Table 1.

Table 1. Model performance metrics and privacy features across datasets.

Paper Model Accuracy (%)  Precision (%)  F1-Score (%) Dataset Privacy
[17] Ensemble (CNN+LSTM) 65.05% 64.46% 64.46% Arabic Tweets No
[32] Naive Bayes 89% 30% 31% AMASS No
SVM 89% 30% 31% No
Logistic Regression 90% 77% 48% No
k-NN 89% 59% 51% No
Decision Tree 88% 58% 60% No
Random Forest 92% 82% 60% No
XGBoost 89% 69% 44% No
[23] SVM 91.13% - - Tweets No
Logistic Regression 89.78% 90% 90% IMDB No
Naive Bayes 89.28% 89% 89% No
Random Forest 85.08% 85% 85% No
[22] Single CNN Network 54% 41% 40% Twitter No
Single LSTM Network 55% 58% 48% No
Individual CNN+LSTM 58% 60% 55% No
Multiple CNN+LSTM 58% 60% 55% No
[24] Random 50.2% 48.7% 1.88% CMU-MOSI No
C-MKL 73.1% 75.2% - No
SAL-CNN 73% - - No
SVM-MD 71.6% 72.3% 1.1% No
RF 71.4% 72.1% 1.11% No
Experimented FL-CNN+DO 61.34% 72.79% 62.40% Emotions in text Yes
Experimented = FL-BiGRU+DO 57.83% 62.05% 58.32% Emotions in text Yes
Proposed FL-BERT+DO 82.74% 83.30% 82.80% Emotions in text Yes
[24] TEN 77.1% 77.9% 0.87% CMU-MOSI No
Human 85.7% 87.5% 0.71% No
[18] FL 25.6% - - - Yes
[20] SVM 77.25% - - MobiAct No
KNN 80.85% - - No
RF 84.27% - - No
MLP 92.31% - - No
CNN 91.77% - - No
GCAE (FedHome) 92.02% - - FL Yes
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Paper Model Accuracy (%)  Precision (%)  F1-Score (%) Dataset Privacy
FL-MLP 89.28% - - FL Yes
FL-CNN 85.07% - - FL Yes
FL-CNN-Large 87.24% - - FL Yes
FedHome-p 89.13% - - FL Yes
FedHome 95.87% - - FL Yes

[26] BT-b (single) 76.65% 73.4% - LAP14 No
BT-b (union) 80.72% 76.87% - REST14 No
FL (BT-b) 79.31% 75.11% 75.11% TWITTER Yes
TM-FL (BT-b) 80.56% 76.78% 76.78% Yes
BT-1 (single) 78.84% 74.73% - No
BT-1 (union) 82.6% 79.87% - No
FL (BT-]) 81.35% 78.21% - Yes
TM-FL (BT-) 82.29% 79.25% - FL Yes

[21] FL RR-LDP (IMDB) 88.10% - - IMDB Yes
FL RR-LDP (MovieLens) 68.10% - - MovieLens Yes

3. Methodology
3.1. Dataset Description

Two datasets were used in the study: a synthetic dataset created to resemble true emo-
tional statements [33] and the original Emotions in Text dataset, as seen in Table 2. Text data
labelled with different emotions, such as sadness, anger, love, surprise, fear, and happiness,
make up the original dataset, which was obtained via Kaggle. Each entry in the dataset
represents a text snippet and its corresponding emotion label. To enhance data quality,
pre-processing steps were applied to the text data, including converting text to lowercase,
removing non-alphabetic characters, and eliminating extra whitespaces. The synthetic
dataset was generated using rule-based methods involving predefined templates and
keywords for each emotion category. These synthetic data underwent similar cleaning
processes and were concatenated with the original dataset to create a more comprehensive
training set.

Table 2. Emotions in Text dataset sample.

ID Text Emotion

1 Ididn’t feel humiliated Sadness

2 I can go from feeling so hopeless to so damned hopeful just from Sadness
being around you

3  I'm grabbing a minute to post; I feel greedy, wrong Anger

4 I am ever feeling nostalgic about the fireplace; I will know that it is still on Love

5  Tam feeling grouchy Anger

3.2. FL Framework

Traditional ML has issues concerning high computational costs, high communication
overhead, and latency, which motivated FL. Recent advancements aim to eliminate these
problems through the use of techniques such as gradient quantization, sparsification, as
well as adaptive compression, to solve communication problems and latency. For exam-
ple, the authors of [34] present the benefits of gradient quantization and sparsification in
FL, and the authors of [35] provide privacy-preserving FL via Hybrid DP and Adaptive
Compression, decreasing communication costs. The authors of [36] present a detailed
survey on optimization techniques for improving FL performance in practical applications
of IoT and the healthcare sector.

The FL framework was designed to allow multiple clients to train local models on their
respective datasets without sharing raw data. The use of three clients for this experiment is
beneficial because it divides a small dataset reasonably well so that each client has data for



Electronics 2024, 13, 4650

8 of 21

training and assessment. Even more clients mean fewer data for each and therefore fewer
resources for training and measuring the model. Three clients each received a randomly
selected subset of the pooled dataset. Using their local dataset, each client separately
trained a BERT model with the following parameters: 100 epochs, 1 x 10~° learning rate,
and 16 batch size. A global model was created by combining the model weights of the
clients after local training. The weights from each client model were averaged for this
aggregation, guaranteeing that no raw data were shared and protecting data privacy.

3.3. BERT Model Configuration

In this experiment’s implementation, BERT was utilized for sentiment analysis se-
quence classification tasks. This model used the ‘bert-base-uncased’ version to process
lowercase English text effectively. The AdamW optimizer and Gradient Scaler were used to
train each client’s model for computational efficiency. With a maximum sequence length of
128 tokens, the text data were tokenized. BERT's incorporation into the FL framework was
made possible by the model design, which made it easier to understand complex emotional
patterns in text.

BERT’s base model consists of 12 blocks of transformer layer with 768 dimensions
in each block and 12 attention heads. Because of this multi-head attention, BERT is able
to attend to different parts of an input sequence in parallel and grasp the complexity of
the contextual interactions of tokens. In each transformer block, information from the
previous step is passed through a feed-forward neural network where the size of the
hidden layer is 30,720 and layer normalization is used to maintain stability and speed up
the training process.

The ‘[CLS]’ token is also a token added at the beginning of an input sequence for the
purpose of summarizing the whole input. When the BERT model is at work, the last
sentence vector which represents this specific token is used to represent the overall input
text, which then goes into a classification layer for work such as sentiment analysis. This
transformation enables making BERT’s bidirectional representations of constant length for
further use in downstream applications.

To improve the prediction of the model, the cross-entropy loss is used for adjusting
its functionality. To overcome overfitting, a learning rate of 1 x 107> is used, and AdamW
optimization is used, together with weight decay for parameter tuning. Furthermore,
a learning rate scheduler further adapts the learning rate with reference to the training
parameters. To improve the speed, mixed-precision training is used for training DL models,
which creates model accuracy with faster training on GPUs. In the model calibration,
the batch size of 16 is used so that many samples can be processed at once during the
learning step.

3.4. Data Obfuscation Techniques

DO techniques can be used to secure sensitive information within the model because
they make it difficult for attackers to interpret or understand the data, ensuring information
is confidential. These methods have a few common techniques, including data masking,
which involves replacing sensitive data with realistic but false information; encryption,
which transforms data into a coded format requiring a key for decryption; and tokeniza-
tion, where sensitive data elements are substituted with non-sensitive equivalents. Other
methods include data shuffling, which rearranges entries in a database to hide connections.
Perturbation adds noise or makes small changes to numerical data. Generalization reduces
the detail of data, like changing specific ages to age ranges. Data swapping involves ex-
changing values between individual records. Additionally, nulling or deleting sensitive
data replaces them with null values, making these techniques important for data protection.

We enhanced these methods in this experiment by supplementing the original dataset
with identically crafted synthetic fake data. This integration improves the obfuscation
process and aids in striking a better balance between privacy and usefulness, especially
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in Al and ML applications. During training, it may be especially helpful when a model is
unable to distinguish between accurate and inaccurate information in the data.

4. Experimentation
4.1. Synthetic Dataset Generation for Data Obfuscation

In order to generate a synthetic dataset, we used a rule-based technique to generate
templates and keywords for six distinct moods. These templates and keywords were
chosen at random to produce each phrase, resulting in 21,459 samples in total. Anonymity
was ensured by using this dataset in an FL configuration, which enables clients to train local
models on their data without disclosing them. We employed adversarial testing to evaluate
the effectiveness of this privacy, which entailed building instances intended to gather
private data and examining the models’ responses to identify any vulnerabilities. This
comprehensive method showed how privacy may be effectively protected in FL scenarios
using fake data.

4.2. FL-BERT with Data Obfuscation

In this work, we classified emotions using a BERT-based model which capitalizes
on its pre-trained ability to effectively extract contextual information from textual input.
BERT is particularly well suited for problems involving emotional inference because of
its architecture, which uses bidirectional attention processes to understand the intricate
relationships between words in sentences. In order to enhance the training data while
preserving data variety, we refined BERT using a composite dataset that included both
synthetic and original emotional text produced using a rule-based methodology. Sensitive
information was kept on local devices during the training process, which was conducted
among five simulated clients using an FL architecture. Because each client created a different
model, we were able to incorporate their learning weights into a reliable global model
without endangering the confidentiality of their information. The model demonstrated
good performance on both the real and synthetic datasets, achieving high overall test
accuracy and validating the effectiveness of our synthetic data strategy. Using metrics
like precision, recall, and F1 score, we also demonstrated how well the model predicted
emotions. These results show that BERT is efficient for emotion classification tasks while
meeting privacy requirements for FL systems.

4.3. Performance Analysis

The robust performance of the FL-BERT+DO model in emotion classification for six of
the six emotional categories is shown. Strong classification accuracy can be observed partic-
ularly for happy (858 correct predictions) and sadness (848 correct predictions), implying
that the model does excel at classifying these emotionally differentiated states. Despite that,
there are some notable misclassifications between semantically related emotions (e.g., fear
and anger), where 25 fear instances were misclassified as anger and vice versa (13 anger
and fear), Figure 1a. ROC curves provide further support for the models’ effectiveness,
with AUC scores from 0.79 to 0.88 in all emotion classes, Figure 2a. AUCs were highest
for the ‘happiness’ class (highest at 0.88), which discriminated best between positive emo-
tions, and lowest for the ‘surprise’ class (only 0.79); we have reason to think that ‘surprise’
might not be as easily separable as other emotions due to its contextual ambiguity and
the possibility that it overlaps with other emotional states. It is shown that the model
performs substantially better than the random classifier baseline (represented by the diag-
onal dashed line) for all the emotion classes, with AUCs in excess of 0.79. Unexpectedly,
the model does well across most categories with AUCs within 0.1 of each other, including
anger, fear, and sadness with AUCs of 0.86. The consistency of these results suggests that
FL-BERT+DQ'’s architecture is in fact able to capture the intricate features that differen-
tiate one class of emotional expression from another, while there exists the opportunity
for improvement in more subtle emotional distinctions, particularly between ‘surprise’
and ‘love’.
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Figure 1. Confusion Matrices for BERT, CNN, and BiGRU.
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From a privacy perspective, the membership inference attack on the global model
yields an AUC of 22.40%, indicating a lower risk of privacy leakage. However, the lo-
cal model’s AUC of 50.38% suggests a closer alignment to random guessing, signalling
potential vulnerability. The AUC scores across individual clients reflect varied privacy
guarantees, with a macro-average AUC of 51.29%, implying moderate privacy protection.

The FL-BERT+DO model achieved a strong performance, achieving high overall
test accuracy on both the original and synthetic test sets. Performance metrics for a
simulated future dataset demonstrated robust results, with a forecast test accuracy of
82.74%, a precision of 83.30%, a recall of 82.74%, and an F1 score of 82.80% (Table 3).
The confusion matrix indicated that the federated model maintained high accuracy and
generalization capabilities across different emotion categories.
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(a) ROC-AUC curve for BERT.
Figure 2. Cont.
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(b) ROC-AUC curve for CNN.



Electronics 2024, 13, 4650

11 of 21

ROC Curve for Each Class

True positive Rate

—— Class anger (AUC = 0.58)
—— Class fear (AUC = 0.58)

04
False Positive Rate

(c) ROC-AUC curve for BiGRU.
Figure 2. ROC-AUC curves for BERT, CNN, and BiGRU.

Table 3. Performance metrics for forecasting emotions.

Metric FL-BERT with DO LDP+CDP
Accuracy 82.74% 16.73%
Precision 83.30% 23.29%
Recall 82.74% 16.73%
Fl-score 82.80% 18.18%

By implementing these methodologies, the study successfully balanced privacy and
accuracy, demonstrating the potential for scalable, secure sentiment analysis in mental
health support systems. The federated approach effectively preserved user privacy while
providing reliable sentiment analysis performance, making it suitable for real-world ap-
plications in sensitive domains like mental health. The training loss vs. accuracy for each
client is demonstrated in Figures 3-5, showing the patterns in performance over the various

training stages.
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Figure 3. Training loss vs. Accuracy for BERT.
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Figure 5. Training loss vs. accuracy for BiGRU.

The confusion matrix, Figure 1b, however, gives us some critical insights on prediction
behaviours and some possible improvements. For example, the ‘happy’ class has a very
good classification performance due to having a preponderance of true positives and a
small number of classifications into other categories. Thus, the discriminative features
represented by the FL and CNN model with DO (FL-CNN+DO) model for ‘happy” have
been effectively learned. Yet, they do appear to be confused, at least to some extent,
as "happy’ is frequently predicted as ‘anger’ (perhaps the same features or overlapping
data patterns lead to both emotions being predicted that way). Just like this, there appears
to be a notable misclassification trend between ‘fear” and ‘happy’, possibly indicating
feature similarity that could either benefit from some further separation of features or
representation of data. Referring to the FL-CNN+DO presented in the confusion matrix,
the model achieves high correct prediction for the happy and sadness classes with 1678
and 1169 respectively. This particular set of associations has been used to produce a
misclassification of 426 instances of anger and 757 instances of sadness as happy.

The emphasis in the off-diagonal elements of the confusion matrix, i.e., misclassifi-
cations, is that there are opportunities for optimization, e.g., reducing false positives for
‘sadness’ and ‘love’. However, these challenges notwithstanding, the matrix shows a domi-
nant diagonal overall, indicating strong overall predictive performance. Together, these
visual analyses corroborate the performance of the FL-CNN+DO model by suggesting areas
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of potential future tuning and model improvement to reduce misclassification and improve
class separation over complex emotional states (Figure 1b). Evaluation of the FL-CNN+DO
for the classification of different emotions is provided by the ROC-AUC curve and the
confusion matrix. The ROC-AUC curve shows that the model can reach robust discrimi-
nation ability with AUC values of 0.83 for ‘anger’, ‘happiness” and ‘sadness’, but with a
peak of 0.90 for ‘surprise’. The curve shows that the model is very good at detecting a true
positive rate compared to a false positive rate, so it is very good at performing most classes.
The results of this emotion show such an exceptional sensitivity in identifying features
that are unique to this emotion that the ‘surprise’ category stands out with an AUC of 0.90,
Figure 2b.

The FL Bidirectional Gated Recurrent Unit model with DO (FL-BiGRU+DO) classifica-
tion performance using several emotional categories such as anger, fear, happy, love, sad-
ness, and surprise is shown in an ROC-AUC curve and confusion matrix (Figures 1c and 2c).
This ROC-AUC plot demonstrates the discrimination capability of the model per emotion,
and AUC values vary from 0.54 to 0.59 among classes, which indicates that the model can
discriminate between the true positive and false positive rates relatively well. While AUC
values do improve slightly for some emotions like surprise and love, approaching around
0.59, there are other emotions such as sadness that simply fail to reach 0.2, implying harder
to identify emotions anyhow in federated domains experiencing obfuscation.

These performance nuances are shown even more clearly in the confusion matrix.
For example, the model shows a relatively higher percentage of the ‘happy’ class being cor-
rectly predicted, amounting to 665 correctly predicted instances implying strong detection
characteristic of this emotion. Notably, such misclassifications have yet to be fully resolved,
including mislabelling of ‘sadness’/‘anger’ manifestations as ‘happy’ or other labels, pos-
sibly because of shared features or imprecisely distinguishing between emotions under
subverted data. It also holds information about the potential sources of improvements,
such as confusion between “anger” and ‘fear’, or the fact of mislabeled ‘surprise’ cases being
labelled into other classes such as ‘sadness’. The confusion matrix of FL-BiIGRU+DO shows
165 instances of happy and 160 instances of sadness, which are misclassified as anger and
297 instances of sadness misclassified as happy, Figure 1c.

Overall, the sentiment analysis using obfuscated data in an FL context shows the
promise of the FL-BiGRU+DO model but is challenged in terms of high discrimination
for some emotions. Emotion detection in such privacy-preserving environments remains
a complex problem; these results clearly indicate the difficulty of such a problem and
underline the necessity for more fine-tuning and architectural improvements in order to
reduce misclassification without compromising user data privacy.

4.3.1. Model Privacy Validation

This is a challenge when no common metrics have been identified for privacy perfor-
mance comparisons between FL-BERT+DO and traditional FL-DP, Figure 6. Subsequently,
this research investigates the effectiveness of model privacy by performing membership
inference attacks and linkage attacks within an FL framework with DO. And, the privacy
metric epsilon € for DP has been introduced in this analysis for FL-DP, which is commonly
used to measure privacy guarantee. This study focuses on both global and local model
architectures. The main goal is to confirm the privacy protections in model training by
testing how vulnerable these models are to membership inference attacks. The method
includes dividing the dataset into groups of members and non-members to see if models
can distinguish between training and testing data. We measure the models’ risk levels by
calculating the Area Under the Curve (AUC) for these attacks, which shows the potential
for exposing training data. Additionally, we use a linkage attack framework to test how
well individual client data are protected, giving one-vs.-rest AUC scores for each client.
This full evaluation highlights possible gaps in privacy protections and shows the urgent
need for strong measures to keep sensitive information safe in ML.
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Figure 6. Comparative analysis of forecasting: our method vs. baseline methodology (DP).

4.3.2. Model Privacy Validation Through Adversarial Attacks

To thoroughly test the privacy protections of our FL framework, which we improved
with DO, we performed two types of adversarial attacks: membership inference attack
and linkage attack, as mentioned before. Here, € is used only as a privacy measure
within DP methods. The membership inference attack evaluates whether the global model
could disclose confidential information by determining if a sample originates from the
training set. In our analysis, this attack achieved an Area Under the Curve (AUC) score of
22.40%, indicating a minimal risk of membership inference and implying robust privacy
safeguarding at the global model level. We also tested the membership inference attack
on local models developed by individual users, where the AUC score of 50.38% suggested
a higher likelihood of exposure than the global model. This finding indicates moderate
privacy and underscores the need for additional protections for local models. Moreover, we
executed a linkage attack to examine the security of client-specific data by predicting the
originating client of a sample. The AUC scores across separate clients resulted in a macro-
average AUC of 51.29%, indicating moderate defence against client identification. These
results confirm the privacy-preserving capabilities of the proposed FL-BERT framework,
emphasizing its efficiency in reducing privacy threats. Privacy validation outcomes for
membership inference and linkage attacks are displayed in Table 4.

Table 4. Privacy validation results for membership inference and linkage attacks.

Attack Type Model Type AUC Score Privacy Risk
FL-BERT+DO

Membership Inference Global BERT 22.40% Low

Membership Inference Local BERT 50.38% Moderate

Linkage Attack Individual Clients (Macro-Avg.)  51.29% Moderate
FL-CNN+DO

Membership Inference Global CNN 37.36% Low

Membership Inference Local CNN 50.95% Moderate

Linkage Attack Individual Clients (Macro-Avg.)  50.72% Moderate

FL-BiGRU+DO
Membership Inference Global BiGRU 12.97% Very Low
Membership Inference Local BiGRU 31.48% Low

Linkage Attack Individual Clients (Macro-Avg.)  44.72% Moderate
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5. Discussion
5.1. Comparison of Accuracy vs. Privacy Trade-Off in Sentiment Analysis

In sentiment analysis, especially within mental health contexts, finding the right
balance between precision and confidentiality is essential. Our study introduces a system
that integrates FL-BERT+DO, allowing us to achieve strong privacy safeguards while
also providing noteworthy precision. We reached an overall precision rate of 81.44%,
showing that high levels of privacy can be upheld without considerably compromising
model effectiveness.

Earlier work, like [17,22], focused on enhancing precision using sophisticated DL
methods such as CNNs and combined models that merge CNNs and LSTM. However,
these studies frequently neglected confidentiality aspects. On the other hand, research
such as [18,20] aimed to improve privacy through FL but often at the expense of consistent
precision levels. For example, ref. [19] pointed out the inherent trade-offs associated with
DP, where attempts to enhance privacy might slightly degrade model performance. Our
work contributes to this discourse by uniquely integrating FL with a novel data obfuscation
technique, allowing us to achieve both high accuracy and strong privacy protections. This
positions our approach as a significant advancement in privacy-preserving sentiment
analysis, particularly for mental health support.

In our findings, we reiterate the importance of the privacy-accuracy trade-off discussed
earlier in the Introduction. Our FL-BERT+DO approach effectively navigates these chal-
lenges, as shown by our experimental results. When compared to a baseline LSTM-based
FL method that utilizes DP [7], our approach demonstrates considerable improvements in
both accuracy and privacy assurances. As detailed in Table 1, our model reaches a forecast
test accuracy of 82.74%, while the baseline struggles with a mere 16.71% accuracy and lacks
adequate privacy protection, with € values increasing linearly across epochs, Figure 7. It
shows a linearly growing epsilon, which means that privacy guarantees get steadily worse
during training time.

Privacy (Epsilon) over Epochs

80000 A

__ 60000 -

Epsilon (g

40000 1

20000 T

T T T

5 10 15 20
Epoch

Figure 7. Comparative analysis of Epsilon (e) vs. Epochs for FL-DP.

This striking difference highlights how our approach effectively addresses the press-
ing issue of maintaining user privacy in sensitive environments such as mental health
monitoring, all while preserving the analytical capabilities of the model. The comparative
analysis between our innovative method and the baseline (FL-DP) is illustrated in Figure 6.

Table 1 reveals that FL-CNN+DO provides an effective measure and an accuracy level
of 61.34%, a precision of 72.79%, and an F1-Score of 62.40%. Such findings suggest that
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current solutions have a fair accuracy in both detecting circumstances which lead to a high
likelihood of reoffending and detecting cases where such predictions would be wrong.
In terms of privacy protection, it has 37.36% global membership inference attacks, 50.95%
local attacks, and 50.72% success in linkage attacks for each client (Table 4).

The accuracy of the given test set is 57.83%, showing that the FL-BiGRU+DO model has
well-defined features for emotion classification; the precision of the given model is 62.05%;
and the given model has an F1-score of 58.32%, Table 1. The model showed that it had a
very low probability of global membership inference (12.97%), a low probability for local
membership inference (31.48%), and, however, a moderate probability for linkage attack on
individual clients (44.72%). From these outcomes, we can discern that the model exhibits
high classification discriminant capabilities but moderate privacy resilience compared to
leakage risks, especially at the client level (Table 4).

Through analyses of the test set metrics, we observe that the FL-BERT+DO model
performs quite favourably for all considered metrics: accuracy = 82.74%, precision = 83.3%,
recall = 82.74%, F1 score = 82.8%. On the other hand, FL-CNN+DO shows moderate
performance and a slightly less score that is; a precision score of 72.79% and an F1 score of
62.4%. The use of the FL-BiGRU+DO model presents the lowest results in terms of accuracy
and recall: 57.83%, and F-1 of 58.32%. The FL-BERT+DO approach demonstrates better
general performance and predictive recovery, as seen in these results, for forecasting tasks.
Comparative analyses of forecasting for different models are shown in Figure 8.

Comparison of Forecast Test Metrics for Different Models

0.8274 _U-833 08274 0.828 BN Accuracy
I Precision
I Recall
BN F1 Score

0.5783 0.5832

FL-BERT+DO FL-CNN+DO FL-BiGRU+DO
Models

Figure 8. Comparative analysis of forecasting for different models.

5.2. Interpretation of Findings

From this understanding, the study’s results assert the viability of the FL. method
alongside BERT for the field of sentiment analysis in mental health. Our model points out
that FL. may be able to achieve a high level of performance in both model performance
and privacy of the users, which is evident from high performance measures and accuracy
of 81.44% with a simulated future dataset. This feature is vital mainly in mental health
facilities where there are a lot of restrictions for privacy because of the data being dealt with.
The model plays an important role in the definition and the analysis of the progression
of mental health disorders due to the balance in the levels of accuracy, precision, recall,
and F1-score and due to the capability to differentiate between a vast number of emotions.
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5.3. Implications for Practice

From this research, useful recommendations that can be useful to data scientists and
healthcare practitioners can be derived. The incorporation of FL means that patient mental
health can be constantly, safely, and non-intrusively monitored by medical staff. This could
mean that from the use of real-time sentiment analysis, this development will allow for
more personal and timely responses to it. This work identifies the privacy—data utility
dilemma for this work to offer data scientists a road map for using FL in tandem with DP
approaches. In addition, there may be other applications for this capability in different
domains apart from mental health, for example, locating models from various decoupled
sources without exchange of inputs.

5.4. Comparative Analysis: FL-BERT+DO vs. FL-BERT+DP

FL techniques employing DP have shown considerable potential for protecting the
privacy of data; nevertheless, FL-BERT+DO, which we propose, offers a novel approach
that eliminates the burdensome limitations of DP-based methods. The advantage of using
FL-BERT+DO over the DP-enhanced FL is discussed here with reference to the optimization
of privacy and performance in sentiment analysis for mental health.

5.4.1. Balancing Privacy and Accuracy

The original FL-DP models often utilize noise addition for privacy protection, which
often reduces the model’s performance by obfuscating intricate model parameters. While
there are other strategies, such as Active Personalized FL (ActPerFL) [37] and Topic Memory
FL with BERT-Large TM-FL (BT-1) [26], our FL-BERT+DO approach is more focused on
masking sensitive data right before model updates, which enhances data utility and reliability.
FL-BERT+DO reveals a higher potential to retain privacy while not compromising model
accuracy compared to the gradient-based approach by focusing on the data. This advantage
is backed up by experimental outcomes in which it is seen that FL-BERT+DO works better
than ordinary FL-DP models in terms of predicted accuracy as described in Section 5.1.

5.4.2. Improved Defense Against Privacy Attacks

While incorporating noise makes DP approaches capable of avoiding or mitigating
some inference attacks, the approaches remain vulnerable to complex adversarial attacks
that attempt to analyze the noise patterns. At the intrinsic level, FL-BERT+DO works by
directly applying a function that prevents the client’s data from being identified during
transmission, thus offering more protection than federated updates alone provide. This
feature enhances the defence of FL-BERT+DO against privacy breaches because it inherently
protects the database from linkage and membership inference attacks. As it was revealed in
testing, FL-BERT+DO has a lesser susceptibility to such kinds of assaults, especially when
it is working with various client information, which is a situation that can be problematic
for traditional FL with DP (FL-DP) approaches.

5.4.3. Greater Robustness with Data-Level Privacy Protection

FL-BERT+DO directly masks the data and facilitates a higher in-depth level of model
interpretation than privacy, while DP mainly adjusts the model through gradients. It also
increases FL-BERT+DO’s robustness against real-world FL scenarios, which are typical for
the mental health domain and involve clients with potentially different data distributions
or data quality. Consequently, FL-BERT+DO is highly suitable for real-world applications
since it respects privacy in settings with mixed data in contrast to the gradient sensitivity
present in FL-DP models.

5.4.4. Tailored for Federated BERT-Based Sentiment Analysis

Sentiment analysis challenges must therefore prevent loss of meaning during lan-
guage processing in mental health cases. As the criterion of students’ satisfaction has
to be effectively achieved, DP approaches may not be able to fulfil the task. For BERT
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models, the data-oriented blurring strategy of FL-BERT+DO can provide fine-grained
privacy control that can hide specific phrases or entities while preserving the semantics.
FL-BERT+DO is more suitable for NLP tasks, where information semantics retention is
critical to achieving accuracy and distinctiveness since it provides a thorough privacy
mechanism that DP cannot.

6. Practical Applications and Limitations

The FL-BERT+DO identified above is a rather promising approach, particularly for
mental health treatments. This way, medical personnel are always ensured of how to
monitor patients’ feelings without compromising their privacy at any one time. Healthcare
professionals may make a fast, idiosyncratic treatment plan decision based on patient
specificity by using FL-BERT+DO, which allows them to search for various sources of
information not disclosing the personal information of patients. However, some constraints
have to be acknowledged. Ensuring that FL-BERT+DO will be able to function optimally
even within limited resource conditions like consumer-based end devices, including those
based on smartphones or the poorly energy-efficient IoT contents frequently involved in
mental health practices, is difficult. Due to the need to meet the specifications of FL and
the added challenge of data obfuscation, it can be awkward to implement FL-BERT+DO
in such scenarios; as such, it is suggested that future research focuses on finding ways of
improving the efficiency of FL-BERT+DO.

7. Future Directions

As for the further development of the research, there are a number of rather interesting
topics suggested by the current analysis that focus on DO as the subject of study. One
critical identification is to enhance data mask mechanisms in order to make sure that source
data are masked in mental health apps. Hence, by employing complex DO approaches,
privacy is improved while permissive sentiment research is conducted.

Also, Al can play a highly important role in DO as well. The ML case comes when
algorithms are developed to logically transform values and thus hide information while
retaining data worth.

The rationale for this paper lies in expanding the research on the value of practical
applications that this Al technology can offer in increasing DO and thus advancing the
area of privacy-preserving SA in mental health. The purpose is to foster more research
and development, which means more concern for people with mental health issues, while
being anonymous.

Some prospects for future work with regard to data acquired for data obfuscation
techniques include further exploration of the duality between privacy preservation and the
usefulness of data. Future work might look into higher-level analogues of masking that
would retain as much information as possible but would not compromise privacy. Moreover,
further research has to be directed to cognitive obscuring techniques by considering the
characteristics of data and the context in which it will be used. Moreover, procedures
for normalizing and subsequently verifying that masked data are still appropriate for the
learning algorithms would be useful.

The scalability of FL-BERT+DO strongly depends on the ability to work with a large
number of devices with different computational and network resources. In order to scale
up the systems, efficient means of data compression, privacy preservation, and realistic
communication protocols with low latencies and bandwidth overheads are required. More-
over, modifying the framework to work with many kinds of mobile systems increases its
usage and allows real-time data gathering to monitor mental health and help adopt Al
models for individualized treatment.

8. Conclusions

In this work, the feasibility and effectiveness of employing BERT models and FL
to construct sentiment analysis for mental health are demonstrated. It also showed that
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the method was accurate, reproducible, and transferable when testing the accuracy on
a simulated new dataset with good performance indicators. The requirement for strict
data protection while developing mental health applications was well addressed by FL
architecture, which also ensured high model accuracy, preserving users’ privacy. These
outcomes demonstrate how FL may give appropriate and secure sentiment analysis while
at the same time protecting sensitive patient data.

To illustrate how decentralized training can retain privacy and enhance accuracy, it
begins with a case of using BERT on sentiment analysis in FL. Second, the work provides a
means of improving the datasets without having to infringe on the rights of the individuals
whose information they contain by providing a new mixture of actual and synthetic data
for the improvement of the models. Third, a better understanding of how to balance the
utility and privacy of data in some applications is enabled by the detailed examination of
the privacy-preserving techniques outlined in this work, specifically DP. Finally, this work
includes valuable suggestions and a method that can be used in other NLP functions and
industries where stringent privacy requirements are necessary.

The positive conclusions of this work emphasize the need for future studies and
the application of privacy-preserving methods in healthcare data analysis. To enhance
the strength and the uses of FL and DP, researchers must analyze FL and DP in higher
construct complexity and variety. Clinicians and big data researchers ought to assimilate
these principles as the key towards enhancing the security of biomedical data and the
practicability of digital technologies. This type of effort will further advance the knowledge
and usage of this field to lead to better patient and data protection results, as well as more
worthy usage of technology in healthcare.
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