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Abstract

Development is needed to meet housing demands and improve living stand-

ards globally. Land use change associated with development can, however,

negatively impact many species through processes such as habitat loss and

fragmentation. There is growing recognition that integrating landscape-level

conservation plans into the planning process can help to alleviate the impact

of development on wildlife populations. Using spatial modelling to better

understand how species use the landscape can support intelligent, informed

planning decisions that avoid negative impacts on biodiversity.

Focusing on the greater horseshoe bat (Rhinolophus ferrumequinum) in

Somerset, UK, I explore how spatial modelling can be used to inform strategic

conservation planning for bats at different scales. Chapter two is an acoustic

study where I seek to identify the factors driving bat activity in an agricultural

landscape around an important maternity roost, and use fine scale predictive

modelling to map bat activity over the study area. In chapter three I develop

a novel approach for validating a broad scale habitat suitability model and

apply model findings to identify landscape-level conservation priorities.

Looking back at a fine scale but over a broad extent, in chapter four I develop

a novel framework for protecting bats in the planning system, using habitat

suitability and landscape connectivity models to produce a number of high

resolution mapping outputs that can be used to inform planning decisions.



viii

Existing legal protection for habitat that supports R. ferrumequinum pop-

ulations made Somerset an ideal study area for this work, although in most

cases habitat that supports bats is not legally protected in the UK. There is a

strong argument that frameworks protecting all bat species countrywide need

to take a broader view that considers both bat populations and the habitat they

depend on. This thesis demonstrates the value of spatial modelling as a tool

for strategic, landscape-level conservation planning, and lays the groundwork

for improving the frameworks that protect bats in the planning system.
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Chapter 1

General Introduction

We are living through a human-driven biodiversity crisis (Ceballos et al., 2017;

Pimm et al., 2014). Human activities have far-reaching impacts in every eco-

system on earth and present major threats to biodiversity globally (Crutzen

and Stoermer, 2000; Vitousek et al., 1997). Perhaps foremost among threats is

conversion of natural land, which results in habitat loss and fragmentation for

many species (Fischer and Lindenmayer, 2007). Land use change alters eco-

system function, causes changes to species assemblages and leads to genetic

isolation, all of which leaves species more vulnerable to stochastic events, res-

ulting in species declines, local extinctions and ultimately species loss (Meyer

et al., 2016; Foley, 2005). Extensive habitat loss in Britain and intensification

of agriculture since the green revolution is recognised as a major driver of

species loss and declines (Oliver et al., 2015). Population growth (United Na-

tions, 2019), demand for housing and climate change all have the potential to

exacerbate this further.

Coincident with the current biodiversity crisis, there is a housing crisis

in Britain (Bramley, 2019). A recent report estimated that 3.91 million new

homes are needed to meet current housing requirements (Bramley, 2019). The
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latest land use change statistics (Department for Levelling Up, Housing and

Communities, 2022) report that recent development in England had an aver-

age density of approximately 27.5 houses per hectare, so some back-of-the-

envelope calculations suggest that 3.91 million new homes would require just

under 142,000 hectares of land: an area larger than Greater Manchester. Based

on current trends, about half of this new development could be expected to

be built on currently undeveloped land. This is a huge amount of develop-

ment. Associated infrastructure that comes with new housing such as roads,

shops and schools, will significantly increase the total area of land needed

(Kurvinen and Saari, 2020; Thacker et al., 2019). Clearly, if development is not

well planned it is highly likely to have a negative impact on biodiversity that

is already under immense pressure from human activities.

Bats are distributed globally and the majority of bat species are threatened,

data deficient or have a declining population trend (Frick et al., 2020). Bats

are often found in human-dominated landscapes where they deliver import-

ant ecosystem services (Kunz et al., 2011) such as pest control (Wanger et al.,

2014; Williams-Guillen et al., 2008; Cleveland et al., 2006), pollination (Trem-

lett et al., 2020) and seed dispersal (Medellin and Gaona, 1999). Bats occupy a

high trophic level meaning they can be used as bioindicators to reflect overall

ecosystem health (Park, 2015; Jones et al., 2009). Conservation of bats can thus

potentially have wider knock-on benefit for other species (Ardiantiono et al.,

2024; Branton and Richardson, 2011; Lambeck, 1997).

Despite the services they provide, bats frequently come into conflict with

humans and are threatened by human activities (Voigt and Kingston, 2016).

Development is an area where this conflict frequently plays out (Cohen, 2011).

Bats are threatened by development through habitat loss and fragmentation,
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loss of roosting sites, increased artificial light at night, pollution and energy

demands (i.e. wind turbines; Browning et al., 2021; Frick et al., 2020).

1.1 Legal Frameworks Protecting Bats in the UK

As a result of declines seen in many species in the 20th century, in Europe

all bats and their roosts are protected by law (Bern Convention, 1979;

EUROBATS, 1991; Conservation of Natural Habitats and Wild Fauna and

Flora, 1992). This is mirrored in UK law (The Conservation of Habitats and

Species Regulations, 2017; Wildlife and Countryside Act, 1981), where most

legal protection to bats is enacted through the planning system.

The National Planning Policy Framework (NPPF) requires local authorit-

ies in England to assess the potential of all planning applications to impact

protected habitats and species, including bats (Department for Levelling Up,

Housing and Communities, 2023). This puts a high onus on local authorities,

who, in a time of chronic underfunding of public services (Mason, 2023; Royal

Town Planning Institute, 2020; Knight-Lenihan, 2020), often do not have re-

sources and knowledge to effectively assess the impact a development may

have on bats (Cohen, 2011).

Developments that may impact bats are required to submit an ecological

report as a supplement to their planning application. Ecological reports are

produced using standard methodology (Collins, 2023) and detail if/how bats

use the site and if/how the proposal could impact them (CIEEM, 2017). If

works are likely to impact bats the applicant will be required to apply to Nat-

ural England for a protected species license. The application has to include a

method statement that describes how the work will minimise impact on bats

and detail mitigation measures to compensate for any loss caused by the de-
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velopment (Natural England, 2022a). Larger projects will need to complete an

environmental impact assessment and projects that occur in the vicinity of a

nationally or internationally designated site will also need to undergo a hab-

itats regulations assessment. Additionally, as of 2024, biodiversity net gain

(BNG) regulations in England require new developments to result in a 10%

net gain for biodiversity (DEFRA, 2024).

The frameworks that protect bats in the UK have been criticised for being

ineffective. Most noticeably lacking is legal protection of habitat: in most scen-

arios, only individuals and roosts are protected by law. The licensing system

has been criticised for lacking strategic overview and for a lack of scientific

evidence underpinning mitigation measures (Hunter et al., 2021; Stone et al.,

2013). While BNG can be viewed as a positive step, it still operates very much

on a site-by-site basis, and although biodiversity gains under BNG are permit-

ted to be achieved off-site, there is not currently a systematic approach in place

for choosing offsetting sites. Moreover, the effectiveness of no net loss policies

and biodiversity offsetting have faced criticism similar to that of current mitig-

ation practices: that robust evidence for their effectiveness is currently lacking

(zu Ermgassen et al., 2021; Knight-Lenihan, 2020; Weissgerber et al., 2019; zu

Ermgassen et al., 2019).

There is growing recognition that conservation needs to happen at the

landscape-level and that the law needs to protect the habitat bats depend on,

as well as roosts. In a review of England’s wildlife sites and ecological net-

works, Lawton et al. (2010) recommended the creation of ‘more, bigger, better,

and joined up’ habitat networks. Natural England, the public body responsible

for environmental regulation in England, have taken up this mantra (Natural

England, 2014, 2022b). Around the same time as the Lawton report, a separate
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review of the Habitats Regulations concluded that, while the laws were fit for

purpose, the way they are implemented could be improved (DEFRA, 2012).

These events resulted in the creation of a new framework for enacting protec-

tion of the great crested newt (Triturus cristatus) in England (Natural England,

2019). Taking a science-led approach, the new scheme uses landscape-level

modelling to identify the best habitat for newts and to focus conservation ef-

fort where it will have the greatest benefit for newt populations (Bormpouda-

kis et al., 2016). While this is encouraging, a later report highlighted that the

same approach cannot be directly copied with bats, as bats are far more mobile

than newts and number 18 species in Britain, all with varying requirements

(Red Tape Initiative, 2018).

1.2 Spatial Modelling and Systematic Conservation

Planning

Systematic conservation planning (Margules and Pressey, 2000) concerns the

‘optimal application of spatially-explicit conservation management actions to promote

the persistence of biodiversity and other natural features in situ’ (Watson et al.,

2011). Although originally framed for design of protected areas, many of the

principals of systematic conservation planning can be integrated into the plan-

ning system (Gordon et al., 2009; Rookwood, 1995). The goal is to minimise

the impact of new development by taking a strategic approach in the planning

process, siting development to minimise habitat loss and loss of landscape

connectivity, and applying targetted mitigation in areas where it will be most

effective (Kiesecker et al., 2010).
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Obtaining information on the focal species’ spatial occurrence, distribu-

tion and landscape use is the first step in conservation planning, only with

this knowledge can one start to identify conservation actions and design spa-

tially optimal conservation measures (Margules and Pressey, 2000). Spatial

modelling is a powerful tool for achieving this (Babí Almenar et al., 2019).

Spatial regression techniques seek to better understand species-environment

relationships (Fortin and Dale, 2014; Fortin et al., 2012) and can support con-

servation decision-making by making spatially-explicit predictions about spe-

cies’ landscape use (Zurell et al., 2022). Both development and conservation

planning are inherently spatial (Pressey et al., 2007), meaning spatial analyses

can be vaulable tools for informing decision-making in the planning process

(Jones et al., 2022; Bergès et al., 2020; Duflot et al., 2018; Bayliss et al., 2005).

Assimilation of these approaches in the UK planning process has been restric-

ted, however, as local authorities often do not have the resources or specialist

knowledge required to apply spatial modelling techniques to the challenges

they face (Bertuol-Garcia et al., 2018; Farwig et al., 2017).

1.2.1 Scale and Ecological Data

It is impossible to talk about spatial modelling in ecology without discuss-

ing scale. Wiens (1989) provides an illustrative example of the concept of

scale: ‘On the basis of experiments conducted at the scale of individual leaf surfaces,

plant physiologists have concluded that stomatal mechanisms regulate transpiration,

whereas meteorologists working at the broader scale of vegetation have concluded that

climate is the principal control (Woodward, 1987; Jarvis and McNaughton, 1986)’.

While both views in this example can be considered correct, their differing

findings highlight the need to consider the appropriate scale for the questions
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you are addressing. Some responses will only be apparent at certain scales

and may not hold true at other scales (Schneider, 2001). For example, the ef-

fect of climate on species occurrence is only apparent at a broad scale, while

land cover may be a better predictor at fine scale (Razgour et al., 2011).

There are two components to consider when talking about scale: grain and

extent. Again, Wiens (1989) explains it aptly: ‘Our ability to detect patterns is a

function of both the extent and the grain of an investigation (O’Neill, 1986). Extent

is the overall area encompassed by a study, what we often think of (imprecisely) as

its scale or the population we wish to describe by sampling. Grain is the size of the

individual units of observation, the quadrats of a field ecologist or the sample units of

a statistician. Extent and grain define the upper and lower limits of resolution of a

study; they are analogous to the overall size of a sieve and its mesh size, respectively’.

Thus, scale is facet of observation: the level at which you choose to observe

something. By choosing a scale at which to run an analysis, the researcher

inevitably introduces bias and places limits on the questions they are able to

ask (Levin, 1992).

The chapters of this thesis vary in both grain and extent, also in the type

of ecological data used. Different ecological data types are better suited to

certain analyses than others, and, similarly to scale, the choice of ecological

data will define the questions one is able to address. Acoustic data derived

from passive acoustic monitoring, for example, are common in the study of

bats (Sugai et al., 2019). These are usually point data consisting of recordings

of the echolocation calls of all bats that pass by the sampling point. These

data can tell you how an area is used by bats but will not provide information

about how many bats are there, as individuals can not be distinguished by

their echolocation calls, or what these bats do with their time when they are
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Figure 1.1: The study species, the greater horseshoe bat (Rhinolophus ferrumequinum).

not at the point of sampling. Telemetry data, on the other hand, typically

stem from a few individuals and (ideally) provide unbiased information on

all the sites and habitats visited by the individual bat. What telemetry data

do not tell you is how individual sites are used by the population as a whole.

Both of these example data types contain information about how animals are

interacting with the landscape but need to be treated in different ways. The

appropriate scale and ecological data will thus be dictated by the questions

you are trying to ask.

1.3 Study Species and Study Area

The greater horseshoe bat, Rhinolophus ferrumequinum (figure 1.1), despite hav-

ing a large global distribution (figure 1.2) and a least concern (LC) rating by the

IUCN (Piraccini, 2016), is a species of conservation concern in Britain (JNCC,
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Figure 1.2: Global distribution of R. ferrumequinum. Britain shown in inset map.

2007), the northern limit of its global distribution (Dietz and Kiefer, 2016).

R. ferrumequinum suffered huge declines in the 20th century due to agricultural

intensification, loss of roosts and increased use of insecticides (Mathews, 2018;

Harris, 1995). Although R. ferrumequinum are still in decline globally (Pirac-

cini, 2016), the population in Britain has increased since the 1990s (Mathews,

2018), partly due to intensive conservation efforts (e.g. Longley, 2003) but also

due to a warming climate (Froidevaux et al., 2017).The species currently has

a recovering population trend and in Britain is predominantly found in the

south-west (figure 1.2), ranging from Cornwall to Dorset and South Wales,

with isolated records from North Wales and as far east as Sussex (Mathews,

2018).
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As a species on the northern edge of its global range, R. ferrumequinum is

likely limited by climatic conditions in Britain. Long cold winters increase

mortality, and breeding success is dependent upon warm spring temperat-

ures (Ransome, 2020). Like many bat species, temperature is important for

R. ferrumequinum in regulating its life history (Altringham, 2011). During hi-

bernation, R. ferrumequinum require cool, stable climatic conditions to max-

imise time spent in torpor (Ransome, 2020). To meet these climatic demands,

R. ferrumequinum roost in caves year-round through most of their range, as

caves provide the required stable, predictable conditions. Caves are of high

importance for R. ferrumequinum; availability of caves or other suitable under-

ground sites likely limits species’ distribution (Ransome, 2020).

Transitional roosts are used pre- and post-hibernation (Flanders and Jones,

2009). Mating occurs in autumn and spring, single males defend territorial

roosts and are visited by multiple females (Rossiter et al., 2000). R. fer-

rumequinum use daily torpor to save energy, however, during the maternity

period bats need to keep warm and active to maintain an increased meta-

bolism for lactation and pup growth (Ransome, 1998). In Britain the species

therefore usually breeds in disused buildings as mean ambient temperature

in caves is too low (Ransome, 2020). Females gather at maternity colonies in

large numbers from May-August to give birth, usually to a single pup (Dietz

and Kiefer, 2016). Maternity roosts of this species are particularly vulnerable

to threats as females concentrate in large numbers (up to 1,000; Dietz and

Kiefer, 2016). Huge numbers of bats are known to have been lost through

remedial timber woodworm treatment at maternity roosts (Mitchell-Jones

et al., 1989; Stebbings and Arnold, 1987).
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R. ferrumequinum are highly manoeuvrable aerial hawkers that use high

frequency echolocation (~83kHz) for navigation and hunting (Jones and

Rayner, 1989). When commuting from the roost they use distinct flight paths,

almost always along woodland edges and mature hedgerows, as these likely

offer cover from predators but also as they may provide foraging opportunit-

ies (Ransome, 1996; Jones et al., 1995). As high frequencies attenuate quickly

in air (Altringham, 2011), R. ferrumequinum effectively have a very short field

of vision and so are thought to use linear vegetation features to aid navigation

(Ransome, 1997, 1996). Linear landscape features are thus extremely import-

ant for maintaining landscape connectivity for R. ferrumequinum (Finch et al.,

2020b), and the species has been shown to be sensitive to landscape com-

position (Dietz et al., 2013). Agricultural intensification since the 1940s has

resulted in the widespread removal of hedgerows (Robinson and Sutherland,

2002), to the detriment of R. ferrumequinum populations.

While in the past buildings may have facilitated the spread of R. fer-

rumequinum in Britain (Harris, 1995), new development does not lend itself to

roosting and urban expansion poses a threat due to loss of foraging habitat.

New development also has an impact through increased light pollution;

R. ferrumequinum is a highly photosensitive species and is known to be

negatively impacted by artificial light at night (ALAN) at a landscape-level

(Froidevaux et al., 2017). Light pollution makes habitat unsuitable for bats,

acting similarly to habitat loss, by increasing the risk of predation and

reducing insect numbers (Voigt et al., 2021; Owens et al., 2020; Stone et al.,

2015).

R. ferrumequinum takes prey on the wing and by perch-hunting (Jones and

Rayner, 1989). It preys on large insects, primarily moths (Lepidoptera), beetles
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(Coleoptera), particularly dung beetles (Geotrupes and Aphodius spp.) and

cockchafers (Melolontha melolontha), and Diptera, including crane flies and

caddis flies (Tournayre et al., 2021; Flanders and Jones, 2009; Ransome, 1997,

1996; Jones, 1990). R. ferrumequinum shows dietary plasticity (Tournayre et al.,

2021; Whitaker and Karataş, 2009) and will vary its diet according to seasonal

prey availability (Jones, 1990). Dung beetles have been highlighted as being

particularly important for young during the maternity period (Jones et al.,

1995), meaning grazed pasture is extremely valuable. The use of endectocides

(anti-parasitic pesticides) is a threat, as these drugs are known to decrease in-

sect numbers in animal dung, thus reducing the availability of an important

food resource (Finch et al., 2020a; Ransome, 1996). R. ferrumequinum make

greater use of woodland in the spring and open fields later in year, likely

due to increased temperatures and prey abundance in woodland (Jones et al.,

1995). It is a photosensitive species and is known to avoid well-lit areas (Zeale

et al., 2018; Froidevaux et al., 2017; Stone et al., 2009, 2012).

All of the above mean that R. ferrumequinum favour a mosaicked landscape

with grazed pasture inter-mixed with large, sheltered hedgerows, tree lines

and natural deciduous woodland (Froidevaux et al., 2017; Flanders and Jones,

2009; Ransome, 1997, 1996), which is what is found in Somerset, UK, the focus

of the majority of the work in this thesis (figure 1.3). Land cover in Somer-

set is dominated by agriculture (80% land cover), just over half of which is

grazed pasture (Rae, 2017), and is littered with old growth woodland, mature

hedgerows and an extensive network of limestone caves. Somerset is a strong-

hold for greater horseshoe bats: it is home to three special areas of conser-

vation (SACs) designated for their important breeding populations of R. fer-

rumequinum (JNCC, 2015a,b,c) which together contain approximately 20% of
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Figure 1.3: Study area in Somerset, UK, where the fieldwork for this thesis was fo-

cused. Britain shown in inset map.

the British population (calculated with total population estimate from Math-

ews, 2018, and roost counts from species records used in chapter 4, section

4.4.3). SACs are statutory designations created under the UK Habitats Regu-

lations (2017) to protect species listed on annex II of the EU Habitats Directive

(Conservation of Natural Habitats and Wild Fauna and Flora, 1992). Any new

development that may impact an SAC needs to undergo a habitats regulations

assessment (HRA), which in effect protects the habitat around the SAC, mak-

ing this a rare example of a situation where habitat that supports bats is legally

protected.

Development is a threat to R. ferrumequinum in Somerset. North Somerset’s

local plan, for example, requires 13,000 new homes to be built over the next 25

years, two-thirds of which are likely to be built within 4km of the SSSI units

of the North Somerset and Mendip Bats SAC (North Somerset Council, 2020).

As bats range over the whole county, new development in North Somerset
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frequently requires an HRA. Understanding how bats use landscape is of key

importance to understanding the potential of development to impact the SAC,

however this knowledge is hard to obtain in practice: bats are both volant and

nocturnal, making it difficult to study their landscape ecology.

Previous studies of the SAC bat populations used radio telemetry to gather

data on foraging areas and commuting routes around the SSSI units of the

SACs (Jones and Billington, 1999; Billington, 2001, 2000). While these data

were the best available at the time they were collected, as discussed above,

all ecological data have limitations. The limitations of radio telemetry when

working with a fast moving nocturnal species is that it is not very accurate

at fine scales (i.e. <100m; e.g. Razgour et al., 2011) and it is prone to gaps in

data collection, as tracking teams often struggle to keep up with tagged bats.

This results in bias in radio telemetry datasets to areas near to the roost with

good vantage points (required to pick up radio signal) that are easily access-

ible to trackers. Due to the high cost and intrusive nature of tagging bats,

radio telemetry studies usually involve only a small subsample of the popu-

lation under study, meaning data are used to extrapolate predicted behaviour

of the study population, which is where the biases in radio telemetry can lead

to inaccuracies in ecological inferences drawn from the data.

Current supplementary planning guidance for the Somerset SACs uses

buffers based on radio telemetry findings and a habitat scoring system to

estimate the impact of new development on SAC bat populations (Burrows,

2019, 2018). Spatial modelling approaches have potential to improve planning

guidance by filling knowledge gaps, providing a robust evidence base that can

support development and conservation decisions in Somerset.
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1.4 Thesis Rationale, Aims and Outline

Natural England funded this work with the goal of developing an improved

approach to protecting R. ferrumequinum in Somerset, due to the existing legal

protection for this species here, but also with the notion that this work can act

as proof-of-concept for an improved approach to all bat species nationwide. I

have worked closely with both Natural England and North Somerset Council

to address these aims:

· to apply spatial modelling techniques to better understand how R. fer-

rumequinum use the landscape;

· to create an evidence base that can be used to inform policy and plan-

ning.

The following chapters of this thesis consist of distinct projects that are

united by this common theme. Chapter two is an acoustic study in which I

use very high density sampling to model acoustic activity of R. ferrumequinum

around the roosts at Brockley Hall SSSI and Kings and Urchin Wood SSSI in

North Somerset. The main focus of the project was R. ferrumequinum but other

species are also considered. Analysis is conducted at a fine scale in a relat-

ively small study area. I look for associations between species activity and

field boundary, field, and local landscape characteristics to identify the drivers

of acoustic activity and to aid habitat management decisions in the areas sur-

rounding the SSSIs. I use predictive modelling to map acoustic activity for

three species, to better understand how bats use the landscape around these

important roosts.

In chapter three I develop a novel method for habitat suitability model

validation using passive acoustic monitoring. I carry out an acoustic survey



16 CHAPTER 1

(distinct from the dataset gathered in chapter two) to measure a predicted hab-

itat suitability gradient over a large part of Somerset, use a habitat suitability

model to identify factors affecting R. ferrumequinum distribution in Britain at

a broad scale, and apply this to landscape-level conservation challenges.

Chapter four focuses back at a fine scale but over a wide area. I use GPS

telemetry to gather fine scale data on R. ferrumequinum habitat use, I then use

these to build habitat suitability models to understand factors affecting for-

aging and commuting habitat suitability. I use habitat suitability model pre-

dictions as a basemap for high resolution connectivity modelling to predict bat

movement in the landscape around the three Somerset bat SACs. From these

models I produce easy-to-use mapping outputs, designed specifically for use

in the planning process.

Chapter five is a general discussion where I bring together findings from

previous chapters and examine them in light of the overall thesis narrative.

I discuss strengths and applications of different modelling approaches, the

impact of this work, and discuss how I would like to build on this in future.

1.5 Author Contributions

Contributions are for all data chapters unless noted otherwise. Thomas Fox-

ley: conceptualisation (chapter three), methodology, investigation, project ad-

ministration, data curation, formal analysis, validation, visualisation, fund-

ing acquisition (chapter four), writing - original draft; Paul Lintott: writing-

reviewing and editing, supervision; Simon Stonehouse: funding acquisition,

writing- reviewing and editing (chapter four); John Flannigan: funding ac-

quisition, writing- reviewing and editing (chapter four); Emma Stone: concep-



GENERAL INTRODUCTION 17

tualisation, funding acquisition, methodology, writing- reviewing and edit-

ing, supervision.



18 CHAPTER 1



19

Chapter 2

What Drives Bat Activity at Field

Boundaries?

This chapter has been published as: Foxley, T., Lintott, P. and Stone, E. (2023) What

drives bat activity at field boundaries? Journal of Environmental Management. 329,

p. 117029. https://doi.org/10.1016/j.jenvman.2022.117029

2.1 Abstract

Field boundaries are important habitat for bats in agricultural landscapes,

serving as commuting and foraging areas for many species. The goal of our

study was to better understand the drivers of bat activity in agricultural land-

scapes to inform conservation policy and make specific recommendations for

habitat management. We placed sixty-four full spectrum bat detectors at ran-

dom recording locations, weekly, along field boundaries in North Somerset

between July and October 2020. We used an automated classifier to analyse

recordings and performed error rate modelling to account for and remove the

majority of error in automated classifications. We used generalised additive

https://doi.org/10.1016/j.jenvman.2022.117029
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models to explore bat response to recording location metrics, controlling for

spatial-autocorrelation and temporal differences in sampling. We validated

our models with k-fold cross-validation and explored the utility of our models

for predicting bat activity at new sites. We found that field boundary charac-

teristics better describe bat activity than adjacent field characteristics or meas-

ures of local landscape for the majority of species studied. Bat activity was

higher along tall, wide, vegetated field boundaries containing trees; there was

lower activity at arable recording locations. Still, bat activity was highly vari-

able and predictive error was high. We found a large spatial effect driving

activity patterns, meaning models are not able to predict activity beyond the

extent of the study area. We recommend management strategies that give in-

centives to farmers for replacing fences with hedgerows, planting hedgerow

trees, and maintaining tall and outgrown field boundaries.

2.2 Introduction

Modern intensive agriculture is a major driver of the current biodiversity crisis

(e.g. Sánchez-Bayo and Wyckhuys, 2019). Low levels of habitat diversity asso-

ciated with intensive farming are a primary cause of species declines (Benton

et al., 2003; Robinson and Sutherland, 2002). As half of all habitable land glob-

ally has been converted to agriculture (UN Food and Agricultural Organiza-

tion, 2021) there is a need to make agriculture compatible with biodiversity

(in western Europe the proportion of land converted to agriculture is much

higher: for example, in England 75% of land is used for agriculture; Rae 2017).

Increasing landscape heterogeneity has been proposed as a method to

make agricultural landscapes functional for both wildlife and humanity,

increasing the area of vegetated field boundaries is a key approach for achiev-
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ing this (Benton et al., 2003; Kremen and Merenlender, 2018; Tscharntke et al.,

2021). Hedgerows and woody field boundaries provide food, shelter and

facilitate landscape connectivity for wildlife (Barr et al., 1999; Montgomery

et al., 2020), while services provided by functional ecosystems, such as flood

management, pollination, nutrient cycling, soil retention, windbreaks and

pest control, can improve agricultural outputs (Bommarco et al., 2018; Fischer

et al., 2008; Pereira et al., 2018).

Bats are valuable pest control agents (Kunz et al., 2011; Williams-Guillén

and Perfecto, 2011) which benefit from vegetated field boundaries (Graham

et al., 2018; Walsh and Harris, 1996b). Vegetated field boundaries support a

diverse array of invertebrate prey items for bats (Froidevaux et al., 2019; Gra-

ham et al., 2018; Merckx et al., 2009), and vegetation offers shelter from wind

and predators (Jones et al., 1995; Verboom and Spoelstra, 1999). Vegetated

field boundaries could also act as navigational aids for species with quiet or

high frequency echolocation calls that attenuate quickly in air (Altringham,

2011), for example Rhinolophus spp. Vegetated field boundaries are known to

be of particular importance for Rhinolophus ferrumequinum, (Dietz et al., 2013;

Ransome, 1996), as demonstrated by a study in southern England that found

71% of R. ferrumequinum activity to be in close proximity to field boundaries,

compared to centres of fields (Finch et al., 2020b).

Although the importance of field boundaries is well known, the mechan-

isms by which field boundaries benefit bats are still being explored. Specific

aspects of field boundary structure are important for different bat species,

likely a function of how different species utilise field boundaries (Lacoeuilhe

et al., 2018), based on their echolocation and morphological adaptations (Jac-

obs and Bastian, 2016). Species adapted to forage in cluttered environments
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(e.g. Myotis bechsteinii) will prefer large, overgrown field boundaries (Toffoli,

2016). Species that forage along edge habitats (e.g. Pipistrellus species) have

not previously been found to respond to specific aspects of hedgerow struc-

ture, although P. pygmaeus may prefer boundaries with a greater number of

trees (Boughey et al., 2011). In general, high numbers of trees in field bound-

aries has been found to promote activity of many species (Boughey et al., 2011;

Finch et al., 2020b; Heim et al., 2015; Lacoeuilhe et al., 2018). Free-flying aerial

hawkers such as Nyctalus spp. and Eptesicus spp. have not previously been

found to associate with field boundary structure (Boughey et al., 2011; Finch

et al., 2020b; Kelm et al., 2014; Toffoli, 2016; Verboom and Huitema, 1997) and

instead are likely responding to characteristics of adjacent fields or local land-

scape.

Although some studies have investigated the relationship between specific

field boundary measurements and bat activity (e.g. Boughey et al., 2011; La-

coeuilhe et al., 2018; Toffoli, 2016), the relationship remains unclear for many

species (e.g. Rhinolophus spp.). Understanding how boundary features are

important for bats is essential to inform recommendations for effective field

boundary and habitat management that enhances biodiversity. In the UK,

for example, best practice guidelines lack detail on the specific relationships

different bat species have with field boundaries (Hedgelink, 2022), and fur-

ther research into the link with bats and hedgerows has been recommended

(ADAS UK Ltd., 2004). To our knowledge, no study has compared the rel-

ative importance of field boundaries with other landscape characteristics in

driving bat activity, despite the importance of this information for informing

evidence-based conservation strategies.
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Here we investigate the relationship between field boundary structure,

surrounding habitat and bat activity, with the aim of making specific recom-

mendations for field boundary management. We predict that there will be

high bat activity at vegetated field boundaries, vegetation biomass (as meas-

ured by height, width, tree content) will be positively associated with bat

activity, and this association will be most pronounced in gleaning and edge-

foraging species. We also explore the utility of our modelling approach for

predictive modelling of bat activity across a wider landscape.

2.3 Methods

2.3.1 Study Site

Fieldwork was conducted over 12 weeks in North Somerset, UK, between 9th

July and 1st October 2020. The target species was R. ferrumequinum, however,

as our recording equipment picked up all bat species present in the study area

the decision was made to include more species in our analysis. Fieldwork was

carried out within 4 km of two R. ferrumequinum maternity roosts: Brockley

Hall Stables SSSI (ST470669) and Kings & Urchin Woods SSSI (ST452647). The

study site was chosen to comprise the main foraging areas around the roosts

(Jones et al., 1995; Billington, 2001; Burrows, 2018; figure 2.1). This set up gave

us the additional opportunity to investigate how much the spatial component

of bat activity depends upon knowledge of where the bats are roosting.

At 51° latitude, the study area has a wet and mild marine climate (Köppen

classification Cfb). The topography of the area is diverse, encompassing the

coastal plains of the North Somerset levels and limestone hills of the Lulsgate

Plateau. Land cover in the study area comprises 14.4% broadleaf woodland,
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Figure 2.1: Map showing location of study site (main image) within North Somerset

(inset, lower left, and North Somerset in the UK (inset, top left). R. ferrumequinum
maternity roosts are located in the two SSSIs. The northernmost (inset, top right) is

Brockley Hall SSSI, the southernmost is Kings and Urchin Woods SSSI.

0.8% coniferous woodland, 8.1% arable farmland, 58.9% grassland and 17.7%

built-up areas and gardens (Morton et al., 2021). Arable crops include wheat

and maize, while grassland is mainly grazed by cattle.

2.3.2 Recording Equipment

We monitored bat activity using passive ultrasound detectors (Song Meter

Mini Bat, Wildlife Acoustics Ltd, Manyard USA) placed along field boundar-

ies (hedgerows, lines of trees, fences and ditches) in the study area. All detect-

ors were new from the manufacturer and microphones were manufacturer-

calibrated. We attached detectors to fenceposts or branches 1-2m above the
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ground using cable ties, facing the length of the field boundary. We set de-

tectors to record bat activity from 15 minutes before sunset to 15 minutes after

sunrise, using a 20kHz minimum trigger threshold and a maximum recording

length of one minute.

2.3.3 Sampling Design

A stratified random sampling approach was employed whereby 32 recording

locations were generated randomly along field boundaries each week, with

50% of locations within a 2km buffer of the roosts and 50% between 2-4 km.

This sampled the area closer to the roost at higher density and allowed for

spatial stratification of detectors avoiding spatial temporal bias in sampling

with regard to distance from the roost.

Detectors were moved to new recording locations every week after a min-

imum of six nights (figure 2.2), the minimum duration to ensure the detec-

tion of common species (Mathews et al., 2016). Different field boundary types

(hedgerows, lines of trees, fences and ditches) were surveyed in proportion to

their availability. We placed detectors in pairs where possible, one either side

of each field boundary. An individual field boundary was defined as ending

at the point of connection between two or more field boundaries, following

DEFRA hedge survey guidelines 2007. Each recording location was surveyed

only once. Spatial autocorrelation between recording locations was controlled

for in the statistical analysis (section 2.3.6 below).

2.3.4 Recording Location Characteristics

Field boundary characteristics and habitats of adjacent fields were recorded at

each recording location (table 2.1). A field was defined as adjacent if the de-
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tector was able to pick up bats in that field, e.g. a detector on a thickly veget-

ated field boundary would only pick up bats on the same side as the detector,

whereas a detector placed on a bare fence would pick up bats in fields either

side of the fence. Three adjacent field habitat types were surveyed: arable,

improved grassland and road/track. Images of example recording locations

are presented in figure 2.3.

To assess the impact of local landscape features on bat activity we created

a 250 m buffer around each recording location and quantified local landscape

metrics in QGIS (http://www.qgis.org, 2022; table 2.1). A number of differ-

ent sized buffers (up to 4 km) were considered, at 500 m and above variables

started to become collinear due to close proximity of recording locations. A

250 m buffer was the largest scale that was feasible to model and represents

the immediate surroundings that may influence activity at the recording loca-

tion.

2.3.5 Bat Activity

Acoustic Analysis and Error Rate Modelling

Automated species identification was necessary as manual classification

would have been prohibitively time consuming. We used BatClassify (Scott,

2012) to classify bat calls by species or species groups. Consistent with

recommendations (López-Baucells et al., 2019; Russo and Voigt, 2016; Rydell

et al., 2017) we manually verified the automated analysis following Barré

et al. (2019) to quantify classification error rates (see appendix A for detail of

error rate modelling approach).

It was not possible to reliably differentiate Myotis spp. in the manual veri-

fication due to similarity in call structure between species in this genus, so

http://www.qgis.org
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these species were grouped. Nyctalus spp. and Eptesicus spp. are grouped

by BatClassify, and Pipistrellus nathusii is grouped with P. pipistrellus. The de-

cision was taken not to include Plecotus spp. in the statistical analyses on the

basis that acoustic monitoring is not an effective survey method for these spe-

cies, as their calls are often too quiet to be detected (Flaquer et al., 2007). Bar-

bastella barbastellus was not included in statistical analyses due to low numbers

of recordings.

Acoustic Activity Index

We quantified bat activity at recording locations according to Miller (2001).

Every minute in which a bat species is present was counted as one occur-

rence, the total occurrences were then divided by the total time the detector

was recording, creating an activity index (AI). The AI thus represents the rate

of bat occurrences over the whole period the detector was recording (approx-

imately one week, mean 6.8 nights). This allows us to account for variation in

night length over the study period and to compare activity between recording

locations with differing recording effort.

Rather than providing positive and negative classifications for recordings,

error rate modelling returns a probability of a correct classification (by spe-

cies). Following Barré et al. (2019) we excluded all classifications below a 50%

probability. We then weighted classifications by their probability, so a classi-

fication with a 90% probability would count as an activity index of 0.9. This

meant classifications with a higher probability contributed more towards the

final analysis.
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Figure 2.2: Map of study area and recording locations in North Somerset, UK.

Figure 2.3: Photos of example recording locations
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2.3.6 Statistical Analysis

We conducted statistical analyses in R (R Core Team, 2022). We fitted models

for six different species/species groups using a generalised additive model

(GAM) with a negative binomial error distribution in the mgcv package

(Wood, 2011).

For each species we first fitted a global model to explore the relationship

between predictors and bat activity (bat activity~predictors). We then as-

signed predictors from the global model to one of three ‘scenario’ models,

dependent upon their scale of action (table 2.1). This allowed us to gauge the

relative importance of different aspects of landscape structure (field boundar-

ies, adjacent fields and local landscape) in driving bat activity. The first model

contained descriptors of field boundary structure (field boundary model), the

second contained descriptors of the field adjacent to the detector (adjacent

field model). The third model contained descriptors of local landscape meas-

ured in GIS (local landscape model).

Continuous data were scaled and centred. Smooth terms were included for

geographic coordinates (Duchon spline; bs=”ds”, k=250) and week of study

(thin plate regression spline; bs="tp", k=12) to account for spatial autocorrel-

ation and temporal differences in sampling, respectively. All other variables

were included as linear predictors (table 2.1). Model fit was assessed by visual

inspection of residuals and diagnostic plots. We tested all models for multi-

collinearity and concurvity (the equivalent of multicollinearity for GAMs) and

we removed recording locations with less than four nights data.

We optimised global and scenario models by searching all possible com-

binations of variables using the dredge function from the MuMIn package (Bar-

toń, 2020), with the control variables fixed. AICc of the best model identified
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Figure 2.4: Graphical representation of the modelling procedure.

by dredge was used to compare competing scenario models. We performed

model averaging on the global model, using all models <2 ∆AICc of the best

model (Burnham and Anderson, 2002), calculating the model averaged coef-

ficients and z-values in the MuMIn package. Effect size was assessed by cal-

culating the percentage change in variables. The modelling procedure is sum-

marised in figure 2.4.

2.3.7 Model Validation and Predictive Power

We tested the ability of models to predict bat activity at new sites. We per-

formed 10-fold cross validation and fitted a GLM with predicted vs actual val-

ues, calculating McFadden’s pseudo-R2 to assess how well predictions match

the actual data.

To assess the relative magnitude of the effect of predictor variables com-

pared with the spatial component of the model, we also fitted models with

1) only control variables; 2) only control variables and no spatial smooth; 3)

control variables, no spatial smooth, only one predictor variable, ‘distance to

R. ferrumequinum roosts at the centre of the study site’.

Predicted activity maps were made for three species at a 10 m resolution

using three predictor variables: vegetated boundaries, habitat type (improved
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Table 2.1: All variables included in analysis (global model). ‘Scenario model’ column

shows which scenario model each variable was assigned to.

Variable Detail Scenario model

Vegetated field

boundary

Hedge, lines of trees etc. = yes; fence, ditch etc. = no Field boundary

Number of trees per

100 m

Only included trees above 15cm diameter at breast height Field boundary

Field boundary height Mean calculated from three representative points measured using

either a tape measure or geometry (following West 2009), depending

on height.

Field boundary

Field boundary width Width was defined as the widest point of the boundary cross-section.

Measured at three representative points along the field boundary

with a tape measure and calculated the mean.

Field boundary

Improved grassland Yes/no Adjacent field

Arable Yes/no Adjacent field

Livestock (cows,

sheep, horses)

Livestock present or evidence of recent livestock presence (fresh

faeces)? Yes/no

Adjacent field

Environmental

stewardship scheme

Yes/no – is the land managed under an environmental stewardship

scheme?

Adjacent field

ALAN Artificial light at night. Measured in 250 m buffer from satellite

imagery (Earth Observation Group, NOAA/NCEI)

Local landscape

NDVI Normalised difference vegetation index. Measured in a 250 m buffer

from satellite imagery (LandSat 8) using imagery acquired during the

study period (20/09/2020)

Local landscape

Woodland cover (%) Percentage woodland cover calculated in a 250 m buffer from

Ordnance Survey data (OS Open Map Local). Includes both

coniferous and broadleaf (study area is 92% broadleaf) and any patch

size

Local landscape

Urban land cover (%) Percentage of land classified as urban/suburban in CEH Land Cover

Map 2015 (Rowland et al., 2017b) calculated in a 250 m buffer

Local landscape

Easting and northing British National Grid format All

Week of study 1-12 All

Average nightly

minimum temperature

Mean nightly minimum temperature for all nights the detector was

recording (taken from detector internal thermometer or average of all

other detectors out at the same time if not available)

All

Average nightly

rainfall

Mean nightly rainfall (mm), obtained from the Environment Agency

station no. 417635 (Barrow Gurney, grid ref. ST5377167950, 7.75km

NEE from centre of study site)

All
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Table 2.2: Mean activity index (AI) across recording locations. AI was calculated as

the number of minutes in which a bat was recorded per hour of survey. Note that

this is weighted by the confidence in the species classification, as described in section

2.3.5. Species not included in the statistical analysis are denoted with *.

Species Mean Activity Index Standard Deviation

Barbastella barbastellus* 0.01 0.02

Nyctalus noctula/N. leisleri/Eptesicus serotinus 3 2.95

Plecotus spp.* 0.1 0.13

Pipistrellus pipistrellus 4.76 4.8

Pipistrellus pygmaeus 0.69 1.25

Rhinolophus ferrumequinum 0.65 1.04

Rhinolophus hipposideros 0.13 0.3

Myotis spp. 2.05 2.62

All species 11.39 8.19

grassland or arable). Within the study site most field boundaries represent the

edge of a land parcel and can therefore be mapped with reasonable accuracy

using OS Master Map land parcel boundaries. We used LIDAR data from the

National LIDAR Programme (Environment Agency, 2022), masked with OS

MasterMap boundaries, to map vegetated field boundaries. Arable sites were

mapped from sites identified during the survey period.

2.4 Results

Detectors were deployed at 380 locations, which equated to 26,557 recording

hours, or 2,656 10-hour nights (mean night length = 9.82 hours). In total over

1.6 million files were recorded, yielding 484,795 bat classifications. A total of

eight species/species groups were identified (mean = 6.8 per site). Bats were

detected on average just over 11 minutes (±8.2 s.d.) in every hour (table 2.2,

figure 2.5).



BAT ACTIVITY AT FIELD BOUNDARIES 33

Figure 2.5: Mean activity index (AI) across recording locations in North Somerset,

UK, showing standard deviation. AI was calculated as the number of minutes in

which a bat was recorded per hour of survey. Note that this is weighted by the con-

fidence in the species classification, as described in section 2.3.5. Species not included

in the statistical analysis are denoted with *.
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Table 2.3: Model ranking of competing scenario models. Units are ∆AICc between

models, meaning the best performing scenario model has the lowest ∆AICc. Models

with ∆AICc <10 (i.e. all models with some level of empirical support; Burnham and

Anderson 2002, pg. 70) are highlighted in bold

Species/species group Field boundary Adjacent field Local landscape

Rhinolophus ferrumequinum 0.00 15.83 24.40

Rhinolophus hipposideros 0.00 12.21 20.87

Pipistrellus pipistrellus 0.00 18.62 41.32

Pipistrellus pygmaeus 0.00 67.02 69.93

Myotis spp. 0.74 0.09 0.00

Nyctalus spp./Eptesicus serotinus 17.47 5.54 0.00

2.4.1 Scenario Model Comparison

The field boundary model was best supported for P. pipistrellus, P. pygmaeus,

R. ferrumequinum and R. hipposideros (table 2.3). The local landscape model

was best supported for N. noctula/N. leisleri/E. serotinus while the adjacent field

model received some support for this species group. All three models were

highly supported for Myotis spp.

2.4.2 Global Model

A total of 4,095 models were examined by dredge for each species. The num-

ber of models ranked in the top model set (<2 ∆AICc) for each species were as

follows: Myotis spp. n = 15, N. spp./E. serotinus n = 2, P. pipistrellus n = 2, P.

pygmaeus n = 5, R. ferrumequinum n = 5, R. hipposideros n = 13.

Field Boundary Characteristics

Activity of R. ferrumequinum, R. hipposideros, P. pipistrellus and N. spp./E.

serotinus was higher along vegetated field boundaries, compared to non-
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Figure 2.6: Boxplot showing Rhinolophus hipposideros activity at

vegetated/non-vegetated field boundaries in North Somerset,

UK. Activity is the summed number of minutes in which bats

were recorded.

vegetated field boundaries (145%, 307%, 123% and 33% higher, respectively;

p<0.001, p<0.001, p<0.001, p=0.01 ; table 2.6-2.7, figure 2.6). R. ferrumequinum

and P. pygmaeus activity was higher at boundaries with trees (2% and 3%

increase in activity per tree per 100 m; p<0.001 and p=0.01, respectively). P.

pipistrellus and P. pygmaeus activity was higher at field boundaries with tall

vegetation (a 9% and 15% increase in activity for every extra metre of height,

respectively; both p<0.001, figure 2.7). Myotis spp. activity was higher at wide

boundaries (4% increase in activity for every extra metre of width; p<0.001).



36 CHAPTER 2

Figure 2.7: Partial effects plot showing the effect of field bound-

ary height on Pipistrellus pygmaeus activity (red line, 95% con-

fidence intervals shaded) in North Somerset, UK. Activity is the

summed number of minutes in which bats were recorded.
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Adjacent Field Characteristics

R. hipposideros activity was 149% higher at field boundaries bounded by im-

proved grassland (p<0.001, table 2.6-2.7), whereas P. pipistrellus activity was

lower (42%; p<0.001). R. ferrumequinum and P. pipistrellus activity was lower at

field boundaries bounded by arable land (46% and 48%; both p<0.001, figure

2.8). Myotis spp. activity was lower at recording locations managed under an

environmental stewardship scheme (39%; p=0.01). P. pipistrellus, P. pygmaeus

and N. noctula/N. leisleri/E. serotinus activity was higher at recording locations

with livestock, compared to recording locations without (26%, 34% and 26%

respectively; p=0.02, p=0.03 and p<0.001; table 2.6-2.7, figure 2.9).

Local Landscape Characteristics

R. hipposideros and N. spp./E. serotinus activity was higher with greater wood-

land cover in a 250 m buffer (both 2% higher activity for every 1% increase in

woodland cover; p=0.004 and p<0.001 respectively; table 2.6-2.7). N. spp./E.

serotinus activity was higher with greater urban/suburban cover in a 250 m

buffer (1.4% higher activity for every 1% increase in urban/suburban cover;

p<0.001). P. pygmaeus and Myotis spp. activity was lower with higher levels

of ALAN in a 250 m buffer of the recording site (8% and 5% lower activity for

every 1 increase in radiance; p=0.01, p=0.03, respectively).

2.4.3 Model Validation and Predictive Power

We found a large spatial component explaining activity patterns: removing

predictor variables did relatively little to reduce the deviance explained (table

2.4) or the predictive power of the models (table 2.5) when compared with

the effect of removing the spatial smooth. For R. ferrumequinum, part of this
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Figure 2.8: Boxplot showing Nyctalus spp./Eptesicus serotinus
activity at recording locations with/without livestock in North

Somerset, UK. Activity is the summed number of minutes in

which bats were recorded.
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Figure 2.9: Boxplot showing Rhinolophus ferrumequinum activ-

ity at arable/non-arable recording locations in North Somerset,

UK. Activity is the summed number of minutes in which bats

were recorded.
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Table 2.4: Percentage deviance explained by models. Comparison between the global

model with all predictor variables (global), a model with only control variables (con-

trol only), a model with only control variables but lacking the spatial control (control

nonspatial), and a model with only control variables, no spatial control but with the

variable ‘distance to the roost’ added (control nonspatial with roost).

Species Global Control only Control
nonspatial

Control
nonspatial
with roost

Rhinolophus ferrumequinum 85.07 79.50 18.19 35.51

Rhinolophus hipposideros 39.79 34.95 8.98 9.06

Pipistrellus pipistrellus 77.06 63.11 14.09 14.84

Pipistrellus pygmaeus 67.09 62.64 4.19 4.60

Myotis spp. 55.47 48.69 7.09 8.00

Nyctalus spp./Eptesicus serotinus 81.36 83.00 23.77 23.84

was explained by proximity to the roost (tables 2.4 and 2.5). Predicted activity

maps for Nyctalus spp./E. serotinus, P. pipistrellus and R. ferrumequinum (figure

2.10) show spatial activity patterns recorded in the study period. There is a

clear concentration of R. ferrumequinum activity around the roost at Brockley

Hall, while Nyctalus spp./E. serotinus and P. pipistrellus activity hotspots are

more dispersed (location of roosts for these species in the study area are un-

known).



BAT ACTIVITY AT FIELD BOUNDARIES 41

Figure 2.10: Predicted activity outside woodland and urban areas in North Somerset,

UK for A) Nyctalus spp./Eptesicus serotinus, B) Pipistrellus pipistrellus, C) Rhinolophus
ferrumequinum.
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Table 2.5: McFadden’s pseudo-R2 of predicted vs actual values from cross validation,

measuring how well model predictions match the actual data. Comparison between

the global model with all predictor variables (global), a model with only control vari-

ables (control only), a model with only control variables but lacking the spatial control

(control nonspatial), and a model with only control variables, no spatial control but

with the variable ‘distance to the roost’ added (control nonspatial with roost).

Species Global Control only Control
nonspatial

Control
nonspatial
with roost

Rhinolophus ferrumequinum 0.42 0.39 0.07 0.26

Rhinolophus hipposideros 0.15 0.13 0.05 0.05

Pipistrellus pipistrellus 0.31 0.25 0.09 0.10

Pipistrellus pygmaeus 0.25 0.23 0.02 0.02

Myotis spp. 0.13 0.09 0.01 0.02

Nyctalus spp./Eptesicus serotinus 0.46 0.42 0.17 0.17
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Table 2.6: Estimates, (adjusted) standard errors and p-values for all variables in global model. Variables not included in the final

optimised models are denoted with -. Statistically significant relationships highlighted.

R. ferrumequinum R. hipposideros P. pipistrellus P. pygmaeus Myotis spp. N. spp./E. serotinus

Vegetated/non-veg. field

boundary

0.894 (±0.159), <0.001* 1.402 (±0.337),

<0.001*

0.8 (±0.158), <0.001* 0.109 (±0.241), 0.65 - 0.285 (±0.109), 0.01*

Trees per 100 m 0.149 (±0.047), <0.001* 0.149 (±0.14), 0.29 - 0.169 (±0.067), 0.01* 0.036 (±0.054), 0.51 -

Height - -0.112 (±0.167), 0.5 0.234 (±0.05), <0.001* 0.374 (±0.081),

<0.001*

- -

Width - 0.208 (±0.123), 0.09 - - 0.165 (±0.056),

<0.001*

-

Improved grassland 0.079 (±0.158), 0.62 0.914 (±0.262),

<0.001*

-0.542 (±0.152),

<0.001*

-0.419 (±0.249), 0.09 -0.022 (±0.085), 0.79 -

Arable -0.624 (±0.202),

<0.001*

- -0.656 (±0.187),

<0.001*

-0.479 (±0.298), 0.11 -0.039 (±0.125), 0.76 -

Livestock - -0.381 (±0.222), 0.09 0.231 (±0.1), 0.02* 0.29 (±0.134), 0.03* -0.082 (±0.108), 0.45 0.232 (±0.068),

<0.001*

ESS - -0.091 (±0.2), 0.65 - -0.065 (±0.168), 0.7 -0.499 (±0.178), 0.01* -

ALAN - -0.023 (±0.07), 0.74 -0.132 (±0.08), 0.1 -0.262 (±0.093), 0.01* -0.174 (±0.082), 0.03* -0.031 (±0.056), 0.59

NDVI - 0.003 (±0.027), 0.91 0.083 (±0.084), 0.32 0.011 (±0.04), 0.79 0.02 (±0.052), 0.7 0.098 (±0.058), 0.09

Woodland cover -0.031 (±0.06), 0.6 0.199 (±0.097), 0.04* -0.023 (±0.049), 0.64 -0.008 (±0.035), 0.82 - 0.156 (±0.053),

<0.001*

Urban/suburban cover -0.081 (±0.07), 0.25 - 0.098 (±0.086), 0.25 - 0.075 (±0.078), 0.34 0.143 (±0.051),

<0.001*
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Table 2.7: Percentage change in activity for every one unit of predictor in global model. For binary variables this is the difference

between true/false (e.g. arable/not arable). Note NDVI is very high because it is calculated on a scale of -1 to 1, so an increase in

one unit represents a large change, i.e. equivalent to the difference between bare rock and tropical rainforest.

R. ferrumequinum R. hipposideros P. pipistrellus P. pygmaeus Myotis spp. N. spp./E. serotinus

Vegetated/non-veg. field boundary 144.58 306.52 122.57 11.52 - 32.94

Trees per 100 m 2.45 2.45 - 2.79 0.58 -

Height - -4.22 9.43 15.45 - -

Width - 5.23 - - 4.14 -

Improved grassland 8.22 149.38 -41.82 -34.26 -2.22 -

Arable -46.41 - -48.09 -38.05 -3.79 -

Livestock - -31.70 26.01 33.65 -7.86 26.17

ESS - -8.67 - -6.27 -39.29 -

ALAN - -0.73 -4.07 -7.92 -5.33 -0.96

NDVI - 7.34 599.94 27.96 60.46 890.30

Woodland cover -0.33 2.16 -0.24 -0.09 - 1.69

Urban/suburban cover -0.78 - 0.95 - 0.73 1.40
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2.5 Discussion

For many animal species, field boundaries represent important slivers of hab-

itat in an otherwise inhospitable agricultural landscape. Here, we demon-

strate the value of field boundaries for bats and identify specific characterist-

ics of agricultural landscapes that are associated with bat activity in six spe-

cies/species groups. Our results have direct application in landscape man-

agement and for the specification of Environmental Stewardship Schemes.

We show that field boundary characteristics are better than local land-

scape or adjacent field characteristics at describing activity patterns in four

of the six species studied (P. pipistrellus, P. pygmaeus, R. hipposideros and R. fer-

rumequinum) and that vegetated field boundaries are associated with signific-

antly higher activity than non-vegetated boundaries (P. pipistrellus, N. spp./E.

serotinus, R. hipposideros and R. ferrumequinum). Our results reiterate the im-

portance of vegetated field boundaries for bats in agricultural landscapes –

increasing activity by over 300% for R. hipposideros – and demonstrate that in-

creasing the area of vegetated field boundaries can enhance the biodiversity

value of farmland.

The importance of tall, overgrown hedgerows for R. ferrumequinum was

previously known (Ransome, 1996), however, here we provide new evidence

that the number of field boundary trees is the most important aspect of field

boundary structure for this species. This builds on previous research that

found high R. ferrumequinum activity along tree lines (Finch et al., 2020b) and

affords an easily-implemented approach to improving habitat quality for R.

ferrumequinum. We also found trees to be important for P. pygmaeus, a find-

ing reported previously (Boughey et al., 2011). Coupled with the finding that
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Myotis spp. activity was higher at wide field boundaries and P. pipistrellus

and P. pygmaeus activity was higher at tall field boundaries, our results add to

the body of evidence that planting field boundary trees and allowing existing

hedgerows to outgrow will benefit a number of bat species (Boughey et al.,

2011; Heim et al., 2015; Lacoeuilhe et al., 2018; Toffoli, 2016; Wickramasinghe

et al., 2003).

Nyctalus spp./E. serotinus activity was better explained by local landscape

characteristics than field boundary or adjacent field characteristics. These spe-

cies forage above the height of vegetated field boundaries or at pace over open

areas, targeting large free-flying prey items using loud, low-frequency echo-

location (Jones, 1995; Waters et al., 1999). Nyctalus spp./E. serotinus would not

therefore be expected to interact with field boundaries the same way as glean-

ing bats, or species with low-intensity or high-frequency echolocation calls

that attenuate quickly in air. In this respect, our findings support previous

studies (Boughey et al., 2011; Finch et al., 2020b; Kelm et al., 2014; Toffoli, 2016;

Verboom and Huitema, 1997). In contrast, we found higher Nyctalus spp./E.

serotinus activity along vegetated field boundaries than non-vegetated bound-

aries, although the effect size is small compared to that of other species (table

2.7). Our interpretation of this is that while Nyctalus spp./E. serotinus are not

selecting for field boundary characteristics directly, they may still benefit from

the increased landscape heterogeneity provided by vegetated field boundar-

ies. This view is supported as both increased woodland and urban/suburban

cover had a positive impact on activity for this species group.

Activity of Nyctalus spp./E. serotinus was higher in fields with livestock.

Dung beetles (Geotrupidae, Scarabaeidae) comprise a significant portion of

the diet of this group, which likely explains this finding (Jones, 1995; Shiel
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et al., 1998; Waters et al., 1999; Whitaker and Karataş, 2009). Activity of both

Pipistrellus species was also higher in fields with livestock, likely because live-

stock attract prey items such as midges and mosquitoes that are important for

Pipistrellus species (Ancillotto et al., 2021, 2017).

Activity of R. ferrumequinum and P. pipistrellus activity was negatively as-

sociated with arable fields (either in current crop production or fallow), a find-

ing reported in previous studies (Dietz et al., 2013; Flanders and Jones, 2009;

Walsh and Harris, 1996a; Wickramasinghe et al., 2003). Additionally, R. hip-

posideros activity was higher in improved grassland. Arable farming requires

a greater amounts of agrochemicals than pasture, which have been shown to

negatively impact bat activity (Kahnonitch et al., 2018; Wickramasinghe et al.,

2003), while traditionally managed semi-natural grassland can support rel-

atively high insect diversity (Green, 1990). Encouraging the establishment of

species rich, permanent pasture with low-intensity management would be be-

neficial for these species.

P. pipistrellus activity was negatively associated with improved grassland,

in comparison to the reference group, roads. While roads have been shown to

have a negative effect on bat activity, in our study area roads comprise small

country lanes or farm tracks, rather than major roads that have been the focus

of previous studies (motorways, Berthinussen and Altringham 2012; dual car-

riageways, Claireau et al. 2019). The benefit of roads for bats our study was

likely that there was almost always a hedgerow and/or tree line either side of

the road. Hedgerows and tree lines are important for edge-foraging Pipistrel-

lus species, as they provide shelter from wind and predators, high surface area

of vegetation and high densities of insects (Froidevaux et al., 2019; Oakeley

and Jones, 1998; Verboom and Huitema, 1997). Our findings corroborate this
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as the field boundary model best explained activity in both Pipistrellus species,

and vegetated boundaries had significantly higher P. pipistrellus activity. Our

results further highlight the value of vegetated field boundaries for Pipistrellus

species.

Environmental stewardship schemes (ESS) award a subsidy to landown-

ers for managing their land for the benefit of wildlife and the environment.

ESS were not positively associated with bat activity in our study. Instead, we

found reduced Myotis activity at recording locations managed under ESS. It

may be that survey locations under ESS are unsuitable for Myotis spp. for

unmeasured reasons, however this requires further investigation.

Assessing the frequency of feeding buzzes (increased repetition rate of

echolocation calls associated with the bat honing in on a prey item) was bey-

ond the scope of this study, however future work would benefit from the extra

insight this would provide into how bats are using field boundaries.

2.5.1 Using Models for Prediction

We found a large spatial effect driving activity patterns, which would make

models unsuitable for predicting outside the study area where the spatial

component is unknown. We found that part of the spatial effect for R. fer-

rumequinum was explained by proximity to known roosts, demonstrating that

location of species-centric landmarks in the landscape plays a large part in

dictating spatial activity patterns.

Bat activity is known to be highly variable and difficult to predict (Langton

et al., 2010; Richardson et al., 2019; Silva et al., 2017). High variation in activity

levels meant that predictions at best had an R2 value of 0.45 when regressed
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with the actual values (for Nyctalus spp./E. serotinus), but for most species this

was considerably less (table 2.5).

The predicted activity maps generated in this study (figure 2.10) describe

spatial activity patterns during our study period, albeit a smoothed-over ver-

sion of true activity. It is unclear whether this would be representative of

activity at the same sites in subsequent years, although there is evidence to

suggest that activity hotspots change over time (Medinas et al., 2021). Bor-

der et al. (2022) used a similar modelling and mapping approach to ours, but

treated bat activity as a proxy of habitat suitability. While there almost cer-

tainly is a link between habitat suitability and bat activity levels, based on our

findings we would not recommend using predictive modelling of bat activity

as a substitute for habitat suitability until the relationship between the two

has been better characterised.

2.5.2 Conclusions

Our results add to a growing understanding of the value of field boundaries

for bats. We shed new light on the specific aspects of field boundary structure

that benefit bats and identify a number of measures that could be used for hab-

itat restoration and species conservation. We show that increasing the area of

vegetated field boundaries, planting hedgerow trees and developing tall and

outgrown hedgerows will enhance agricultural landscapes for many species.

Our results show how field boundaries can be a valuable tool in developing

biodiversity-friendly agricultural landscapes.
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Chapter 3

Habitat Suitability is Correlated with

Acoustic Activity Measured by

Passive Acoustic Monitoring: a

Novel Method for Model Validation

and Applications for

Landscape-Level Conservation

3.1 Abstract

Habitat suitability models (HSMs) are a powerful tool for estimating species

occurrence and contribute to evidence-based conservation planning. It is im-

portant to verify HSM predictions with ground validation but this is not al-

ways carried out, partly because habitat suitability cannot be measured dir-
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ectly. The emergence of passive acoustic monitoring (PAM) as an inexpensive

tool for obtaining ecological data over a wide area provides an opportunity to

relate habitat suitability predictions to a physical measure of species activity

on the ground.

The aims of this study were to investigate the relationship between

acoustic activity measured by PAM and habitat suitability predictions, test

the utility of PAM for HSM validation, and apply a ground validated HSM

to landscape-level conservation. We illustrate this approach with a species

of conservation concern in Britain, the greater horseshoe bat (Rhinolophus

ferrumequinum).

We built a 1 km resolution HSM for R. ferrumequinum and used PAM to

record acoustic activity across a predicted habitat suitability gradient. We

looked for correlation between acoustic activity and habitat suitability, and

performed a post-hoc power analysis to determine the minimum sample size

needed to detect a habitat suitability signal in our acoustic data.

We found a statistically significant positive correlation between acoustic

activity and predicted habitat suitability, losing power below about 50

sampling points. Our results indicate that climate change could have a

positive effect on R. ferrumequinum distribution in Britain, whereas cave

availability is a limitation. We predict a negative effect of urban expansion,

driven by urban sprawl rather than urban densification.

Our study demonstrates the huge potential of PAM as a tool for model

validation as part of robust, evidence-based species conservation planning.
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3.2 Introduction

Habitat suitability models (HSMs; also known as species distribution mod-

els or environmental niche models) use species occurrence records to estim-

ate the suitability of a given area as a function of local environmental condi-

tions (Hirzel and Lay, 2008). By improving understanding of species’ spatial

ecology and identifying factors affecting species’ distribution, HSMs can be

a valuable tool for strategic conservation planning (Guisan et al., 2013). The

development of open source, presence-only approaches for estimating habitat

suitability models (e.g. Royle et al., 2012; Phillips et al., 2006; Hirzel et al., 2002)

coupled with freely available occurrence data from online repositories (e.g.

NBN Atlas, https://nbnatlas.org/; GBIF, https://www.gbif.org/) has in-

creased the accessibility of HSMs (Bellamy and Altringham, 2015), which are

now widely used in conservation (Pecchi et al., 2019; Guisan et al., 2013).

Broad scale HSMs are a valuable landscape-level tool that can be used to

identify the spatial distribution of threats, factors affecting species distribu-

tion, as well as potential range contractions/expansions and approaches to

improving habitat. HSMs can be used to predict the impact of dynamic threat-

ening processes such as climate change (Ahmed et al., 2023; Guan et al., 2021;

Graham et al., 2011) and land use change (Poor et al., 2020; Trisurat and Du-

engkae, 2011; Ficetola et al., 2010). Predictions from HSMs are spatially ex-

plicit, so can be used to identify areas where conservation effort is needed or

sites where mitigation will have the biggest impact (Duflot et al., 2018; Bayliss

et al., 2005).

The effectiveness of HSMs is reliant on effective validation. Many stud-

ies rely on statistical metrics to assess model performance (Qazi et al., 2022;

https://nbnatlas.org/
https://www.gbif.org/
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Hao et al., 2019; Robinson et al., 2017), however ground validation with an

independent dataset is regarded as the gold standard (Greaves et al., 2006).

Ground validation can be difficult to achieve in practice as habitat suitability

is not a substance or phenomena that can be measured directly, and valid-

ation of HSMs is often restricted to the simple confirmation of species pres-

ence/absence (e.g. West et al., 2016; Rebelo and Jones, 2010), while the habitat

suitability index (HSI) estimated by an HSM is continuous (normally between

0 and 1), meaning information is lost on the relative suitability of habitat.

HSI has been shown to be correlated with abundance in many species

(Weber et al., 2017), meaning a measure of abundance could be a good test

of model predictions, although measuring abundance can be challenging for

many species (Bonar et al., 2011). A lack of detailed abundance data is in-

deed often a motive for using an HSM, and is why many methods for HSMs

have been developed for presence-only data (Pearce and Boyce, 2006). An ad-

ditional complication is that full occupancy/abundance may not always be

realised at every locality (VanDerWal et al., 2009), and the positive correlation

between HSI and abundance may not be true for every study group and/or

every measure of abundance (Dallas and Hastings, 2018).

Passive acoustic monitoring (PAM) is increasingly used for studying and

monitoring wildlife populations (Sugai et al., 2019) and can be applied to an-

swer fundamental questions in ecology (Ross et al., 2023). As an emerging

area of interest, more work is needed to understand how to fully utilise acous-

tics in ecological research (Gibb et al., 2019). Acoustic activity recorded by

PAM is not a true measure of abundance, as individuals can not be distin-

guished from recordings: one individual making extensive use of an area can

generate similar activity to many individuals using an area a little (Ross et al.,
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2023). Although there are approaches for estimating abundance from acous-

tics (e.g. Pérez-Granados and Traba, 2021; Marques et al., 2013), acoustic activ-

ity should be viewed as a measure of habitat use rather than abundance.

Acoustic activity has been used as a proxy for habitat suitability in recent

studies (Border et al., 2022; Newson et al., 2015), although the exact relation-

ship between habitat suitability and acoustic activity is not currently well un-

derstood. Habitat suitability can be expected to be an important factor in driv-

ing acoustic activity, as individuals are likely to spend more time in areas of

highly suitable habitat, although there will be many factors affecting acoustic

activity levels. Foxley et al. (2023), for example, found a significant spatial ef-

fect driving acoustic activity in bats that was largely explained by the distance

to known roosts. Furthermore, count data like those from PAM are inher-

ently stochastic, leading to a lot of unexplained variance (Milne et al., 2005;

Broders, 2003; Hayes, 1997). Therefore, while acoustic activity measured by

PAM is likely correlated with habitat suitability, it is not currently clear how

well PAM is suited to HSM validation. Although a limited number of stud-

ies have used acoustics to validate HSMs before (Hintze et al., 2021; Brookes

et al., 2013), to our knowledge no studies have used PAM to test continuous

habitat suitability predictions in a terrestrial setting.

Between 1992 and 2018, 50% of PAM studies focused on bats (Sugai et al.,

2019). Bats are often found in human-dominated landscapes and are vulner-

able anthropogenic threats (Voigt and Kingston, 2016), however, being volant,

nocturnal and cryptic, studying the distribution and abundance of bats can

be challenging. HSMs made with presence-only data have thus become a

valuable tool for bat conservation (e.g. Bellamy and Altringham, 2015; Bel-

lamy et al., 2013; Razgour et al., 2011). PAM has also proven invaluable for
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studying bats, as many echolocating bat species can be identified from their

distinctive echolocation calls (Jones et al., 2000). Bats are therefore an ideal

study group to test the relationship between habitat suitability and acoustic

activity measured by PAM.

3.3 Aims

The aims of this study were to investigate the relationship between acoustic

activity measured by PAM and habitat suitability predictions, test the utility

of PAM for HSM validation, and demonstrate the power of ground validated

HSMs for landscape-level conservation. We illustrate this approach with the

greater horseshoe bat (Rhinolophus ferrumequinum), a species of conservation

concern in Britain (JNCC, 2007). We aimed to accomplish this through a num-

ber of objectives:

· build a broad scale HSM for R. ferrumequinum in Britain with freely-

available presence-only data;

· ground validate habitat suitability predictions using PAM and investig-

ate the utility of PAM for model validation;

· identify factors affecting R. ferrumequinum distribution and run simula-

tions to identify areas where threats may impact the species, where con-

servation action may be of benefit, and where changes to distribution are

likely to happen in future.

We expect to find a positive correlation between acoustic activity measured

by PAM and predicted habitat suitability. We do not expect a perfect correla-

tion, but that relationship will be wedge-shaped, per VanDerWal et al. (2009):
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high habitat suitability will have either high or low acoustic activity, while low

habitat suitability will only have low acoustic activity.

3.4 Methods

All statistical analysis and data processing was conducted in R (R Core Team,

2022); spatial data manipulation was completed using the terra package (Hij-

mans, 2022).

3.4.1 Habitat Suitability Model

We built HSMs using MaxEnt (Phillips et al., 2006) for the whole of Britain at

a 1 km resolution. We downloaded occurrence records for all bat species from

the year 2000 to 2020 from the NBN Atlas (https://nbnatlas.org/). We

removed records with less than 1 km spatial resolution and added additional

records from a recently discovered R. ferrumequinum roost in Sussex (Vincent

Wildlife Trust, personal correspondence) and incidental records collected over

the course of the study.

We chose appropriate environmental variables based on a literature review

of R. ferrumequinum ecology (table 3.1). These included variables that were

likely to affect R. ferrumequinum distribution at a broad scale, such as climate,

land use and topography. Environmental data was downloaded or generated

at a 1 km resolution. Raster data were generally available projected in Ord-

nance Survey National Grid (OSGB36) reference system, if spatial data were

available in a different projection they were resampled to a 1 km OSGB36 grid

by bilinear interpolation. Environmental rasters were checked for multicol-

https://nbnatlas.org/
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Table 3.1: Environmental variables included in the models.

Variable Statistic Source

Annual precipitation (mm) 2000-2021 mean Met Office et al., 2022

Arable/horticulture % cover Rowland et al., 2017a

Broadleaf woodland % cover Rowland et al., 2017a

Caves and mines Distance to Openstreetmap, Mendip Caves Registry
(http://www.mcra.org.uk/)

Elevation (m) Mean OS Terrain 50 (Ordnance Survey, 2017)

Grassland (improved and
semi-natural)

% cover Rowland et al., 2017a

Night light pollution
nanoWatts/cm2/sr)

Mean Falchi et al., 2016 (Earth Observation
Group, NOAA/NCEI)

Summer maximum
temperature (°C)

2000-2021 mean Met Office et al., 2022

Urban and suburban % cover Rowland et al., 2017a

Winter minimum
temperature (°C)

2000- 2021 mean Met Office et al., 2022

linearity with the usdm R package (Naimi et al., 2014) and occurrence records

were thinned to a maximum of one record per 1 km grid square.

We used ENMEval (Muscarella et al., 2014) to determine the optimal fea-

ture classes and regularisation multiplier for MaxEnt. We generated 10,000

background points weighted by the kernel density estimate of all bat species

records (i.e. the target group; Phillips et al., 2009) to account for bias in survey

effort. The bandwidth of the kernel density estimate was set to 10,000. Model

fit was assessed with area under the receiver operating characteristic curve

(AUC), calculated with 5-fold cross validation. Additionally, we calculated

model sensitivity according to Bellamy et al. (2020) and tested whether there

were more species records in habitat predicted to be above the maximum test

sensitivity and specificity (MTSS) threshold (Liu et al., 2005) than by chance.

http://www.mcra.org.uk/
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3.4.2 Acoustic Validation

Acoustic Survey Design

We conducted an acoustic survey of bats in North Somerset, Bath and North-

East Somerset, and the former Mendip and Sedgemoor districts between July

and September 2022 (figure 3.1). The study area is a regional stronghold for

horseshoe bats containing a number of protected sites for R. ferrumequinum

(JNCC, 2015a,b,c; English Nature, 1996). The study area has a wet and mild

marine climate (Köppen classification Cfb) with diverse topography encom-

passing the coastal plains of the Somerset levels and the limestone Mendip

hills. Land use in the study area is typical of the known range of R. fer-

rumequinum in Britain, comprising 8.7% broadleaf woodland, 19.7% arable

farmland, 52.8% grassland and 15% built-up areas and gardens (Marston et al.,

2022a).

Figure 3.1: Study area for acoustic validation.
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To determine survey locations we trimmed the HSM to the extent of the

study area and split it into habitat suitability quartiles. We then identified 96

random 1 km sample squares, split evenly across quantiles (i.e. twenty four

1 km squares per quantile; figure 3.3). Where access could not be obtained

the nearest 1 km square of the same quantile was used. We placed ultrasonic

detectors (Song Meter Mini Bat, Wildlife Acoustics, Inc) along hedgerows and

woodland edges to maximise detections, as R. ferrumequinum activity has been

shown to be highest along vegetated field boundaries with trees (Foxley et al.,

2023). In total sixteen detectors were deployed at any one time, these were

moved on a 10-night per site rotation. The proportion of detectors in each

quantile was kept the same throughout the study period. We placed detectors

in similar habitat at all sites, always on a vegetated field boundary bounded

by grassland, away from roads, houses and other light sources. We recorded

additional environmental characteristics to control for factors that may affect

bat activity (Ransome, 1996; Jones et al., 1995), including the presence of live-

stock when deploying/collecting detectors, temperature (recorded internally

by the bat detectors), and mean rainfall from the nearest weather station to

each detector (mean 6 km ± s.d. 3 km; Environment Agency).

Species Classification and Quantification

Bat species were identified using BatClassify (Scott, 2012). Error in automated

classification was classified according to Barré et al. (2019), discarding classi-

fications below a false positive rate of 50%.

We calculated a bat activity index by counting every one-minute block in

which a bat species was present as one occurrence and dividing total occur-

rences by total recording time (AI; Miller, 2001). The AI allows comparison of



BROAD SCALE HABITAT SUITABILITY MODEL 61

activity between sites with varying recording effort, accounting for mechan-

ical issues (e.g. battery failure) and variation in night length over the study

period.

Statistical Analysis

We used a generalised additive model with a negative binomial error struc-

ture in the mgcv R package (Wood, 2011) to assess the relationship between

bat activity and predicted habitat suitability. Acoustic activity (represented by

AI) was the dependent variable and habitat suitability, temperature, rainfall

and presence of livestock were explanatory variables. We included latitude

and longitude as a smooth term (Duchon spline, k=25) to account for spatial

autocorrelation between sites and week of the year as a smooth term (thin

plate regression spline, k=9) to account for temporal differences in sampling.

Model residuals were checked using the DHARMa R package (Hartig, 2021).

We also used DHARMa to test for residual spatial autocorrelation. Addition-

ally, we tested for over- and under-dispersion, and multicollinearity by calcu-

lating variance inflation factor in the mgcv.helper R package (Clifford, 2022).

We conducted a post-hoc power analysis to determine the minimum

sample size required to detect a significant effect of broad scale habitat

suitability in our acoustic dataset, as a reference for future studies. We took

a random subsample of the main dataset and refitted the model 100 times.

We performed model averaging using the MuMIn R package (Bartoń, 2020)

to calculate average coefficients, giving each model an even weighting. This

process was repeated at different sample sizes (n), decreasing n iteratively at

intervals of 10% of the full dataset. Power was calculated as the fraction of

subsampled models that achieved statistical significance.
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3.4.3 Climate Change, Artificial Hibernacula and Urban Expan-

sion Simulations

To apply the findings of our HSM to landscape-level conservation, we

ran three simulations that address different conservation challenges: we

simulated the impact of climate change, the threat of urban expansion,

and the provision of artificial hibernacula on the predicted distribution of

R. ferrumequinum in Britain. For the climate change simulation, we refitted

the HSM after adding 2°C to minimum winter temperature, that being the

projected change by 2100 under RCP4.5 climate change scenario (Lowe

et al., 2018). We used MTSS (Cao et al., 2013; Liu et al., 2005) to define

suitable/not suitable habitat under current conditions and under projected

climate change, and we calculated the percentage change in area between

current and projected conditions.

We simulated the provision of artificial hibernacula by refitting the HSM

with an altered ’distance to caves’ variable, setting the maximum distance to

caves as 20 km over the whole of Britain (but allowing shorter distances). We

chose 20 km based on distances species may be expected to travel for hiberna-

tion reported from a long-term ringing study (Ransome, 1980). This analysis

was designed to highlight areas where the species might be constrained by a

lack of caves in an otherwise hospitable landscape and to identify areas that

would benefit from the provision of artificial hibernacula.

We simulated an increase in the proportion of urban land cover (percent-

age in each 1 km square) by adding an additional 50% land cover to the ex-

isting urban cover (i.e. a grid square with 10% urban cover becomes 60%),

with an upper limit of 100%. Such a large increase in urban land cover may

not be realistic in many locations but was designed to identify areas where
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R. ferrumequinum would be impacted by urban expansion. Part of the threat

of urban expansion for R. ferrumequinum comes with the associated increase in

artificial light at night (ALAN). We found our urban land cover and night light

pollution variables to be highly correlated (Pearson’s correlation coefficient =

0.75). To account for this, we fitted a simple linear model to estimate the re-

lationship between urban cover and light pollution. We then estimated the

predicted increase in light pollution associated with an additional 50% urban

cover, and added this to the light pollution layer. We then refitted the model

per above simulations and calculated the predicted change in habitat suitab-

ility. For realism, we removed any areas with existing land cover <5%. The

aim of this was to exclude areas where new urban development is unlikely

to occur, such as green belt, national parks, and extensive farmland. We also

constrained the simulation to areas currently predicted to be suitable habitat,

as estimated with the HSM using the MTSS threshold.

3.5 Results

3.5.1 Habitat Suitability Model

After thinning, a total of 389 species occurrence records were used in model

training. Optimal features identified by ENMeval were linear, quadratic,

hinge and product, with a betamultiplier of five. The HSM achieved an

independent AUC of 0.9, with a sensitivity of 0.91 (i.e. 91% of occurrence

points were predicted to be in suitable habitat above the MTSS threshold;

p<0.001).

The HSM predicts suitable habitat in the West Midlands, Surrey, Sussex

and Kent, which are currently outside the current known R. ferrumequinum
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Table 3.2: Measures of predictor performance in HSMs. For details of calculation

method see Phillips (2017). Training gain from jackknife test is given as a percentage

of the full model.

Predictor Percentage
contribution

Permutation
importance

Training gain
without
variable

Training gain
with only
variable

Annual precipitation (mm) 12.3 12.4 96.3 23.1

Arable/horticulture (%
cover)

1.5 0.4 99.8 7.6

Broadleaf woodland (%
cover)

1.4 2.5 97.6 8.1

Caves and mines (distance
to)

36.2 25.8 83.2 43.9

Elevation (m) 0.9 1.3 99.3 4.1

Grassland (improved and
semi-natural; % cover)

1.4 3.1 98.1 7.9

Night light pollution
(nanoWatts/cm2/sr)

4.5 6.3 98.5 4.1

Summer maximum
temperature (°C)

2.7 11.2 95.8 14

Urban and suburban (%
cover)

2.4 1.8 98.7 3.1

Winter minimum
temperature (°C)

36.6 35.3 84.8 46.2

distribution in Britain (figure 3.3). The model predicted uplands such as Dart-

moor, Exmoor and much of central Wales to be unsuitable. Distance to caves,

minimum winter temperature and mean annual precipitation were the most

important predictors of habitat suitability (36.2%, 36.6% and 12.3% contribu-

tion, respectively; table 3.2).
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Figure 3.2: HSM response curves.

Table 3.3: Estimates, standard errors and p-values for all variables in acoustic analysis

with HSM. Statistical significance denoted with *.

Predictor Estimate Std. Error z-value p-value

HSM 2.621 0.682 3.845 <0.001*

Presence of livestock (0/1) 0.092 0.276 0.334 0.738

Mean minimum temperature (°C) -0.041 0.125 -0.329 0.742

Mean nightly rainfall (mm) -0.162 0.160 -1.012 0.311

3.5.2 Acoustic Validation

One detector failed to record, therefore 95 sites were included in the in final

analysis (figure 3.3). We conducted a total of 8,908 hours recording and de-

tected R. ferrumequinum at 89% of recording locations (85 sites). On average

R. ferrumequinum were recorded in two one-minute blocks every 12 hours (i.e.

per standardised night; ± s.d. 3.5; range 0-26).

There was a significant positive relationship between predicted habitat

suitability and R. ferrumequinum activity (p<0.001; table 3.3, figure 3.4) and

the model explained 57.1% of deviance. The relationship is wedge-shaped:
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Figure 3.3: Predicted habitat suitability for R. ferrumequinum in Britain at 1 km resol-

ution. Habitat suitability quartiles in validation study area and detector locations for

acoustic validation are shown inset.

low activity was only recorded at low suitability sites, while high suitability

sites had either high or low activity.
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Table 3.4: Model-averaged results from power analysis of acoustic validation, show-

ing changes in estimates, standard errors and p-values as sample size is decreased.

Statistical significance of averaged models denoted with *.

Sample size (n) Estimate Std. Error Adjusted SE z-value p-value Power

95 2.621 0.682 0.693 3.782 0.000* 1

86 2.615 0.762 0.775 3.376 0.001* 1

76 2.706 0.891 0.905 2.990 0.003* 1

66 2.578 1.042 1.059 2.435 0.015* 0.95

57 2.536 1.271 1.291 1.965 0.049* 0.82

48 2.568 1.278 1.306 1.966 0.049* 0.77

38 2.308 1.847 1.882 1.226 0.220 0.53

28 2.219 2.278 2.345 0.946 0.344 0.39

19 1.613 2.995 3.190 0.505 0.613 0.25

Power analysis found a loss of power below a sample size of 57 (i.e. a

power of <0.8) and a loss of statistical significance below a sample size of 48

(table 3.4).

3.5.3 Climate Change, Artificial Hibernacula and Urban Expan-

sion Simulations

Our climate change projection predicts a 153% range expansion for R. fer-

rumequinum in Britain by 2100 under RCP4.5, with the largest expansions pre-

dicted in southern England and the West Midlands (figure 3.5A).

The artificial hibernacula simulation highlights large areas in southern

England where R. ferrumequinum distribution may be constrained by a lack of

hibernation sites (figure 3.5B). Affected areas are identified in North Devon,

Dorset, Hampshire, Sussex and Kent.

The urban expansion simulation identifies sites where new development

may impact R. ferrumequinum. Impact in existing urban centres was generally
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Figure 3.4: Partial effects plot showing the relationship between R. ferrumequinum
activity (x axis) and habitat suitability index (y axis). Showing 95% confidence in-

tervals (grey shaded). Activity is measured as the number of one-minute blocks in

which a bat was recorded and has been standardised to one 12-hour night.

much lower than in suburban areas (figure 3.6). Some of the areas of highest

impact are around Swansea and the Gower peninsular in South Wales, in the

surrounds of Bristol up to the Forest of Dean, and in the suburbs of Southamp-

ton and Portsmouth.
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Figure 3.5: Projected range expansion for R. ferrumequinum in Britain: (A) by 2100

under RCP4.5 climate change scenario (2°C rise in minimum winter temperature); (B)

under current climatic conditions given the provision of artificial hibernacula. MTSS

used to define suitable/not suitable.

3.6 Discussion

We found PAM to be a useful tool for validating our HSM, observing a highly

significant relationship between predicted habitat suitability and bat activity.

This relationship was wedge-shaped: only low activity was recorded in low

habitat suitability, while either high or low activity was recorded in high suit-

ability. This relationship has been described previously for numerous meas-

ures of abundance (VanDerWal et al., 2009) and is explained by the fact that

maximum abundance may not be realised at all sites, due to factors not ac-

counted for in modelling. While not a true measure of abundance (Ross et al.,
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Figure 3.6: Urban expansion simulation showing projected change in habitat suit-

ability from increased urban cover and associated increase in night light pollution.

Only showing change in suitable habitat with existing urban land cover >5%. Inset

map shows Bristol and North Somerset, existing urban areas are visibly less impacted

than suburban areas.

2023), it is informative to see that acoustic activity had a similar relationship

with habitat suitability in our study.

Abundance certainly explains a large component of acoustic activity, but

there are many other factors affecting recorded activity levels. Inherent vari-

ability found in any sort of ecological sampling can result in high variability in

acoustic data (e.g. Milne et al., 2005; Broders, 2003; Hayes, 1997). The relatively

short sampling period used in most acoustic studies, owing to limitations of

both battery and storage capacity (Ross et al., 2023), means that sampling may

miss key times of year a site is in use. Density of prey, for example, will be

a key driver of acoustic activity (Bhalla et al., 2023; Froidevaux et al., 2021;
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Kolkert et al., 2020; Hałat et al., 2018) but will vary seasonally as prey species

progress through their annual cycles (e.g. Gittings and Giller, 1997).

Foxley et al. (2023) found a large spatial effect driving bat activity, partly

explained by distance to known roosts, highlighting how chance placement

of recording equipment in relation to species-specific landmarks can impact

recorded acoustic activity. A demonstration of chance placement of recording

equipment is found in the outlier in figure 3.4. On inspection of the sound

files we found evidence of extensive perch feeding at this site. This is a well-

documented behaviour in R. ferrumequinum (Jones and Rayner, 1989) where

bats perch under overhanging vegetation and catch prey that flies past, much

like a flycatcher. This behaviour produces recordings of echolocation calls at a

consistent amplitude. Given the acoustic detection range of R. ferrumequinum

is <20 m (Kerbiriou et al., 2019), the chance of placing a detector to capture

this behaviour is low. This outlier was found not to have undue influence on

results and was included in the analysis as it is a genuine measure of habitat

use, however, had the detector been placed 50 m further down the hedgerow,

recorded activity may have been very different at this site. On the same logic,

chance placement of detectors at other sites may have caused us to miss perch

feeding behaviour, resulting in lower recorded activity.

While we found that acoustic activity certainly contains information about

habitat suitability, it is far from a direct measure. This has implications for

how we can use acoustic data, which is highly topical at a time when large

scale acoustic datasets, for example from citizen science projects (e.g. Newson

et al., 2015) are becoming common, and the applications of such data are still

being explored (e.g. Border et al., 2022). We would not recommend using

acoustic activity as a substitute for habitat suitability in these cases.



72 CHAPTER 3

We would recommend a large sample size in future studies that seek to

identify broad scale trends in acoustic data. Our detector placement was de-

signed to maximise chances of detecting a trend using a priori knowledge of

the signal we were trying to measure, therefore without this knowledge a

higher sample size might be needed. We show that a minimum of 50 record-

ing locations were required across our study area to identify a statistically

significant link between habitat suitability and acoustic activity.

3.6.1 Climate Change, Artificial Hibernacula and Urban Expan-

sion Simulations

Despite the fact that models are always a simplification of reality (Box, 1976),

our models show great utility for addressing landscape-level conservation

challenges, and are supported in a number of respects by current species trend

data.

As a species on the northern edge of its range, R. ferrumequinum is likely

constrained by climatic conditions in Britain (Ransome, 2020). Confirming

this, we found minimum winter temperature to be an important predictor

of habitat suitability for R. ferrumequinum; although note that as an edge-of-

range study, our HSM might not have captured the full extent of the species’

responses to environmental conditions it experiences elsewhere in its range.

Climate change encompasses a wide range of environmental changes, in-

cluding extreme weather events and warmer winters. Each of these climatic

changes will have differing impacts on wildlife and their habitats. There

is evidence that climate change may be having a positive impact on R. fer-

rumequinum populations in Britain (Froidevaux et al., 2017), our projection

supports this view and predicted a substantial range expansion with increased
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minimum winter temperature. There are, however, countless potential effects

climate change may have on ecosystems that are complex and interconnected

(Urban et al., 2016; Garcia et al., 2014). There are many ways climate change

could have a negative impact on R. ferrumequinum that we were not able to

model here, for example by reduction of prey items: many studies predict

that climate change will have a negative impact on insects (e.g. Filazzola et al.,

2021; Halsch et al., 2021; Gely et al., 2020).

Caves and underground structures are of high importance to R. fer-

rumequinum (Ransome, 2020). We found distance to caves to be an important

predictor and our simulation highlights areas where R. ferrumequinum is po-

tentially constrained by a lack of caves. Caves are used by R. ferrumequinum

year-round but in Britain have particular value for hibernation. Ransome

(2020) prescribes that R. ferrumequinum need to be within 40 km of a cave or

suitable underground site for a population to persist. Man-made substitutes

such as mines, cellars and abandoned buildings can be used instead of caves,

where suitable structures exist in suitable habitat (Ransome, 2020; Winter

et al., 2020).

An example of man-made structures being used by R. ferrumequinum is

Bryanston SSSI and the Shaftesbury Estate in Dorset, where there are no caves

but bats use man-made structures for breeding and hibernation (KP Ecology,

2022; English Nature, 1977). Our model predicted large areas around Bry-

anston and the Shaftesbury Estate to be unsuitable, as the locations of man-

made roosts and hibernacula were not included in the modelling. This area

is predicted to be suitable under the artificial hibernacula simulation as the

constraint of caves is removed; the fact that there are healthy bat populations

using an artificial hibernacula in this location can thus be viewed as validation
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of the simulation. Our simulation results highlight areas where the creation

of artificial hibernacula would be beneficial or areas where existing artificial

hibernacula are already having an impact.

Urban expansion was found to have a negative impact on habitat suitab-

ility predictions, although the extent of the impact was dependent upon the

mode of urban expansion. The largest impact is predicted in suburban areas,

while urban areas such as city centres are impacted much less, likely because

urban centres already have a high degree of urbanisation that makes them

poor habitat. Thus we find that R. ferrumequinum would be impacted much

less by urban densification than by urban sprawl.

Mapping HSM predictions (figure 3.3) hints that R. ferrumequinum may be

constrained by habitat discontinuity in Britain, for example between north

and south Wales and along the south-east coast of England. The species was

distributed as far as Kent in south-east England until around 1900 (Harris,

1995); recolonisation may be prevented by patchiness of suitable habitat along

the south coast. Habitat along the south coast is improved in both the climate

change and artificial hibernacula simulations (figure 3.5), suggesting that this

colonisation may happen in future with increasing winter temperatures and

could be aided by the provision of artificial hibernacula. A recently discovered

roost in a building in Sussex may hint that this is already underway (BBC

News, 2022).

3.6.2 Conclusions

We identify a link between habitat suitability predictions and a measure of

habitat use. We demonstrate PAM to be a valuable tool for model validation

and we highlight the value of HSMs and predictive modelling for landscape-
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level spatial conservation planning. Our findings provide novel insight into

the nature of acoustic data recorded by PAM that will add to understanding in

the burgeoning field of bioacoustic research. Our validation approach is not

only relevant for acoustics, but for any remote sensing approach that monitors

species activity, and can be applied to many species.

Our HSM has direct application in addressing landscape-level conserva-

tion challenges for a species of conservation concern in Britain. We show

that R. ferrumequinum may experience future range expansion under climate

change, identify regions where provision of artificial hibernacula would be-

nefit the species, and highlight areas where the biggest threat is faced from

urban expansion. We find that urban densification to be preferable to urban

sprawl for R. ferrumequinum.

By providing a simple but powerful method for ground validation of

HSMs, our approach will increase confidence in HSM predictions and

will have practical application for conversation NGOs and local councils

undertaking species conservation management.
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Chapter 4

A High Resolution Spatial Modelling

Framework for Landscape-Level,

Strategic Conservation Planning

4.1 Abstract

Habitat loss and fragmentation are among the greatest threats to biodiversity

globally. Development is needed to tackle the housing crisis in the UK but

poses a threat to many species through habitat loss and fragmentation. There

is a legal requirement to ensure that new development does not negatively

impact protected species and the habitats they depend on, however planners

and local authorities are unable to make informed decisions without a detailed

understanding of how species use the landscape. Modern spatial modelling

approaches can fill this knowledge gap by providing detailed information on

the location of important habitat and an understanding of how it connects.

The aim of this study was to develop a spatial modelling framework for

protecting biodiversity in the planning process. Using habitat suitability and
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landscape connectivity modelling we aimed to produce high resolution map-

ping outputs that can inform development and planning decisions. We illus-

trate our approach with a species of conservation concern, the greater horse-

shoe bat (Rhinolophus ferrumequinum), in Somerset, UK.

We gathered fine scale data on R. ferrumequinum habitat use with GPS tele-

metry, mapped habitat using a high resolution, satellite derived land classi-

fication, and built a detailed vegetation map with LIDAR. With these data

we built models of habitat suitability and landscape connectivity, validated

model predictions with an independent dataset, and generated a number of

high resolution maps. We present a detailed case study to explore how differ-

ent mapping outputs can guide development decisions.

We propose that robust tools such as integrated spatial modelling should

be central to the planning process both in local planning departments and at

a national level; our framework can act as a template for implementing this.

4.2 Introduction

Development, in the form of new housing and infrastructure, is crucial to im-

prove living standards globally (Shackleton, 2021; Thacker et al., 2019; Thom-

son et al., 2013). Land use change and increased urbanisation associated with

development can, however, negatively impact biodiversity through habitat

loss and fragmentation, processes that are among the leading causes of global

species declines (Jung and Threlfall, 2016; Haddad et al., 2015; Newbold et al.,

2015; Fischer and Lindenmayer, 2007). Habitat loss results in diminution of

foraging resources, shelter and mating opportunities; fragmentation and loss

of functional landscape connectivity can act similarly by cutting individuals

off from these same resources (Fahrig, 2003). Minimising the impact of hab-
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itat loss and fragmentation in the planning process should therefore be a high

priority (Rookwood, 1995).

There is currently a housing crisis in the UK (Bramley, 2019). To meet hous-

ing needs, local authorities in England are legally obliged to facilitate house

building by identifying land that can be used for new development (Depart-

ment for Levelling Up, Housing and Communities, 2023). At the same time

local authorities have a legal responsibility to ensure new development does

not negatively impact wildlife and delivers biodiversity net gain (DEFRA,

2024; The Conservation of Habitats and Species Regulations, 2017; Wildlife

and Countryside Act, 1981). In practice, it can be difficult for planners to know

where to allow development to meet these aims. With increasing awareness

of the importance of landscape-scale approaches to conservation in England,

there is growing recognition of the need to adopt a strategic overview in plan-

ning processes to meet conservation objectives (Natural England, 2022b).

Systematic conservation planning (Margules and Pressey, 2000) offers a

potential solution to meet the conflicting challenges of providing housing and

protecting wildlife. Although much of the literature in this field is framed

with design of protected areas in mind (Watson et al., 2011), many of the same

principals can be built into the planning process: applying the mitigation hier-

archy, avoiding development in key areas and offsetting the impact when

avoidance is not possible (Barbé and Frascaria-Lacoste, 2021; Phalan et al.,

2018; Coralie et al., 2015; Kiesecker et al., 2010). Offsetting can be achieved

by making enhancements in strategic areas where restoration will have the

biggest conservation impact (Kujala et al., 2015).

Some species’ life histories bring them into conflict with humans more fre-

quently than others (Soulsbury and White, 2015). Bats are one such group
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(Voigt and Kingston, 2016) as they are often found in human-dominated land-

scapes and frequently come into conflict with humans during the planning

process (Cohen, 2011). In the UK all bats and their roosts are protected by law

(The Conservation of Habitats and Species Regulations, 2017; Wildlife and

Countryside Act, 1981) and special areas of conservation (SACs) have been

established to protect bat species listed on annex II of the European Coun-

cil Directive 92/43/EEC (Conservation of Natural Habitats and Wild Fauna

and Flora, 1992). It is a legal obligation for developments to consider their

potential impact on nearby SACs; when an SAC has been established for a

highly mobile species such as bats this effectively offers protection to large

areas of habitat surrounding the SAC. Implementing this protection is chal-

lenging, however, without a detailed understanding of how species use the

landscape. A robust, landscape-level, strategic approach is needed to enable

local authorities to effectively protect wildlife and comply with legal obliga-

tions for protecting biodiversity.

4.3 Aims

The aim of the study was to develop an integrated framework to map and

model landscape use of protected species. Illustrating our approach with the

greater horseshoe bat (Rhinolophus ferrumequinum) in Somerset, UK, we aimed

to develop a robust framework for informing development and planning de-

cisions. We broke this down into four tasks:

· gather fine scale data on the study species’ habitat use;

· identify habitat preferences and map important habitat using habitat

suitability models;
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· predict landscape movement using connectivity modelling;

· develop novel habitat and connectivity indices that aid interpretation of

habitat suitability and connectivity predictions for planners.

4.4 Methods

All statistical analysis and data processing was conducted in R (R Core Team,

2022) and all spatial data manipulation was completed using the terra package

(Hijmans, 2022), except where otherwise noted.

4.4.1 Study Area

Research was completed in North Somerset, Bath and North East Somerset,

and the former Mendip and Sedgemoor Districts (figure 4.1). This area con-

tains three SACs designated for R. ferrumequinum (JNCC, 2015a,b,c) which to-

gether contain approximately 20% of the British population (Mathews, 2018),

and cannot be considered in isolation due to movement of bats between roosts

(Ransome, 1980). A 10 km buffer around the study area was included to avoid

edge effects during connectivity modelling.

The study area has a wet and mild marine climate (Köppen classification

Cfb). The diverse topography of the area encompasses the coastal plains of the

Somerset levels and the limestone uplands of the Mendip hills. The domin-

ant land cover classes in the study area are grassland (both semi-natural and

improved; 52.8%), arable farmland (19.7%), built-up areas and gardens (15%),

and broadleaf woodland (8.7%; Marston et al. 2022a).



82 CHAPTER 4

Figure 4.1: Study area in South West England.

4.4.2 Habitat Suitability Models

We built habitat suitability models with MaxEnt (Phillips et al., 2006). We

chose appropriate environmental variables based on a literature review of

R. ferrumequinum ecology (table 4.1, figure 4.2i). We obtained high resolution

(10 m) land cover data from Marston et al. (2022a) and included the four most

prominent land cover classes in the study area: arable farmland, broadleaf

woodland, grassland (including both improved and semi-natural) and built-

up areas and gardens, all coded in a binary format (0/1). We generated ve-

getation maps with LIDAR point cloud data from the National LIDAR Pro-

gramme (Environment Agency, 2022), using all point cloud data labelled as

vegetation to build a digital surface model with the lidR package (Roussel and

Auty, 2023; Roussel et al., 2020) and from this calculating the mean height

of vegetation at a 10 m resolution. We also generated a ‘distance to vegeta-

tion’ layer in QGIS (QGIS.org, 2023) by calculating Euclidean distance to ve-
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getation for every 10 m grid square. Normalised difference vegetation index

(NDVI) was calculated for all available LandSat 8 imagery captured between

July and September in the last 5 years (imagery from 18th September 2019,

21st July 2021, 07th September 2021, 16th July 2022, 18th August 2022; excludes

available images with partial cloud cover). To estimate accurately the rela-

tionship between habitat use and NDVI, during model building we matched

individual GPS fixes with the NDVI image captured closest in time to the GPS

fix. Then for predictive mapping we calculated mean late summer NDVI us-

ing all imagery. NDVI was only available at an approximately 30 m resolution

and so was disaggregated to a 10 m resolution by bilinear interpolation. Street

light location data were obtained from local councils and Highways England

(table 4.1) and used to make a ‘distance to street lighting’ layer in QGIS by cal-

culating Euclidean distance to street lights for every 10 m grid square, up to

a maximum of 100 m, as the effect of street lighting on bat activity is likely to

be restricted to the immediate vicinity of the light source (Pauwels et al., 2021;

Azam et al., 2018). We checked all environmental rasters for multicollinear-

ity with the usdm package (Naimi et al., 2014) prior to model fitting, ensuring

rasters did not exceed a variance inflation factor of 5.

We used GPS telemetry data gathered from R. ferrumequinum in Somerset

as species occurrence records (for detailed methodology see appendix B). We

categorised each GPS fix as either foraging, roosting or commuting behaviour

by identifying clusters of fixes with the approach proposed by Birant and Kut

(2007). Clusters were defined as two or more fixes that occurred within 1 km

and 30 minutes of each other. Fixes in clusters were categorised as foraging

behaviour, excluding clusters that were located in buildings (identified us-

ing satellite imagery), which we categorised as roosting behaviour. R. fer-
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Table 4.1: Environmental variables included in habitat suitability models.

Variable Source

Arable/horticulture (binary 0/1) Marston et al. 2022a

Broadleaf woodland, minimum 5ha
(binary 0/1)

Marston et al. 2022a

Built-up areas and gardens (binary
0/1)

Marston et al. 2022a

Euclidean distance to street lights,
up to 100 m maximum (m)

North Somerset Council, Somerset Council, Bath and
north-east Somerset Council, Highways England,
Bristol City Council

Euclidean distance to vegetation (m) National LIDAR Programme, Environment Agency

Grassland (semi-natural and
improved; binary 0/1)

Marston et al. 2022a

Mean height of vegetation (m) National LIDAR Programme, Environment Agency

NDVI Landsat 8

rumequinum are able to fly 21-25 km per night (Ransome, 2020), so staying

in a relatively small area for a long period is indicative of foraging or roosting

(figure 4.2ii). Remaining fixes were categorised as commuting behaviour. We

thinned occurrence data to one record per grid square prior to modelling. We

modelled foraging habitat and commuting habitat separately (figure 4.2iii) in

two HSMs, one built with foraging fixes (henceforth ’foraging HSM’) and one

built with commuting fixes (henceforth ’commuting HSM’). The same envir-

onmental variables were used in both the foraging HSM and the commuting

HSM.

GPS data came from two roosts; for model building we only used GPS

data from bats tagged at Brockley Hall, withholding data from Iford Manor

for later validation. We generated 10,000 background points within 13 km of

Brockley Hall (the maximum distance a bat was recorded from the roost, i.e.

the area available to the bats) to ensure background points had the same bias
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as the occurrence data (Phillips et al., 2009). We used ENMEval (Muscarella

et al., 2014) with 5-fold cross-validation to identify the optimal regularisation

multiplier and feature classes for MaxEnt. We then built a full MaxEnt model

to predict habitat suitability over the whole study area (figure 4.2iii).

We calculated model sensitivity according to Bellamy et al. (2020), test-

ing whether there were more occurrence data in suitable habitat, defined as

a habitat suitability index above the maximum test sensitivity and specificity

(MTSS) threshold (Liu et al., 2005), than would be expected by chance. We

validated HSMs using data from bats tagged at Iford Manor, comparing the

habitat suitability index at GPS fixes (either foraging or commuting fixes, re-

spective of model; used) with predicted habitat suitability at an equal number

of randomly generated fixes within 10 km of the roost (the maximum dis-

tance a bat was recorded from the roost at Iford; available). In a valid model

we would expect to see higher habitat suitability scores at GPS fixes than at

random points, as bats should use suitable habitat more frequently than in

proportion to its availability. For this comparison we fitted a binomial gen-

eralised linear mixed-model with the lme4 package (Bates et al., 2015), with

bat ID as a random factor to avoid pseudoreplication from repeated sampling

of the same bats.

4.4.3 Connectivity

We used Circuitscape (McRae, 2006; McRae et al., 2008) to model connectivity

between known R. ferrumequinum roosts and the surrounding habitat, taking

an approach similar to McRae et al. 2016 (see also Landau, 2020). This ana-

lysis was conducted in the Julia programming language (Anantharaman et al.,

2019).
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Circuitscape uses circuit theory, borrowed from electrical modelling, to

simulate the movement of wildlife across a landscape. A current, represent-

ing the movement of wildlife, is allowed to pass over a circuit board, repres-

enting the landscape. The resulting current flow is then taken to represent

commuting routes the study species is likely to take. The components of the

connectivity analysis include 1) a resistance surface: a map of the landscape

that defines cost of movement, with higher resistance values indicating higher

cost of movement; 2) a source: the location the study species is coming from; 3)

a ground point: the destination that the study species is travelling to. For the

resistance surface we used the inverse of the commuting HSM, meaning areas

of high commuting habitat suitability had low resistance (i.e. had a lower cost

of movement) and areas of low commuting habitat suitability had high resist-

ance (i.e. had a higher cost of movement). To create a realistic model of bat

movement in the landscape we used predicted foraging habitat suitability to

define source values and known roosts as ground points (explained in more

detail below). We obtained roost records from the Bat Conservation Trust’s

National Bat Monitoring Programme (both summer and winter monitoring),

Bristol Regional Environmental Records Centre, Somerset Environmental Re-

cords Centre and L. Burrows (unpublished). Roosts with a spatial accuracy

lower than 10 m were removed.

The analysis started by focusing on a known roost. The resistance surface

was trimmed to a buffer around the roost. The size of the buffer was determ-

ined by fitting a polynomial linear model to estimate the relationship between

the number of bats using the roost and the maximum distance travelled from

the roost, using data from the GPS study and historical radio tracking studies

(Billington, 2001; Jones and Billington, 1999). This was based on the observa-
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tion that bats at large roosts need to travel further to access foraging grounds,

likely because territories close to the roost fill up (similar conceptually to the

‘halo of depletion’ observed in colonial seabirds; Weber et al., 2021). Buffer

sizes varied from 12 km for high count roosts (650 bats) to 7 km for low count

roosts (one bat). The roost was then set as the ground point and the source

value of the roost (defined as the most recent bat count at the roost) was split

among all surrounding cells in the buffer in proportion to habitat quality, as

estimated by the foraging habitat suitability model. This meant higher qual-

ity foraging habitat was assigned more current than lower quality foraging

habitat. This was repeated for every roost and the outputs were summed to

produce a map of cumulative current flow across the study site (figure 4.2iv).

We also produced a normalised version of the connectivity map follow-

ing McRae et al. (2016). First we produced a null model connectivity map

using the same source values as the first connectivity map but with every res-

istance value set to zero, i.e. as if there were no barriers to movement. We

then divided the cumulative current flow map by the null model to produce

a normalised map. The normalised connectivity map highlights areas where

barriers are channelling current flow and areas where current flow is impeded,

irrespective of total current flow (figure 4.2v).

We validated the connectivity model by comparing normalised connectiv-

ity values at used versus available locations with commuting fixes of Iford

bats, taking the same approach used to validate the HSMs (section 4.4.2). In a

valid model we would expect to find higher connectivity values at GPS fixes

than at random points, as bats would be more likely to use areas where current

is channelled and less likely to use areas where current flow is impeded.
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Figure 4.2: Graphical representation of the modelling framework.
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4.4.4 Indices

We propose a habitat index and a connectivity index that summarise the res-

ults of the habitat suitability and connectivity modelling, respectively. The

aim is to simplify the continuous predictions of the habitat suitability and

connectivity models to aid interpretation and facilitate comparison of differ-

ent locations in the landscape. To create the habitat index, we split the HSM

into tertiles based on habitat suitability values at GPS fixes (i.e. split the HSM

into three categories, high, medium and low, based on observed usage pat-

terns in tagged bats; figure 4.2vi). To derive the connectivity index, we split

the cumulative connectivity map into tertiles using the same approach used

to derive the habitat index. We split the normalised connectivity map into

quartiles, grouping the middle two quartiles to result in three categories. We

then summed the categorised connectivity and normalised connectivity maps

(figure 4.2vii).

To further aid interpretation, we summarised the habitat index and con-

nectivity index by land parcels. The land parcel is the unit of currency in the

planning process as land parcels are usually bought, sold and developed as a

whole; each land parcel can be considered a potential development site. We

obtained OS MasterMap land parcel polygons from Marston et al. (2022b) and

removed land parcels identified as woodland, inland water or built-up areas

and gardens. We then calculated the modal average of both the habitat index

and the connectivity index in each land parcel (figure 4.2vi and 4.2vii).

4.4.5 Nailsea and Backwell Case Study

To explore the utility of mapping outputs and to examine how maps can be

used, we looked in detail at a number of proposed development sites in the
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Figure 4.3: Case study sites between Nailsea and Backwell.

county of North Somerset. We plotted mapping outputs at each development

site to assess the sites importance for and impact on R. ferrumequinum, and to

consider potential habitat enhancements or mitigation strategies. This process

was used to assess if maps were useful for applied planning and management,

as such the results of this section are more qualitative than quantitative. We

used this process to refine our methodology and maximise the utility of map-

ping outputs.

Shapefiles of proposed housing development sites were obtained from

North Somerset Council. We selected four sites around the towns of Nailsea

and Backwell as there is a concentration of proposed development in this area

and the proximity to the Brockley Hall bat roost means development could

have a significant impact on bats roosting and with foraging within the SAC

(figure 4.3).
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Table 4.2: Habitat suitability model tuning parameters and validation results. ‘FC’ =

optimal feature classes identified by ENMeval, ‘RM’ = optimal regularisation multi-

plier identified by ENMeval, ‘AUC ind.’ = independent AUC, ‘AUC n.ind.’ = non-

independent AUC, ‘Sensitivity’ = model sensitivity measured as the proportion of

training data that fall within suitable habitat, defined with MTSS threshold (see sec-

tion 4.4.2), ‘Validation’ = p-value of validation with independent dataset (see section

4.4.2).

Model FC RM AUC ind. AUC
n.ind.

Sensitivity Validation

Foraging HSM LQHP 2.5 0.71 0.73 0.83 <0.001

Commuting HSM LQ 0.5 0.73 0.75 0.86 0.0182

4.5 Results

Detailed results of GPS telemetry are presented in appendix B.

4.5.1 Habitat Suitability Models

Habitat suitability model tuning parameters and validation results are shown

in table 4.2. Both models received strong support from validation with the

independent (Iford) dataset.

Foraging Habitat Suitability

Variables that had the greatest influence on foraging habitat suitability in-

cluded distance to street lighting, NDVI, grassland cover, height of and dis-

tance to vegetation (table 4.3, figure 4.4). This is visible in map predictions:

there is a halo of low habitat suitability around street lights, grassland is pre-

dicted to have much higher habitat suitability than arable fields and urban

areas, roads and railways stand out as areas of low suitability, and vegetated

field boundaries show as high suitability (figure 4.5a).
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Figure 4.4: MaxEnt response curves for models containing only the variable of in-

terest, from (a) foraging and (b) commuting habitat suitability models. The variable

‘lidar.vegetation’ refers to mean height of vegetation (m), as measured by LIDAR.

Commuting Habitat Suitability

The same variables were found to influence commuting habitat, although

the relative impact of variables differed (table 4.3, figure 4.4). Distance to

vegetation had a higher percentage contribution compared to the foraging

model, and resulted in a higher drop in gain when removed in the jackknife

test. Grassland had higher permutation importance compared to the foraging

model, but comparatively lower gain in the jackknife test when it was the only

variable.

The relative contribution of variables is clearest in model predictions. Dis-

tance to vegetation clearly had a large influence on commuting habitat pre-

dictions as vegetated field boundaries are predicted to be highly suitable, and
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Table 4.3: Measures of predictor variable performance identified by MaxEnt in habitat

suitability models. For details of how each is calculated see Phillips (2017). ‘F.’ =

foraging HSM, ‘C.’ = commuting HSM, ‘% ct.’ = percentage contribution, ‘pm. imp.’ =

permutation importance, ‘% gain w/o’ = jackknife test training gain without variable,

‘% gain only’ = jackknife test training gain with only variable. Jackknife test gain is

given as a percentage of the full model.

Predictor F. %
ct.

F. pm.
imp

F. %
gain
w/o

F. % gain
w/ only

C.
%
ct.

C. pm.
imp

C. %
gain
w/o

C. % gain
w/ only

Arable farmland
(0/1)

0.4 0.8 99.5 6.3 1.8 4.5 93.8 0.4

Broadleaf
woodland (0/1)

2.5 9.2 94.7 7.9 4.3 5.8 89.9 0

Built-up areas and
gardens (0/1)

4.8 0.8 99.8 28.6 1.7 7.7 95 10

Distance to
vegetation (m)

3.5 18.3 94.4 2.3 24.9 17.3 83.1 8.5

Distance to street
lights (m)

33.2 13.6 93.7 32.7 13.6 10.9 89.4 18.7

Grassland (0/1) 25.6 4.4 98.4 53.1 28 39.1 78.3 24.2

Mean height of
vegetation (m)

0.7 19.1 99.1 5.6 1.9 1.4 98.4 2.8

NDVI 29.3 33.8 76.5 58.9 23.8 13.2 69.9 39.3

centres of fields are less suitable than in the foraging model. This is espe-

cially apparent in large fields (figure 4.5b). The influence of land cover vari-

ables (grassland, arable, built-up areas and gardens, broadleaf woodland) and

NDVI are less visible than in the foraging model.

4.5.2 Connectivity models

Normalised connectivity was significantly higher at GPS fixes in the Iford

dataset than at random fixes (p<0.001), providing strong independent valid-

ation of model predictions. The cumulative current flow map shows total

predicted movement of bats in the landscape (figure 4.5c); this is dominated

by the main maternity and hibernation roosts, as they have the highest num-
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Figure 4.5: Habitat suitability, landscape connectivity and indices for R. fer-
rumequinum at a 10 m resolution. Predicted foraging (a) and commuting (b) habitat

suitability; cumulative (c) and normalised (d) current flow from connectivity analysis;

habitat (e) and connectivity index (f). Cumulative current flow represents the move-

ment of all bats in the landscape, while the normalised map highlights areas where

current is concentrated or obstructed, irrespective of total current flow.



HIGH RESOLUTION MODELLING FRAMEWORK 95

bers of bats. The normalised map, meanwhile, highlights pinch points and

barriers to connectivity irrespective of the total number of bats predicted to

use that area (figure 4.5d).

The connectivity maps mirror the predictions of the underlying commut-

ing habitat suitability model. Current tends to be channelled along vegetated

field boundaries, while the middle of large fields that are far from vegetation

are avoided. Current is channelled around edges of towns, lakes and large

areas lacking tall vegetation such as heathland, as these represent barriers to

movement. Similarly, roads with street lights show reduced current flow and

in places disrupt landscape connectivity.

4.5.3 Indices

The habitat and connectivity index simplify the habitat suitability and con-

nectivity maps to aid interpretation (figures 4.5e, 4.5f and 4.6). As with the

foraging habitat suitability model, the habitat index identifies small pastures

with well-developed hedgerow networks as having high suitability, while

arable fields have lower suitability. The habitat index also makes clear the

large scale trends (figure 4.6): the highest concentration of good habitat lies in

the north-west of the study area, in approximately the area between Nailsea,

Burnham-on-Sea, Glastonbury and Midsomer Norton. To the east of this, the

habitat around the large maternity roost at Iford Manor is predicted to be

lower suitability. Reference to the raw habitat suitability predictions around

Iford reveals that there is a lot of good habitat woven into a mix of less suitable

habitat, due in part to higher proportion of arable fields in this region, which

is obscured somewhat when categorised.
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Figure 4.6: Habitat index (a) and connectivity index (b), summarised by land parcels.

The large maternity roosts stand out in the connectivity index, although

less so than the raw cumulative connectivity map. The connectivity index

highlights features that are important for connectivity away from large roosts,

while still placing high importance on immediate roost surroundings. Thus,
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areas of concentrated current flow close to large roosts are ranked highest,

then diffuse flow close to large roosts and concentrated current flow at mid-

distance. The further from a large roost the lower the ranking; areas of less

concentrated current and at greater distances to large roosts are ranked the

lowest. As in the raw connectivity map, the highest current flow is visible

along vegetated field boundaries. When summarised by land parcel, this res-

ults in fields with well-developed vegetated boundaries near to large roosts

and on the edge of barriers being highlighted.

4.5.4 Nailsea and Backwell Case Study

High resolution mapping means that habitat suitability and connectivity maps

(figures 4.7a and 4.7b, respectively) highlight features such as hedgerows and

individual fields that are high quality habitat or important for connectivity.

Street lights are visible in the HSM (figure 4.7a), individual hedgerows are

visible in the connectivity map (figure 4.7b).

The habitat suitability map (figure 4.7a) shows that all proposed develop-

ments contain areas of good habitat, although site four possibly less than the

others. Comparison between sites is made clearer in the habitat index (fig-

ure 4.7c). It is apparent from the connectivity map (figure 4.7b) that site three

is important for connectivity; the Brockley Hall roost (of approximately 650

bats) is just off the map to the south of site three, so this was to be expected.

The connectivity index (figure 4.7d) highlights linear features along the south-

western portion of site one as being important for connectivity; connectivity

here could be retained or redirected around the perimeter of the site as part of

on-site mitigation, perhaps with vegetated a dark corridor.
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Figure 4.7: Case study of mapping outputs showing proposed development sites

around Nailsea and Backwell. Predicted foraging habitat suitability (a); cumulative

current flow (b); habitat (c) and connectivity index (d); habitat (e) and connectivity

index (f) summarised by land parcels. Points of consideration highlighted.

The connectivity index (figure 4.7d) highlights a potential crossing route

through Backwell between sites three and four. This is a residential area of
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leafy gardens with no street lighting that might not have been highlighted as

an obvious commuting route without modelling; having been identified, this

area can be targeted for on-site surveys. The proposed developments of site

three and four in combination could sever this potential commuting route as

bats are hemmed in by a road with street lighting to the south. Careful con-

sideration would need to be given to avoid impacting landscape connectivity

here.

The connectivity index (figure 4.7f) shows that there are sites that would

be valuable for off-site mitigation to the north and south of Backwell, as there

is channelled connectivity here. Protecting these areas and improving habitat

would strengthen landscape connectivity. At both these points bats need to

cross a road, so habitat enhancements might include a green bridge or an un-

derpass (Ramalho and Aguiar, 2020; Davies, 2019). Reducing lighting in these

areas would also be of benefit; street lights are evident at both these locations

in the HSM (figure 4.7a). The habitat index (figure 4.7e) shows that there are

low suitability fields in both these areas, meaning habitat enhancements could

have a large impact and deliver good value for money.

Of all these developments site two is possibly the most favourable, as al-

though it contains good habitat it will have limited impact on landscape con-

nectivity and there are many opportunities nearby for off-site mitigation that

would strengthen connectivity.

4.6 Discussion

We have developed a framework to generate a number of mapping outputs

that can inform development decision-making. The maps generated by our

approach can be used when considering a planning application or the poten-
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tial of a development site at the pre-application stage. Equally, our maps can

be used in designing mitigation and for biodiversity net gain; high resolution

enables users to pick out individual fields and hedgerows of value. Addition-

ally, modelling results provide insight into the factors affecting habitat suit-

ability and their relative importance, which can guide habitat enhancement

strategies.

We have illustrated the utility of the different maps in the case study

(section 4.5.4), both for gauging impact, planning habitat enhancements

and designing mitigation. Different maps have their own strengths and

limitations. While the cumulative connectivity map provides a realistic

estimate of landscape use, the map is dominated by large roosts making it

hard to identify landscape features that are valuable for connectivity away

from big roosts. Individual landscape features can be better discerned in the

normalised connectivity map, however this is not representative of actual

predicted site usage (a commuting route used by one bat gets same weighting

as a route used by 100); the connectivity index combines the best of both.

Habitat suitability and connectivity maps provide continuous predictions in

great detail, but this can make it difficult to compare different locations or

sites. Categorising predictions into indices aids interpretation and makes it

easier to compare sites, summarising by land parcel further still, but at the

expense of detail. Used in combination, however, our maps can be a valuable

tool for guiding development decisions and planning conservation measures.

Our findings corroborate many aspects of R. ferrumequinum ecology that

are documented in the literature, but our novel approach provides a power-

ful application of this knowledge through spatial visualisation. We found

grassland cover, distance to street lighting, NDVI, height of and distance to
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vegetation to be important predictors of foraging habitat suitability. Habitat

enhancements could thus involve creation of permanent pasture, allowing ve-

getated field boundaries to grow tall and planting more field boundary trees

(Foxley et al., 2023; Ransome, 1996, 1997).

We found that while R. ferrumequinum foraging habitat would benefit from

reduced street lighting (Stone et al., 2015), in our study area the actual area of

foraging habitat affected by lighting is very small relative to the total avail-

able foraging habitat. Street lighting may, however, act as an insect sink, re-

ducing quality of foraging habitat over a larger area than our model predicts

(Tielens et al., 2021; Desouhant et al., 2019; Macgregor et al., 2015). We found

street lighting to negatively impact commuting habitat, with knock-on effects

for landscape connectivity. Our work further highlights the need for careful

design of street lighting strategies to avoid impacting landscape connectivity

for photosensitive species (Laforge et al., 2019; Zeale et al., 2018; Stone et al.,

2009).

We found that the same habitat enhancements aimed at improving for-

aging habitat would also improve connectivity, but more emphasis would

need to be given to improving vegetated field boundaries for connectivity,

as our findings suggest land cover is less important for commuting than for

foraging. Dividing large fields into smaller compartments by creation of new

hedgerows would improve commuting habitat (Foxley et al., 2023; Finch et al.,

2020b).

4.6.1 Future Work and Limitations

Our approach could be further developed by altering the basemap (e.g. simu-

lating the conversion of grassland to housing) to model different development
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scenarios, looking at the effect on landscape connectivity. Similarly, it could

be used for testing mitigation designs, for example by testing if current flow

can be diffused by improving habitat adjacent to a proposed development, or

modelling how planned habitat improvements influence landscape connectiv-

ity.

It is worth highlighting that habitat suitability is not static, but changes sea-

sonally (Franklin, 2010; Zurell et al., 2009), and species’ habitat use will reflect

this. The importance of woodland for R. ferrumequinum, particularly in the

spring, is documented extensively in the literature (e.g. Flanders and Jones,

2009; Duverge, 1996; Jones et al., 1995). All our field work was carried out

in late summer when bats are more likely to forage in open habitats, mean-

ing the overall importance of woodland was likely under-estimated, reflect-

ing this seasonal bias. To add to this, we suspect that GPS data were under-

represented in woodland due to difficulty of obtaining a GPS fix under dense

canopy (Jiang et al., 2008; Moen et al., 1996). Models would be improved by

accounting for seasonal changes in environmental variables and habitat use

(Smeraldo et al., 2018).

Being able to change maps is important as models should be considered to

be dynamic (Pressey et al., 2007) and should be updated when more data has

been gathered (e.g. new roosts discovered) or when the landscape is altered

(e.g. with a new development). We are working with local authorities in our

study area to enable this.

Note that the approach presented here was designed for a communally

roosting bat species with well-documented roosts. A lack of information on

roost locations would be an impediment to modelling and a different ap-
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proach might be needed for a species with more dispersed roosting habits

(e.g. Omniscape; Landau, 2020).

At present, the lightest GPS tags available weigh around 1 g, which re-

stricts their use to bat species >20 g (Aldridge and Brigham, 1988). This is an

obvious limitation; a different approach to gather data on habitat use would

be needed for smaller species. Radio tracking is not a viable option at such

high resolution as it lacks accuracy. Acoustic monitoring is a good option but

would require a careful sampling design.

Finally, it is important to note that the habitat index and the connectivity

index are not intended to replace field surveys. Our mapping does not ne-

cessarily take into account the many additional factors on the ground, such

as habitat management (e.g. pesticide use), that may affect habitat suitability

(Ransome, 1996).

4.6.2 Conclusions

Our novel approach provides an evidence-based tool to be used by local au-

thorities, ecological consultants, planners and conservationists, helping them

reverse species declines and achieve legal requirements for biodiversity net

gain. While the present study focused on bats in an SAC, with small modific-

ations to account for differences in species’ life history, our modelling frame-

work could be used to inform strategic conservation planning for many pro-

tected species.

We propose that our modelling framework should be used as part of an

evidenced-based, applied approach to protecting wildlife in the planning sys-

tem, and that integrated spatial modelling should be central to the planning

process at both national and local levels. Habitat loss and fragmentation are
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among the greatest threats to biodiversity; an integrated approach that in-

forms intelligent, considerate planning with targeted mitigation could allevi-

ate a lot of pressure on wildlife populations.
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Chapter 5

General Discussion

Spatial modelling is a valuable tool for applied conservation. Spatial mod-

elling helps to better understand species-environment relationships (Fortin

et al., 2012) and can be used to make spatially explicit predictions of spe-

cies’ landscape use to support informed conservation decision-making (Zurell

et al., 2022). In this thesis I explored a number of different spatial modelling

techniques and their use in applied conservation.

In chapter one I identified the drivers of R. ferrumequinum activity in an

agricultural landscape. I found low activity over arable farmland and high

activity along vegetated field boundaries with lots of trees. The acoustic ap-

proach I used enabled the study to extend to species other than just R. fer-

rumequinum. I identified a strong spatial component driving bat activity in

all species, which in R. ferrumequinum was partially explained by distance to

the roost. The study was centred around the large R. ferrumequinum mater-

nity roost at Brockley Hall SSSI, so it should be expected that this would have

a strong impact on activity levels, nevertheless, this is an interesting insight

into the nature of acoustic data. I expanded on this theme in chapter three,

where I identified that a broad scale habitat suitability trend can be picked out
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in acoustic data. This is particularly interesting because the main finding of

chapter one was that fine scale characteristics of field boundaries were better

descriptors of acoustic activity than the characteristics of the adjacent fields

or the local landscape. Together, these findings help to better understand the

information contained within acoustic data and thus its potential applications.

The above insights tell us that the predicted activity maps in chapter one

contain information both on bat movement in the landscape and habitat use.

This type of mapping clearly has value for local planning and habitat man-

agement around important roost sites as it gives the user an idea of the im-

portance of different sites for the study species, at a very high resolution. The

model could also be used to simulate the effect of a change in land use or farm-

ing practice, for example. The main challenge involved in mapping predicted

activity is that acoustic activity is liable to change over the year and over the

course of years, making it difficult to make accurate predictions. Data from

a longer study period would provide extra information for more robust pre-

dictive modelling. Sadly, it was not feasible to extend my survey period in the

time-frame of my PhD, and it would have been incredibly labour-intensive to

do so using the same methodology.

The key takeaway from chapter one surely must be to avoid building close

to big roosts: predicted activity maps (figure 2.10) for R. ferrumequinum show

the highest activity up to 3 km from the roost. This is clearly an important

area, and development should be avoided here.

The value of acoustic approaches is further demonstrated in chapter three,

where I used passive acoustic monitoring for validation of a broad scale hab-

itat suitability model (HSM). HSMs are widely used in conservation (Guisan

et al., 2013). By providing a simple approach for HSM validation, this work
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will increase confidence in HSM predictions and have great value in conser-

vation management. Interestingly, this approach worked well despite the po-

tential mismatch in scale: acoustic activity is inherently measured at a fine

scale (most bat calls will not be detected at distance >40 m; Adams et al. 2012),

while the model being validated was broad scale, both in grain and extent.

The broad scale models used in chapter three have a different kind of value

to fine scale predictions from chapters one and four, and can be used to ad-

dress different issues. The HSM identified factors affecting R. ferrumequinum

distribution, finding climatic variables and availability of caves to be im-

portant predictors at this scale. I used this model to identify landscape-level

conservation priorities and to suggest approaches to mitigation. The climate

change simulation predicted a future range expansion for R. ferrumequinum,

which is valuable information that enables forward planning (Cook et al.,

2014; Pressey et al., 2007). The development simulation identified areas where

development would have a negative impact and how this could potentially

hinder colonisation of new areas. Additionally, the artificial hibernacula

simulation identified areas where provision of hibernacula would benefit R.

ferrumequinum. This chapter demonstrates the power of spatial approaches

for targetted conservation at a broad scale and identifies a clear rule of thumb

for developers: build up, not out, to avoid impacting bats.

Models in chapter four identified a number of factors affecting R.

ferrumequinum habitat suitability that corroborate the results of previous

chapters, finding hedges and vegetation to be important for foraging habitat

suitability, grassland to be better than arable, and finding street lighting

to have a negative impact on habitat suitability. A rule of thumb here is

that greener is better: bats are more likely to use natural areas with more
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vegetation and higher landscape heterogeneity. These findings can be used

to direct mitigation measures, spatially explicit modelling can then say where

mitigation measures would be most effective. This chapter again highlights

the value of spatial modelling by producing a number of mapping outputs

that can support conservation decision-making in the planning process. It

would be possible to build on this further by using chapter four models to

simulate the impact of different proposed development scenarios, which

would have great application in local planning departments.

Collecting data on the study species is just the first step in systematic con-

servation planning (Margules and Pressey, 2000). This first step is what I

aimed to achieve in this thesis: to provide a better understanding of how R.

ferrumequinum use the landscape, creating a robust evidence base that can be

used to inform conservation decisions (section 1.4). This work focused on the

greater horseshoe bat, however, the approaches developed here can easily be

applied to other bat species and other regions. Differences in species’ life his-

tory and knowledge base may affect the details of the modelling: for example,

a lack of data on location of roosts would require a different approach to con-

nectivity modelling in chapter four (see chapter discussion, section 4.6), but

the principals remain the same.

The next steps in systematic conservation planning include identifying

conservation goals and implementing them; the drive for this needs to come

from regulators and local authorities.

5.1 Impact

It has been argued that there is a science-practice gap in ecology and con-

servation (also referred to as a research-implementation gap or a knowledge-
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action gap): that research is seldom used to drive policy and that decisions

are not always made using the latest scientific knowledge (Sutherland et al.,

2004). Multiple causes have been suggested, these are analysed in depth by

Bertuol-Garcia et al. (2018). Pertinent among these are (i) that research often

does not address the issues conservation practitioners and policymakers face

on the ground (Laurance et al., 2012; Griffiths, 2004), and (ii) that research pa-

pers make recommendations for their approaches to be used in conservation

but do not make the techniques they develop accessible for a non-technical

audience. To address this gap, many authors recommend dialogue between

policymakers and scientists, and that requirements of decision makers should

be used to drive conservation research questions (Anderson, 2014; Bainbridge,

2014; Cook et al., 2013). Toomey et al. (2017) put it aptly: ‘...conservation [should

be] a social process that engages science, not a scientific process that engages society’.

For conservation research to truly have impact, there is a clear need to address

the science-practice gap.

To this end, my PhD was designed to receive as much input as possible

from local stakeholder groups. We held regular ‘steering group’ meetings over

the course of the project that included representatives from Natural England,

North Somerset Council, Somerset Council, Avon Wildlife Trust and the Vin-

cent Wildlife Trust. Separate from the steering group meetings, I held meet-

ings with ecologists from Bath & Northeast Somerset and South Gloucester-

shire. We also held regular meetings with North Somerset Council that were

integral in developing applied aspects of the work and ensuring results have

practical application. There are already positive signs that the modelling ap-

proaches I developed in this thesis are being incorporated into local planning:

mapping outputs generated in chapter four have been used to inform North
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Somerset Council’s new local plan, for habitats regulations assessments, and

in developing the West of England Local Nature Recovery Strategy. I would

like to keep working with North Somerset Council and Natural England to

make sure this trend continues.

5.2 Future Work

Eventually it will become necessary to update chapter four models. GPS tele-

metry produces fantastic data, however comes with high costs financially, in

terms of training and experience required, and in terms of disturbance when

trapping and tagging bats. An approach based on acoustics would have a

number of advantages: it is considerably less intrusive, cheaper, requires no

specialist training, and captures data on all bat species (as well as other non-

bat species e.g. Newson et al. 2020, 2017).

Deploying passive acoustic detectors and analysing the data as I did in

chapters two and three is, however, labour-intensive. Citizen science offers

a potential solution; harnessing the power of citizen scientists can enable re-

searchers to generate large-scale datasets that would otherwise be impossible

(Brown and Williams, 2019; Kosmala et al., 2016). Following on from the work

in chapter two, the North Somerset Bat Survey (NSBS; https://www.batcon

servationresearchlab.co.uk/north-somerset-bat-survey) launched in

2021 and has been collecting acoustic data from over Somerset every summer

since. The NSBS definitely has a role to play in the future of planning in North

Somerset.

While citizen science data tends to be biased to urban and easily access-

ible areas (Tang et al., 2021; Johnston et al., 2020), if supplemented with ad-

ditional targetted surveys (Krabbenhoft and Kashian, 2020) these data could

https://www.batconservationresearchlab.co.uk/north-somerset-bat-survey
https://www.batconservationresearchlab.co.uk/north-somerset-bat-survey
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potentially be used instead of GPS telemetry for the fine resolution habitat

suitability modelling used in chapter four. Supplementary surveys could use

permanent static detectors that upload their results automatically to a central

server for real-time analysis (e.g. Gallacher et al., 2021; Sethi et al., 2020). This

would enable long-term data to be gathered over seasons and years, and is an

area I would like to explore further.

I would like to keep working with NSC to make sure spatial modelling

retains a central role in planning throughout the county. The goal would be

to develop an automated modelling workflow that can be managed in-house,

with the ultimate aim of expanding this framework beyond North Somerset.

5.3 Concluding Remarks

This thesis showcases the power of spatial modelling for landscape-level con-

servation. My work focused on the greater horseshoe bat, however, the ap-

proaches developed here can be applied to any other bat species. Spatial mod-

elling should be integral to planning, although there remain some challenges

for modelling to be assimilated into planning at a national level. Huge invest-

ment is needed both in applied research and in building technical capacity at

local authorities and planning departments. Ultimately, the initiative needs

to come from policy: it needs to be a legal requirement that spatial modelling

and landscape-level approaches to conservation become part of the planning

process.
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Appendix A

Error Rate Modelling

A.1 Methods

Recordings were analysed an automatically assigned a species classification

with BatClassify (Scott, 2012). BatClassify provides a confidence score for

every species/species group’s presence in each recording, it is then down to

the user to set a threshold above which to consider a recording to contain a

positive species ID (e.g. accepting all scores above 0.8 as positive IDs). Fol-

lowing Barré et al. (2019), we manually analysed 2,400 random recordings, 25

recordings for every confidence score value at 0.1 intervals (0.1, 0.2, 0.3 etc) for

every species/species group, and recorded the result (0/1, incorrect/correct

ID). If less than 25 recordings were available then all files were used (e.g.

Myotis alcathoe). We then performed a logistic regression (correct/incorrect

ID ∼ confidence score) to estimate the probability of a given confidence score

containing a correct identification.

All manual sound analysis was conducted blind whereby the confidence

score was hidden when performing manual ID. It was not possible to differ-

entiate Myotis species manually, so all Myotis calls were merged, keeping the
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highest confidence score. Pipistrellus calls =<48kHz were classified as P. pip-

istrellus, calls >=52kHz were classified as P. pygmaeus, pipistrelle calls between

these two thresholds were recorded as Pipistrellus spp.

At a 50% probability of a correct ID it is expected that the results will

contain approximately the same number of false positives as false negatives,

meaning that the results for the entire dataset will be accurate (Barré et al.,

2019), although errors will not necessarily be evenly distributed across record-

ing locations. Calls with a probability >0.5 were therefore weighted according

to their confidence score (i.e. a file with 0.9 probability of correct identification

will count as an occurrence of 0.9), meaning that files with greater certainty

contribute more to the results.

Correlation between error rate and environmental variables was investig-

ated. Using the manual ID set, the number of false positives and false neg-

atives were calculated at a 50% probability cut off. A mixed model was fit

(false positive/negative ∼ environmental variable) with recording location as

a random effect to control for differences between recording locations, using

the lme4 R package (Bates et al., 2015). All environmental variables that may

affect the acoustic properties of the environment or the ability of the detector

to record were individually tested. It was not possible to test species sep-

arately as there were too few data points in random effect groups, causing

singular fits, so errors for all species were included in a single analysis.

A.2 Results

It was not possible to calculate error rates over 70% and 50% for P. pipistrel-

lus and P. pygmaeus respectively (figure A.1) due to a large number of false

positives in the manual ID set it. As the 50% threshold corresponded with a
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Figure A.1: Predicted curve of logistic regression, showing probability of correct ID

at different confidence levels (False Positive Tolerances)

high confidence score for both species, the occurrence (weighted probability)

would never be much above 0.5 for P. pygmaeus and 0.7 for P. pipistrellus. This

may have resulted in lower estimates of activity for both species.

We found error in auto-ID to correlate with some habitat types (table A.1)

but the effect was generally very small (figure A.2). Most noteworthy was that

the probability of false positives at vegetated field boundaries was 20% lower

than at non-vegetated field boundaries.
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Table A.1: Effect of environmental variables on error rate in automatic classification

at 50% FPT. Showing Nakagawa pseudo-R2 Nakagawa et al. 2017

False Negatives False Positives

P-value Estimate R2 P-value Estimate R2

vegetated_boundary 0.06 0.744 0.01 0.00 -1.567 0.04

trees_per_100m 0.01 0.029 0.01 0.02 -0.049 0.03

fence 0.41 -0.353 0.00 0.00 1.118 0.01

improved_grassland 0.55 0.130 0.00 0.07 0.557 0.01

road 0.61 -0.157 0.00 0.05 -0.927 0.02

arable 0.08 -0.625 0.01 0.66 -0.175 0.00

stream 0.19 0.365 0.00 0.01 0.938 0.02

percentage_gaps 0.03 -0.063 0.02 0.83 0.005 0.00

height 0.05 0.058 0.01 0.01 -0.116 0.02

overhang_height 0.07 0.106 0.01 0.15 -0.121 0.01

overhang_width 0.14 0.055 0.00 0.26 -0.063 0.00

slope 0.20 2.859 0.00 0.01 -8.770 0.02

mean_nightly_rainfall 0.66 0.032 0.00 0.03 0.191 0.01

mean_min_temp 0.40 0.027 0.00 0.23 -0.048 0.00

mean_nightly_humidity NA NA NA NA NA NA

mean_nightly_wind.speed 0.91 -0.010 0.00 0.07 0.205 0.01



157

Figure A.2: Effect of environmental variables on error of automatic classification (sig-

nificant effects only)
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Appendix B

GPS Telemetry

B.1 Methods

We conducted a GPS telemetry study on R. ferrumequinum to gather high res-

olution habitat use data, using two types of GPS tag: PinPoint 10 (Lotek UK

Ltd., Wareham, Dorset, UK) and nanoFix GEO MINI (Pathtrack, Otley, York-

shire, UK). Both tags weighed approximately 1 g and were therefore suitable

for bats weighing >20 g (Aldridge and Brigham, 1988). We also used PicoPip

Ag337 VHF tags (Lotek UK Ltd., Wareham, Dorset, UK) for tag retrieval. We

programmed GPS tags to obtain a locational fix every 15 minutes between

sunset and sunrise.

We trapped bats under license from Natural England (license number

2021-54190-SCI-SCI and 2022-60583-SCI-SCI-1) at R. ferrumequinum maternity

roosts located in Brockley Hall SSSI and Iford Manor SSSI, with permission

from the Vincent Wildlife Trust who manage the roosts. Trapping took place

in August-September 2021 and August 2022. All trapping was carried out

in compliance with the Bat Conservation Trust Bat Survey Good Practice
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Guidelines (Collins, 2016) while observing guidance relating to SARS-CoV-2

(Kingston et al., 2021).

We caught bats with a harp trap (Faunatech Austbat, Australia) located

on flight lines 10-50 m away from the roost. Trapped bats were extracted

promptly and juveniles, males and pregnant or lactating females were re-

leased immediately. Females that were not pregnant or lactating were placed

into cloth holding bags and a provisional weight was recorded. Bats >20 g

that appeared to be in good health were kept for tagging. We fitted com-

bined GPS/VHF tags (in 2021) or GPS tags only (in 2022) to each bat below

the scapulae by trimming the fur and fixing the tag with surgical adhesive.

Tags attached in this way have been shown to remain attached to the bat for

an average of 10 days (O’Mara et al., 2014). We recorded weight and forearm

length and then released bats where they were caught.

GPS tags were retrieved either by: a) recapturing bats using the same meth-

odology outlined above or with a hand net (n = 3 tags), b) collecting from the

floor of the roost in the autumn having been groomed off by the bat (n = 10

tags), or c) locating them where they had fallen in the field via radio telemetry

(n = 1 tag). GPS data were downloaded from retrieved tags. To ensure accur-

acy of the data we removed a small number of isolated erroneous fixes that

were >20 km from the roost site (n = 5 fixes). We conducted tests with the

tags prior to tagging bats to determine tag accuracy. Based on our findings

we removed fixes recorded by Lotek tags with an HDOP >5 (n = 32 fixes, 6%

of total) and fixes recorded by Pathtrack tags that used fewer than 5 satellites

(n = 114 fixes, 16% of total).
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B.2 Results

In total 34 bats were tagged and 14 tags were retrieved (41% recovery rate).

Bats were tracked for an average of four nights each (±2 s.d.; table B.1). We

recorded an average of 66 locational fixes per bat (±24 s.d.), of which through

cluster analysis 64% were classified as foraging, 25% as commuting and 11%

as roosting (figure B.1). We recorded an average of 11 foraging clusters per bat

(±5 s.d.) and identified 16 new roosts through GPS tracking, plus an additional

four through radio tracking.

Tag performance differed between brands. Lotek tags lasted on average

3 nights (mean, ±1 s.d.) and took 50 usable locational fixes per bat (±17 s.d.),

while Pathtrack tags lasted an average of 7 nights (±1 s.d.) and took 88 usable

locational fixes per bat (±12 s.d.).

B.2.1 Bat Dispersal and Colony Size

The maximum distance bats were recorded from the roost was 12.5 km at

Brockley (roost size ~800 bats) and 9.8 km at Iford (roost size ~400 bats),

while the mean maximum distance from the roost was 8.9 km (±3 km s.d.)

at Brockley and 7.2 km (±2.2 km s.d.) at Iford (table B.1).
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Table B.1: GPS tracking statistics.

Bat # Tag type Site Max. dist.
from roost
(m)

Fixes Foraging
fixes

Commut-
ing fixes

Clusters Nights
tracked

1 Pathtrack Brockley 9,985 81 46 33 14 8

2 Pathtrack Brockley 11,577 97 53 31 16 8

3 Pathtrack Brockley 10,212 101 65 34 14 7

4 Pathtrack Brockley 9,871 79 54 24 12 6

5 Pathtrack Iford 9,350 72 52 20 5 5

6 Pathtrack Iford 9,812 95 71 23 15 7

7 Lotek Brockley 3,491 54 37 7 8 3

8 Lotek Brockley 6,224 48 45 3 6 2

9 Lotek Iford 6,124 44 26 5 12 3

10 Lotek Iford 3,765 25 19 0 6 2

11 Lotek Brockley 7,117 39 15 5 6 2

12 Lotek Brockley 12,532 68 43 15 14 3

13 Lotek Iford 7,520 64 31 14 19 3

14 Lotek Iford 6,919 34 23 11 4 2

- - Mean
(±s.d.)

8,178
(±2,738)

64 (±25) 41 (±17) 16 (±12) 11 (±5) 4 (±2)
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Figure B.1: Locational fixes from GPS tracking at Brockley Hall, North Somerset and

Iford Manor, Bath and Northeast Somerset, 2021-22. Fixes are categorised as either

commuting or foraging behaviour. Roosting fixes not shown for sensitivity.
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