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Key Points

Question Are there sensitive periods when parenting during childhood has stronger 
associations with functional brain architecture during adolescence, and in turn mental health 
during early adulthood?

Findings This longitudinal cohort study of 173 youth demonstrated that associations 
between harsh parenting and brain architecture were widespread in early childhood, but localized 
to cortico-limbic circuitry in late childhood. Associations with warm parenting were localized to 
cortico-limbic regions in middle childhood, which related to lower internalizing symptoms in 
early adulthood during the COVID-19 pandemic.

Meaning Identifying sensitive periods for the neurodevelopmental associations of parenting 
can inform the type and timing of preventive interventions.
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Abstract

Importance Parenting relates to brain development and long-term health outcomes, though 
whether these associations depend on the developmental timing of exposure remains 
understudied. Identifying these sensitive periods can inform when and how parenting is 
associated with neurodevelopment and risk for mental illness.

Objective To characterize how harsh and warm parenting during early, middle, and late 
childhood relate to brain architecture during adolescence and, in turn, psychiatric symptoms in 
early adulthood during the COVID-19 pandemic.

Design 21-year observational, longitudinal birth-cohort study from the Future of Families 
and Child Wellbeing Study. Data were collected from February 1998-June 2021. Analyses were 
conducted from May-October 2023.

Setting Population-based.

Participants 173 low-income youth from Detroit, Michigan; Toledo, Ohio; and Chicago, 
Illinois.

Exposures Parent-reported harsh parenting (psychological aggression, physical aggression), 
and observer-rated warm parenting (responsiveness), at ages 3, 5, and 9 years.

Main Outcomes and Measures Brain-wide (segregation, integration, small-worldness), 
circuit (prefrontal-amygdala connectivity), and regional (betweenness centrality of amygdala and 
prefrontal cortex) architecture at age 15 using functional magnetic resonance imaging. Youth-
reported anxiety and depression symptoms at age 21.

Results 173 youth (mean[SD] age = 15.88[0.53] years; 95[55%] female; 138[80%] Black) 
were included. Parental psychological aggression during early childhood was positively 
associated with brain-wide segregation (β = 0.30, 95% CI 0.14 to 0.45) and small-worldness (β = 
0.17, 95% CI 0.03 to 0.28), whereas parental psychological aggression during late childhood was 
negatively associated with prefrontal-amygdala connectivity (β = -0.37, 95% CI -0.55 to -0.12). 
Warm parenting during middle childhood was positively associated with amygdala centrality (β 
= 0.23, 95% CI 0.06 to 0.38) and negatively associated with prefrontal centrality (β = -0.18, 95% 
CI -0.31 to -0.03). Warmer parenting during middle childhood related to reduced anxiety (95% 
CI -0.10 to -0.01) and depression (95% CI -0.10 to -0.003) during early adulthood via greater 
adolescent amygdala centrality.

Conclusions and Relevance Neural associations with harsh parenting were widespread across 
the brain in early, but localized in late, childhood. Neural associations with warm parenting were 
localized in middle childhood, in turn relating to mental health during future stress. These 
developmentally-contingent associations can inform the type and timing of interventions.
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Introduction

Cross-species evidence demonstrates that parenting promotes or undermines children’s 

health, emotional wellbeing, and adaptive functioning across the lifespan, partly through 

alterations in brain development.1-5 Across animal and human studies, parenting has been 

associated with the structure, function, and connectivity of cognitive and affective systems across 

the entire brain, with consistent associations reported in the cortico-limbic circuit that underlies 

processing of salience, threat, and emotion.5-8 As the developing brain calibrates to current 

environmental demands, children adapt their emotional learning and regulation to navigate their 

immediate context, with consequences for future mental health.4 Accordingly, characterizing 

how modifiable parenting behaviors relate to brain development and emotional wellbeing is 

critical for targeted treatment and prevention to reduce the substantial, cascading burden of 

mental illness.

Key theories in pediatric and developmental sciences posit sensitive periods of brain 

development, which represent windows of elevated neuroplasticity during which both positive 

and negative experiences can have more potent and lasting associations with brain and 

behavior.9-12 In particular, the environment is theorized to more powerfully relate to brain 

systems that are developing most rapidly – and may thus be especially malleable – during the 

period of exposure.12-14 Consistent with theory, emerging investigations suggest developmental 

specificity in how experiences relate to the structure and function of cortico-limbic circuitry.15-22 

However, limited research has tested this notion in humans with the ability to parse timing-

specific from cumulative associations, especially with both adverse (e.g., harsh parenting) and 

supportive (e.g., warm parenting) contexts.
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The brain is a complex network of regions that interact to shape behavior,23 prompting the 

need for computational techniques that can capture the functional architecture of the brain across 

spatial scales,24 rather than only specific regions or circuits of interest. Furthermore, how the 

neurobiological associations of parenting during sensitive periods relate to mental health remains 

unknown, especially during developmental (adolescence, early adulthood) and contextual 

(stressful) periods of heightened vulnerability.25,26 Prospective, longitudinal, and network analytic 

designs that span multiple developmental stages are required to elucidate these complex, 

dynamic pathways. Delineating how different parenting behaviors exhibit timing-dependent 

neurobiological associations linked to mental health has critical public health implications to 

inform developmentally tailored preventive interventions.

The present study examined how harsh and warm parenting during early, middle, and late 

childhood relate to functional brain architecture within a longitudinal, population-based sample 

of predominantly low-income, racially minoritized adolescents. We applied connectivity and 

graph theoretic analyses to characterize functional architecture across the brain, in cortico-limbic 

circuitry, and in key cortical and limbic regions. Leveraging recent statistical innovations 

(structured life-course modeling approach; SLCMA),27,28 we disentangled timing-dependent from 

cumulative associations between parenting and neural architecture to identify sensitive periods in 

the neurobiological embedding of parenting. We used multi-method (observational, parent-

reported) measures of parenting, assessing harshness and warmth separately given their distinct 

associations with neurobehavioral development.29,30 Finally, we tested whether neural 

architecture in adolescence was associated with anxiety and depression six years later in early 

adulthood during a widespread stressor (the COVID-19 pandemic).
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Methods

Participants

Participants included 173 youth from the Future of Families and Child Wellbeing Study, 

a population-based cohort of 4,898 children born in large US cities oversampled (3:1) for non-

marital births, resulting in a strong and generalizable sampling frame with high representation of 

low-income, racially minoritized families.31 Data were collected at birth (starting on February 1, 

1998) and ages 1, 3, 5, 9, and 15 years through phone and home visits. In a follow-up sub-study, 

the Study of Adolescent Neural Development (SAND), 237 youth (15-17 years) from Detroit 

(MI), Toledo (OH), and Chicago (IL) completed neuroimaging. Six years later (21 years), 

participants self-reported symptoms of anxiety and depression via online and phone interviews 

during the peak of the COVID-19 pandemic (April 30, 2020-June 26, 2021). Sixty-four 

participants were excluded due to MRI contraindications, refusing to scan, insufficient 

neuroimaging data, and coverage/signal issues (eMethods), but did not differ from included 

participants on major sociodemographic variables (eTable1). Parents provided written informed 

consent and youth provided oral assent across waves. FFCWS and SAND were approved by the 

Institutional Review Boards of Princeton University and the University of Michigan. This report 

followed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) 

guidelines.

Parenting Behaviors

We measured harsh and warm parenting from biological mothers during early (3 years), 

middle (5 years), and late (9 years) childhood (eMethods, eTable2). Harsh parenting was 
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measured using the Psychological Aggression and the Physical Aggression subscales from the 

parent-reported Parent-Child Conflict Tactics Scale.18,32 Warm parenting was measured using in-

home observer ratings on the Responsiveness Subscale from the Home Observation for 

Measurement of the Environment.33

MR Acquisition

Neuroimaging data were acquired on a GE Discovery MR750 3T scanner with an 8-

channel head coil (eMethods). Acquisition included a T1-weighted structural scan, an 8-minute 

resting-state scan,34 a socioemotional face processing task-based scan,17 and a reward processing 

task-based scan.35 We concatenated resting-state and task-based scans (with task effects 

regressed out), generating ~20 minutes of “pseudo-rest” neuroimaging data per participant to 

describe overall, intrinsic functional brain architecture with higher reliability.36–38 We corrected 

motion artifacts using a conservative, multi-step procedure (eMethods).39

Functional Connectivity and Graph Theoretical Analyses

We parcellated the brain into 333 cortical and 54 subcortical regions of interest (ROIs) 

from established atlases40,41 to generate functional connectivity matrices using BOLD timeseries.

Circuit-Level. To investigate cortico-limbic circuitry (Figure 1), we constructed bilateral 

masks for the amygdala (4 ROIs) and regulatory regions of prefrontal cortex (PFC; 46 ROIs)42–44 

(eTable3). We then Fisher r-to-z transformed each matrix and calculated average PFC-amygdala 

connectivity.
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Graph Analyses. In graph theoretic analyses probing brain architecture, we removed 

negative connections and Fisher r-to-z transformed each matrix.45 We generated weighted, 

undirected graphs45 to investigate brain-wide and regional architecture (Figure 1).

Brain-Wide. We characterized three metrics of brain-wide architecture: (1) modularity 

(network segregation) estimates the degree to which the brain organizes into distinct, specialized 

networks;46 (2) global efficiency (network integration) estimates how efficiently information can 

flow across the brain;47 and (3) small-world propensity measures the balance between 

segregation and integration, which represents an “optimal” architecture.48

Regional. At the regional level, we calculated the betweenness centrality of the amygdala 

and PFC.49 Regions with higher betweenness centrality can exert a stronger influence on global 

neural communication. See eMethods, eTable2, and eTable4.

Mental Health

Anxiety and depressive symptoms during early adulthood (21 years) were self-reported 

using sum scores from the 21-item Beck Anxiety Inventory50 and 20-item Beck Depression 

Inventory51 during the COVID-19 pandemic (eTable2).52

Statistical Analyses

Analyses were conducted in R (v4.2.2) and accounted for missing parenting, covariate, or 

mental health data using multiple imputation (20 imputations, 25 iterations, mice package).53 To 

examine how parenting relates to brain architecture, we leveraged SLCMA,27,28 a two-stage 

approach that models associations with timing (continuous parenting scores during 

early/middle/late childhood) versus accumulation (sum of parenting scores across waves). 
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SLCMA has recently been applied to epigenetic, psychiatric, and behavioral, but not neural, 

outcomes,54–57 and is similar to developmental science studies using time-varying exposures to 

investigate plasticity of resilience-related processes among adversity-exposed youth.58 In the first 

stage, SLCMA implements least-angle regression to select a model containing the sensitive 

period, cumulative score, or combination thereof with the greatest explanatory power until 

additional model complexity contributes negligible incremental variance, determined by elbow 

plots of variance explained (eFigure1). In the second stage, effect estimates are calculated for 

each selected model pooled across imputed datasets using Rubin’s rules. We used post-selective 

inference to calculate P-values and confidence intervals adjusted for the selective process in the 

first stage. We tested each parenting dimension and brain outcome separately, correcting for 

multiple comparisons based on the selected models within each parenting dimension using the 

false discovery rate (FDR). Pfdr-values <.05 indicated statistical significance.

When significant associations between parenting and brain architecture were detected, we 

tested for “indirect effects” to anxiety and depressive symptoms (i.e., brain architecture as a 

mechanism linking parenting to mental health). We used the PROCESS macro to calculate bias-

corrected confidence intervals with 10,000 bootstraps within each imputed dataset and generated 

an average 95% confidence interval across imputations. Direct paths were estimated from 

regression models pooled across imputed datasets using Rubin’s rules.

To address potential confounds during the neuroimaging wave (eMethods), analyses 

controlled for sex assigned at birth, ethnoracial identity (youth-reported at age 15), pubertal 

development (primarily youth-reported at age 15), poverty ratio (age 15), parental education (age 

15), and in-scanner head motion (mean framewise displacement). Graph theoretic analyses also 

controlled for mean functional connectivity. Analyses with psychiatric symptoms additionally 
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controlled for pre-pandemic levels of anxiety and depression (age 15) to examine whether brain 

architecture relates to changes in psychiatric symptoms.
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Results

Of the 237 participants, 173 (mean[SD] age = 15.88y[0.53y]; range = 15.03y-17.60y; 

95[55%] female, 78[45%] male; 138[80%] Black, 9[5%] Hispanic, 9[5%] Other/Multiple, 

17[10%] White; median family income = $36,555) were included following exclusion for 

neuroimaging analyses (eMethods). Harsh and warm parenting were weakly correlated with 

each other (eTable5). Correlations within parenting dimensions across waves ranged from weak 

to strong (|r| = .06 to .58; eTable5). These findings may partly reflect measurement unreliability 

and/or suggest that parenting environments are dynamic across childhood,59 which facilitates 

delineation of potential sensitive periods in their neuropsychiatric associations.

Sensitive Periods for Neurobiological Associations of Harsh Parenting

In the first stage of model selection, timing-dependent associations were favored over 

cumulative associations for both psychologically and physically aggressive parenting 

(eFigure1). In the second stage (Table; Figures 2-3), greater psychological aggression during 

early childhood was associated with greater brain-wide modularity (β = 0.30, 95% CI [0.14, 

0.45]) and small-world propensity (β = 0.17, 95% CI [0.03, 0.28]), but more negative PFC-

amygdala circuit connectivity during late childhood (β = -0.37, 95% CI [-0.55, -0.12]). No other 

timing-dependent or cumulative associations survived FDR correction.

Sensitive Periods for Neurobiological Associations of Warm Parenting

For warm parenting, timing-dependent associations were similarly favored over 

cumulative associations (eFigure1). In the second stage (Table; Figures 2-3), warmer parenting 
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during middle childhood was associated with greater regional betweenness centrality of the 

amygdala (β = 0.23, 95% CI [0.06, 0.38]) and lower regional betweenness centrality of PFC (β = 

-0.18, 95% CI [-0.31, -0.03]). No other timing-dependent or cumulative associations survived 

FDR correction.

Longitudinal Associations with Mental Health

We next tested associations between adolescent brain architecture and psychiatric 

symptoms during early adulthood, controlling for psychiatric symptoms during adolescence 

(Figure 4; eFigure2). Greater regional amygdala betweenness centrality was significantly 

associated with lower anxiety (β = -0.20, 95% CI [-0.37, -0.03]). In “indirect effect” models, 

warmer parenting in middle childhood was significantly associated with reduced anxiety (95% 

CI [-0.10, -0.01]) and depression (95% CI [-0.10, -0.003]) in early adulthood via greater 

amygdala centrality during adolescence.

Sensitivity Analyses

Baseline models without covariates revealed similar associations among parenting, brain 

architecture, and mental health (eTable6; eFigure3). Additionally, since warm parenting scores 

skewed high, we repeated analyses after dichotomizing our warmth variable, and found similar 

associations (eMethods). Finally, we repeated our graph theoretic analyses with metrics 

generated from two null networks that randomized brain architecture at different levels of 

conservativeness (eMethods). These randomly permuted brain architectures were not 

significantly associated with parenting or internalizing symptoms (eFigure4), confirming the 

specificity and robustness of our findings.
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Discussion

Leveraging a population-based sample enriched for adversity exposure and followed 

longitudinally across 20+ years, together with statistical innovations that parse timing-dependent 

from cumulative associations,27,28 we investigated the developmental specificity of associations 

among parenting during childhood, functional brain architecture during adolescence, and mental 

health during early adulthood. We found that associations between harsh parenting and neural 

architecture were both widespread across the brain, and localized to cortico-limbic circuitry, 

depending on the timing of exposure. The associations between warm parenting and neural 

architecture were localized to cortico-limbic regions during middle childhood, in turn relating to 

future anxiety and depression during a major stressor (the COVID-19 pandemic). This 

prospective longitudinal study demarcates neurodevelopmental windows of vulnerability and 

opportunity, consistent with the notion that the developing brain may be associated with 

parenting and other experiences during sensitive periods of enhanced plasticity to relate to the 

emergence of psychiatric illness. Such precision can inform the environments and mechanisms 

targeted by interventions that focus on developmental stage, history, and psychosocial context.

Functional brain architecture develops at distinct rates across spatial scales. The overall 

architecture of the brain develops rapidly early in life, resulting in heightened plasticity globally 

throughout the brain during early childhood.60,61 Across development, overall plasticity declines 

but specific brain circuits continue to mature, resulting in more localized, system-specific 

enhancements in plasticity during late childhood.13,60,62 This heterochronous neurodevelopmental 

program suggests that environmental experiences may exhibit widespread associations early in 

development, but localized associations later on. Consistent with this hypothesis, we found that 

parental psychological aggression in early childhood was positively related to brain-wide 
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segregation and small-worldness, whereas psychological aggression in late childhood was 

negatively related to cortico-limbic circuit connectivity. These divergent associations suggest 

that early parental adversity may relate to the entire brain, spanning multiple cognitive, 

socioemotional, and sensorimotor systems. Conversely, later parental adversity may relate to 

localized communication within brain systems underlying emotional learning and regulation. 

The observation that harsh parenting during early childhood exhibited more widespread neural 

associations dovetails with literature indicating that earlier adversity exhibits more potent and 

lasting relationships with psychosocial and neuroendocrine functioning,56,63 and that associations 

between adversity and cortico-limbic activity are timing-dependent.17,18,20

These developmentally-contingent associations have critical implications for prevention. 

These findings identify early childhood as a period when the developing brain may be more 

broadly associated with exposure to, and potentially prevention of, harsh parenting and other 

adversities. Several evidence-based interventions can lead to enduring reductions in harsh 

parenting, including Parent Management Training and Parent-Child Interaction Therapy,64 

Attachment and Biobehavioral Catch-Up,65 and tiered approaches implementing primary-care 

prevention and home-based secondary/tertiary prevention, such as Smart Beginnings.66 This 

developmental specificity further raises promise for biologically informed interventions to target 

distinct neural circuits, and cognitive-affective processes, depending on the timing of adversity 

exposure.12

The associations between warm parenting and neural architecture were localized to 

cortico-limbic regions only during middle childhood. Following warmer parenting, neural 

communication was influenced more strongly by bottom-up subcortical regions (amygdala) and 

less strongly by top-down cortical regions (PFC). The finding that warmth had more localized 
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neural associations than harshness accords with evolutionary theory by indicating that the 

developing brain may be more attuned to adversity over nurturance, given its salience for 

survival.67 Warm parenting may relate to prefrontal and limbic architecture specifically during 

middle childhood, which involves high cortico-limbic plasticity while children rely on parental 

support to regulate their emotions and navigate novel transitions to school and peer contexts.6

A strength of this work is examining both an adverse (harsh parenting) and promotive 

exposure (warm parenting). Despite notable exceptions,21,68 this is an important innovation in 

pediatric neuroscience, which has disproportionately adopted deficit-based perspectives 

(focusing on adversity) over strength-based perspectives, especially among youth marginalized 

via racialized identity or socioeconomic status.69 Incorporating both adverse and promotive 

experiences allowed us to characterize how brain development may differentially adapt to 

different contexts depending on parental behavior, spatial scale, and developmental period of 

exposure.

Importantly, warmer parenting during middle childhood was associated with lower 

anxiety and depression in early adulthood during a global, naturally occurring stressor (COVID-

19 pandemic), via greater amygdala centrality during adolescence. This pathway was observed 

while statistically controlling for these psychiatric symptoms during adolescence, indicating that 

limbic architecture uniquely relates to future wellbeing, especially resilience during stress.52 

These observations suggest that warmth-related variation in limbic architecture may reflect a 

protective neural phenotype through which warm parenting in childhood promotes emotional 

wellbeing 15 years later. Parental warmth begins to normatively decline during this period.59 

Thus, these findings have important translational implications. Specifically, our findings suggest 

that fostering parental warmth in middle childhood64–66 may scaffold the development of neural 
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circuitry that supports the capacity and tendency to mobilize adaptive coping strategies during 

future stress,70 mitigating psychiatric symptoms later in life.

While our study has several strengths, including prospective longitudinal assessments of 

harsh and warm parenting, computational measures of neural architecture across spatial scales, 

confirming our findings with random permutations, parsing timing-dependent versus cumulative 

associations, and examining populations that have been historically excluded from pediatric 

biological research, a few limitations warrant consideration. First, longitudinal neuroimaging 

data are required to characterize how these neural alterations unfold over time. Moreover, as this 

work used “pseudo-rest” neuroimaging data, future studies should examine whether these 

findings are affected by task demands or the type of functional neuroimaging data used. We also 

collected neuroimaging data using an 8-channel head coil, which has lower signal-to-noise ratio 

than recent acquisitions. Second, neurobiological associations with harsh parenting were specific 

to psychological rather than physical aggression, potentially because our measure of physical 

aggression (e.g., spanking) may not tap harshness in culturally sensitive ways.71 Third, only 

warm parenting related to mental health via neural architecture, likely due to measurement 

differences between warmth (observer-rated) versus harshness (parent-reported). Future studies 

should replicate these results using other, potentially more sensitive parenting measures, such as 

structured laboratory observations. Fourth, future research must identify timing-dependent 

associations with parenting beyond biological mothers. Fifth, while psychiatric symptoms were 

examined using validated measures,50,51 future research should implement gold-standard 

assessments such as diagnostic interviews. Finally, the effect sizes of parenting on neurobiology 

were relatively modest, which may not be surprising since parenting behaviors emerge from 

complex ecological systems, such as social/economic inequities that are associated with parental 
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stress.72 Despite controlling for proxies of these exposures, additional work should examine how 

the timing of these broader experiences relates to neurodevelopment and health.

In summary, parenting during childhood may have timing-dependent associations with 

adolescent functional brain architecture and psychiatric symptoms in early adulthood. By 

integrating theoretically-informed and data-driven methods, we identified potential sensitive 

periods during which harsh and warm parenting may differentially relate to neural organization 

(at different spatial scales), and in turn psychiatric vulnerability or resilience when encountering 

future stress. Such developmentally-dependent associations could inform the type and timing of 

preventive interventions by targeting the biological state of the developing brain.4,12 Our findings 

may also encourage reform of policies that enhance or constrain caregivers’ ability to express 

behaviors that promote or undermine children’s brain development and psychological wellbeing 

across the lifespan (e.g., home visits, income supplements, reducing concentrated 

disadvantage).5,16,72,73
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Figure 1. Description of brain-wide, circuit-level, and regional metrics of functional brain 

architecture. Modularity is a brain-wide, graph theoretic metric that characterizes network 

segregation. Global efficiency is a brain-wide, graph theoretic metric that characterizes network 

integration. Small-world propensity is a brain-wide, graph theoretic metric that characterizes the 

balance between segregation and integration. Average functional connectivity is a circuit-level 

metric that characterizes the strength of communication between two regions of interest (i.e., 

prefrontal cortex and amygdala). Betweenness centrality is a regional, graph theoretic metric that 

characterizes the importance, or centrality, of a brain region (i.e., prefrontal cortex and 

amygdala) in a system.

Figure 2. Summary of timing-dependent associations between harsh/warm parenting 

during childhood and functional brain architecture during adolescence. Structured life-

course modeling approach (SLCMA) analyses demonstrated that harsh parenting during early 

childhood was associated with the architecture of the overall brain (segregation, small-

worldness) during adolescence. Harsh parenting during late childhood was associated with the 

architecture of cortico-limbic circuitry (prefrontal cortex-amygdala connectivity) during 

adolescence. Warm parenting during middle childhood was associated with the architecture of 

cortical (prefrontal cortex) and limbic (amygdala) regions (betweenness centrality) during 

adolescence. All associations of harsh and warm parenting were explained by the developmental 

timing of exposure. There were no instances when parenting was associated with functional brain 

architecture via accumulation. PFC = prefrontal cortex.
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Figure 3. Associations between harsh/warm parenting during early, middle, and late 

childhood with brain architecture during adolescence. Psychological aggression during early 

childhood was positively associated with brain-wide (A) segregation (modularity) and (B) small-

worldness (small-world propensity). (C) Psychological aggression during late childhood was 

negatively associated with functional connectivity between prefrontal cortex and the amygdala. 

Warm parenting during middle childhood was (D) negatively associated with the betweenness 

centrality of prefrontal cortex and (E) positively associated with the betweenness centrality of the 

amygdala. All analyses controlled for sex assigned at birth, race/ethnicity, pubertal development, 

poverty ratio, parental education, and head motion. Graph theoretical analyses further controlled 

for average functional connectivity.

Figure 4. Longitudinal associations among warm parenting, functional brain architecture, 

and mental health during the COVID-19 pandemic. Warmer parenting during middle 

childhood was associated with greater betweenness centrality of the amygdala during 

adolescence, which was in turn associated with lower levels of (A-B) anxiety and (C-D) 

depression during early adulthood. Paths among warm parenting, amygdala betweenness 

centrality, and internalizing symptoms represent standardized regression coefficients and 95% 

confidence intervals derived from standard errors pooled across imputed datasets using Rubin’s 

rules. Indirect effects were assessed from estimates and bias-corrected 95% confidence intervals 

with 10,000 bootstraps averaged across imputed datasets (Panel B for anxiety; Panel D for 

depression). All analyses controlled for sex assigned at birth, race/ethnicity, pubertal 

development, poverty ratio, parental education, head motion, average functional connectivity, 

and anxiety or depression during adolescence.
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Table. Structured life-course modeling approach (SLCMA) results relating the accumulation of, versus the developmental timing of 

exposure to, harsh and warm parenting during childhood to functional brain architecture during adolescence.

SLCMA Model Selected Variables R2 Change Coefficient 95% CI Porig Pfdr

Psychological Aggression

Modularity Early Childhood 4.14% 0.30 0.14 to 0.45 <.001 .003

Middle Childhood 4.24% -0.18 -0.32 to -0.01 .03 .07

Global Efficiency Middle Childhood 2.10% -0.05 -0.09 to 0.02 .06 .10

Early Childhood 0.44% 0.02 -0.10 to 0.06 .46 .51

Small-World Propensity Early Childhood 2.89% 0.17 0.03 to 0.28 .005 .02

Late Childhood 1.68% -0.10 -0.20 to 0.22 .18 .22

Prefrontal Cortex - Amygdala 

Connectivity

Late Childhood 2.70% -0.37 -0.55 to -0.12 .002 .01

Middle Childhood 3.29% 0.29 -0.10 to 0.46 .05 .09

Betweenness Centrality of 

Prefrontal Cortex

Late Childhood 2.31% -0.14 -0.28 to 0.05 .04 .09

Betweenness Centrality of 

Amygdala

Late Childhood 0.48% -0.13 -0.28 to 1.29 .16 .22

Middle Childhood 0.17% 0.08 -2.27 to 0.20 .96 .96

Physical Aggression

Modularity Early Childhood 3.17% 0.24 -0.18 to 0.40 .23 .66

Middle Childhood 0.83% -0.13 -0.28 to 0.64 .60 .81

Global Efficiency Early Childhood 0.23% -0.02 -0.06 to 0.20 .62 .81

Middle Childhood 0.07% 0.01 -0.39 to 0.05 .81 .81

Small-World Propensity Early Childhood 1.93% 0.16 -0.05 to 0.27 .25 .66
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SLCMA Model Selected Variables R2 Change Coefficient 95% CI Porig Pfdr

Late Childhood 1.00% -0.10 -0.20 to 0.49 .71 .81

Prefrontal Cortex - Amygdala 

Connectivity

Late Childhood 0.76% -0.22 -0.39 to 0.26 .11 .66

Middle Childhood 1.01% 0.18 -0.71 to 0.34 .34 .67

Betweenness Centrality of 

Prefrontal Cortex

Late Childhood 1.03% -0.19 -0.35 to 0.05 .11 .66

Middle Childhood 1.79% 0.15 -0.22 to 0.30 .39 .67

Betweenness Centrality of 

Amygdala

Early Childhood 0.90% 0.12 -0.26 to 0.28 .27 .66

Late Childhood 0.18% -0.04 -0.18 to 1.06 .74 .81

Warm Parenting

Modularity Middle Childhood 0.02% -0.02 -0.08 to 3.15 .86 .87

Early Childhood 0.01% 0.02 -Inf to -0.02 .87 .87

Global Efficiency Early Childhood 1.63% 0.04 -0.02 to 0.08 .10 .21

Middle Childhood 0.75% 0.02 -0.11 to 0.05 .29 .41

Small-World Propensity Middle Childhood 2.89% -0.12 -0.22 to 0.01 .03 .08

Prefrontal Cortex - Amygdala 

Connectivity

Late Childhood 0.29% -0.08 -0.23 to 0.28 .27 .41

Middle Childhood 0.63% 0.06 -0.47 to 0.20 .82 .87

Betweenness Centrality of 

Prefrontal Cortex

Middle Childhood 1.31% -0.18 -0.31 to -0.03 .005 .03

Early Childhood 4.70% 0.16 -0.04 to 0.29 .02 .08

Betweenness Centrality of 

Amygdala

Middle Childhood 4.11% 0.23 0.06 to 0.38 .003 .03

Late Childhood 1.07% -0.08 -0.22 to 0.25 .29 .41

Note. Only theoretical models (early childhood, middle childhood, late childhood, accumulation, or combination thereof) selected 

within each SLCMA model (see eFigure1) are presented. All analyses controlled for sex assigned at birth, race/ethnicity, pubertal 
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development, poverty ratio, parental education, and head motion. Graph theoretical analyses further controlled for average functional 

connectivity. R2 change represents the incremental percentage of variance in the brain outcome explained by each theoretical model, 

while controlling for covariates. Coefficient represents standardized coefficients. Porig denotes original P-values. Pfdr denotes P-values 

corrected for multiple comparisons using the false discovery rate (FDR), for the number of models selected within each dimension of 

parenting (11 for psychological aggression, 12 for physical aggression, 11 for warm parenting).
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Supplemental Online Material

Michael C, Gard AM, Tillem S, et al. Developmental timing of associations among 
parenting, brain architecture, and mental health. JAMA Pediatrics.

eMethods.

eTable1. Participant Demographics.

eTable2. Descriptive statistics of parenting, neuroimaging, and mental health data in the 
included sample.

eTable3. Coordinates for constructed bilateral masks representing regulatory regions of 
prefrontal cortex from the Gordon cortical atlas and the amygdala from the Tian subcortical 
atlas.
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eMethods

Participants

The Future of Families and Child Wellbeing Study (FFCWS) is a population-based birth 

cohort study of 4,898 children (52.4% boys) recruited from 20 large US cities (population over 

200,000) from 1998 to 2000, with a 3:1 oversampling for non-marital births.1 For the follow-up 

Study of Adolescent Neural Development (SAND) when magnetic resonance imaging (MRI) 

data were collected (ages 15-17 years), 506 families from Detroit (MI), Toledo (OH), and 

Chicago (IL) who participated in the FFCWS were contacted. Of the 506 families contacted, 237 

families participated in SAND. The complete list of measures and data for this project is publicly 

available from the National Institutes of Mental Health data archive (https://nda.nih.gov/).

Of the 237 SAND families, 28 teens were not eligible to complete MRI scanning due to 

contraindications (e.g., braces, weight limit, etc.) or refusing to scan, and 12 teens did not have a 

sufficient number of usable scan sessions (e.g., due to excessive head motion) to generate 

“pseudo-rest” fMRI data (i.e., at least two usable sessions from the resting-state scan, the 

socioemotional face processing task-based scan, and the reward processing task-based scan). 

From the remaining 197 families, 22 teens did not meet coverage criteria (i.e., 22 participants 

had at least one node in their brain-wide connectivity matrix where either: >50% of voxels of the 

node had coverage issues, and/or <10 voxels in the node were usable after voxels with coverage 

issues were removed). Two more participants were excluded because of issues with signal 

artifact. Therefore, the final sample for the present investigation included 173 adolescents with 

valid pseudo-rest fMRI data. Participants included in the present study did not significantly differ 

from excluded participants on a range of relevant demographic variables, including age, sex 
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assigned at birth, pubertal development, annual household income, parental education, and 

race/ethnicity (see Supplemental Table 1).

Parenting Behaviors

We examined harsh and warm parenting behaviors through telephone and in-person 

assessments during early childhood (3 years), middle childhood (5 years), and late childhood (9 

years). Similar to prior SAND studies,2 to prevent artifacts associated with changing informants 

across waves, we limited our investigation to parenting provided by the biological mother, who 

represented the primary caregiver in 94% of the FFCWS families. Accordingly, parenting data 

were coded as missing if the primary caregiver was not the biological mother, or if the measures 

were not completed at each wave (see Supplemental Tables 1-2 for details about missing data). 

Moreover, similar to prior SAND studies,2 given our interest in the role of the developmental 

timing of exposure to different parenting behaviors, we only included items that were repeated 

across waves in our final harsh and warm parenting scores. The selected measures of harsh and 

warm parenting have been extensively used in previous FFCWS and SAND publications.2–4

We examined two dimensions of harsh parenting from the parent-reported Parent-Child 

Conflict Tactics Scale.5 Mothers were asked to rate how many times over the past year they used 

each disciplinary tactic, from 0 (never happened) to 6 (more than 20 times). First, we calculated 

means for five items from the Psychological Aggression subscale (“shouted, yelled, or screamed 

at”, “threatened to spank or hit but didn’t actually do it”, “swore or cursed at”, “called child 

dumb or lazy or some other name like that”, “said they would send them away or kick them out 

of the house”). Second, we calculated means for five items from the Physical Aggression 
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subscale (“shook child”, “hit child on the bottom with some hard object”, “spanked child on the 

bottom with bare hand”, “slapped child on hand, arm, or leg”, “pinched child”).

We operationalized warm parenting as sum scores from the Responsiveness subscale of 

the Home Observation for Measurement of the Environment.6 This subscale included four items 

that indicate positive parenting behaviors that trained observers rated as present (1) or absent (0) 

during an in-home visit (“spoke twice or more to child during visit”, “verbally answered child’s 

questions or requests”, “voice conveyed positive feelings”, “caressed, kissed, or cuddled child 

once during visit”). As items for warmth were binary and observer ratings were not missing for 

any item, we calculated sums instead of means.

MR Data Acquisition

Participants were scanned with a research-dedicated GE Discovery MR750 3T scanner 

with an 8-channel head coil located at the University of Michigan Functional MRI Laboratory. 

Head movement was limited through the use of head paddings and detailed instructions provided 

to participants. High-resolution T1-weighted gradient echo (SPGR) images were collected (TR = 

12ms, TE = 5ms, TI = 500ms, flip angle = 15o, FOV = 26cm, slice thickness = 1.4mm, 256 x 192 

matrix, 110 slices, voxel size = 1mm x 1mm x 1mm) and used for preprocessing. Functional 

neuroimaging data during the resting-state and the two tasks were obtained using T2*-weighted 

blood oxygenation level dependent (BOLD) images with a reverse spiral sequence (TR = 

2000ms, TE = 30ms, flip angle = 90o, FOV = 22cm, slice thickness = 3mm, 40 slices, voxel size 

= 3.44mm x 3.44mm x 3mm, ascending acquisition). Functional images encompassed the entire 

cerebrum and most of the cerebellum to maximize coverage of limbic regions of interest. Slices 

were prescribed parallel to the AC-PC plane (same locations as the structural scans) and were 
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acquired contiguously, which optimized the effectiveness of the movement postprocessing 

algorithms. Images were reconstructed offline using processing steps to remove distortions 

caused by magnetic field inhomogeneity and other sources of misalignment to the structural data, 

which yields excellent coverage of subcortical structures of interest.

MR Data Preprocessing

Anatomical images were skull-stripped (f = .25) using the Brain Extraction Tool (BET) in 

FSL version 6.07 and segmented into gray matter, white matter, and cerebrospinal fluid (CSF) 

using FSL FAST. After removing large temporal spikes in the k-space functional data (>2 SD), 

field map correction was applied, and functional images were reconstructed using Matlab. Noise 

from cardiac and respiratory motion was removed using RETROICOR and slice-timing 

correction using SPM8 (Wellcome Department of Cognitive Neurology, London, UK; 

http://www.fil.ion.ucl.ac.uk). Moreover, the first 10 volumes of functional data were removed to 

ensure the stability of signal intensity. Following these steps, the functional data were further 

preprocessed using the FSL fMRI Expert Analysis Tool (FEAT). Functional images were skull-

stripped and spatially smoothed using FSL FMRIB’s Automated Segmentation Tool,8 and 

registered to subject-specific skull-stripped and segmented anatomical images. We performed 

motion correction using MCFLIRT and spatial smoothing using a Gaussian kernel of 6mm 

FWHM. Grand-mean intensity of the entire 4D dataset was normalized by a single multiplicative 

factor and FSL motion outliers were run to extract framewise displacement (FD) motion 

parameters.9 ICA-AROMA was used to remove motion-related artifacts in the data, nuisance 

signal derived from white matter and CSF was regressed out, and data with signal below 0.01Hz 

were high-pass filtered. These processing steps have been described in detail in other studies.3,10

5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

http://www.fil.ion.ucl.ac.uk/


Motion Correction

A conservative, multi-step procedure was used to correct for motion artifacts combining 

multiple correction strategies.11 First, the Artifact Detection Tools (ART) software package 

(http://www.nitrc.org/projects/artifact_detect/) was used to identify and remove motion artifacts 

from the fMRI time series (i.e., de-spiking), using a mean framewise displacement cut-off value 

of 0.5mm.9 Scanner sessions where >20% of the session was identified as motion artifact were 

excluded from subsequent analyses. Participants who did not have at least two independent 

usable scanner sessions due to motion artifact after scrubbing were removed from the sample. 

Secondly, as described above, ICA-AROMA was applied at the subject-level to remove motion-

related artifacts,12,13 prior to the construction of subject-level connectivity matrices and networks.

Connectivity Analysis

The preprocessed resting-state data and residualized task-based fMRI data was entered 

into a region of interest (ROI) to ROI connectivity analysis using the CONN toolbox.14 More 

specifically, data from all usable fMRI sessions were extracted from each ROI (i.e., node) for 

this analysis. Denoising procedures were then applied to the data, including: 1) orthogonalizing 

the time courses with respect to signal in the white matter and CSF, the six realignment 

parameters, the first- and second-order derivatives of each realignment parameter, and the de-

spiking regressors; 2) band-pass filtering (0.008-0.09Hz); and 3) linear detrending. This multi-

step denoising procedure reduced signal artifact originating from CSF and white matter, 

censored signal produced by excessive motion to greatly reduce the impact of motion artifact on 

the data, and mitigated signal artifact due to biological noise (e.g., breathing, heart rate, etc.).14–16 

Following denoising, the connectivity analysis was performed using the CONN toolbox ROI-to-
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ROI first-level static connectivity analysis procedure.14 This procedure generated pairwise 

correlations between each individual’s time course for each pair of ROIs, ultimately producing a 

brain-wide connectivity matrix for each participant.

Functional Connectivity and Graph Theoretical Analyses

We initially constructed a bilateral mask for the amygdala (4 ROIs corresponding to left 

and right medial and lateral amygdala) and key regions of prefrontal cortex (PFC; 46 ROIs from 

Brodmann areas 9, 10, 11, 24, 32, and 47) that are densely interconnected with the amygdala and 

support important regulatory functions, consistent with previous SAND studies and non-human 

primate tracer studies.17–19 We constructed bilateral masks because we had no a priori hypotheses 

about parenting behaviors being differentially associated with the architecture of the right versus 

left amygdala and PFC as a function of developmental timing of exposure. See Supplemental 

Table 3 for a list of selected ROIs for the amygdala and PFC masks.

All graph theoretical analyses were conducted using the Brain Connectivity Toolbox 

(2019.03.03) in Matlab (version 2022a).20 Consistent with other graph theoretical studies,20,21 we 

set all negative connections within each brain-wide connectivity matrix to zero and then Fisher r-

to-z transformed each connectivity matrix. We retained all connections without additional 

thresholding given controversies around gold-standard thresholding approaches and the cognitive 

relevance of weak connections.21–23 We used these matrices to construct weighted, undirected 

brain-wide graphs. Specifically, the strength of each functional connection was retained rather 

than binarized because, relative to unweighted graphs, weighted graphs have closer resemblance 

to biological systems and generate more robust metrics of brain architecture.21,23,24
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At the brain-wide level, we characterized measures of network segregation (modularity), 

network integration (global efficiency), and small-worldness (small-world propensity). First, 

modularity probes the extent to which the brain organizes into distinct networks, involving 

stronger within- and weaker between-network connectivity.25 Modularity measures segregation 

by comparing the observed within-network connectivity against that estimated from a network 

partition that maximizes modularity.26 Second, global efficiency quantifies how efficiently 

information flows across the brain, computed as the average inverse shortest path length across 

all brain nodes.27 Finally, small-world propensity is a recently developed metric optimized for 

weighted graphs that compares the relative segregation and integration observed against 

respective lattice and random networks.28,29 Higher values on these metrics reflect greater 

network segregation, network integration, and small-worldness, respectively.

At the regional level, we calculated the betweenness centrality of each ROI within the 

constructed bilateral masks of the amygdala and PFC, and averaged across all ROIs within each 

mask to estimate the overall betweenness centrality of the amygdala and PFC. Betweenness 

centrality quantifies the fraction of all shortest paths among each pair of nodes that cross through 

the node of interest.30 Brain regions with higher betweenness centrality can exert a stronger 

influence on global information flow across the whole-brain system. In other words, higher 

betweenness centrality values are thought to characterize regions that strongly regulate 

information flow across the brain.

Covariates

In our main analyses, we focus on covariate-adjusted models given the importance of 

statistically controlling for neuroimaging-related covariates (e.g., head motion, mean functional 
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connectivity) in graph theoretic studies of brain architecture.9,31 Specifically, we controlled for 

multiple potential confounding variables similar to past connectivity and graph theoretic 

investigations characterizing the neurobiological embedding of environmental experiences 

during childhood.10,32,33

First, we controlled for sex assigned at birth (male versus female) to account for sex 

differences in functional brain architecture.34,35 Second, we controlled for ethnoracial identity, as 

reported by youth during the neuroimaging wave (15 years) by selecting options from predefined 

categories using three dummy-coded variables (White, Hispanic/Latino, and Other against 

Black/Non-Hispanic as the reference category). We controlled for ethnoracial identity as a social 

construct to statistically account for systematic differences in exposure to structural and personal 

racism, discrimination, and unequal experiences of poverty, stress, and opportunity among 

people of color in the United States that were not directly measured in the present study.10,32,36,37 

Although ethnoracial identity was reported at age 15, we controlled for this variable as a proxy 

for lifetime exposure to inequality.

Third, similar to other neuroimaging studies in the present sample,3,10,19 we controlled for 

pubertal development during the neuroimaging wave (15 years) using continuous child-reported 

mean scores on the Pubertal Development Scale (or parent-reported mean scores when child-

reports were not available; n = 13). Controlling for pubertal development allowed us to account 

for the associations of pubertal physiology and tempo with functional brain architecture,38,39 thus 

increasing the likelihood that individual differences in neural architecture map onto contextual 

variation in earlier experiences of parenting. Fourth, we controlled for poverty ratio during the 

neuroimaging wave (15 years), computed as a ratio of parent-reported household income to the 

official poverty thresholds established by the US Census Bureau. We controlled for this variable 
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as a proxy for lifetime experiences of disadvantage to account for socioeconomic constraints on 

parental behavior and long-reaching associations with functional brain architecture.32,33,40–43 Fifth, 

we controlled for parental education during the neuroimaging wave (15 years), with scores 

ranging from 0 (Lower than High School) to 4 (College or Graduate School), since parental 

educational attainment has been extensively associated with parenting practices and could be a 

confounding factor.44 Sixth, we controlled for mean FD to further account for head motion 

during fMRI scanning, and thus motion artifact in our estimates of functional brain connectivity 

and architecture.

Graph theoretical analyses also controlled for average functional connectivity across the 

thresholded brain-wide graph to ensure that our findings reflect variation in brain architecture 

rather than overall connectivity strength.21,31 Finally, analyses with mental health during early 

adulthood further statistically controlled for baseline symptoms of anxiety (scores from the 

Screen for Anxiety Related Disorders45) and depression (scores from the Mood and Feelings 

Questionnaire46) during the neuroimaging wave (15 years). Accordingly, our analyses with 

mental health investigated whether parenting-related variation in functional brain architecture 

longitudinally relates to internalizing symptomatology above and beyond current mental health.

Null Network Models

While the structured life-course modeling approach (SLCMA) and our approach to 

accounting for multiple comparisons protect against identifying and interpreting false positives 

(i.e., type I error), we sought to cross-reference whether the identified associations among harsh 

and warm parenting behaviors, functional brain architecture, and anxiety and depression differ 

from those we would expect by chance. To this end, we repeated our graph theoretical analyses 
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after generating graph metrics from two null network models that randomized different graph 

properties with different levels of stringency.33,47 The first null model randomly rewired each 

connection approximately 20 iterative times while preserving each region’s degree (i.e., number 

of connections) distribution. The second null model randomly rewired each connection five 

times and sorted connection weights at each 30th step while preserving each region’s degree and 

strength (i.e., strength of connections) distribution, providing a more conservative model for null 

testing more suitable for weighted graphs. For each participant, we generated 20 null graphs for 

each model and averaged across them to derive one value for each graph metric of interest 

(modularity, global efficiency, small-world propensity, betweenness centrality of the amygdala, 

betweenness centrality of PFC) and each participant. We next repeated (a) SLCMA with the 

graph metrics derived from the two null network models, extracting the same number of 

parenting variables (i.e., early childhood, middle childhood, late childhood, accumulation) as in 

the main analyses and (b) indirect effect analyses with mental health.

If associations among parenting behaviors, functional brain architecture derived from 

randomly permuted graphs, and mental health are statistically significant, this observation would 

suggest that our findings may be due to chance. Conversely, if associations among parenting 

behaviors, functional brain architecture derived from randomly permuted graphs, and mental 

health are not statistically significant, this observation would demonstrate that our findings are 

specific to the observed brain architectures and are above what would be expected by chance.

Warm Parenting Modeled as Binary rather than Continuous Variable

Most participants in our sample had high scores on our measure of warm parenting across 

childhood, especially at earlier waves. During early childhood, 6 youth had a score below 3, 32 
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youth had a score of 3, and 82 youth had a score of 4. During middle childhood, 14 youth had a 

score below 3, 38 youth had a score of 3, and 56 youth had a score of 4. During late childhood, 

48 youth had a score below 3, 59 youth had a score of 3, and 29 youth had a score of 4. Despite 

this skewed distribution, our primary analyses modeled this variable as continuous because a 

considerable proportion of youth had lower scores of warm parenting during late childhood.

However, given that warm parenting scores were negatively skewed in early and middle 

childhood, we conducted sensitivity analyses in which we binarized our warm parenting variable 

into 0 (“lower” exposure to warm parenting) if scores were ≤3, or 1 (“higher” exposure to warm 

parenting) if scores were 4. We controlled for the same covariates as our primary analyses (i.e., 

sex, race/ethnicity, pubertal development, poverty ratio, parental education, head motion, mean 

functional connectivity in graph theoretic analyses, and anxiety or depression at age 15 in mental 

health analyses).

These sensitivity analyses revealed similar associations as our primary analyses. In our 

SLCMA analyses relating warm parenting to brain architecture, we found that participants with 

higher exposure to warm parenting during middle childhood had marginally greater betweenness 

centrality of the amygdala (β = 0.37, Pfdr = .096, 95% CI [-0.01, 0.68]) and significantly lower 

betweenness centrality of PFC (β = -0.44, Pfdr = .027, 95% CI [-0.71, 0.004]). No other 

associations between warm parenting and brain architecture reached statistical significance (all 

Pfdr’s > .351). Second, in our indirect effect analyses, we found that participants with higher 

exposure to warm parenting during middle childhood had significantly reduced anxiety (95% CI 

[-0.19, -0.01]) in early adulthood during the COVID-19 pandemic via greater amygdala 

centrality during adolescence, though the indirect effect to depressive symptoms did not reach 

statistical significance (95% CI [-0.15, 0.01]). Moreover, similar to our main analyses, no 
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indirect effects were found for warm parenting during middle childhood to mental health during 

early adulthood via betweenness centrality of PFC for either anxiety (95% CI [-0.13, 0.02]) or 

depression (95% CI [-0.07, 0.08]). These findings suggest that our reported associations among 

warm parenting, regional cortico-limbic architecture, and internalizing symptoms are not an 

artifact of the skewed distribution of our warm parenting measure. Findings were in the same 

direction and of similar effect size, though significance levels were slightly lower, likely due to 

the loss of statistical power associated with dichotomizing continuous variables.
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eResults

eTable1. Participant Demographics
Included Sample (n = 173) Excluded Sample (n = 64) Statistical Comparison

Age M = 15.88y | SD = 0.53y M = 15.83y | SD = 0.57y t(105.60) = 0.62, p = 1.000

Puberty1 M = 3.27 | SD = 0.58 M = 3.14 | SD = 0.62 t(105.63) = 1.42, p = .950

Sex2 Female = 95 | Male = 78 Female = 29 | Male = 35 χ2(1) = 1.73, p = 1.000

Ethnoracial Identity3 Black = 138 | Hispanic = 9 | 

Other/Multiple = 9 | White = 17 

Black = 43 | Hispanic = 4 | 

Other/Multiple = 2 | White = 15

χ2(2) = 7.43, p = .146

Annual Family Income4 M = $49,878.49 | SD = $56,797.26 M = $48,210.00 | SD = $47,623.57 t(133.55) = 0.23, p = 1.000

Parent Education5 M = 2.60 | SD = 0.97 M = 2.63 | SD = 1.00 t(107.56) = -0.22, p = 1.000

Note. p-values adjusted for multiple comparisons using the Benjamini-Hochberg false discovery rate (n = 6)
1 Puberty represents continuous scores on the Pubertal Development Scale
2 Sex represents sex assigned at birth
3 Information about the Other/Multiple category is not publicly available, so other groups are reported as a single category. Chi-square 

test comparing the ethnoracial identity of included versus excluded participants collapsed across Hispanic and Other/Multiple 

identities into a single category to enable reliable inferential analyses (i.e., cell sizes > 5)
4 n of included participants = 172 for annual family income
5 n of included participants = 171 for parental education
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eTable2. Descriptive statistics of parenting, neuroimaging, and mental health data in the included sample
Measure n Mean SD

Parenting Behaviors
Psychological Aggression (Early Childhood) 135 1.97 0.96
Psychological Aggression (Middle Childhood) 149 1.80 1.08
Psychological Aggression (Late Childhood) 153 1.63 1.04
Physical Aggression (Early Childhood) 134 1.59 1.10
Physical Aggression (Middle Childhood) 149 1.31 0.99
Physical Aggression (Late Childhood) 153 1.00 0.97
Warm Parenting (Early Childhood) 120 3.58 0.76
Warm Parenting (Middle Childhood) 108 3.32 0.87
Warm Parenting (Late Childhood) 136 2.60 1.10

Functional Brain Architecture
Modularity 173 0.24 0.03
Global Efficiency 173 0.16 0.01
Small-World Propensity 173 0.56 0.04
Prefrontal Cortex-Amygdala Connectivity 173 0.00 0.02
Betweenness Centrality of Prefrontal Cortex 173 620.00 106.62
Betweenness Centrality of Amygdala 173 367.23 152.43

Mental Health
Anxiety (Adolescence) 166 16.89 11.13
Depression (Adolescence) 167 15.20 9.86
Anxiety (Early Adulthood) 118 9.92 10.78
Depression (Early Adulthood) 116 11.10 8.95
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eTable3. Coordinates for constructed bilateral masks representing regulatory regions of prefrontal cortex from the Gordon cortical 

atlas and the amygdala from the Tian subcortical atlas

Brain Region MNI x-coordinate MNI y-coordinate MNI z-coordinate Network Affiliation
Prefrontal Cortex Mask
Cluster 22 -8 10 38 Cingulo-Opercular
Cluster 25 -4 38 36 Default Mode
Cluster 27 -6 24 36 Cingulo-Opercular
Cluster 28 -8 24 28 Cingulo-Opercular
Cluster 29 -8 36 20 Salience
Cluster 44 -20 28 56 Default Mode
Cluster 78 -40 54 -12 Fronto-Parietal
Cluster 79 -46 40 -12 Ventral Attention
Cluster 80 -32 20 -18 Ventral Attention
Cluster 85 -46 34 -4 Ventral Attention
Cluster 86 -46 26 2 Ventral Attention
Cluster 114 -26 50 4 Default Mode
Cluster 116 -6 64 -2 Default Mode
Cluster 117 -6 36 -12 Default Mode
Cluster 145 -14 54 34 Default Mode
Cluster 146 -20 56 28 Default Mode
Cluster 148 -20 58 0 Fronto-Parietal
Cluster 149 -30 56 4 Fronto-Parietal
Cluster 150 -6 48 26 Default Mode
Cluster 151 -14 62 14 Default Mode
Cluster 152 -6 44 12 Default Mode
Cluster 154 -26 26 40 Default Mode
Cluster 157 -40 24 42 Default Mode
Cluster 183 8 32 24 Salience
Cluster 184 6 42 -2 Default Mode
Cluster 185 6 16 36 Cingulo-Opercular
Cluster 187 8 16 44 Cingulo-Opercular
Cluster 188 4 26 26 Cingulo-Opercular
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Brain Region MNI x-coordinate MNI y-coordinate MNI z-coordinate Network Affiliation
Cluster 240 42 48 0 Fronto-Parietal
Cluster 241 48 38 -8 Ventral Attention
Cluster 242 46 28 -10 Ventral Attention
Cluster 247 32 26 -8 Salience
Cluster 248 34 20 6 Cingulo-Opercular
Cluster 277 28 52 2 Fronto-Parietal
Cluster 278 6 68 -8 Default Mode
Cluster 279 6 48 -14 Default Mode
Cluster 315 22 28 46 Default Mode
Cluster 316 22 38 34 Default Mode
Cluster 319 24 54 2 Fronto-Parietal
Cluster 320 32 52 16 Fronto-Parietal
Cluster 321 16 62 16 Default Mode
Cluster 322 8 56 6 Default Mode
Cluster 323 6 58 26 Default Mode
Cluster 324 14 40 48 Default Mode
Cluster 325 6 44 46 Default Mode
Cluster 327 40 22 50 Fronto-Parietal

Amygdala Mask
Cluster 21 28 -2 -14 Subcortical
Cluster 22 22 2 -18 Subcortical
Cluster 48 -26 -2 -24 Subcortical
Cluster 49 -20 -12 -12 Subcortical
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eTable4. Zero-order correlations among brain-wide, circuit-level, and regional brain metrics

Variable 1 2 3 4 5
1. Modularity      
2. Global Efficiency .02     
3. Small-World Propensity .47** .69**    
4. Prefrontal Cortex - Amygdala Connectivity -.05 .09 .06   
5. Betweenness Centrality - Amygdala .03 .01 -.02 .10  
6. Betweenness Centrality - Prefrontal Cortex .15 -.38** -.29** .10 -.13

Note. ** indicates P < .01.
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eTable5. Zero-order correlations among predictor variables (parenting behaviors) and covariates

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1. Psych Agg (3y)                 
2. Psych Agg (5y) .50**                
3. Psych Agg (9y) .35** .58**               
4. Phys Agg (3y) .61** .47** .25**              
5. Phys Agg (5y) .31** .62** .48** .56**             
6. Phys Agg (9y) .16 .38** .61** .36** .56**            
7. Warmth (3y) -.16 -.06 -.05 -.18* -.02 -.17           
8. Warmth (5y) -.23* -.13 -.09 -.22* -.25** -.08 .06          
9. Warmth (9y) .02 -.01 -.06 -.15 -.10 -.10 .07 .06         
10. Sex .09 .06 .14 .08 .13 .16 -.07 .02 -.02        
11. Race (Black) .19* .16 .11 .24** .27** .15 -.10 -.18 -.07 -.04       
12. Race (White) -.22* -.15 -.18* -.17 -.21* -.18* .09 .08 -.02 -.06 -.66**      
13. Race (Hispanic) -.11 -.04 .04 -.11 -.13 .03 -.05 .15 .14 .10 -.47** -.08     
14. Race (Other/Multi) .05 -.04 .01 -.09 -.07 -.04 .10 .10 .03 .05 -.47** -.08 -.05    
15. Puberty -.14 -.09 -.09 -.11 -.15 -.21** .00 .06 .07 -.63** -.03 .06 .02 -.05   
16. Income -.28** -.17* -.17* -.20* -.16 -.16 .15 .22* .00 -.08 -.35** .33** .10 .09 .08  
17. Education -.17 -.19* -.12 -.03 -.01 -.08 .04 .03 -.06 -.03 -.11 .16* -.07 .06 .04 .35**

Note. Psych Agg represents psychological aggression. Phys Agg represents physical aggression. Warmth represents warm parenting. * 

indicates P < .05, ** indicates P < .01.
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eTable6. Structured life-course modeling approach (SLCMA) results relating the accumulation of, versus the developmental timing of 

exposure to, harsh and warm parenting during childhood to functional brain architecture during adolescence from baseline models 

without covariates.

SLCMA Model Selected Variables R2 Change Coefficient 95% CI Porig Pfdr

Psychological Aggression

Modularity Early Childhood 1.50% 0.29 0.11 to 0.46 <.001 .005

Middle Childhood 5.58% -0.24 -0.41 to -0.05 .004 .02

Global Efficiency Late Childhood 1.19% -0.15 -0.33 to 0.45 .40 .62

Middle Childhood 0.29% 0.07 -0.91 to 0.23 .74 .81

Small-World Propensity Early Childhood 0.20% 0.18 -0.01 to 0.33 .03 .06

Late Childhood 3.94% -0.17 -0.33 to 0.02 .04 .07

Prefrontal Cortex - Amygdala 

Connectivity

Late Childhood 1.96% -0.37 -0.54 to -0.13 <.001 .005

Middle Childhood 3.81% 0.30 -0.05 to 0.47 .02 .04

Betweenness Centrality of 

Prefrontal Cortex

Middle Childhood 0.33% -0.11 -0.22 to 1.18 .68 .81

Betweenness Centrality of 

Amygdala

Late Childhood 0.14% -0.08 -0.24 to 1.12 .68 .81

Middle Childhood 0.14% 0.06 -1.89 to 0.20 .81 .81

Physical Aggression

Modularity Early Childhood 1.14% 0.30 0.07 to 0.47 .007 .08

Middle Childhood 4.09% -0.26 -0.44 to 0.03 .03 .12

Global Efficiency Early Childhood 0.29% -0.08 -0.24 to 0.26 .32 .39

Late Childhood 0.37% 0.05 -0.49 to 0.21 .62 .62
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SLCMA Model Selected Variables R2 Change Coefficient 95% CI Porig Pfdr

Small-World Propensity Early Childhood 0.73% 0.17 -0.32 to 0.35 .15 .28

Middle Childhood 0.66% -0.12 -0.28 to 0.66 .39 .43

Prefrontal Cortex - Amygdala 

Connectivity

Late Childhood 0.37% -0.19 -0.36 to 0.36 .13 .28

Middle Childhood 0.91% 0.16 -0.71 to 0.32 .24 .33

Betweenness Centrality of 

Prefrontal Cortex

Late Childhood 2.16% -0.23 -0.40 to -0.03 .02 .10

Middle Childhood 1.46% 0.13 -0.16 to 0.31 .21 .32

Betweenness Centrality of 

Amygdala

Early Childhood 1.18% 0.11 -0.15 to 0.26 .11 .28

Warm Parenting

Modularity Late Childhood 0.23% 0.05 -0.52 to 0.19 .44 .53

Middle Childhood 0.04% -0.02 -0.08 to 3.80 .96 .96

Global Efficiency Early Childhood 3.26% -0.21 -0.36 to -0.03 .01 .03

Late Childhood 1.26% 0.09 -0.35 to 0.24 .36 .50

Small-World Propensity Early Childhood 2.20% -0.17 -0.32 to 0.10 .35 .50

Prefrontal Cortex - Amygdala 

Connectivity

Late Childhood 0.31% -0.08 -0.23 to 0.26 .36 .50

Middle Childhood 0.43% 0.05 -0.47 to 0.19 .84 .92

Betweenness Centrality of 

Prefrontal Cortex

Early Childhood 2.26% 0.25 0.09 to 0.40 <.001 .006

Middle Childhood 6.09% -0.18 -0.33 to -0.02 .009 .03

Betweenness Centrality of 

Amygdala

Middle Childhood 3.73% 0.23 0.07 to 0.39 .006 .03

Late Childhood 1.78% -0.10 -0.25 to 0.16 .14 .31
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Note. Only theoretical models (early childhood, middle childhood, late childhood, accumulation, or combination thereof) selected 

within each SLCMA model are presented. R2 change represents the incremental percentage of variance in the brain outcome explained 

by each theoretical model. Coefficient represents standardized coefficients. Porig denotes original P-values. Pfdr denotes P-values 

corrected for multiple comparisons using the false discovery rate (FDR), for the number of models selected within each dimension of 

parenting (11 for psychological aggression, 11 for physical aggression, 11 for warm parenting).
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eFigure1. Developmental periods selected from the structured life-course modeling analyses. (A-C) Elbow plots illustrating the 

percentage of variance in each measure of functional brain architecture explained by each theoretical model (early childhood, middle 

childhood, late childhood, accumulation) for (A) psychological aggression, (B) physical aggression, and (C) warm parenting. Models 

controlled for sex assigned at birth, race/ethnicity, pubertal development, poverty ratio, parental education, and head motion. Graph 

theoretical analyses further controlled for average functional connectivity. The number of hypotheses tested in the second stage of the 

analysis for each model was based on the location of the elbow plot for each metric of brain architecture. (D) Summary plot depicting 

the number of times each theoretical model (early childhood, middle childhood, late childhood, or accumulation) was selected as the 

dominant explanatory variable in the first stage of model selection.
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eFigure2. Longitudinal associations among harsh/warm parenting, functional brain architecture, and mental health during 

the COVID-19 pandemic. Indirect effects were examined only for metrics of brain architecture that were significantly associated 

with parenting during childhood. Statistically significant indirect effects (i.e., betweenness centrality of the amygdala) are depicted in 
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the Main Text, and non-significant indirect effects (i.e., betweenness centrality of prefrontal cortex, modularity, small-world 

propensity, and prefrontal cortex-amygdala functional connectivity) are depicted in the Supplement. Paths among parenting, brain 

architecture, and internalizing symptoms represent standardized regression coefficients and 95% confidence intervals derived from 

standard errors pooled across imputed datasets using Rubin’s rules. Indirect effects were assessed from estimates and bias-corrected 

95% confidence intervals with 10,000 bootstraps averaged across imputed datasets. All analyses controlled for sex assigned at birth, 

race/ethnicity, pubertal development, poverty ratio, parental education, head motion, and anxiety or depression during adolescence. 

Graph theoretical analyses further controlled for average functional connectivity.
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eFigure3. Longitudinal associations among harsh/warm parenting, functional brain architecture, and mental health during 

the COVID-19 pandemic in baseline models without covariates. Indirect effects were examined only for metrics of brain 

architecture that were significantly associated with parenting during childhood in the primary covariate-adjusted models. Paths among 

parenting, brain architecture, and internalizing symptoms represent standardized regression coefficients and 95% confidence intervals 

derived from standard errors pooled across imputed datasets using Rubin’s rules. Indirect effects were assessed from estimates and 

bias-corrected 95% confidence intervals with 10,000 bootstraps averaged across imputed datasets.
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eFigure4. Significance of associations between harsh/warm parenting and brain architecture estimated from observed versus 

null networks. Only graph theoretical metrics generated from the observed functional brain architecture are significantly associated 

with parenting behaviors during childhood following correction for multiple comparisons using the false discovery rate (FDR) within 

each dimension of parenting (i.e., psychological aggression, physical aggression, parental responsiveness). These findings indicate that 

identified associations between parenting and brain architecture are above what would be expected by chance. The first null network 

model randomized brain architecture while preserving the degree distribution. The second, more conservative null network model 

randomized brain architecture while preserving both the degree and strength distribution. The lowest P-value was selected from each 
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model regardless of which developmental periods (or accumulation) were most strongly related to functional brain architecture in the 

original structured life-course modeling analysis.

29

1

2



References

1. Reichman NE, Teitler JO, Garfinkel I, McLanahan SS. Fragile Families: Sample and design. 
Child Youth Serv Rev. 2001;23(4):303-326. doi:10.1016/S0190-7409(01)00141-4

2. Gard AM, Hein TC, Mitchell C, et al. Prospective longitudinal associations between harsh 
parenting and corticolimbic function during adolescence. Dev Psychopathol. 
2022;34(3):981-996. doi:10.1017/S0954579420001583

3. Goetschius LG, Hein TC, McLanahan SS, et al. Association of childhood violence exposure 
with adolescent neural network density. JAMA Netw Open. 2020;3(9):e2017850. 
doi:10.1001/jamanetworkopen.2020.17850

4. Blume J, Park S, Cox M, Mastergeorge A. Explicating child-driven patterns of parent-child 
responsivity in Fragile Families: A longitudinal approach. Front Pediatr. 2022;10:813486.

5. Straus MA, Hamby SL, Finkelhor D, Moore DW, Runyan D. Identification of child 
maltreatment with the Parent-Child Conflict Tactics Scales: Development and psychometric 
data for a national sample of American parents. Child Abuse Negl. 1998;22(4):249-270. 
doi:10.1016/S0145-2134(97)00174-9

6. Bradley RH, Caldwell BM, Rock SL, Hamrick HM, Harris P. Home Observation for 
Measurement of the Environment: Development of a home inventory for use with families 
having children 6 to 10 years old. Contemp Educ Psychol. 1988;13(1):58-71. 
doi:10.1016/0361-476X(88)90006-9

7. Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM. FSL. Neuroimage. 
2012;62(2):782-790. doi:10.1016/j.neuroimage.2011.09.015

8. Woolrich MW, Ripley BD, Brady M, Smith SM. Temporal autocorrelation in univariate 
linear modeling of FMRI data. Neuroimage. 2001;14(6):1370-1386. 
doi:10.1006/nimg.2001.0931

9. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic 
correlations in functional connectivity MRI networks arise from subject motion. 
Neuroimage. 2012;59(3):2142-2154. doi:10.1016/j.neuroimage.2011.10.018

10. Hardi FA, Goetschius LG, McLoyd V, et al. Adolescent functional network connectivity 
prospectively predicts adult anxiety symptoms related to perceived COVID-19 economic 
adversity. J Child Psychol Psychiatry. 2023;64(6):918-929. doi:10.1111/jcpp.13749

11. Parkes L, Fulcher B, Yücel M, Fornito A. An evaluation of the efficacy, reliability, and 
sensitivity of motion correction strategies for resting-state functional MRI. Neuroimage. 
2018;171:415-436.

12. Pruim RHR, Mennes M, van Rooij D, Llera A, Buitelaar JK, Beckmann CF. ICA-AROMA: 
A robust ICA-based strategy for removing motion artifacts from fMRI data. Neuroimage. 
2015;112:267-277. doi:10.1016/j.neuroimage.2015.02.064

30

1
2
3
4

5
6
7

8
9
10

11
12

13
14
15
16

17
18
19
20

21
22

23
24
25

26
27
28

29
30
31

32
33
34

35
36
37



13. Pruim RHR, Mennes M, Buitelaar JK, Beckmann CF. Evaluation of ICA-AROMA and 
alternative strategies for motion artifact removal in resting state fMRI. Neuroimage. 
2015;112:278-287. doi:10.1016/j.neuroimage.2015.02.063

14. Whitfield-Gabrieli S, Nieto-Castanon A. Conn: A functional connectivity toolbox for 
correlated and anticorrelated brain networks. Brain Connect. 2012;2(3):125-141. 
doi:10.1089/brain.2012.0073

15. Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, Petersen SE. Methods to 
detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage. 
2014;84:320-341.

16. Siegel JS, Snyder AZ, Ramsey L, Shulman GL, Corbetta M. The effects of hemodynamic lag 
on functional connectivity and behavior after stroke. J Cereb Blood Flow Metab. 
2016;36(12):2162-2176. doi:10.1177/0271678X15614846

17. Barbas H, Blatt GJ. Topographically specific hippocampal projections target functionally 
distinct prefrontal areas in the rhesus monkey. Hippocampus. 1995;5(6):511-533. 
doi:10.1002/hipo.450050604

18. Goetschius LG, Hein TC, Mattson WI, et al. Amygdala-prefrontal cortex white matter tracts 
are widespread, variable and implicated in amygdala modulation in adolescents. 
Neuroimage. 2019;191:278-291. doi:10.1016/j.neuroimage.2019.02.009

19. Hardi FA, Goetschius LG, Peckins MK, et al. Differential developmental associations of 
material hardship exposure and adolescent amygdala–prefrontal cortex white matter 
connectivity. J Cogn Neurosci. 2022;34(10):1866-1891. doi:10.1162/jocn_a_01801

20. Rubinov M, Sporns O. Complex network measures of brain connectivity: Uses and 
interpretations. Neuroimage. 2010;52(3):1059-1069. doi:10.1016/j.neuroimage.2009.10.003

21. Hallquist MN, Hillary FG. Graph theory approaches to functional network organization in 
brain disorders: A critique for a brave new small-world. Netw Neurosci. 2018;3(1):1-26.

22. Civier O, Smith RE, Yeh CH, Connelly A, Calamante F. Is removal of weak connections 
necessary for graph-theoretical analysis of dense weighted structural connectomes from 
diffusion MRI? Neuroimage. 2019;194:68-81. doi:10.1016/j.neuroimage.2019.02.039

23. Santarnecchi E, Galli G, Polizzotto NR, Rossi A, Rossi S. Efficiency of weak brain 
connections support general cognitive functioning. Hum Brain Mapp. 2014;35(9):4566-
4582. doi:10.1002/hbm.22495

24. Good BH, De Montjoye YA, Clauset A. Performance of modularity maximization in 
practical contexts. Phys Rev E. 2010;81(4):046106.

25. Bullmore ET, Bassett DS. Brain graphs: Graphical models of the human brain connectome. 
Annu Rev Clin Psychol. 2011;7:113-140.

31

1
2
3

4
5
6

7
8
9

10
11
12

13
14
15

16
17
18

19
20
21

22
23

24
25

26
27
28

29
30
31

32
33

34
35



26. Newman MEJ. Modularity and community structure in networks. Proc Natl Acad Sci. 
2006;103(23):8577-8582. doi:10.1073/pnas.0601602103

27. Latora V, Marchiori M. Efficient behavior of small-world networks. Phys Rev Letters. 
2001;87(19):198701.

28. Muldoon SF, Bridgeford EW, Bassett DS. Small-world propensity and weighted brain 
networks. Sci Rep. 2016;6(1):22057. doi:10.1038/srep22057

29. Bassett DS, Bullmore ET. Small-world brain networks revisited. Neuroscientist. 
2017;23(5):499-516.

30. Brandes U. A faster algorithm for betweenness centrality. J Math Sociol. 2001;25(2):163-
177. doi:10.1080/0022250X.2001.9990249

31. Van Wijk BC, Stam CJ, Daffertshofer A. Comparing brain networks of different size and 
connectivity density using graph theory. PloS one. 2010;5(10):e13701.

32. Michael C, Tillem S, Sripada CS, Burt SA, Klump KL, Hyde LW. Neighborhood poverty 
during childhood prospectively predicts adolescent functional brain network architecture. 
Dev Cogn Neurosci. 2023;64:101316. doi:10.1016/j.dcn.2023.101316

33. Tooley UA, Mackey AP, Ciric R, et al. Associations between neighborhood SES and 
functional brain network development. Cereb Cortex. 2020;30(1):1-19. 
doi:10.1093/cercor/bhz066

34. Ingalhalikar M, Smith A, Parker D, et al. Sex differences in the structural connectome of the 
human brain. Proc Natl Acad Sci. 2014;111(2):823-828. doi:10.1073/pnas.1316909110

35. Dhamala E, Jamison KW, Sabuncu MR, Kuceyeski A. Sex classification using long-range 
temporal dependence of resting-state functional MRI time series. Hum Brain Mapp. 
2020;41(13):3567-3579. doi:10.1002/hbm.25030

36. Roberts SO, Rizzo MT. The psychology of American racism. Am Psychol. 2021;76(3):475-
487. doi:10.1037/amp0000642

37. Pager D, Shepherd H. The sociology of discrimination: Racial discrimination in 
employment, housing, credit, and consumer markets. Ann Rev Sociol. 2008;34(1):181-209. 
doi:10.1146/annurev.soc.33.040406.131740

38. Gracia-Tabuenca Z, Moreno MB, Barrios FA, Alcauter S. Development of the brain 
functional connectome follows puberty-dependent nonlinear trajectories. Neuroimage. 
2021;229:117769. doi:10.1016/j.neuroimage.2021.117769

39. Goddings AL, Beltz A, Peper JS, Crone EA, Braams BR. Understanding the role of puberty 
in structural and functional development of the adolescent brain. J Res Adol. 2019;29(1):32-
53. doi:10.1111/jora.12408

32

1
2

3
4

5
6

7
8

9
10

11
12

13
14
15

16
17
18

19
20

21
22
23

24
25

26
27
28

29
30
31

32
33
34



40. Conger RD, Wallace LE, Sun Y, Simons RL, McLoyd VC, Brody GH. Economic pressure in 
African American families: A replication and extension of the family stress model. Dev 
Psychol. 2002;38(2):179-193. doi:10.1037/0012-1649.38.2.179

41. Masarik AS, Conger RD. Stress and child development: A review of the Family Stress 
Model. Curr Opin Psychol. 2017;13:85-90. doi:10.1016/j.copsyc.2016.05.008

42. Hyde LW, Gard AM, Tomlinson RC, Burt SA, Mitchell C, Monk CS. An ecological 
approach to understanding the developing brain: Examples linking poverty, parenting, 
neighborhoods, and the brain. Am Psychol. 2020;75(9):1245-1259. doi:10.1037/amp0000741

43. Michael C, Taxali A, Angstadt M, et al. Socioeconomic resources in youth are linked to 
divergent patterns of network integration and segregation across the brain’s transmodal axis. 
bioRxiv. doi:10.1101/2023.11.08.565517

44. Davis-Kean PE, Tang S, Waters NE ed. Parent education attainment and parenting. 
Handbook of Parenting. Routledge; 2019.

45. Birmaher B, Khetarpal S, Brent D, et al. The Screen for Child Anxiety Related Emotional 
Disorders (SCARED): Scale construction and psychometric characteristics. J Am Acad Child  
Adol Psychiatry. 1997;36(4):545-553. doi:10.1097/00004583-199704000-00018

46. Angold A, Costello EJ, Messer SC, Pickles A. Development of a short questionnaire for use 
in epidemiological studies of depression in children and adolescents. Int J Methods Psychiatr  
Res. 1995;5(4):237-249.

47. Sporns O. Graph theory methods: Applications in brain networks. Dialogues Clin Neurosci. 
2018;20(2):111-121. doi:10.31887/DCNS.2018.20.2/osporns

33

1
2
3

4
5

6
7
8

9
10
11

12
13

14
15
16

17
18
19

20
21


	Key Points
	Abstract
	Introduction
	Methods
	Results
	Discussion
	eMethods
	eResults



