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Abstract: Traffic-related air pollution (TRAP) is a significant risk to human health and is particularly
damaging to children as a vulnerable group. TRAP exposure near schools and on the school commute
is linked to a growing number of adverse health effects, including respiratory and cardiovascular
disease and can lead to (and exacerbate existing) respiratory conditions. The current study aimed to
assess the effectiveness of interventions for the reduction of potential child exposure to TRAP at the
school gates and on the school commute. This study employed dispersion modelling to assess the
effects of interventions for reducing TRAP concentrations in the vicinity of five schools in England.
The results revealed that all interventions led to reductions in nitrogen dioxide (NO2) concentrations.
Improved travel routes were the most effective intervention for reducing concentrations along travel
routes, while the introduction of low-emission zones (LEZs) proved most effective in reducing NO2

concentrations at schools, with greater effectiveness observed at shorter distances. Active travel also
demonstrated effectiveness, particularly in areas with heavy traffic. When considering all receptors,
LEZ implementation, active travel, and rideshare interventions exhibited effectiveness, with greater
distance providing greater reductions in NO2 concentrations. Anti-idling was found to be more
effective in sparsely populated areas. Combined with improved travel routes, anti-idling showed the
greatest percentage difference in concentrations, followed by active travel, and rideshare.

Keywords: TRAP; exposure; interventions; dispersion modelling; low-emission zones

1. Introduction

Traffic-related air pollution (TRAP) poses a significant health risk, particularly to
vulnerable populations such as children [1]. The significant impact of TRAP on children’s
health is well researched, particularly due to their developing respiratory systems and
higher breathing rates compared to adults. Exposure to TRAP has been associated with a
range of adverse health outcomes, including respiratory illnesses, reduced lung function,
and an increased incidence of asthma attacks [2,3]. Additional research has further linked
prolonged exposure to nitrogen dioxide (NO2) and particulate matter (PM) from motor
transport to cardiovascular issues and cognitive development impairments in children [4,5].
These findings underscore the urgent need for effective measures to reduce children’s
exposure to TRAP, especially around schools and during peak commuting periods. By
incorporating additional recent studies, the current investigation aims to reinforce the evi-
dence base that underpins the need for interventions aimed at mitigating TRAP exposure.

Children are particularly vulnerable to the adverse effects of TRAP due to several
physiological and behavioural factors. Research indicates that children’s lungs are still de-
veloping, and they breathe more air per unit of body weight than adults, leading to higher
exposure levels when pollutants are present in the air [1]. Prolonged exposure to pollutants
such as NO2 and fine particulate matter can impair lung development, increase the risk of
respiratory infections, and exacerbate existing conditions like asthma and bronchitis [2].
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Additionally, there is growing evidence that TRAP is linked to neurodevelopmental issues,
including reduced cognitive function, behavioural problems, and increased risks of atten-
tion deficit hyperactivity disorder (ADHD) [5]. The long-term health impacts of early-life
exposure to air pollution extend into adulthood, contributing to chronic conditions such as
cardiovascular disease and reduced lung capacity [3]. These findings highlight the critical
need for effective strategies to reduce TRAP exposure, particularly around schools where
children spend a significant amount of time.

In England, where urbanisation and vehicle usage rates are high, efforts to mitigate
the impact of TRAP on schoolchildren have gained considerable attention. Various inter-
ventions have been proposed and implemented to improve air quality near schools, aiming
to protect the health and wellbeing of children [6].

Active travel on the school commute is considered beneficial to children as a source of
physical activity [7] and to lower traffic and pollution at peak times [8]. There is an inverse
relationship between physical activity and youth obesity [9–12], and adult coronary heart
disease has been associated with poor body composition in childhood [13].

Active travel has been demonstrated to help reduce body mass index (BMI) and
consequently reduce long-term diseases such as those related to obesity [14,15]. The
increased exercise associated with active travel uptake has also been shown to improve
academic performance among pupils [16,17] and also has the advantage over other physical
activities of being low cost and convenient [9,10].

Active travel provides an opportunity for children and young people to benefit from
regular physical activity whilst reducing the traffic burden at peak travel times and lowering
pollution around schools and on the school commute (Lee, Orenstein, and Richardson, 2008).
In many contexts, the substitution of walking or cycling in place of vehicular transport use
provides benefits in terms of increased physical activity that outweigh the adverse effects
associated with the inhalation of air pollution during these physical activities [18].

Campaigns and technologies associated with anti-idling are prevalent in the literature,
including research by Ryan et al. [19] and Paton-Walsh et al. [20], who assessed the effec-
tiveness of anti-idling campaigns, and Xu et al. [21], who developed and implemented an
anti-idling detection and warning system. The areas immediately surrounding schools are
often regarded as having high traffic concentrations at peak times [22] and are accordingly
sources of elevated pollution. Living near these traffic sources is also associated with the
development of asthma and the worsening of existing respiratory illnesses [23]. Child mi-
croenvironments commonly include schools and travel to and from schools, sometimes in
vehicles. These environments have been argued as particularly relevant when considering
TRAP exposure, especially when considering the number of schools in close proximity
to major roads in the UK [24]. Paton-Walsh et al. [20] identified limiting motor vehicle
idling as an effective measure for the reduction of air pollution, in addition to co-benefits
such as reduced fuel costs. Idling vehicle emissions contribute to student exposure to air
pollution [2], and rush hour peaks in exposure have also been identified [25]. Anti-idling is
considered to be an effective measure for improving air quality, as most idling occurs at
exposure hotspots such as road junctions, car parks, and schools. The researchers recom-
mended the introduction of anti-idling zones, particularly around at-risk populations, such
as child-care centres, care homes, schools, and hospitals.

Anti-idling is argued to be most effective for air quality improvement in areas where
traffic associated with drop-off and pick-up is a significant contributor to the local air
pollution mix [26,27]. However, the intervention is not as effective when schools are near
major roadways [2,21]. Appropriate education must also accompany anti-idling efforts
to ensure that drivers are fully informed about the health impacts of poor air quality and
vehicular emissions and are then more likely to show compliance and less likely to resent
the intervention [28].

Ridesharing (or carpooling) is the organised sharing of a private vehicle for commuting
purposes [29]. Ridesharing arrangements may involve the payment of a nominal charge
to the owner of the vehicle, but a more typical arrangement involves sharing different
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owner’s vehicles on a rotational basis without charge [30]. For this reason, ridesharing is
often considered in terms of public transport [31].

The benefits associated with a successful ridesharing scheme are substantial, including
reducing emissions and fuel consumption, lowering congestion during peak traffic periods,
and reducing parking costs for users [31]. Those commuting by ride-share also save time
and money in the form of fuel and parking costs [30], and for employers, reductions
of parking requirements and additional benefits associated with improved productivity
among less stressed workers [32]. There are also broader benefits in the form of the
reduction of congestion, improvements to energy security, and lower greenhouse gas
emissions [33]. The introduction of vehicle-restricted areas, known as low-emission zones
(LEZs), is a significant policy intervention globally, aimed at improving urban air quality.
There are over 200 LEZs in operation in Europe alone, underlining their widespread
adoption as a means of reducing emissions and improving air quality [34].

LEZs are localised measures implemented in specific geographic areas to reduce
vehicle emissions and improve local air quality [35]. They come in various forms, in-
cluding those activated during pollution exceedances, technology-based restrictions, and
traffic-prioritisation for emission reduction [36]. Timing is an important factor in LEZ
implementation, with some urban centres using pollution forecasts to trigger action [37].

Some studies highlight the benefits of implementing low-emission zones (LEZs) and
specifically note positive effects in the case of the London LEZ [38–40]. It is important to
distinguish between LEZs and ‘School Streets’ initiatives. LEZs aim to reduce air pollution
by encouraging low-emission vehicles and alternative transportation methods [41]. School
Streets initiatives, on the other hand, focus on improving safety and reducing congestion
around schools during drop-off and pick-up times, making it safer for children to walk or
cycle [42,43]. While conflicting evidence exists [44], some research shows that following
implementation traffic can be reduced overall rather than displaced [45].

The effectiveness of interventions to reduce TRAP often relies on accurate modelling
of pollutant dispersion. Various models, such as the ADMS-Roads, CALINE4, and AER-
MOD, have been employed to predict pollutant concentrations under different conditions,
considering factors such as meteorology, traffic patterns, and topography [46–48]. Verifica-
tion and validation of these models are critical to ensuring their accuracy and reliability.
Verification involves comparing model outputs with observed data to identify discrepan-
cies, while validation confirms that the model can accurately predict pollutant levels in
scenarios outside the initial calibration dataset. The current study utilised the ADMS-Roads
model, and to ensure robustness, it was subjected to a thorough verification process (see
Section 2.4. Model Verification). Details of this process are elaborated in the methodology
section, highlighting how model adjustments were made to improve accuracy and ensure
reliable predictions.

By integrating real-world data on traffic patterns, meteorological conditions, and the
geographic layout of schools, this study simulates the dispersion of air pollutants emitted
by traffic sources around selected schools. The interventions for assessment were selected
based on the study detailed in Brown [49], within which a systematic review identified
suitable mitigation interventions for the reduction of child exposure to traffic-related air
pollution exposure during peak morning traffic on the school commute and at the school
gates. These measures were then ratified by parents and teachers via a questionnaire
distributed to schools throughout England. The measures include mode shifts to active
travel, improved travel routes, anti-idling, rideshare, and implementation of low-emission
zones (LEZs). It is important to note that in the case of school children, studies have shown
that peak exposure occurs at drop-off and collection times from school [26,49], and after
that, exposure is dominated by conditions in the indoor microclimate, which is neither
represented by the model nor the monitoring data. Given that the study here uses averaged
daily data, it does not demonstrate the effectiveness of the interventions at specific times
of day, such as peak traffic. Rather, this study is intended as a measure of comparative
effectiveness of each included intervention.
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Whilst a range of interventions currently exist for reducing TRAP, there are currently
no studies that comprehensively compare their effectiveness on the school commute and at
the school gates during peak morning traffic. The current study addresses this research gap
by employing dispersion modelling to assess the effects of interventions for the reduction of
potential child exposure to TRAP concentrations on the school commute and at the school
gates. The study aim is to determine the most effective TRAP reduction interventions
around the school gates and for children on the school commute in England at peak
traffic times. Accordingly, this study evaluates the effectiveness of various interventions
aimed at reducing TRAP exposure among children at schools in England. This is achieved
by using dispersion modelling, which allows for a detailed assessment of how different
strategies impact pollutant concentrations near school zones. This study seeks to address
the following key objectives:

1. To compare the relative effectiveness of interventions for reducing TRAP around
schools in England.

2. To provide insights for policymakers on the potential benefits and trade-offs of imple-
menting these strategies in urban settings.

This study offers a novel contribution to the literature by comprehensively comparing
multiple TRAP reduction interventions within a single framework. This research integrates
approaches to assess their comparative effectiveness across different school environments.
Furthermore, by incorporating real-world data and using dispersion modelling, this study
delivers relevant insights that can directly inform policy decisions aimed at improving air
quality around schools. The findings of this study develop understanding of the spatial
distribution and concentration levels of air pollutants and provide critical insights to
policymakers, urban planners, and stakeholders involved in designing and implementing
strategies for reducing TRAP and child exposure on the school commute.

2. Materials and Methods
2.1. School Site Selection

The selection of school sites for this study was based on data availability, including
the presence of necessary traffic, air quality, and meteorological data. While this allowed
for a robust analysis of the interventions at these sites, it is important to acknowledge
that the chosen schools may not be fully representative of the diverse range of traffic
patterns, population densities, and socio-economic environments present across England.
The selected schools are primarily located in urban areas with specific characteristics (due
predominantly to a comparative lack of robust data availability in areas affected with lower
air pollution levels), which may limit the generalisability of the findings to other contexts,
such as rural areas or highly congested city centres.

Schools were selected according to the criteria within the methodology presented in
Brown [49], based on the data input requirements of ADMS Roads (Version 5.0). These
criteria include the following requirements:

• The school must be located within an AQMA.
• The school must be located within 500 m of an AURN station.
• Suitable meteorological data must be available.
• Suitable traffic data must be available.

Five school sites were selected for modelling, each containing a suitable primary school
for use as a principal receptor. In those cases where other educational establishments existed
within the boundary, these were added to the model as secondary receptors, although the
interventions were only modelled on the primary schools (principal receptors) in each site
where possible (Table 1).
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Table 1. School sites and schools selected for modelling.

City Locality Establishment Name Establishment
Number

Receptor
Type Establishment Type Region

City of
Bristol St Paul’s Cabot Primary School 2139 Principal Community school South West

City of
Bristol St Paul’s St Paul’s Nursery School and

Children’s School 1010 Secondary Children’s centre South West

City of
Bristol Bedminster Parson St Primary School 2061 Principal Academy converter South West

Coventry Binley Southfields Primary School 2153 Principal Community school West Midlands
Coventry Binley Gosford Park Children’s Centre N/A Secondary Children’s centre West Midlands

Oxford St Ebbe’s St Ebbe’s Primary School 3833 Principal Voluntary aided school South East

Sheffield Tinsley Tinsley Meadows Primary School 2230 Principal Academy converter South Yorkshire
Sheffield Tinsley Tinsley Green Children’s Centre N/A Secondary Children’s centre linked site South Yorkshire

Each site was demarcated by a 500-m buffer surrounding each school to provide a
boundary for the modelling area. In each site, primary schools were preferred for use
as principal receptors due to the vulnerability of their pupils. All selected schools were
located within AQMA boundaries in England and were heavily polluted according to
IDW-derived annual mean NO2 concentrations. Each of the selected school sites also had
all required input data available for dispersion modelling. Each region contained highly
polluted schools, and the surrounding sites contained air quality and traffic monitors and
access to necessary meteorological data. All schools were added to ADMS as receptors, and
the sites with schools were plotted using the ADMS Mapper function (Appendix A).

Diffusion tube and continuous monitoring data were available at all sites. AURN
monitoring data were sourced from Air Quality England [50]. Monitored data from lo-
cal authorities were sourced from Bristol City Council [51], Sheffield City Council [52],
Coventry City Council [53], and Oxford City Council [54].

All sites are roadside sites with 2019 data, so they were suitable for verification and ad-
justment (see Appendix D). Predictions of pollutants closer to roadside sites are commonly
used by local authorities because these are at greater risk of exceedances. Accordingly, the
verification of models is generally based on these monitoring sites. Because dispersion
models may perform differently at different site types, two AURN sites were not included:
Oxford St Ebbe’s and Sheffield Tinsley. Both sites are AURN continuous monitoring urban
background sites and were considered unrepresentative of the nearby roads [55].

The St Paul’s site in the City of Bristol is a highly populated urban centre that is close
to the M32 motorway, which approaches the city centre. The site contains the A4032, A4044,
and A38. Several small urban parks are sited throughout the densely packed housing area
surrounding Cabot Primary School and St Paul’s Nursery and Children’s Schools.

The Bedminster site in the City of Bristol contains Parson St Primary School and is
characterised by a busy road network comprising several A-roads. The school is located by
traffic lights on a busy 3-way intersection joining the A38 and the A3029. There is limited
green space within the site.

The Binley site in Coventry is comparatively less populated, containing many more
commercial buildings and some larger areas of green space. The A4600 and A444 intersect
by Gosford Green and run through the site.

The St Ebbe’s site in Oxford contains the most sparsely populated urban residential
area, with large areas of green space and the River Thames crossing the region. The A420
and the A4144 intersect, and the latter crosses the length of the site.

The Sheffield Tinsley site is sparsely populated but is characterised by industrial
buildings with some residential areas. The M1 runs through the site and intersects the
A6178 and A631.
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2.2. Model Inputs
2.2.1. Receptors

Schools were marked as receptors, as was each junction point throughout the modelled
travel routes (see Section 2.3.1. Assumptions), providing representative categories with
which to determine reductions against the baseline due to the implementation of mitigation
measures. In addition, continuous monitors and diffusion tubes within the boundaries of
the modelling sites were also added as receptors for model verification.

Where the inlet height of diffusion tubes was not available from local authorities, the
height was entered as 2 m, which is typical for diffusion tube placement as it corresponds
to approximate human height. DEFRA’s advice to local authorities on this issue maintains
that, whilst samplers should ideally be placed at breathing height for local air quality
management, it is recommended that they are placed between 2 and 4 m to reduce tube
theft if the risk is anticipated [56].

School receptor heights were set at the average height of the children attending. For
primary schools, this was 1.2 m (the average height of a 7-year-old child), and for children’s
centres and infant schools, 1 m (the average height of a 3-to-5-year-old child) [57]. All travel
route receptors were allocated at a height of 1.2 m for consistency across all sites.

2.2.2. Background Pollution

This study utilised DEFRA’s background pollution maps to establish baseline air qual-
ity levels across different sites. While these maps provide a broad estimate of background
pollutant concentrations, they do not account for temporal variability, such as daily or
hourly fluctuations. In urban areas, pollution levels can vary significantly throughout the
day due to factors like peak traffic, weather conditions, and localised emissions, which
may not be adequately captured by static annual averages. This limitation introduces an
element of uncertainty into the dispersion model outputs, as the true baseline pollution
levels during key times (e.g., morning rush hours) might differ from the average values
used. However, the maps were considered suitable for the requirements of the current study
to establish a consistent baseline against which comparative assessment of the selected
interventions can take place.

Based on local authority mean concentrations, the background pollutant concentra-
tions of NOX and NO2 for all sites were determined using DEFRA’s background maps
projected for 2019 [58] and input to a GIS with mapped local authority boundaries [59].
DEFRA provides the background data for LAQM purposes, and the data are projected
based on assumptions prior to the UK COVID-19 outbreak. The mean concentrations for
each site area were calculated using the ‘summarize within’ function of ArcMap (Version
10.8.1), specifying local authority boundaries as the boundary layer (see Appendix B for
calculated background school pollution values).

2.2.3. Meteorology

Meteorological conditions, including wind speed, wind direction, temperature, and
atmospheric stability, are key factors that influence the dispersion and concentration of air
pollutants. These variables affect how pollutants are transported, diluted, and deposited in
the environment. For example, high wind speeds can disperse pollutants more effectively,
reducing concentrations near the source, while low wind speeds may lead to stagnation and
higher local pollution levels. Similarly, atmospheric stability can affect vertical mixing, with
stable conditions often leading to pollutant accumulation near the ground. In the current
study, meteorological data from the year 2019 were incorporated into the dispersion models,
but it is important to acknowledge that variations in weather conditions can significantly
impact the results.

Meteorological data for all sites were sourced from the CEDA Archive [60]
(Appendix C). All observation stations are within 50 km of their respective school sites, and
all had recorded suitable and sufficient data for 2019.
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2.2.4. Traffic Counts

Traffic count data were sourced to provide counts for major roads with which to
base input data to the models [61]. A limitation of the traffic data is that it is annualised
and averaged. The Annual Average Daily Flow (AADF) measures one-way traffic flow.
Annual Average Daily Traffic (AADT) is traffic measured in both directions. This value
is determined by dividing the yearly traffic volume count by 365. The Average Daily
Traffic (ADT) value is obtained by dividing a traffic count by the number of days within
its collection period. When converted into AADF, AADT assumes an equal directional
split unless additional data (studies or traffic counts) show a directional bias (ibid.). In this
respect, school holiday times should be considered due to the reduction of traffic around
schools during the summer holidays [62]. However, this was not possible given the traffic
count format and is identified as a limitation of the available data.

This presents a key limitation of this study, given the reliance on averaged daily traffic
data, which does not account for specific peak periods, particularly during the morning
rush hours when children are most likely to be commuting to school. Morning traffic peaks
tend to have higher vehicle volumes and potentially greater emissions, which can lead to
increased short-term exposure to TRAP among children. The absence of time-specific traffic
data means the model may not fully capture these critical periods of heightened exposure.
While this limitation impacts the precision of the findings during peak times, the use of
averaged data allows for a consistent comparison of different interventions across all sites,
offering insights into their relative effectiveness.

2.2.5. Links

The number of road links modelled were ultimately determined by the geographies
surrounding the schools and the limits of the model (150). Given the dangers to health
associated with proximity to air pollution [63–65] a 500-m buffer was applied to each key
school receptor in each site. Input parameters such as road width and canyon height were
calculated using measurements taken on Google Earth Pro (Version 7.3.4).

2.3. Modelling Interventions

Interventions were selected based on the findings of the systematic review and stake-
holder survey detailed in Brown [49]. These included active travel, anti-idling, rideshare,
low-emission zones (LEZs), and alternative walking routes.

2.3.1. Assumptions

A set of assumptions was required for consistent modelling across all the sites. These
were established prior to the modelling and acknowledged incomplete or unavailable data
and limitations in the modelling software or process:

Ideally, the interventions would be applied only to the morning rush hour, but the
input data are averaged over a day, so the model averages the effects of the interventions
over an entire day. This is accounted for in the application of the interventions to the
models, in which any relevant traffic reductions were applied to all affected road links
without temporal association.

Due to the limited number of road links in ADMS-Roads, the interventions were
modelled at two schools in Bristol St Paul’s. Walking and driving routes were plotted
to Cabot Primary School, but active travel routes to St Paul’s Children’s Centre were not
because children would be too young to walk there alone. The LEZ was modelled on St
Paul’s Children’s Centre because of its central position and the ability to demarcate 100-m
radii up to 500 m.

Catchment data are unique to each school and difficult to obtain. To ensure consistency,
travel routes were plotted based on the assumption that most pupils travel from the centre
of residential areas within 500 m of the schools. Receptors were placed at each road junction
along the routes to provide data for the interventions. When two road links were within
10 m, only one receptor was placed for consistency.
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RAC data [66] show 55% of morning traffic is school-related, so this was assumed for
all sites.

The Oxford St Ebbe’s centroid marks the school’s location, but the main access point
for children is 217 m east. This is the destination receptor in the plotted travel routes.

Converting AADT to AAHT underestimates traffic volumes in the models. Verification
will ensure that appropriate volumes are specified for each model region. However, the
interventions will be assessed using traffic reductions that are proportional to their starting
volumes. Therefore, greater traffic volume accuracy is not necessary for the modelling but
should be considered for future research.

2.3.2. Application of Interventions to Sites

This section describes key considerations and practical points of application of the
selected interventions to each site.

Mode shifts to active travel:
School traffic was reduced by 40% on all school routes, assuming 55% [66] of morning

traffic is school-related (22% of overall traffic) (see Section 2.3.1. Assumptions). Receptors
were placed at each junction along the most direct driving routes.

Improved travel routes:
The models assumed no change to traffic and assessed the effectiveness of the route

changes under the same conditions. Alternative route choices were plotted to use low-
traffic routes (then referred to as ‘improved travel routes’) to reduced potential exposure
to TRAP. Receptors were placed at each road or path junction for each improved walking
route. The total mean TRAP was determined for each route by averaging all receptors’
NO2 concentration values. External receptors were omitted from the analyses because their
concentration values did not change following the intervention.

Anti-Idling:
The anti-idling measure was applied during morning drop-off and afternoon collection

times. A 55% traffic reduction was used to simulate the removal of idling traffic in the
vicinity of the schools. This was considered acceptable as it provided an output that
could be used for comparison with other measures. Some roads were not suitable for the
application of this measure, so anti-idling was modelled on the street immediately behind
the school and the section of Parson St that contains the entrance to the school car park.

Rideshare:
Existing travel routes were used to simulate school traffic. Under ideal circumstances,

a rideshare scheme would require 25% uptake, with each car carrying four passengers
(including the driver). School traffic was reduced by 80% to simulate the rideshare scenario.

Low-Emission Zones (LEZs):
The simulation closed all streets within 200, 300, 400, and 500 m of the school to

non-essential traffic. A 55% traffic reduction was applied in each radius. This ensured that
school grounds were encapsulated at each site and consistency was maintained across each
escalation of distance.

2.4. Model Verification

The models were verified and adjusted according to the LAQM Technical Guid-
ance [64]. Verification and adjustment plots are provided in Appendix D.

3. Results

Table 2 details NO2 reductions for active travel, anti-idling, improved travel routes,
and all interventions combined with improved travel routes. Table 3 shows the reductions
due to the LEZ interventions and the LEZ combined with improved travel routes.
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Table 2. NO2 concentration reductions (%) for active travel, anti-idling, rideshare, improved travel
routes, and all interventions combined with improved travel routes.

Receptors Active Travel
(%)

Active Travel
and Improved
Travel Routes

(%)

Anti-Idling
(%)

Anti-Idling
and Improved
Travel Routes

(%)

Rideshare
(%)

Rideshare
and Improved
Travel Routes

(%)

Improved
Travel Routes

(%)

Bristol St Paul’s:
Cabot Primary 4.16 - 3.14 - 3.27 - -
Receptors 4.81 - 3.25 - 4.90 - -
All Routes 16.26 24.58 11.59 22.64 16.82 25.15 21.90

Bristol Bedminster:
Parson St School 12.63 - 5.66 - 11.36 - -
Receptors 9.57 - 3.73 - 7.65 - -
All Routes 16.90 25.62 7.46 19.05 15.15 24.21 18.67

Coventry Binley:
Southfields Primary 3.15 - 1.74 - 2.91 - -
Receptors 8.17 - 3.04 - 7.10 - -
All Routes 15.33 22.65 5.97 19.15 13.65 22.00 18.96

Oxford St Ebbe’s:
St Ebbe’s Primary 1.31 - 1.87 - 1.77 - -
Receptors 1.70 - 1.46 - 2.42 - -
All Routes 5.62 13.34 6.06 13.70 8.18 13.85 10.36

Sheffield Tinsley:
Tinsley Meadows Primary 2.34 - 2.40 - 2.47 - -
Receptors 5.35 - 6.03 - 5.71 - -
All Routes 10.73 13.13 10.26 12.79 12.02 14.08 10.21

Mean 7.87 19.86 4.91 17.47 7.69 19.86 16.02

Table 3. NO2 concentration reductions (%) for LEZ implementation at diameters of 300, 400, and
500 m, and all LEZ implementations combined with improved travel routes.

Receptors

LEZ Implementation Diameters (m)

200 (%)
200 and

Improved
Travel Routes

(%)
300 (%)

300 and
Improved

Travel Routes
(%)

400 (%)
400 and

Improved
Travel Routes

(%)
500 (%)

500 and
Improved

Travel Routes
(%)

Bristol St Paul’s:
Cabot Primary 3.81 - 4.04 - 4.18 - 4.27 -
Receptors 3.35 - 4.46 - 4.82 - 6.12 -
All Routes 14.84 20.17 17.44 19.56 17.63 19.21 18.91 18.89

Bristol Bedminster:
Parson St School 11.30 - 11.74 - 12.27 - 12.36 -
Receptors 6.50 - 7.96 - 9.89 - 10.83 -
All Routes 12.65 19.71 14.96 19.11 17.38 18.59 20.25 18.30

Coventry Binley:
Southfields Primary 1.91 - 2.22 - 2.48 - 2.56 -
Receptors 3.45 - 5.32 - 8.23 - 8.86 -
All Routes 7.14 18.36 8.97 17.94 11.52 17.73 11.85 17.68

Oxford St Ebbe’s:
St Ebbe’s Primary 2.49 - 2.78 - 2.82 - 2.85 -
Receptors 1.76 - 2.70 - 3.63 - 3.78 -
All Routes 7.05 15.10 10.07 14.93 11.33 14.79 12.05 14.67

Sheffield Tinsley:
Tinsley Meadows Primary 2.58 - 3.18 - 3.44 - 3.55 -
Receptors 6.30 - 6.98 - 7.33 - 7.60 -
All Routes 11.28 12.80 13.61 12.45 14.75 12.33 16.17 12.15

Mean 6.43 17.23 7.76 16.80 8.78 16.53 9.47 16.34

3.1. Overview of Intervention Reductions

The active travel intervention was most successful at Cabot Primary School, South-
fields Primary School, and Parson St School. All three sites are characterised by heavy
traffic and congestion, with tightly knit roadways and nearby major road networks (see
Table 2).

All interventions were equally effective at St Ebbe’s and Tinsley Meadows, which have
sparse populations and limited roads. Active travel promotion and rideshare were more
effective than anti-idling at Parson St, which has heavy traffic.
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A similar but less pronounced pattern was observable at Southfields Primary School,
Coventry Binley, which also showed that active travel promotion (3.15%) and rideshare
(2.91%) were comparatively more effective than anti-idling (1.74%).

The effectiveness of LEZs increased with diameter, but this was not as pronounced at
St Ebbe’s. The percentage reduction in NO2 levels continued to increase with LEZ diameter,
but the rate of reduction decreased (see Table 3).

Sheffield Tinsley was the only site in which anti-idling was more effective than
rideshare and active travel. At Bristol St Paul’s, Bristol Bedminster, and Coventry Binley,
active travel was the most effective intervention, followed by rideshare. At the Oxford St
Ebbe’s site, rideshare was more effective than active travel and anti-idling.

For all sites, increasing the diameter of the LEZ produced a greater percentage re-
duction of concentrations. However, the degree of reduction with increased diameters is
inconsistent across sites.

3.2. Intervention Reductions at Travel Routes

The shift to improved travel routes was the most effective intervention for mean
concentration reduction on travel routes at Bristol St Paul’s (21.90%), Bristol Bedminster
(18.67%), and Oxford St Ebbe’s (10.36%) (Table 2). At the Sheffield Tinsley site, rideshare
was most effective (12.02%) and was marginally more effective than improved travel routes
at Coventry Binley (19.35 and 18.96%, respectively).

Observable reduction patterns largely mirrored the interventions’ effectiveness at
schools with anti-idling performing poorly compared to other interventions at Bristol
St Paul’s, Bristol Bedminster, and Coventry Binley. Greater reduction proportions were
achieved at these sites with heavier traffic.

The introduction of a 500 m LEZ was the most effective distance for concentration
reduction at all sites (Table 3). The degree of effectiveness of increasing the LEZ diameter
declined at Coventry Binley and Oxford St Ebbe’s.

Compared to active travel, anti-idling, rideshare, and improved travel routes, the
comparative effectiveness of LEZ differs among sites. Improved travel routes were more
effective than all other interventions at Bristol St Paul’s and second to LEZ (500 m) at Bristol
Bedminster and rideshare at Coventry Binley. Active travel was also more effective than all
LEZ diameters at Coventry Binley.

3.3. Overall Effectiveness of Interventions at All Sites Combined
3.3.1. Overview of All Sites Combined

To determine the overall performance of the interventions, mean reductions were
produced by combining modelled NO2 reductions for schools, all site receptors, and
combined travel routes at all sites as a consequence of the interventions. Percentage
reductions compared to the baseline were then calculated for each intervention (Table 4).

Table 4. Comparison of modelled NO2 (µg/m3) concentration reductions (%) for all interventions.

LEZs (Low-Emission Zones)

Active Travel
(%)

Anti-Idling
(%)

Rideshare
(%)

Improved Routes
(%)

200 m
(%)

300 m
(%)

400 m
(%)

500 m
(%)

Schools 4.11 2.57 4.36 - 3.46 4.04 4.56 5.12
All Receptors 8.15 4.54 5.56 - 6.44 7.61 9.67 7.44
Travel Routes 12.97 8.27 13.16 16.02 10.59 13.01 14.52 15.85

For all travel routes, improved travel routes produced the greatest percentage of NO2
reduction, followed by LEZ (500 m) (16.02% and 15.85%, respectively) (Table 4). When
considering all site receptors, the LEZ (400 m) produced the greatest percentage reduction
(9.67%), followed by active travel (8.15%) (Table 4). Whilst the LEZ was more effective at
500 m at all sites, the degree of effectiveness differed from site to site, making the 400-m
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iteration the most effective overall when considering all sites. When considering all schools,
the proportions of reduction were closer, although LEZ (500 m) was the most effective.

3.3.2. Effectiveness of Individual Interventions

The current section describes the effectiveness of each intervention at all sites, consid-
ering reductions at schools, all site receptors, and travel routes.

Active travel reduced NO2 concentrations at all sites, with the greatest reductions
found at Bristol Bedminster. The most effective concentration reductions were found on
travel routes at all sites. Parson St School, Bristol Bedminster, had the greatest reduction
among schools (12.63%), and also the greatest overall reduction (mean reduction of all
receptors, 9.57%) (Table 2).

Anti-idling reduced NO2 concentrations at all sites, but the reductions were smallest
at Oxford St Ebbe’s. The most effective concentration reductions were found on travel
routes at all sites. Parson St School, Bristol Bedminster, had the greatest reduction among
schools (5.66%). Sheffield Tinsley had the greatest overall reduction (mean reduction of all
receptors, 6.03%) (Table 2).

Rideshare reduced NO2 concentrations most on travel routes at all sites, with the great-
est reductions at Bristol St Paul’s and Bristol Bedminster (16.82% and 15.15%, respectively).
The reductions were smallest at Oxford St Ebbe’s (8.18%). The reductions at Parson St
School, Bristol Bedminster, were greater than the site receptors mean (11.36% and 7.65%,
respectively) (Table 2).

A sensitivity analysis was conducted to determine the most effective improved travel
routes for each site. The most effective routes were those with the greatest percentage
reduction in NO2 concentrations. The greatest reductions were found in the travel routes at
Bristol St Paul’s (21.90%), Bristol Bedminster (18.67%), and Coventry Binley (18.96%). The
lowest reductions were found in the travel routes at Oxford St Ebbe’s and Sheffield Tinsley
(10.36 and 10.21%) (Table 2).

The patterns of reduction for each site were largely consistent, with the most prominent
reductions found at travel routes at all sites. Far lower reductions were found at the schools.
Of all schools, Parson St School shows the greatest reduction at the 500 m iteration (12.36%)
(Table 3).

3.3.3. Combined Interventions

Combining improved travel routes with other interventions further reduced NO2 con-
centrations on each route and the overall mean concentrations. Accordingly, no difference
was found for schools or other receptors external from the improved travel route receptors.

The mean NO2 concentration reductions on improved travel routes were 24.58%,
25.62%, and 22.65% at Bristol St Paul’s, Bristol Bedminster, and Coventry Binley, respectively
(Table 2). Oxford St Ebbe’s and Sheffield Tinsley showed comparatively smaller reductions
of 13.34% and 13.13%, respectively.

The combination of improved travel routes and anti-idling intervention resulted in
a mean NO2 concentration reduction of 17.47% (3.89 µg/m3) at all sites. The greatest
proportional reductions were found at Bristol St Paul’s, Coventry Binley, and Bristol
Bedminster (22.64%, 19.15%, and 19.05%, respectively). Oxford St Ebbe’s and Sheffield
Tinsley showed comparatively smaller reductions of 13.70% and 12.79%, respectively
(Table 2).

The combination of improved travel routes and rideshare intervention resulted in
a mean NO2 concentration reduction of 19.86% (4.46 µg/m3) at all sites (Table 2). The
greatest proportional reductions were found at Bristol St Paul’s, Bristol Bedminster, and
Coventry Binley (25.15%, 24.21%, and 22.00%, respectively). Oxford St Ebbe’s and Sheffield
Tinsley showed comparatively smaller reductions of 13.85% and 14.08%, respectively.

The combination of improved travel routes and LEZ intervention resulted in the largest
NO2 concentration reductions at Bristol St Paul’s and Bristol Bedminster
(−7.44 and −7.05 µg/m3, respectively). The greatest proportionate reductions were found
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at these sites as well (18.89% and 18.30%, respectively) (Table 3). The percentage of reduc-
tion follows a similar pattern at all sites, with the effectiveness of the LEZ increasing with a
greater distance, although the magnitude of effectiveness declines with increasing distance
at Coventry Binley and Oxford St Ebbe’s.

3.3.4. Comparison of Combined Interventions with Single Interventions

The overall reductions associated with improved travel routes when combined with
each intervention were calculated. The most effective interventions combined with im-
proved travel routes overall (combined mean of all sites) were active travel and rideshare
(each 19.86%) (Table 2). LEZ implementation produced a generally consistent percentage
reduction, with increasing distance when compared to the original reductions achieved
without the addition of improved travel routes.

The combined active travel intervention and improved travel routes resulted in the
greatest NO2 reductions at Coventry Binley (3.59 µg/m3) and the smallest reductions at
Sheffield Tinsley (0.36 µg/m3).

The combined interventions were more effective than the single active travel interven-
tion at all sites, with the greatest differences at Bristol St Paul’s, Bristol Bedminster, and
Coventry Binley (2.19, 2.21, and 3.59 µg/m3, respectively). The combined interventions also
resulted in the greatest percentage reductions in NO2 at Bristol St Paul’s, Bristol Bedminster,
and Oxford St Ebbe’s (8.32, 8.72, and 7.72%, respectively) (Table 5).

Table 5. Modelled percentage NO2 reduction following single active travel intervention and combined
improved travel routes and active travel intervention.

Site % Reduction Post Intervention % Reduction Combined Intervention % Difference

Bristol St Paul’s 16.26 24.58 8.32
Bristol Bedminster 16.9 25.62 8.72
Coventry Binley 15.33 21.24 5.91
Oxford St Ebbe’s 5.62 13.34 7.72
Sheffield Tinsley 10.73 13.13 2.4

The combined anti-idling intervention and improved travel routes resulted in the
greatest NO2 reductions at Coventry Binley (17.1 µg/m3) and the smallest reductions at
Sheffield Tinsley (1.89 µg/m3).

The combined interventions were more effective than the single anti-idling interven-
tion at all sites, with the greatest differences at Bristol St Paul’s, Bristol Bedminster, and
Coventry Binley (2.91, 2.94, and 2.64 µg/m3, respectively). The combined interventions also
resulted in the greatest percentage reductions in NO2 at Bristol St Paul’s, Bristol Bedminster,
and Coventry Binley (11.05, 11.59, and 11.75%, respectively) (Table 6).

Table 6. Modelled percentage NO2 reduction following single anti-idling intervention and combined
improved travel routes and anti-idling intervention.

Site % Reduction Post Intervention % Reduction Combined Intervention % Difference

Bristol St Paul’s 11.59 22.64 11.05
Bristol Bedminster 7.46 19.05 11.59
Coventry Binley 5.97 17.72 11.75
Oxford St Ebbe’s 6.06 13.7 7.64
Sheffield Tinsley 10.26 12.79 2.53

The combined rideshare intervention and improved travel routes resulted in the
greatest NO2 reductions at Bristol St Paul’s and Bristol Bedminster (6.62 and 6.14 µg/m3)
and the smallest reductions at Oxford St Ebbe’s and Sheffield Tinsley (2.42 and 2.08 µg/m3).

The combined interventions also resulted in the greatest percentage reductions in NO2
at Bristol St Paul’s, Bristol Bedminster, and Oxford St Ebbe’s (8.33, 9.06, and 5.67%) and the
smallest reductions at Sheffield Tinsley (2.06%) (Table 7).
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Table 7. Modelled percentage NO2 reduction following single rideshare intervention and combined
improved travel routes and rideshare intervention.

Site % Reduction Post Intervention % Reduction Combined Intervention % Difference

Bristol St Paul’s 16.82 25.15 8.33
Bristol Bedminster 15.15 24.21 9.06
Coventry Binley 13.65 20.62 6.97
Oxford St Ebbe’s 8.18 13.85 5.67
Sheffield Tinsley 12.02 14.08 2.06

The outcome of the LEZ intervention with the improved travel routes combined with
the LEZ intervention was assessed. The greatest percentage of NO2 (µg/m3) differences
were found at the Bristol Bedminster site between the LEZ (200 m) (20.17%) and LEZ
(500 m) iterations (20.25%) (Table 3).

4. Discussion

This study investigated the effectiveness of different interventions to reduce TRAP
(NO2) on the school commute. The interventions included LEZs, improved travel routes,
active travel, and rideshare. This study did not attempt to extrapolate morning peak
traffic patterns from afternoon or off-peak data. Instead, the decision was made to use
averaged daily traffic data, ensuring that the analysis provided a consistent baseline across
all monitored sites. This approach facilitates the assessment of intervention effectiveness
under comparable conditions, though it should be noted that this may not reflect the specific
traffic conditions and pollution levels experienced during the morning peak. Future studies
with access to more detailed traffic data would be better equipped to model intervention
impacts during these critical times.

The results showed that LEZs were the most effective intervention for reducing NO2
at schools and on travel routes. The effectiveness of LEZs increased with the radius of
the zone. Improved travel routes were the most effective intervention for reducing NO2
exposure on travel routes, but they did not affect NO2 concentrations at schools. Active
travel and rideshare were also effective interventions for reducing NO2 on travel routes.

This study also found that the practical limitations of LEZ implementation at schools
should not be discounted. Many schools are located near main roads, and the closure of
these roads is problematic in practical terms. The typical model for LEZs, in which drivers
are charged to enter, could penalise poorer parents, and the scheme could lose support.

Overall, this study found that LEZs were the most effective intervention for reducing
potential NO2 exposure on the school commute. However, the practical limitations of LEZ
implementation at schools should be considered when implementing this intervention. It
is also important to interpret this conclusion with caution. The 500 m distance was the
upper limit of the LEZ scenarios modelled in this study, and further extending the zone
was not explored. Therefore, while the results suggest greater reductions at this distance,
they do not rule out the possibility that a larger LEZ could produce even more significant
reductions. Future studies should investigate the effects of extending LEZ boundaries
beyond 500 m to determine the optimal distance for maximum air quality benefits.

The implementation of low-emission zones (LEZs) has been effective in reducing traffic-
related air pollution (TRAP) around school zones by restricting or charging high-emission
vehicles. However, one potential unintended consequence of LEZs is the redistribution of
traffic to surrounding areas outside the zone [35,36]. This can lead to increased congestion
and background pollution on adjacent roads, potentially offsetting the benefits of the
intervention by shifting pollution burdens to nearby communities. In the current study,
while reductions in NO2 were observed within the LEZ boundaries, there is a need to
better understand the spatial extent of pollution redistribution to evaluate the net benefits
of LEZs.

Rideshare and mode shifts to active travel were both effective interventions for reduc-
ing traffic and air pollution on the school commute. Rideshare was particularly beneficial
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for parents who are required to drive their children to school, as it can save them time and
money. Mode shifts to active travel were more effective at the more congested school sites
with dense residential populations.

Improved travel routes were the most effective intervention on all travel routes, al-
though pollution at the school sites remained unaffected. This is unsurprising given the
nature of the intervention modelling, which essentially changed the location of receptors to
mark out less polluted routes. In an ideal scenario, more parents would be encouraged to
take these demonstrably improved routes as active travel routes, reducing traffic at schools
and accordingly reducing pollution at the school gates.

The results of this study suggest that a combination of interventions is likely to be
most effective in reducing traffic and air pollution on the school commute. Rideshare, mode
shifts to active travel, and improved travel routes could all be used to achieve this goal.

Improved travel routes were found to be the most effective intervention for reducing
traffic and air pollution on the school commute. However, in practice, identifying improved
travel routes can be challenging. Schools and parents can work together to identify safe
and convenient routes, and schools can provide support such as allocating active travel
partners and meeting points for walking buses.

Anti-idling was the least effective measure overall, but it was more effective in sparser
geographies. This is likely because there is less traffic in these areas, so idling vehicles have
a greater impact on air quality.

This study’s findings suggest that a combination of interventions is likely to be most
effective in reducing traffic and air pollution on the school commute. Improved travel
routes, anti-idling, and rideshare could all be used to achieve this goal.

Leaving a stationary vehicle engine running unnecessarily is an offense, and local
authorities have the power to enforce this. However, the effectiveness of anti-idling zones
in reducing idling and air pollution around schools is limited, especially in areas with
heavy traffic. Nevertheless, anti-idling campaigns can still be an important part of broader
pollution reduction and awareness campaigns.

One of the emerging strategies for reducing the environmental impact of motor trans-
port is the transition to alternative fuels, such as electricity, hydrogen, and biofuels. These
fuels offer the potential to significantly reduce emissions of nitrogen oxides, particulate
matter, and carbon dioxide compared to conventional petrol and diesel engines [40,41].
Electric vehicles (EVs), in particular, have gained widespread adoption due to their zero
gaseous exhaust emissions, making them a viable option for reducing air pollution in urban
areas. Hydrogen fuel cell vehicles and biofuels also present promising solutions, especially
for heavy-duty transport where electrification may be less feasible. The transition to al-
ternative fuels not only helps mitigate air pollution but also aligns with broader goals of
sustainability and carbon reduction. Highlighting this shift towards cleaner energy sources
complements the interventions discussed in this study by providing a holistic approach to
reducing TRAP around schools and other sensitive environments.

Limitations and Future Research

The dispersion modelling process has some limitations, including the temporal speci-
ficity of the interventions and the application of travel routes. The available data were
limited, particularly in terms of timely traffic data. This meant that the interventions could
not be modelled for the morning traffic peaks, when the majority of children are likely
to be traveling to school. However, the models were still useful for assessment of the
relative effectiveness of the different interventions. Future research should aim to integrate
time-specific traffic data, particularly for peak periods such as the morning rush hour when
children are most likely to be exposed to higher levels of TRAP. This could involve the
use of traffic monitoring systems capable of capturing hourly variations in traffic flow and
emissions. By focusing on key periods of elevated exposure, future studies can develop
more precise models that better reflect the conditions faced by children during their school
commute, leading to more effective and targeted intervention strategies.
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The reliance on static background maps in the current study means that the dispersion
models may not fully reflect the dynamic nature of urban air quality. Although these maps
provide a consistent baseline for comparison, they cannot capture the impact of temporal
variability, such as the spikes in pollution that might occur during busy morning and
evening periods. This limitation may affect the accuracy of the intervention assessments,
particularly in densely populated urban settings where background pollution can change
rapidly over short timescales.

To better understand and quantify the potential uncertainties introduced by using
static background pollution maps, future research should include sensitivity analyses that
explore how temporal variability in background levels might impact model outcomes. This
could involve testing the models under different scenarios, such as varying the baseline
pollution levels according to typical hourly fluctuations observed in urban environments.
Additionally, integrating real-time or time-specific background data, when available, could
provide a more accurate reflection of actual conditions, thereby improving the reliability of
the intervention assessments.

The current study focused on the effectiveness of LEZs within defined school zones
and did not specifically model the impacts on surrounding areas where traffic may have
been diverted. This represents a limitation, as traffic redistribution could increase TRAP
levels on roads adjacent to the LEZs, potentially affecting air quality in nearby residential
areas. A more comprehensive assessment would require an expanded modelling area to
capture these effects and provide a clearer understanding of the net benefits and trade-offs
associated with LEZ implementation.

Future studies should explore the broader implications of LEZ implementation by
examining the spatial extent of pollution redistribution. This could involve expanding the
modelling area to include adjacent roads and communities and using traffic flow data to
assess whether congestion and emissions have increased outside of the LEZ boundaries.
Additionally, strategies to mitigate potential negative impacts, such as improving public
transport options or creating supplementary LEZs in high-risk areas, should be considered
to ensure that the benefits of reducing TRAP within school zones are not at the expense of
other communities.

The analysis of LEZ effectiveness was constrained in the current study to distances up
to 500 m, which served as the upper limit for the simulations. While the data indicate that
expanding the LEZ to 500 m achieved the most significant reduction in NO2 concentrations,
it remains unclear whether extending the zone further could yield additional benefits. As
such, the effectiveness of the 500 m LEZ should be viewed within the context of this study’s
limitations. Further exploration is necessary to determine whether larger LEZs could
enhance air quality improvements without unintended consequences, such as increased
traffic diversion.

To better understand the optimal configuration for LEZs, future research should extend
the analysis to include larger LEZ boundaries, beyond the 500 m distance used in this
study. Examining the effects of expanded zones would help determine whether further
reductions in NO2 concentrations are possible or whether there is a point of diminishing
returns. Additionally, it would be important to assess the potential implications of larger
LEZs, such as increased traffic diversion and its impact on surrounding areas, to ensure
that air quality improvements are balanced across the urban environment.

The study findings are derived from five school sites selected based on the availability
of comprehensive data, meaning these results may not reflect the full spectrum of conditions
experienced across England. For example, rural schools may have different exposure
patterns due to less dense traffic, while schools in highly congested urban centres might
face more significant pollution challenges. Additionally, socio-economic factors, such as the
availability of alternative transport options and local infrastructure, can play a role in the
effectiveness of interventions. Therefore, caution should be exercised when extrapolating
these results to regions with differing characteristics from those studied.
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Future studies should aim to include a more diverse set of school environments to
improve the generalisability of the findings. This could involve selecting schools from
a range of regions, including rural areas, highly urbanised centres, and locations with
varying socio-economic profiles. Such an approach would provide a more comprehensive
understanding of how different interventions perform across different contexts, ensuring
that policy recommendations are applicable to a wider array of school environments.
Additionally, engaging with local stakeholders, such as parents and community leaders,
can help to identify and address the specific challenges faced by schools in different regions.

The dispersion of pollutants is highly sensitive to meteorological conditions, which
can vary significantly between seasons and locations. For example, colder temperatures
and stable atmospheric conditions in winter can lead to poor dispersion and higher con-
centrations of pollutants near the source, whereas warmer, more turbulent conditions in
summer may enhance dispersion. The current study’s use of 2019 meteorological data
provides a representation of typical conditions suitable for the study aims, but it does not
account for the full range of seasonal variability that might affect air pollution exposure
throughout the year. This represents a limitation, as the effectiveness of interventions
could vary under different weather scenarios. Future research should investigate how
seasonal variations in meteorological conditions influence the effectiveness of air pollution
mitigation measures. This could involve modelling different scenarios that account for
changes in wind patterns, temperature, and atmospheric stability across the seasons. Such
an approach would provide a more comprehensive understanding of how interventions
perform under different weather conditions, helping policymakers design strategies that
are effective throughout the year. Additionally, seasonal models could identify times of
the year when additional measures may be necessary to address periods of heightened
exposure due to adverse meteorological conditions.

The ADMS-Roads model is limited to 150 plotted road links per run. This was sufficient
for the scope of the current research, but it should be considered for future research that
may require modelling over a larger region.

The findings of this study provide the basis for future research on the effectiveness of
interventions to reduce air pollution and potential exposure on the school commute. Future
research should focus on the following areas:

Categorisation of school environments based on intervention effectiveness could
provide additional insights and help to develop a foundation upon which to base packages
of mitigation measures for stakeholders. This would involve developing a system for
classifying schools based on factors such as the surrounding geography, the availability
of green space, and the proximity to public transportation. This would allow for the
development of targeted interventions that are most likely to be effective in different types
of schools.

Assessment of additional factors associated with child exposure to air pollution would
also help to enrich the study findings. This would involve looking at factors such as the
diurnal variation in exposure, the patterns of exposure during playtimes and breaks, and
the exposure in the classroom.

Similarly, the assessment of the effectiveness of interventions under different seasonal
conditions could also provide additional insights and would involve modelling the inter-
ventions in different seasons to see how the effectiveness of the interventions varies with
the weather.

Identification of PM (particulate matter) reductions achievable with the currently
assessed and additional interventions would be beneficial given the harmful effects of
particulate exposure. This would involve modelling the interventions to see how much
they can reduce PM pollution.

Investigation of air pollution exposure in rural schools would provide further insights
towards the categorisation of mitigation measures by site-specific effectiveness. This would
involve studying air pollution levels at schools in rural areas, where there is less traffic but
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still a potential for high exposure due to the congregative periods when children are being
dropped off and collected.

5. Conclusions

The school commute is a major source of air pollution exposure in children. This
study investigated interventions for reducing and mitigating exposure to traffic-related air
pollution (TRAP) on the school commute.

This study found that low-emission zones, mode shifts to active travel, improved
travel routes, ridesharing, and anti-idling are all effective methods for reducing child
exposure to TRAP. These interventions can be implemented by policymakers, teachers,
and parents.

This study also found that the most polluted schools are found in urban environments.
Schools in England are significantly more polluted than schools in other UK countries, and
London has a significantly greater number of polluted schools than any other region in
England. While it is well-established that urban schools in megacities such as London face
significant challenges due to higher levels of TRAP, this study included schools from smaller
cities and less densely populated areas to provide a more comprehensive understanding
of the issue. The rationale for this broader selection, beyond data availability, was to
capture the diversity of traffic patterns, school environments, and community behaviours
across different regions of England. By studying schools in various contexts, including
urban, suburban, and smaller city settings, this study aimed to evaluate the effectiveness
of interventions across a range of conditions, not just in areas with the highest pollution
levels. This approach ensures that the findings and recommendations are more widely
applicable, allowing policymakers to consider how these interventions might be adapted
to local needs beyond megacities like London.

The findings of this study are transferable to other regions in the UK and the EU, but it
is important to consider the specific context of each region when implementing interventions.

This study has several limitations, including the small number of case study schools
and the lack of a control group. However, this study provides valuable information
and insights into the effectiveness of interventions for reducing TRAP and potential
child exposure.

This study concludes that further action is needed to reduce TRAP exposure on the
school commute. This includes implementing the interventions identified in this study as
well as raising awareness of the issue and promoting public engagement.
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Appendix A. Schools and Road Link Plots in ADMS

Table A1. Number of road links to be modelled for selected school site areas.

Site Number of Modelled Road Links

Bristol St Paul’s 149
Bristol Bedminster 139
Coventry Binley 150
Oxford St Ebbe’s 52
Sheffield Tinsley 66
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Appendix B. Background School Pollution Values

Table A2. PCM-derived mean background concentration input values of NOX and NO2 (µg/m3) for
all modelling sites.

Site Background NOX (µg/m3) Background NO2 (µg/m3)

Bristol St Paul’s 20.25 14.81
Bristol Bedminster 20.25 14.81
Coventry Binley 21.35 15.38
Oxford St Ebbe’s 19.50 14.20
Sheffield Tinsley 13.17 9.82

Appendix C. Meteorological Observation Stations and Meteorological Data

Table A3. Meteorological observation station details for all sites.

Site Observation Station Station ID County Distance from Site (km)

Bristol St Paul’s Ammerdown House 9529 Somerset 33.2
Bristol Parson St Ammerdown House 9529 Somerset 29.3
Coventry Binley Little Risington 692 Gloucestershire 38.5
Oxford St Ebbe’s Radcliffe Observatory 606 Oxfordshire 1.45
Sheffield Tinsley Nottingham Watnall 556 Nottinghamshire 44.38
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Table A4. Summary data for 2019 from meteorological stations used for each modelling site.

Meteorological Station Site Dominant Wind
Direction (◦)

Average Wind Speed
(m s−1)

Average Cloud
Cover (oktas)

Average
Temperature (◦C)

Ammerdown House (mean) Bristol St Paul’s and
Bristol Bedminster 198.90 (SSW) 4.57 (2.56) 4.87 (2.50) 9.20 (4.87)

Little Risington (mean (SD)) Coventry Binley 205.07 (SSW) 4.48 (2.34) 5.39 (3.27) 8.94 (5.58)
Radcliffe Observatory (mean (SD)) Oxford St Ebbe’s 204.24 (SSW) 4.43 (2.45) 5.39 (3.27) 9.23 (5.63)
Nottingham Watnall (mean (SD)) Sheffield Tinsley 218.35 (SW) 4.03 (1.97) 5.06 (3.31) 9.15 (5.61)

Appendix D. Verification and Adjustment

Table A5. Summary of site adjustment outcomes.

Site Number of Monitors ±10% ±25% Adjustment Factor (Regression)

Bristol St Paul’s 10 3 7 1.19
Bristol Parson St 6 2 4 0.99

Coventry Binley Rd 4 1 3 1.28
Oxford St Ebbe’s 5 3 2 0.93
Sheffield Tinsley 4 2 2 2.64

i. Bristol St Paul’s.

Table A6. Bristol St Paul’s model outputs (µg/m3) for verification and adjustment.

Receptor Tot Tot
Mon NO2 Mod NO2 % diff Mod Rds. NOx Mon Rd-NOx

Bristol St Paul’s BRS8 AURN 23.4 27.47 15% 24.41 16.21
Bristol Temple Way BR11 AURN 39.2 26.09 −50% 21.62 49.87

15 Horsefair 42.2 30.53 −38% 30.72 56.76
363 5102 facade 34.0 28.54 −19% 26.60 38.2
22 Stokes Croft 44.3 35.27 −26% 40.86 61.73

497 20 Ashley Road 29.1 28.56 −2% 26.63 27.82
295 Lamppost 16 Ashley Rd St 48.1 28.05 −72% 25.60 70.97

374 St Paul St 39.9 50.42 21% 76.42 51.25
20 Newfoundland Way 42.4 31.09 −36% 31.90 57.21

373 123 Newfoundland St facade 31.2 29.14 −7% 27.84 32.13

Table A7. Adjusted Bristol St Paul’s model outputs (µg/m3) for verification and adjustment.

Receptor NOx ADJ MODELLED Tot
Corr1 Adj Rd-NOx Rd-NO2 Adj Tot-NO2 Mon NO2

Bristol St Paul’s BRS8 AURN 0.66 29.09 13.4 28.21 23.4
Bristol Temple Way BR11 AURN 2.31 25.77 17.51 32.33 39.2

15 Horsefair 1.85 36.62 24.53 39.34 42.2
363 5102 facade 1.44 31.70 15.08 29.89 34.0
22 Stokes Croft 1.51 48.70 22.57 37.38 44.3

497 20 Ashley Road 1.04 31.74 15.11 29.92 29.1
295 Lamppost 16 Ashley Rd St 2.77 30.51 25.81 40.62 48.1

374 St Paul St 0.67 91.08 33.25 48.07 39.9
20 Newfoundland Way 1.79 38.02 26.4 41.21 42.4

373 123 Newfoundland St facade 1.15 33.18 20.26 35.08 31.2

Regression 1.19

Table A8. Bristol St Paul’s final site differences for verification and adjustment.

Site Final NO2 Difference

µg/m3 %

Bristol St Paul’s BRS8 AURN 4.86 20.80%
Bristol Temple Way BR11 AURN −6.92 −17.63%

15 Horsefair −2.89 −6.84%
363 5102 facade −4.11 −12.09%
22 Stokes Croft −6.95 −15.68%

497 20 Ashley Road 0.82 2.82%
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Table A8. Cont.

Site Final NO2 Difference

µg/m3 %

295 Lamppost 16 Ashley Rd St −7.51 −15.60%
374 St Paul St 8.22 20.63%

20 Newfoundland Way −1.21 −2.85%
373 123 Newfoundland St facade 3.92 12.58%
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Figure A6. Bristol St Paul’s total NO2 with deviation interval classes at 10 and 25 per cent. Series 1
represents total monitored NO2 against total modelled NO2.
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Figure A7. Bristol St Paul’s Road NO2 with deviation interval classes at 10 and 25 per cent. Series 1
represents total monitored road NO2, and series 2 represents adjusted road NOX.
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Figure A8. Bristol St Paul’s adjusted NO2 (µg/m3) with deviation interval classes at 10 and 25 per
cent. Series 1 represents adjusted total NO2 against total monitored NO2.

ii. Bristol Bedminster

Table A9. Bristol Bedminster model outputs (µg/m3) for verification and adjustment.

Receptor Tot Tot
Mon NO2 Mod NO2 % diff Mod Rds. NOx Mon Rd-NOx

215 Parson St School 32.9 35.06 6% 40.40 35.75
242 Parson St Bedminster Down Rd 41.1 26.8 −53% 23.05 53.85
418 Bedminster Down Rc lamppost 51.1 32.98 −55% 35.92 78.19

419 Parson St lamppost Scuba 39.1 45.31 14% 63.88 49.28
439 Parson St School 31.7 33.59 6% 37.22 33.25

474 Martial Arts West Street 29.1 38.86 25% 48.85 27.83

Table A10. Adjusted Bristol Bedminster model outputs (µg/m3) for verification and adjustment.

Receptor NOx ADJ MODELLED Tot
Corr1 Adj Rd-NOx Rd-NO2 Adj Tot-NO2 Mon NO2

215 Parson St School 0.88 40.16 22.44 37.26 32.9
242 Parson St Bedminster Down Rd 2.34 22.92 15.98 30.79 41.1
418 Bedminster Down Rc lamppost 2.18 35.70 37.4 52.22 51.1

419 Parson St lamppost Scuba 0.77 63.51 26.94 41.76 39.1
439 Parson St School 0.89 37.00 20.56 35.37 31.7

474 Martial Arts West Street 0.57 48.56 18.08 32.89 29.1

Regression 0.99

Table A11. Bristol Bedminster final site differences for verification and adjustment.

Receptor Final NO2 Difference

µg/m3 %

215 Parson St School 4.35 13.23%
242 Parson St Bedminster Down Rd −10.26 −24.99%
418 Bedminster Down Rc lamppost 1.10 2.15%

419 Parson St lamppost Scuba 2.71 6.94%
439 Parson St School 3.64 11.47%

474 Martial Arts West Street 3.75 12.87%
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Figure A9. Bristol Bedminster total NO2 with deviation interval classes at 10 and 25 per cent. Series 1
represents total monitored NO2 against total modelled NO2.
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Figure A10. Bristol Bedminster Road NO2 with deviation interval classes at 10 and 25 per cent. Series
1 represents total monitored road NO2, and series 2 represents adjusted road NOX.
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Figure A11. Bristol Bedminster adjusted NO2 (µg/m3) with deviation interval classes at 10 and 25
per cent. Series 1 represents adjusted total NO2 against total monitored NO2.

iii. Coventry Binley

Table A12. Coventry Binley model outputs (µg/m3) for verification and adjustment.

Receptor Tot Tot
Mon NO2 Mod NO2 % diff Mod Rds. NOx Mon Rd-NOx

Coventry Binley Road COBR AURN 30.9 33.43 7% 35.89 30.64
Site FGS4 36.9 27.77 −33% 24.00 43.66
Site FGS2 32.9 30.31 −8% 29.27 34.80
Site BH1a 37.1 27.86 −33% 24.19 43.95

Table A13. Adjusted Coventry Binley model outputs (µg/m3) for verification and adjustment.

Receptor NOx ADJ MODELLED Tot
Corr1 Adj Rd-NOx Rd-NO2 Adj Tot-NO2 Mon NO2

Coventry Binley Road COBR AURN 0.85 45.91 28.27 43.65 50.5
Site FGS4 1.82 30.70 15.79 31.18 37.6
Site FGS2 1.19 37.44 25.64 41.02 42.9
Site BH1a 1.82 30.95 12.62 28 23.5

Regression 1.28

Table A14. Coventry Binley final site differences for verification and adjustment.

Receptor Final NO2 Difference

µg/m3 %

Coventry Binley Road COBR AURN −6.85 −13.56%
Site FGS4 −6.42 −17.07%
Site FGS2 −1.91 −4.45%
Site BH1a 4.49 19.10%
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Figure A12. Coventry Binley total NO2 with deviation interval classes at 10 and 25 per cent. Series 1
represents total monitored NO2 against total modelled NO2.
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Figure A13. Coventry Binley Road NO2 with deviation interval classes at 10 and 25 per cent. Series 1
represents total monitored road NO2, and series 2 represents adjusted road NOX.
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Figure A14. Coventry Binley adjusted NO2 (µg/m3) with deviation interval classes at 10 and 25 per
cent. Series 1 represents adjusted total NO2 against total monitored NO2.

iv. Oxford St Ebbe’s

Table A15. Oxford St Ebbe’s model outputs (µg/m3) for verification and adjustment.

Receptor Tot Tot
Mon NO2 Mod NO2 % diff Mod Rds. NOx Mon Rd-NOx

DT61 Friars Wharf 20.0 24.9 20% 20.50 10.9
DT60 N Butterwyke Place Thames 33.0 25.72 −28% 22.15 37.44

DT59 Thames St 26.0 26.62 2% 23.97 22.76
DT58 Folly Bridge 34.0 26.77 −27% 24.27 39.62

DT1 St Ebbe’s First School 16.0 24.94 36% 20.57 3.32

Table A16. Adjusted Oxford St Ebbe’s model outputs (µg/m3) for verification and adjustment.

Receptor NOx ADJ MODELLED Tot
Corr1 Adj Rd-NOx Rd-NO2 Adj Tot-NO2 Mon NO2

DT61 Friars Wharf 0.53 19.05 11.26 24.9 23.5
DT60 N Butterwyke Place Thames 1.69 20.59 11.78 25.72 23.5

DT59 Thames St 0.95 22.28 12.59 26.62 23.5
DT58 Folly Bridge 1.63 22.56 12.69 26.77 23.5

DT1 St Ebbe’s First School 0.16 19.12 13.45 24.94 23.5

Regression 0.93

Table A17. Oxford St Ebbe’s final site differences for verification and adjustment.

Receptor Final NO2 Difference
µg/m3 %

DT61 Friars Wharf 1.39 5.91%
DT60 N Butterwyke Place Thames 2.21 9.40%

DT59 Thames St 3.11 13.23%
DT58 Folly Bridge 3.26 13.87%

DT1 St Ebbe’s First School 1.43 6.08%
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Figure A15. Oxford St Ebbe’s total NO2 with deviation interval classes at 10 and 25 per cent. Series 1
represents total monitored NO2 against total modelled NO2.
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Figure A16. Oxford St Ebbe’s road NO2 with deviation interval classes at 10 and 25 per cent. Series 1
represents total monitored road NO2, and series 2 represents adjusted road NOX.
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Site 47 Bawtry Rd 2.84 66.49 15.91 25.73 23.5 

Site 30 Siemens Close 4.21 44.76 10.36 20.18 23.5 

Site Tinsley Meadows Primary A 3.64 41.49 8.83 18.66 23.5 

Site Ferrars Road 2.31 52.54 10.93 20.75 23.5 

Site 109 Bawtry Rd 1.73 76.73 15.8 25.63 23.5 

Regression 2.64     
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Figure A17. Oxford St Ebbe’s adjusted NO2 (µg/m3) with deviation interval classes at 10 and 25 per
cent. Series 1 represents adjusted total NO2 against total monitored NO2.

v. Sheffield Tinsley

Table A18. Sheffield Tinsley model outputs (µg/m3) for verification and adjustment.

Receptor Tot Tot
Mon NO2 Mod NO2 % diff Mod Rds. NOx Mon Rd-NOx

Site 7 Bawtry Gate 39.0 20.12 −94% 19.28 59.49
Site 47 Bawtry Rd 44.0 23.1 −90% 25.17 71.37

Site 30 Siemens Close 44.0 18.92 −133% 16.94 71.37
Site Tinsley Meadows Primary A 38.0 18.27 −108% 15.70 57.18

Site Ferrars Road 33.0 20.43 −62% 19.89 45.94
Site 109 Bawtry Rd 35.0 25.01 −40% 29.05 50.37

Table A19. Adjusted Sheffield Tinsley model outputs (µg/m3) for verification and adjustment.

Receptor NOx ADJ MODELLED Tot
Corr1 Adj Rd-NOx Rd-NO2 Adj Tot-NO2 Mon NO2

Site 7 Bawtry Gate 3.08 50.94 13.64 23.47 23.5
Site 47 Bawtry Rd 2.84 66.49 15.91 25.73 23.5

Site 30 Siemens Close 4.21 44.76 10.36 20.18 23.5
Site Tinsley Meadows Primary A 3.64 41.49 8.83 18.66 23.5

Site Ferrars Road 2.31 52.54 10.93 20.75 23.5
Site 109 Bawtry Rd 1.73 76.73 15.8 25.63 23.5

Regression 2.64
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Table A20. Sheffield Tinsley final site differences for verification and adjustment.

Receptor Final NO2 Difference

µg/m3 %

Site 7 Bawtry Gate −0.04 −0.17%
Site 47 Bawtry Rd 2.22 9.44%

Site 30 Siemens Close −3.33 −14.16%
Site Tinsley Meadows Primary A −4.85 −20.63%

Site Ferrars Road −2.76 −11.74%
Site 109 Bawtry Rd 2.12 9.02%
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Figure A19. Sheffield Tinsley Road NO2 with deviation interval classes at 10 and 25 per cent. Series 1
represents total monitored road NO2, and Series 2 represents adjusted road NOX.
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Figure A20. Sheffield Tinsley adjusted NO2 (µg/m3) with deviation interval classes at 10 and 25 per
cent. Series 1 represents adjusted total NO2 against total monitored NO2.
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