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Abstract—This paper presents a novel shared control 
teleoperation framework that integrates imitation learning 
and bilateral control to achieve system stability based on a 
new dynamic movement primitives (DMPs) observer. First, 
a DMPs-based observer is first created to capture human 
operational skills through offline human demonstrations. 
The learning results are then used to predict human action 
intention in teleoperation. Compared with other observers, 
the DMPs-based observer incorporates human operational 
features and can predict long-term actions with minor 
errors. A high-gain observer is established to monitor the 
robot's status in real-time on the leader side. Subsequently, 
two controllers on both the follower and leader sides are 
constructed based on the outputs of the observers. The 
follower controller shares control authorities to address 
accidents in real-time and correct prediction errors of the 
observation using delayed leader commands. The leader 
controller minimizes position-tracking errors through force 
feedback. The convergence of the predictions of the DMPs 
-based observer under the time delays and teleoperation 
system stability are proved by building two Lyapunov 
functions. Finally, two groups of comparative experiments 
are conducted to verify the advantages over other methods 
and the effectiveness of the proposed framework in motion 
prediction with time delays and obstacle avoidance.  

Index Terms—Dynamic Movement Primitives (DMPs) , 
Shared control , Stability proof, Time delay, Teleoperation 

I.INTRODUCTION 

ELEOPERATION technology has been widely used for 

exploration in the deep sea and toxic environments, and 

nuclear decommissioning, which enhances human reachability 

and delivers human actions to guide the movements of robots. 

Shared control is a typical control mode in teleoperation [1], 

[2]. However, due to the time delays, the commands sent from 

the leader side may not be able to respond in real time to the 

accidents happened on the remote robot side. Therefore, shared 

control, allowing robot controllers to share the control authority 

between the autonomous reactions and the time-delayed action 

commands from leader side, can balance control requirements 

of both humans and robots to enable the effective interventions 

in emergencies [3], [4]. 

 
Manuscript received Month xx, 2xxx; revised Month xx, xxxx; 

accepted Month x, xxxx. (Corresponding author: Chenguang Yang) 
Zhenyu Lu, Weiyong Si, Ning Wang, and Chenguang Yang are with 

Generally, the two agents of teleoperation share information, 

such as velocity, position and force to realize semi-autonomous 

control. Some researchers extended the sharing of information 

to impedance [5], [6] and haptic information [7], [8] to improve 

system dexterity and manipulability through robot’s autonomy. 

As reviewed in [9], shared control can be classified into three 

categories: Semi-Autonomous Control (SAC), State-Guidance 

Shared Control (SGSC), and State-Fusion Shared Control 

(SFSC), according to the sharing ways between humans and 

robots. Among the three classes, the SFSC has an innate and 

essential advantage in the seamless autonomy-level adaptation 

owing to the arbitration mechanism. For example, Ezeh et al. 

have proposed a probabilistic fusion mechanism to combine 

human’s intended motions and autonomous planner’s actions to 

control a wheelchair [10]. Selvaggio et al. proposed a shared -

control teleoperation framework for robot manipulators, which 

transport an object on a tray, which considered the case that an 

object breaks contact with the robot end-effectors. The shared 

control method could regulate the remote robot’s movement to 

prevent the object from sliding over the tray [11]. Gottardi et al. 

proposed a real-time shared control teleoperation framework 

that integrated an artificial potential field which is improved by 

the dynamic generation of escaping points around obstacles to 

overcome obstacles [13]. The methods addressed the problems 

in certain tasks such as preventing object sliding[10]. However, 

the robot’s autonomous control was based on certain principles 

instead of human motion intentions. 

Some researchers have addressed this problem by integrating 

imitation learning  and teleoperation [12]-[17]. The objective is 

to enable robots to learn skills from human demonstrations first, 

and then these skills are generalized for the shared control with 

delayed human inputs. Typically, an arbitration mechanism is 

introduced to mediate between robots and humans. As outlined 

in [9], this arbitration mechanism takes the forms of weighted 

combination, probabilistic fusion, and phase switching. For 

example, Xi et al. proposed a shared control framework where 

manipulation skills are learned by a task-parameterized hidden 

semi-Markov model (TP-HMM) from human demonstrations. 

The estimation of robots based on learning results can correct 

the inputs of the operators and provide manipulation assistance 
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[14]. El-Hussieny et al. extracted human hand positions and 

proposed a framework with two key components: intention 

prediction and command arbitration to reduce control time and 

labor burden [16]. Ly et al. proposed a shared control paradigm 

incorporating robot actions learned from human demonstrations 

and dynamically adjusting the level of robotic assistance based 

on how closely the detected intentions match these trajectories. 

Human motion intention was predicted by a Deep Q-Network 

(DQN) with consideration of current robot states and baseline 

trajectories learned using Probabilistic Movement Primitives to 

generate adaptive force guidance [17].  

These frameworks can improve robot manipulation dexterity 

through learning from human demonstration. However, there 

are several key problems have not been solved. 1) The learned 

skills are not updated timely by human online intervention.  The 

suitability of the learning results is questioned; 2) The key 

influence factor, time delay, is not considered; 3) Dynamics 

uncertainties and various errors are few considered and system 

stability is not strictly proved in theory [13]. For the questions, 

we developed a Dynamic Movement Primitives (DMPs) -based 

observer to make a timely prediction and correction of human 

intentions. Then a shared control teleoperation framework is 

developed with the following contributions: 

1) We develop a DMPs-based observer capable of predicting 

human action intentions and correcting the predictions 

using delayed tracking errors. The observer can be applied 

independently and adjusted for integration into the 

teleoperation system to enhance robot autonomy.  

2) We build a new shared control framework for teleoperation 

systems based on observers. The DMPs-based observer is 

used to estimate human intentions on the leader side, while 

the high-gain observer predicts the state of robots in real-

time. Signal measuring errors and uncertain dynamics are 

taken into consideration in the controller design. 

3) We prove the convergence of estimations from the DMPs-

based observer and prove the stability of the shared control 

teleoperation system under varying time delays by creating 

two Lyapunov functions. The effectiveness of the proposed 

framework is validated through two experiments. 

II.PRELIMINARY WORK 

A. Model of teleoperation system 

Using the symbols described in Table 1, the teleoperation 

system in a Lagrange form is expressed as: 

 
( ) ( )

( ) ( )

, ( )

, ( )

T

l l l l l l l l l l h l

T

f f f f f f f f f f f e

M q q C q q q G J q F

M q q C q q q G J q F





 + + = −


+ + = −

, (1) 

where ( )i iM q  and ( ), , ,i i iC q q i l f=  are the inertia matrix and 

the centripetal and Coriolis matrix, which are expressed as 
iM  

and 
iC  in simple, 

iG  is the gravitational torque, and ( )i iJ q  is 

the Jacobian matrix. 
hF  is the human operational force and 

eF   
0( )x f f x fK x x D x= − +  is the environment force, where 

xK  and 

xD are stiffness and damping factors, 
fx  represent the position 

of the robot end. 
l  and 

f  represent the control torques.  

Several assumptions and a lemma are presented as follows: 

Assumption 1: [19] The communication delays are bounded: 

 t t td d d  and the time derivative of 
td  satisfies 0 t td    

1 , where 
t  is a constant factor. 

Assumption 2: [20] [23] Due to the measuring noise and time 

delays in measurement, there exists the following relationship:  

, e

e e e e h h hF F K F F −  −  , where 
eF is the environmental 

force measurements and e

hF  represents the rendering force in 

the leader side , and 
e , 

h  and 
eK are positive constants.  

Assumption 3: [21] The symmetric positive definite matrices 

lM  and 
fM , and inverse matrices 1

lM −  and 1

fM −  are bounded: 

 
( ) ( )

( ) ( )1 1 1

max

,min i i max i

min i i i

M I M M I

M I M M I

 

 − − −

 

 
, (2) 

with the minimum and maximum eigenvalues of ( )min iM  ,

( )max iM , ( )1

min iM −
 and ( )1 ,  ,  min iM i l f − = . 

Assumption 4: [22] Matrix 2 , ,i iM C i l f− =  is symmetric and 

iC  is bounded by a quadratic term of the joint velocities
iq  

 ( ) ( )
2

, b

i i i i i i iC q q q C q q , (3) 

where ( )b

i iC q is a scalar function, For a robot with all revolute 

joints, ( )b

i iC q is constant. 

Lemma 1 (Jensen’s Integral Inequality) [21] For any constant 

matrix M ,M M 0n n TR  =  , a scalar 0  , a vector function  

 0(  ) : ,w s n →  such that the integrations concerned are 

well-defined, then  

 
0 0 0

( ) M ( ) ( )M ( )
T

Tw s ds w s ds w s w s ds
  

    
         . (4) 

B. Dynamic Movement Primitives (DMPs) 

The DMPs model proposed by Ijspeert et al. [24] is  

 
( ) ( ) ( )0z K g y Dz g y f s

y z





 = − − + −


=
, (5) 

where , 0K D  are stiffness and damping factors and 0  is a 

timing parameter for adjusting the duration of the trajectory y . 

0y  and g  are the start and the end position of the trajectory y  

TABLE 1.  SYMBOLS AND MEANINGS 

Symbols Meanings 

, ,
i

q i l f=  
Joints of robots and manipulators, and i represent  

the agent in the leader and follower sides 

td  Time delays 

( ),dt

tq q t d−  Delayed signals with the time delay 
td  

ˆ,i iq q  Real value and estimation of robot joints 

i  
i is control torque 

i  
Estimation errors ˆ: ,i ii

q q i = − is the opposite role 

to i  in the set ( , )l f  

ie  Control errors ˆ:i i ie q q= −  

hF  Human force exerting on the manipulator 

eF  Environmental force against the robots 
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and y  represent the velocity. Generally, in order to enable y

converge to g , K and D satisfy 24K D= [24]. 

( ) ( )Tf s s=  is a combination of normalized Gaussian 

functions 
j , where    1 2 1 2, ,..., , ( ) , ,...,

T T

n nw w w s   =  = , 

and 
jw  is a weight term and the expression of state variable 

j  

is  

 2

1

( )
, ( ) exp( ( ) )

( )

j

j j j jn

ii

s s
s h s c

s


 


=

= = − −


, (6) 

where 
jc  and 0jh   are the centers and widths of the radial 

basis function ( )j s . The number of n , and the center 
jc and 

bandwidth 
jh can be set automatically by using nonparametric 

regression technique from locally weighted learning (RFWR) 

[25], [26]. The transformation function (or named as forcing 

function) ( )f s  has a phase variable s  , which is calculated by 

a canonical system  

 , 0s s  = −  . (7) 

The converging time is modified by factor   to make sure

0s →  at the end of trajectory for erasing the influence of 

( )f s . The   is estimated by minimizing ( ) ( )Tarf s f s− , 

where ( )Tarf s is calculated by y  and z in the demonstration: 

 ( ) ( )( ) ( )0/Tarf s z K g y Dz g y= − − − − . (8) 

III. CONTROL DIAGRAM  

As illustrated in Fig. 1,  the diagram is based on the bilateral 

control framework of teleoperation, similar to [15]. This control 

system comprises one observer and one controller on both the 

leader and follower sides, respectively. The observations serve  

for robotic autonomy on the follower side and feedback force 

rendering on the leader side, and are then shared and controlled 

with delayed feedback from the remote side. The following sub 

-sections will introduce these modules in sequence. 

A. DMPs-based observer  

Set  
T

Y y z= , then (5) can be rewritten as  

 

( )0

1 2

g y
Y K Y K F s



−
= + +

 

(9) 

where 1

0 11
K

K D

 
=  

− − 
, 2

01
K

Kg

 
=  

 
and ( )

( )

0
F s

f s

 
=  

 
. 

Set Ŷ as the estimation of Y , then an observer based on (9) 

is created as  

( ) ( )0

1 2
ˆ ˆ ˆ( ) ( ) U

n t t

g y
Y K Y K K Y t d Y t d F s



−
= + + − − − + ,(10) 

where the estimation error ˆY Y Y = −  will be compensated by 

the known errors ˆ( ) ( )t tY t d Y t d− − −  after receiving ( )tY t d−

after the time delay 
td . 

nK  is a positive factor and ( )UF s  is 

initialized by (5) and updated in the following calculation.  

Since new operational actions may be different from those in 

demonstration, we express the real-time and the delayed human 

actions as Y and ( )tY t d− , which can be also expressed by the 

DMPs with a different ( )NF s  as 

 ( )0

1 2

Ng y
Y K Y K F s



−
= + + . (11) 

Then, according to (10) and (11),  we can get  

  
( ) ( )

( ) ( )( )

1

0

ˆ ˆ ˆ( ) ( )n t t

N U

Y Y K Y Y K Y t d Y t d

g y
F s F s



− = − − − − − +

−
−

, (12) 

where ( ) ( )N UF s F s−  represents the difference of two forcing 

functions. Eq. (12) can be simplified as  

 ( ) ( )( )0

1 ( ) N U

n t

g y
Y K Y K Y t d F s F s



−
 =  −  − + − . (13) 

where ˆY Y Y = − .We set ( )Uf s and ( )Nf s  are calculated 

based on the same kernels ( )s , that is  

 
( ) ( )

( ) ( )

= ( )

= ( )

T
N N

T
U U

f s s

f s s





 

 


. (14) 

Then the errors of two forcing functions are expressed as 

 

( ) ( )
( ) ( )

( )

0
=

0 0
=

( )( )

N U

N N

T TN U

F s F s
f s f s

ss  

 
−  

− 

   
 =  

−     

, (15) 

and (13) will be updated by 

 

0

1

1

0
( )

( )

( ) ( )

n t T

T

n t

g y
Y K Y K Y t d

s

K Y K Y t d G s



−  
 =  −  − +  

 

=  −  − +  

, (16) 

where 0
T

  =    and 0g y
G



−
= . Since in (11), the  

N  is 

recognized as a desired value for U , then set 0
T

U  =    

and use (17) to update U  to enable Ŷ  to approach Y : 

 ( )0 ( )g y s Y = −   , (17) 

where  is a constant matrix as transformation of vector Y .  

Since   desires to converge to 0 ,
T

N N  =   then the 

parameter estimation error exists N =  − and has 

 
Fig. 1. Illustration of sketch map of system control diagram 
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 ( )0 ( )g y s Y = − −   . (18) 

Using Schur Complement, the sufficient stable condition for 

the stability of the estimation Ŷ  is shown in Theorem 1: 

Theorem 1: For the observer (10) with a weight updating rate 

(17), if there exist positive matrices 1 , 2 , 3  and Q  such 

that the following LMIs holds: 

 

11 12 13

22 23

33

= * 0

* *

   
 

   
 
  

, (19) 

where ( )2

11 1 1 3 1 2

2+2 tK d K I =   + −  ,
12 1 2

2

2 t nd K K =  − 

3nK−  , ( ) ( )13 1 2 3 0

2

t KdG Q g y =  +  +  − ,
2

2

22 nt Gd K =  , 

( )( ) 2

23 2 0 33 2

2, tnG K g y Q Gd = −  + −   =  . 

Then the estimation error Y and  will converge to 0.  

Remark 1: The proof of system convergence is presented in 

Section IV. A. However, it should be noted that the observer 

(10) is constructed based on the same 1K  and 2K  as those in 

(11), demonstrated by humans. This implies that the start and 

end points of the trajectory are known before teleoperation. The 

update of  in (17) is to facilitate the predicted movements Ŷ  

in (10) to track human teleoperation actions Y  in (9). 

B. High-gain observer in the leader side 

As the movement of robots cannot be regularized as humans’ 

movement in DMPs, we build a high-gain nonlinear observer to 

estimate the actions of robots. According to (1), we have  

 ( ) ( )( )
1

( ) ,T

f f f f f f e f f f f fq M q J q F C q q q G
−

= − − − . (20) 

Set ,
T

f fQ q q =   ,  ˆ ,
T

l lQ x v= , and the left formula of 
fq  

in (20) as ( ), , ,f f f eq q F , where lx  and lv  are observations 

of  
fq  and 

fq  from the leader view, then the desired values of 

the observations ˆ dQ  can be expressed as 

 
( )

( ) ( )
1

ˆ
, , ,

( )

d

fld

l l l f e

l

T

f l f f l e f l f

qx
Q

v x v F

v

M x J x F C v G




−

  
= =   

    

 
=  

− − −  

. (21) 

The desired value is ˆ dQ Q= . Defining 
l f lq x = −  as the 

estimation errors, the following high-gain observer is 

 
( )

1

2

2

ˆ
ˆ , , ,

dt

l ll

dt
l l l f e l

v kx
Q

v x v F k



 

 + 
= =   

 +    

, (22) 

where is a high gain of the observer, and 1k and 2k are two 

positive factors. According to [15], the essential Lipschitz-like 

condition holds for a constant factor 0L   with Q  and its 

estimation Q̂  to ensure the asymptotic stability of the feedback 

 system using the observer in (22) as:  

 ( ) ( ) ˆˆ0, , , , , , ,
T

f f f e l l f eq q F x v F L Q Q   −   −
  . (23) 

According to Assumptions 3 and 4 and the properties of the  

Lagrangian system (1), ( )
1

f fM q
−

, ( ),f f f fC q q q  , ( )T

f fJ q  

and 
fG  are bounded. Meanwhile, eF  and control torque l  are 

also bounded. Then, ( ), , ,f f f hq q F  and ( )ˆ , , ,l l f ex v F  

are bounded and there exists a L  satisfying condition in (23).  

Setting ( )1,
T

f l f lQ q x q v− = − −
 

and 1

2

1

0

dt

e dt

k e
K

k e

−

−

 −
=  

− 
 

0 , and using (21) and (22), we can get  

( )

( ) ( )( )

( ) ( )( )

( )

1

1

1 2

2

1

1

2

= ,

=
ˆ, , , , , ,

01

ˆ, , , , , ,0

, , , , ,

T

f l f l

dt

f l l

dt

f f f e l l f e t l

dt

dt
f f f e l l f e

e f f l l f e

Q q x q v

q v k e

q q F x v F k d e

k e
Q

q q F x v Fk e

K Q q q x v F



  

 



−

−

− −

−

−−

 − −
 

 − −
 
  −  −
 

  −
 = + 

 − −     

= + 

 

  (24)    

So, for a high gain 1 , (24) will be dominated by term 

eK Q , and the term ( ), , , , ,f f l l f eq q x v F satisfies  

 ( ), , , , ,f f l l f e

L
q q x v F Q L Q

   , (25) 

to ensure that the estimation error Q  converge to 0 finally.  The 

stability conditions and measurements for eliminating negative 

effects of high gain can refer to [18]. 

C. Controller design in the follower and leader side 

In Sections III.A and B, two observers are built to estimate 

the timely motions of the agents on both sides in teleoperation. 

These estimations will be used as current control references in 

local site. Define two errors in the follower side ˆ:f f fe q q= −  

and ˆ:f l fq q = −  to represent tracking errors to estimations and 

estimating errors to the desired positions, then we can set two 

error terms : f

f f fr k = + , :f f e fe k e = + , where 
fk and ek  

are constants, then the control torque 
f  in the follower side is 

designed as 

 
( )( ) ( )( )

( )1 1

ˆ ˆ, +

1 ( ) +

f f f f e f f f f f e f

dt T

f f f f f e f

M q q k e C q q q k e

G r J q F



   

= − + −

− − − +
. (26)  

where 
eF represents the measurement of eF  and ˆ

fq is estimated 

based on (10) and detailed as: 

 ( ) ( ) ( )2

0
ˆ ˆ ˆ dt u

f f f n fq K g q D q K r g q f s = − − − + − , (27) 

where ( ) ( ) ( )
T

u uf s s=  and u is updated by  

 0

2
( )u

f

g q
s r



−
=  , (28) 

where ( )1 0,1   is a constant factor for shared control. The 1  

is for robot autonomy and 11 − is for human delayed inputs, 

and their values are determined by Theorem 2. Set the finalized 
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weight learned in (11) as constant n , similar to (18), the factor 

 : n u  = − is updated by  

 0

2
( ) f

g q
s r



−
= −  , (29) 

and 
f  is a saturated term for encountering with the contact 

force measuring errors: 

 ( )
,

, ,
,

f f f f f

f f f f f

f f f f f

if

if

    
    

    

−  
= = 

−  

. (30) 

where
f satisfies ( )( ) ( )T T

f f e e f f e e fJ q F F J q F F −  −  and 

the ( )T

f fJ q  and the force error term e eF F−  are bounded, and 

f denotes a small scalar term. Taking 
f into (1), we can get  

 

( ) ( )

( ) ( )1 1

ˆ ˆ

1 ( )

f f f e f f f f e f

f f f f

dt T

f f f f e e f

M q q k e C q q k e

M C

r J q F F

 

   

− + + − +

= +

= − − − + − +

. (31) 

The leader controller l  is designed with new-defined terms 

: , : , : , : , : ,x v

l f l l f l l l l l l l l l e lq x q v e x q e v q e k e  = − = − = − = − = +  

and ( ) ( ):dt v l x

l l lr t dt k t dt = − + − , lk
 is constant. Then l is  

 
( )( ) ( )( )

( )2 2

,

( ) 1 +

l l l l e l l l l l e l

T e dt

l l h l l l l

M q v k e C q q v k e

J q F G r



    

= − + − +

+ + + −
, (32) 

where e

hF  represents the haptic force feedback in the leader 

side, simulated eF  by estimation of ˆ ˆ( )e T

h x f f i x iF K J q e D e= + , 

to generate a virtual force generated by position errors ie , and 

the stiffness and damping factors ˆ
xK and ˆ

xD . 3  is a shared 

control parameter in the leader side, similar to 3  in (26). l is 

a robust term with ( ), ,l l l l l    =  and ( )( )T

l l h h lJ q F F −  .  

The system stability condition is presented in Theorem 2 and 

the proof of system stability is presented in Section IV. B.  

Theorem 2: For the system (1) with controller (26) and (32), if 

there exist positive matrices 1 and 2  such that the following 

LMIs holds:  

 

11 13 11 13

1 22 23 2 22

33 33

0 0

= * 0, = * 0 0

* * * *

      
   

      
   
       

, (33) 

where 11 1 = − , 2

22 2 12k k K  = − , ( )33 2 1 tk  = − − , 

( )13 1 1 2 = − , 2

23 1 nk K  = , 11 2 = − , ( )13 2 1 2 = − , 

22 3 4 32 2lk k k k L  = + + , ( )33 4 1 tk  = − − , then the system 

(1) is robust asymptotic stable with the following parameters

2

f D
k

K





=

+
, ( )2

1 2 14
2

lk k k k =  − − and 1 2 3 4, , , 0k k k k  .    

IV.CONVERGENCE AND STABILITY PROOFS 

A. Proof of convergence of DMPs-based observations  

Set a Lyapunov function 1 2oV V V= +  for the observer (10):  

 

0

1 1 2

2 3

t t

T T

t dt dt t

T T

V Y Y Y Y

V Y Y Q

− − +


=    +   




=    +  

  
. (34) 

Using 0 1t td    , then the time derivative of 1V is  

 

( )

( )

1 1 1

2

2 2

1 1

2

2 2

1 ( ) ( )

( ) ( )

1 ( ) ( )

( ) ( )

t

t

T T

t t t

t

T T

t t

t d

T T

t t t

t

T T

t t

t d

V Y Y d Y t d Y t d

d Y Y d Y Y d

Y Y Y t d Y t d

d Y Y d Y Y d

  



  

+

+

    − −  −   − +

   −   

    − −  −   − +

   −   





. (35) 

Following Lemma 2, we have  

 

( ) ( )

2

2

2

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

t

t t

t

T

t

t d

T
t t

t d t d

T

t t

d Y Y d

Y d Y d

Y t Y t d Y t Y t d

  

   

+

+ +

−   

   
 −      

   
   

 −  −  −   −  −



  . (36) 

Using (16), (35) can be further rewritten as  

 

( )

( )

( )

( ) ( )

1 1 1

2

1

2 1

2

1 ( ) ( )

( ) ( )

( ) ( )

( ) ( ) .

T T

t t t

T
T

t n t

T

n t

T

t t

V Y Y Y t d Y t d

d K Y K Y t d G s

K Y K Y t d G s

Y Y t d Y Y t d

    − −  −   − +

 −  − +  

  −  − +   −

 −  −   −  −

 (37) 

Using (18), the time derivative of 2V is  

 ( )

( )

2 3

1 3

0

2 2

2 ( ) ( )

2 ( ).

T T

T

n t

T

V Y Y Q

K Y K Y t d G s Y

g y Y Q s

=    +  

=  −  − +     −

−  

 (38) 

Using (37) and (38), we can get  

( )( )
( )( )

( )

( )( )

( )

2

1 2 1 1 3 1 2

2

2 1 2

2 1 2 3

1 2 3

2

0

22

2

2

2

2

2

2

+2

( ) 1 ( )

2 ( )

2 ( )

( ) ( ) ( )

T

T

t n t t

T

n n t

T

t

t

n

t

t

t

t t

V V Y K K I Y

Y t d K Y t d

Y K K

Y

d

d

d

d

d

K Y t d

s G K G Q g y Y

GK t d G s sd



+     + −   +

 −  − −  −   − +

  −  −   − +

   +  +  −  −


  − +     

. 

(39) 

Set a vector , ( ), ( )
T

tY Y t d s  =   −    , then (39) can be 

expressed as 

 
1 2

TV V+    , (40) 

where   is represented in (19), then the Theorem 1 is proved.  

B. Proof of stability of the shard-control framework 

We build the following Lyaponov function  

 e p e p

f f l lV V V V V= + + + , (41) 

where e

iV  is for position tracking to ˆ
iq  and p

iV is for position  
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tracking to the real value , ,iq i l f= . Taking the functions in the 

following controller as an example first, and e

fV  is 

 
1

2

e T

f f f fV M = , (42) 

where 
fM is a positive diagonal matrix. The time derivative of 

e

fV  is  

 
1

2

e T T

f f f f f f fV M M   = + . (43) 

Following (31) and using Assumption 4, we have 

 

( ) ( )( )

( ) ( )

( )

1 1

1 1

1 1

1 ( )

2

1 ( )

1

e T dt T

f f f f f f e e f f

T

f f f

T T dt T T T

f f f f f f f e e f

T T dt

f f f f

V r J q F F C

M

r J q F F

r

     

 

       

    

= − − − + − − + +

= − − − − − −

 − − −

. 

 (44) 

For the tracking errors between the leader and the follower, 

we refer the Lyaponov function in (34) and set 

  1 2 1
t

t
p T T T

f f f f f
t d

V k r r k r r d k  
−

= + + . (45) 

where 1 0k  . Set ( ):dt

f f tr r t d= − , the time derivative of p

fV  

is 

 ( )( )1 2 2 12 1 2
T

p T T dt dt T

f f f f f t f fV k r r k r r k d r r k = + − − + . (46) 

As the trajectories ˆ
lq and lq are generated by DMPs function 

in (5) , according to (10), we can achieve following equations: 

 
( ) ( ) ( )

( ) ( ) ( )

2

0

2

0

ˆ ˆ ˆ ˆ u dt

f f f n f

n

l l l

q K g q D q g q f s K r

q K g q D q g q f s

 

 

 = − − + − −


= − − + −

, (47) 

where 0 0q̂ q= , representing the initial position for estimations 

and real values are the same. According to the definition of f

and defining ( ) ( ) ( )n uf s f s f s = − , we have 

( ) ( ) ( ) ( )( )

( )

02

0

2 2 2

ˆ

1
ˆ ˆ

f l f

dt

l f l f n f

dt

n f

f f

q q

K q q D q q g q f s K r

K r g qK D
f s






 
  

= −

= − − − − + −  +

−
= − − + + 

.(48)   

Considering ( ) ( ) ( )
T

n nf s s=  and ( ) ( ) ( )
T

u uf s s=  ,

( ) ( ) ( ) ( ) ( ) ( )
T

n u n u Tf s f s f s s s   = − = −  =  , then  

 0

2 2 2
( )

dt

n f T

f f f

K r g qK D
s   

  

−
= − − + +  . (49) 

So for the term f

f f fr k = + , we have  

 0

2 2 2
( )

dt

n ff T

f f f

K r g qK D
r k s  

  

− 
= − + − + +  

 
, (50) 

If we define factor 
fk  in (50) satisfying

2
,f fD K

k k 
 

 
− = − 

 
 

then we can get 
2

f D
k

K





=

+
, and (50) can be simplified as  

 

0

2 2 2 2

0

2 2 2

( )

( )

dt

n ff T

f f f

dt Tn

f f

K r g qK K
r k s

K g qK
r r s

  
   


  

−
= − − + + 

−
= − + + 

. (51) 

Then (46) can be expressed as  

( )( )

( )( )

( )( )

1 2 2 1

0

1 2 2 2

0

2 2 12

2 1 1 22 2

2 1 2

2 ( )

1 2 ( )

2 2 1

T
p T T dt dt T

f f f f f t f f

T

dt Tn

f f f

T
T dt dt T

f f t f f f

T
T T dt dt dtn

f f f f t f f

V k r r k r r k r r k

K g qK
k r r s r

g q
k r r k r r k s r

KK
k k r r k r r k r r

  


  

 



 

 + − − +

− 
= − + +  + 

 

−
− − − 

 
= − + − − 

 

.   

  (52) 

So the time derivative of e p

f f fV V V= +  satisfies  

 

( )

( ) ( )( )

1 1 2 1 2

1 22

1 2

2 1

T T dt T

f f f f f f f

T T
dt dt dtn

f f t f f

K
V r k k r r

K
k r r k r r

    





 
 − − − + − + 

 

− −

. (53) 

Similarly, we build Lyapunov functions for the leader side: 

  

3 4

1
,

2

t

e p e T

l l l l l l l

t
p T T

l l l l l
t d

V V V V M

V k r r k r r d

 


−

= + =

= + 
, (54) 

and the time derivative of e

lV and p

lV are calculated as 

 ( )2 2

1
1

2

e T T T T dt

l l l l l l l l l l lV M M r        = +  − − − , (55) 

 ( )( )3 4 42 1
T

p T T dt dt

l l l l l t l lV k r r k r r k d r r= + − − . (56) 

According to the definition of and (24), we have  

 ( )

( ) ( )

( ) ( )

1 1

2

2

2

2 1

2

1 2

,

= ,

, , , , , ,

, , , , ,

= + , , , , ,

v l x

l l l

x x v x

l f l f l l l l

v x

l f f f f l l f e l

x l v x

l f f l l f e l l l

l v l x

l l f f l l f e

r k

q x q v k k

q v q q x v F k

r q q x v F k k k

k k k k q q x v F





 

 

   

  

   

  

= +

= − = − − −

= − =  −

=  − + −

− + 

, (57) 

Set, ( )2

1 2 14
2

lk k k k =  − − , then we can get  

 
( ) ( )

2

, , , , ,l v l x

l l l f f l l f e

l

l

r k k q q x v F

k r

 



  = + + 

= + 
, (58) 

Using  (56) can be expressed as  

 
( ) ( )( )

( ) ( )( )

3 4 4

3 4 3 4

2 + 1

2 2 1

T T
p l T dt dt

l l l l l t l l

T
l T dt dt

l l t l l

V k k r r k r r k d r r

k k k k L r r k r r



  

  + − −

 + + − −

. (59) 

Set vectors as , , dt

f f f fr r  =    and , , dt

l l l lr r  =   , the  

lr
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sufficient condition for 0V  is ( ) ( )1 2 0
T T

f f l l   +     , 

where 1  and 1  are shown in Theorem 2. 

V.EXPERIMENTS 

A. Comparative simulations using Omni joystick 

We use an Omni haptic phantom to interact with a simulation 

system built using MATLAB/Simulink for trajectory prediction 

and teleoperation control. The first simulation is to compare the 

DMPs-based prediction method with a comparative method for 

estimating human motion that is deduced from [4]:                                                    

 ( ) ( )1
ˆ ˆ ˆ( ) ( )f f f n l t f tX X X X t d X t d=  + +  − − − , (60) 

where 1

0.3 0

0 0.3

− 
 =  

− 
and 

20 0

0 20
n

− 
 =  

− 
.  

Using a joystick illustrated in Fig. 2(a), we draw a trajectory 

from [2,3] to [12,10] crossing two obstacles, and the learned 

results are presented in Fig. 2(b). Figs. 2 (c) to (f) illustrate a 

new demonstration trajectory (red solid lines) from [4,3] to 

[11,9]. The trajectories are predicted by (10) and (60) with 

different time delays, shown as dashed red and solid blue lines. 

Regarding DMPs learned in the form of (5), the parameters are 

set 200, 28, 0.01K D = = =  to learn ( )f s  and transfer that to 

(10) to generate a new trajectory to approach a new target by 

overcoming two obstacles. For the observers in (10) and (60), 

we compare the predictive trajectories by choosing time delays 

as 0.02s, 0.08s, (0.08+0.01sin(t)+ 0.02cos(2t))s and 0.1s.  

We can see from Figs.2(c) to (f) that, under the short constant 

time delay of 0.02s both trajectories estimated by two observers 

align well with human demonstrations. Upon increasing time 

delays to 0.08s or even 0.1s, the results of (60) suffer a heavier 

influence, resulting in larger tracking errors compared to those 

of (10). The fluctuation in time delays exacerbates the influence 

of time delays on the prediction accuracy of (60), but has a 

limited effect on the observer of (10). In addition, the observer 

of (60) is unable to guide the trajectory to the target and only 

reaches the surrounding region as indicated by the gray square. 

In contrast, the DMPs-based observer keeps stable observations, 

exhibits smaller prediction errors, approaches the target and is 

less influenced by time delays.   

Here, we further compare the predicting complex trajectories 

of two predictors of writing letters A, C and E with different 

time delays in Fig.4. We can observe that for the short time 

delays like 0.02s and 0.1s, both the predicted trajectories have 

smaller errors to the demonstrations, which are presented in red 

solid lines. Only for the letter E, the tracking differences to the 

demonstrations using (60) are smaller than the results using 

(10). Comparatively, with the increment of time delays to 0.4s, 

the tracking trajectories of the predictor (60) seriously leave 

away from the demonstration and do not approach the target 

finally, while the proposed DMPs-based prediction can reach 

the destination even though the position tracking errors are 

much larger than those with small time delays.   

The second simulation uses the Omni to get human inputs for   

a virtual teleoperation system consisting of a 2-DoF robot and 

a 2-DoF manipulator with parameters: 1 20.12 , 0.14l lm kg m kg= =

1 2 1 1 2 2 1, 0.23 , 0.46 , 0.3 , 0.3 ,f f f l f l lm kg m kg l l m l l m I= = = = = = =  

2 1 2 1 2 2 20.01 , 0.02 . , 0.03 . , 0.03 .l f fkgm I kg m I kg m I kg m= = = , 

   
(a) (b) (c) 

   
 (d) (e) (f) 

Fig. 2. Comparison of human demonstration and robot prediction trajectories. 

(a) Experimental setup (b) human demonstration trajectory and learned result 

using DMPs; (c-f) New task and trajectory predictions in a new environment 

using (10) (dashed red lines) and (60) (solid blue lines) with the time delays of 

0.02s, 0.08s, 0.08+0.01sin(t)+ 0.02cos(2t)s and 0.1s; 

 

(a) (b) (c) 

 

(d) (e) (f) 
Fig. 3. Comparison of human demonstration and robot trajectories prediction 

of letters A, C and E with different time delays of 0.02s, 0.1s and 0.4s  (a)-(c) 

Results using the predictor (60) (d)-(f) Results using the predictor (10) 

   
(a) (b) (c) 

   
 (d) (e) (f) 

Fig. 4. Teleoperation based on the proposed framework (a) Experimental setup; 

(b) Human demonstrations; (c) Trajectories in the leader and follower sides 
with time delays of 0.2+0.05sin(t)+0.02cos(t/2); (d) Parameters changes for the 

weight vector; (e) Comparisons of trajectories with different time delays 0.2s. 

0.6s, and 1.0s; (f) Comparison with the shared controller in [14] 
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where 
i

jm   , i

jl  and , 1,2, ,i

jI i j l f= = represent the mass, link 

length and inertia of Link i  of Agent j , and the time delay is 

( ) ( ) ( )0.2 0.05 0.02 / 2d t sin t cos t= + + . Fig. 4(b) shows a 

demonstration of crossing an obstacle and the learned results 

using DMPs. The results are then generalized to create a new 

trajectory (blue dot line) in Fig. 4(c), connecting the start and 

the end of the new humans trajectory (Black solid line). Using 

controllers (26) and (32), the robot trajectory is depicted as the 

red dashed line in Fig. 3(c). Throughout the control process, we 

set 
1 2 0.5 = = to enable robots and humans to share control 

authority equally. The elements in the weight vector u in (28) 

are updated timely and the weight parameters’ changes are 

presented in Fig. 3(d). Fig. 3(e) illustrates the influence of 

different time delays on the position tracking performance. It 

can be observed that with the increase of time delays, the 

position tracking deviations become larger than those with 

smaller time delays. Fig. 3(f) illustrates a comparison of the 

proposed method with the shared controller in [14], which is a 

position-level shared controller integrating TP-HSMM and 

human inputs with the same sharing coefficient 1 0.5 =  

( =0.5  in [14]). We used the same human inputs as those in 

the controllers (26) and (32). The generated trajectory (blue 

lines) deviates away from the human inputs due to the 

inaccurate predictions of human actions. In contrast, the method 

in (10) can correct predictions based on delayed human inputs 

and achieve smaller tracking errors (red dashed line).  

B. Experiment on Franka robot  

In this experiment, we apply the framework shown in Fig.1 

to the Franka robot. Firstly, we demonstrate the Franka robot in 

a low-stiffness dragging state and hold the handle of the Franka 

to cross an obstacle as depicted in Fig.5(a). The trajectory is 

then learned using (5) to acquire the basic skill of overcoming 

an obstacle. Subsequently, we configure controllers for both the 

robot and the Omni joystick on the same laptop and simulate 

the communication channels and time delays through software 

programming. The control signals and haptic feedback are then 

published separately to the robot and joystick sides to generate 

robot actions and haptic force on human hands. Simultaneously, 

real-time actions of robots and human inputs are collected and 

delivered to the laptop to generate future control commands. 

Fig.5(b) presents the process in which an operator teleoperates 

the Franka to reach a new target position and Fig.5(c) illustrates 

a close view of the process of crossing a higher obstacle. For 

comparison, we implement robot autonomous control using the 

DMPs-based generalized results [27], in a non-sharing control 

case. As shown in Fig. 5(d), there are conflicts during the robot 

crossing process and leading to the pushing down the obstacle. 

Bilateral control can also enable robots to reach to the target 

without conflicts, but due to the time delays, it requires a longer 

time to wait for robots to complete actions and feedback.   

In Fig.6, we generalized the learned skill and applied that to 

a more complex scenario, where the robot is required to cross 

two obstacles and contact position 1 to position 4 in sequence, 

which are presented in Fig.6(a), and the two obstacles have 

different heights. We compare the results of using a trajectory 

generalized by DMPs and a trajectory based on shared control 

teleoperation with a DMP-based observer and the experimental 

process is illustrated in Fig.6(b) and (c). There are three crosses 

during the process in both two cases, the robot can overcome 

the higher obstacle and contact the designed positions. During 

the third cross, the robot end controlled by the shared control is 

closer to the top height of the lower obstacle, which is presented 
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Fig. 5. Human demonstrations and DMPs-based shared control teleoperation 

(a) Human demonstrations, (b) Human shared control teleoperation (c) Robot 
execution under the proposed shared control teleoperation (d) Robot execution 

using autonomous robot control to follow the DMPs-generalized trajectory 

 

 
Fig. 6. Human demonstrations and DMPs-based shared control teleoperation (a) Experimental setup, (b) Robot execution using autonomous robot control to follow 
the DMPs-generalized trajectory  (c) Robot execution using shared control teleoperation based on DMP-based observer 
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 as the smaller h  in Fig.6(c). 

We conduct another experiment of writing letters. The robot 

was controlled in real-time teleoperation to write two letters: 'L' 

and 'C,' and the motions of the robot's ends were recorded for 

training purposes. The motions learned from one letter using 

ordinary DMPs were transferred to write the other letter. New 

writings of one letter were generated through shared control 

between the delayed teleoperation motions of the other letter 

and the generalized DMPs trajectory using equations (26) and 

(32). The results are presented in Figs. 7(a2) and 7(b2). These 

results are further detailed in Figs. 7(a3) and 7(b3) to illustrate 

the influence of time delays more clearly. It is evident that due 

to the time delays, in the initial stage, the trajectories exhibit 

varying levels of deviation. The deviations in trajectories with 

larger time delays (2s) are more significant than those with 

smaller time delays (0.1s), as depicted in the zoomed figures. 

VI.CONCLUSION 

In this paper, we develop a DMPs-based observer to predict 

human motion intentions and apply this observer for the shared 

control of teleoperation. The experimental results present that, 

compared with other observers and shared control frameworks, 

the proposed observer can accurately predict long-term human 

action intentions and correct prediction errors using the delayed 

signals to establish consistency between the predicted actions 

of robots and the actual human operational actions. The DMPs 

-based observer contains human operational features, ensuring 

stable operational outputs despite the changes in time delays, 

This is particularly beneficial for long-distance operations with 

time delays. We prove the convergence of the estimation and 

system stability of the control framework with two observers by 

building two Lyapunov functions as well. Future work has two 

directions. First, we aim to consider varying sharing factors in 

(26) based on the objective conditions or requirements of robot 

manipulation. Second, we aim to extend the DMPs-based 

shared control teleoperation framework for a wider range, such 

as multi-robot coordination.  
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