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Tactile-based Grasping Stability Prediction based on
Human Grasp Demonstration for Robot

Manipulation
Zhou Zhao1, Wenhao He2, and Zhenyu Lu2†, Member, IEEE

Abstract—To minimize irrelevant and redundant information
in tactile data and harness the dexterity of human hands. In
this paper, we introduce a novel binary classification network
with normalized differential convolution (NDConv) layers. Our
method leverages the recent progress in visual-based tactile
sensing to significantly improve the accuracy of grasp stability
prediction. First, we collect a dataset from human demonstration
by grasping 15 different daily objects. Then, we rethink pixel
correlation and design a novel NDConv layer to fully utilize
spatio-temporal information. Finally, the classification network
not only achieves a real-time temporal sequence prediction but
also obtains an average classification accuracy of 92.97%. The
experimental results show that the network can hold a high
classification accuracy even when facing unseen objects.

Index Terms—Grasping, deep learning in grasping and ma-
nipulation, learning from experience.

I. INTRODUCTION

THE exploration of robotic grasping has spanned several
decades, leading to a wealth of methodologies being

developed. Typically, visual systems are utilized to identify
a suitable grasping posture [1], [2]. However, robotic grasping
involves not only visual challenges but also tactile prob-
lems [3]. Over the past decade, robotic hands have attained
heightened levels of dexterity [4]. This advancement can be
attributed to breakthroughs involving soft tactile sensors that
enable the perception of touch across robotic hands [5], [6].
Recently, numerous research employs soft tactile sensors to
achieve stable robotic grasping [7], [8], [9].

Naturally, in order to prevent grasping failures like the
slipping of objects, detecting unstable grasps is crucial to
activate corrective actions. As shown in Fig. 1, facing the
same object, human hands can achieve stable grasps with
different forces at different positions (see Fig 1(a)). However,
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(a) Grasping with human hands

(b) Grasping with two jam parallel grippers with Mini-TacTip

(c) Captured images from with Mini-TacTip sensors

Fig. 1. Human stable grasps different positions on the same object with
different forces (Fig. 1(a). Here, we use two jam parallel grippers with visual-
based tactile sensors called Mini-TacTip (Fig. 1(b)) to capture tactile images
(Fig. 1(c)) to evaluate grasp stability throughout the grasping process.

to achieve a human-like grasping ability, the softness of vision-
based tactile sensors should be as close as possible to human
hands. Based on our previous work [10], [11], the two jam
parallel grippers with Mini-TacTip designed by us also can
satisfy stable grasps at different positions (see Fig. 1(b)), and
obtain different captured images (see Fig. 1(c)) corresponding
to different stable grasping states.

Most previous work predicting grasp stability is mainly
based on tactile images [12] or tactile temporal sequences [3]
acquired by visual-based tactile sensors. However, the way to
capture tactile data is mainly based on robotic hands. It is
well known that robotic hands need to be pre-programmed
to perform grasping tasks [13], [14], [15], which reduces the
possibility of generalizing the learned grasping capabilities
to other tasks. Hence, we collect tactile data from human
demonstrations by using a wearable parallel hand exoskeleton
from our previous work [11], which not only obtains human
grasping experience but also reduces irrelevant or redundant
information, achieving fast and efficient tactile data collection.

With the development of deep learning methods, many novel
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network frameworks have achieved a promising performance
in robotic grasping [16], [17]. However, network frameworks
that simply consist of the standard layers of deep learning
(convolutional layers, max-pooling layers, dense layers, etc.)
are not sufficient for exploring tactile data. Therefore, in this
paper, we will rethink pixel correlation to fully use spatio-
temporal information from tactile data.

Thus, the main contributions of this paper are:
1) Data collection from human demonstrations. Unlike

the dexterity of human hands, using robotic hands to ac-
quire tactile data often requires pre-programming, which
is likely to break the object with excessive force or yield
tactile data with limited generalizability. So, to improve
the above cons, we collect tactile temporal sequences
from human demonstrations to transfer human grasping
experience to robotic grasping systems.

2) Normalized differential convolution (NDConv). We
rethink pixel correlation and design a new convolutional
layer called NDConv. NDConv not only makes full use
of spatio-temporal information but also improves the
generalization ability of the classification network.

3) Classification network. We propose a binary classifica-
tion model to extract features of different grasping phases,
which helps the robotic grasping system provide relevant
operation strategies when facing different grasping states.

II. RELATED WORK

Various visual-based tactile sensors integrated with deep
learning techniques have been rapidly developed and used
in robotic manipulation [18]. Many studies have been done
about robotic grasping stability relying on visual-based tactile
feedback. Hence, we will introduce some previous work on
visual-based tactile sensors and deep learning methods in
grasping, respectively.

A. Visual-based Tactile Sensors in Grasping

Visual-based tactile sensors play a vital role in enhancing
robotic grasping capabilities by providing tactile feedback to
robotic systems [19]. This feedback allows the robot to better
understand its interactions with objects and adjust its grasping
force. Typically designed to mimic human skin, they can sense
various parameters such as pressure, vibration, and temper-
ature, and are often arrayed on robotic fingers or grippers
to provide fine-grained information about the surface of an
object and forces applied during grasping. For example, tactile
sensors were employed by Bekiroglu et al. [20] to estimate
grasp stability, while Li et al. [21] presented integrating tactile
feedback into dynamics models of objects to enhance the
capabilities of a dexterous hand.

Robotic grasping mainly includes three phases: approach-
ing, grasping and lifting objects. Most research detects grasp-
ing stability in the lifting phase. James et al. [22] designed
a biomimetic optical tactile sensor for rapid slip detection.
Veiga et al. [23] proposed a novel method of slip prediction
to achieve stabilizing objects. Calandra et al. [24] monitored
incipient slip to realise stable grasps. Yan et al. [25] presented
a multi-phase, multi-output framework to accomplish stability
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Fig. 2. The Wearable tool-like parallel hand exoskeleton structure. Visual-
base tactile sensors are designed to mimic human skin and can acquire the
movement of 16 pins (see Fig. 6(a))

prediction and slip detection. Yi et al. [26] extracted tactile
features from multimodal tactile data and presented a novel
ensemble approach for the grasp stability recognition task. To
solve the problem of blind grasping, Dang et al. [27] only used
tactile feedback without visual and geometric information to
predict the robotic grasping stability. However. in our case,
we design a visual-based tactile sensor, called Mini-TacTip,
to mimic human tactile perception, and use it to collect real
human-like tactile data.

B. Deep Learning in Grasping

With the rise of deep learning, researchers try to combine
deep learning methods with tactile grasping data. Lots of
evidence has indicated that deep learning methods could
boost the grasping performance [1], [28]. To date, most deep
learning methods are built based on some convolutional-
based milestone architectures such as VGG [29], GAN [30],
ResNet [31], GoogLeNet [32], and Transformer [33], etc. And
deep learning methods used in the field of robot grasping
represent further effective applications based on foundational
network architectures. For example, Yang et al. [34] presented
a deep learning method based on a critic-policy format and
Rusu et al. [35] presented the utilization of progressive neural
networks to tailor an established deep reinforcement learning
policy, enabling models learned in simulation to be reliably
transferred to real environments and even generalized to novel
objects. Gualtieri et al. [36] used simulated data to train the
proposed deep-learning method for detecting grasping poses.
Facing to instance grasping task in cluttered scenes, Fang et
al. [37] proposed a convolutional neural network for multi-
task domain adaptation. These work have shown the success
of using deep learning methods in robotic grasping.

However, our method differs from the methods mentioned
above. First, we add human grasping experience into the grasp
stability recognition task by collecting tactile data from human
demonstration. Second, we choose to stack three consecutive
frames to obtain 3D-like images, which not only reduces
irrelevant and redundant information in tactile temporal se-
quences but also shortens prediction time. Finally, we pro-
pose an end-to-end classification network with normalized
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differential convolution (NDConv) layers that processes rich
spatio-temporal information to predict grasp stability, and also
provide a controlled evaluation of whether incorporating tactile
information improves grasp success within a robotic system
with Mini-TacTip.

III. PRELIMINARY WORK

A. Mechanical Structure of Wearable Tool-like Parallel Hand
Exoskeleton with Mini-TacTip

Fig. 2 shows the mechanical structure of wearable tool-
like parallel hand exoskeleton with visual-based tactile sensors
(Mini-TacTip) from our previous work [11], and it consists
of an inertial measurement unit (IMU, WitMotion Bluetooth
2.0, 9 Axis IMU Sensor, BWT901CL, China), a displacement
sensor (Greet, Resolution: 0.01mm, Maximum displacement:
75mm, China) in a commercial way, two Mini-TacTip, a aruco
maker cube, and some support components that are made by
using a 3D printer and PLA materials, etc. The displacement
sensor incorporates a gliding mechanism, although it is not
designed to withstand direct pushing and pulling forces exerted
by human hands. Hence, to mitigate friction and withstand
the pinching forces exerted by human hands, we introduce an
additional slider (bearing, inner diameter 6mm, outer diameter
10mm) along with a set of holders on either side. Both the fin-
ger holder and the handle are interchangeable, allowing them
to be adjusted according to the hand size and manipulation
preferences of various operators.

The Mini-TacTip is designed with inspiration from [6]. It
consists of various components, including a Tip with pins
printed with Agilus, a lens, and a camera to match a finger
size, etc. The Mini-TacTip is designed to be fingertip-sized and
can be assembled onto both the shaft holder and the slider. The
chosen assembly method aims to minimize the impact of the
slider’s repetitive movements on the tactile images. The Mini-
TacTip can acquire the movement of 16 pins embedded in the
Tip (see Fig. 6(a)). Due to the Mini-TacTip’s surface being as
soft as human skin, it can rapidly respond to changes in the
distribution of 16 pins movement.

B. Data Collection from Human Demonstration

Achieving robotic grasping with human-level dexterity is
one of the primary goals of robotics. However, most grasping
datasets are captured from robotic hands [38], [39], [40],
ignoring the dexterity of human hands. We use a wearable tool-
like parallel hand exoskeleton (see Fig. 2) for data collection,
which relies on human arm movements. The “dexterity” refers
to the nuanced and complex fine motor control capabilities
of the human arm compared to robotic manipulators, which
extends beyond the mere number of Degrees of Freedom
(DoFs). While both human arms and robotic end-effectors
operate with 6 DoFs, human arms offer a broader range of
intricate movements and sensory capabilities, making them
more versatile and adaptable in certain scenarios. As shown
in Fig. 3, a dataset for robotic grasping is collected through
human demonstrations in this paper, which facilitates the
transfer of human grasping expertise to robots.
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Fig. 3. Data collection. The dataset for robotic grasping is collected through
human demonstration. We use the wearable tool-like parallel hand exoskeleton
(see Fig. 2) to grasp an object at different positions.

Most research focuses on detecting optimal grasp positions.
Yet, facing the same object, any position can be tried to
grasp for humans. Therefore, we use the wearable tool-like
parallel hand exoskeleton (see Fig. 2) to grasp an object at
different positions. The entire process of grasping objects
mainly includes three phases: approaching, grasping, and
lifting objects. For each grasp, the hand exoskeleton should
be as close to the object as possible, since approaching the
object phase has less impact on the grasp stability prediction,
thereby minimizing its contribution to the overall duration of
the grasping process. Moreover, human hands manipulate the
hand exoskeleton, which naturally adds random perturbations
throughout the grasping process, thereby helping to generalize
the human grasping experience to robotic systems. To release
the problem of class imbalance, we collect tactile data based
on a 6:4 ratio for successful and unsuccessful grasps.

The overall sequence of each video is as follows: firstly,
according to human grasping experience, the hand exoskeleton
is moved to random grasping positions of objects, and the
duration is about 2s. Then, two-jaw parallel grippers of the
hand exoskeleton start to close until they reach the desired
random grasping force, and the duration is also about 2s.
Finally, the object is lifted at a slow speed for about 3s,
which is enough to observe the lifting result based on human
experience and feeling. If the object remains in the two-
jaw parallel grippers and does not slip during lifting, it is
labelled as a successful grasp manually. Conversely, if the
object shows an unstable grasping trend such as slipping or
dropping from the two-jaw parallel grippers, it is categorized
as an unsuccessful grasp.

Ultimately, the dataset consists of 419 videos, each video
annotated with a successful or unsuccessfully grasp. The
duration of each video is 7s, with 30 frames per second. These
videos are collected from the camera system of Mini-TacTip.
Their spatial resolution is 1280×720 pixels. 319 videos are
used for training and the remaining 100 for testing. The total
number of objects involved in the experiment is 15, out of
which 12 are used for the training dataset, and 3 are used for
the test dataset. When evaluating the number of grasp attempts,
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Fig. 4. Normalized differential convolution (NDConv). W and H denote the weight and height of an image, respectively. T denotes temporal. Three
consecutive frames (T-1, T, T+1) as input of NDConv layer, we take the minimum convolution operation area of 3×3×3, and learn the relationship between
pixels by normalized differential operations.

it’s worth noting that we conduct only one attempt per object
in the same position and pose. Objects in the test dataset
that do not appear in the training dataset.

IV. METHODOLOGY

A. Rethinking Pixel Correlation

The standard 2D convolution operation mainly consists
of two parts. Initially, input feature maps are sampled by
k×k convolution kernels. Subsequently, the sampled values
are assigned weights and eventually summed and fused. Let
k=3 be considered as an example, and the standard 3×3
convolution operation is defined as follows:

Conv (x, y) =
1∑

dx=−1

1∑
dy=−1

ω (dx, dy) I (x+ dx, y + dy)

(1)
where Conv (·) is the feature maps after convolution operation.
I (·) denotes original feature maps. x and y represent the lo-
cation of the pixel in the image coordinate system. ω (dx, dy)
denotes the weight of convolution kernel. Each position of
the convolution kernel is designed by −1 ≤ dx ≤ 1 and
−1 ≤ dy ≤ 1.

Different receptive fields allow to handle multiple spatial
scales and image resolutions, e.g., atrous convolution [41],
[42], depthwise separable convolution [43] or deformable
convolution [44], yet assuming such scales are known. These
convolution operations calculate the linear sum of learned
kernels and ignore the correlation between pixels. Compared
with some similar existing works such as Local Binary Pat-
tern (LBP) [45], Local Binary Patterns on Three Orthogonal
Planes (LBP-TOP) [46], and Pixel Difference Convolution
(PDC) [47], when they are used to handling temporal informa-
tion, LBP [45] and PDC [47] cannot capture temporal changes.
Although LBP-TOP [46] is specifically designed to capture
temporal information, it involves the conversion of grayscale
images into binary patterns, which loses some information
related to the exact intensity values of pixels. Hence, this paper
rethinks pixel correlation and designs a new convolutional
layer called normalized differential convolution (NDConv).

1) Normalized Differential Convolution: The NDConv
layer also has the same convolution kernel as the standard 2D
convolution layer. However, before the convolution operation,
a series of operations need to be performed on the convolution
area for the NDConv layer. Therefore, in order to simplify the
illustration, we will employ a 3×3 convolutional kernel for
the modelling process. For three consecutive frames as input,
we take the minimum convolution operation area of 3×3×3
as an example (see Fig. 4).

First, for the centre point p(T, x, y), each neighbouring
point around it serves a distinct role. For example, when the
pixel value of a neighbouring point differs significantly from
that of the pixel value of the centre point I(T, x, y), there
exists substantial contrast between them like the pronounced
response typically observed at the edges of objects. Conse-
quently, the neighbouring point exerts significant influence on
the centre point, akin to generating substantial responses at
edges. Therefore, we replace the pixel value of corresponding
neighbouring points by calculating the difference between
the neighbouring points and I(T, x, y). Simultaneously, to
effectively incorporate temporal information, we extend these
operations into the three-dimensional space. So, the difference
based on 3×3×3 convolution operation area can be defined by

Ψ(T + dt, x+dx, y + dy) =

I(T, x, y)− I(T + dt, x+ dx, y + dy)
(2)

where dt, dx and dy∈ {+1, 0,−1}, but dt = dx = dy ̸= 0.
T ∈ [0, N), and N represents the total number of frames in a
video. 0 ≤ x < W , 0 ≤ y < H .

Then, to refine local information and enhance contrast, local
normalization is performed in 3×3×3 convolution operation
area based on p(T, x, y).

Θ(T + dt, x+ dx, y + dy) =

Ψ(T + dt, x+ dx, y + dy)∑1
dt=−1

∑1
dx=−1

∑1
dy=−1 |Ψ(T + dt, x+ dx, y + dy)|

(3)

Finally, a new feature map is obtained by a standard
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Approaching object T-1 T T+1 3D-like image

(a) Three consecutive tactile images in the approaching objects phase

Grasping object T-1 T T+1 3D-like image

(b) Three consecutive tactile images in the grasping objects phase

Lifting object T-1 T T+1 3D-like image

(c) Three consecutive tactile images in the lifting objects phase

Fig. 6. Tactile images of different grasping phases for a stable grasp. For
the grasping objects phase, the 3D-like image differs with other phases, the
motion information is enhanced by stacking three consecutive tactile images.
In the case of stable grasps, the acquired tactile images remain unchanged in
the approaching and lifting objects phase.

convolution operation:

NDConv(T, x, y) =
1∑

dt=−1

1∑
dx=−1

1∑
dy=−1

ω(T + dt, x+ dx, y + dy)

×Θ(T + dt, x+ dx, y + dy)

(4)

where ω(T +dt, x+dx, y+dy) denotes trainable parameters.

B. Overview of Network Architecture

The process of stable robotic grasping can be divided into
multiple phases: approaching, grasping and lifting objects (see

Fig. 6). For the approaching phase, the pins’ distribution on the
Mini-TacTip is not changed. When the Mini-TacTip starts to
touch objects and transitions into grasping and lifting phases,
the pins’ distribution begins to change, eventually remaining
unchanged to achieve stable robotic grasping. During the
lifting phase, the tactile information obtained post-lifting is
mainly served for slip detection. For three different phases,
firstly, we design three different inputs at the beginning of
the network architecture (see Fig. 5). Then, we stack three
consecutive 2D images to obtain 3D-like images as inputs of
the network, which provides a representation of the dynamic
motion of the papillae pins. Some methods like [3] use the
entire sequence of a video as inputs of the network, resulting in
too much redundant information in the network. However, we
choose 3D-like images from three different phases as inputs,
which is beneficial to quickly respond to predict and can be
applied in practical robotic grasping.

Later, the 3D-like images from three different phases are fed
into the proposed NDConv layer, respectively, and then output
three feature maps corresponding to the approaching, grasping,
and lifting phases. Each feature map from the NDConv layer
is fed into one module to continue extracting features at
different levels. The module is mainly made of convolutional
layers, Rectified Linear Unit (ReLU) layers for non-linear
activation function, max-pooling layers, a flattened layer, and
a dense layer. Finally, the outputs of three different modules
are concatenated and fed into the softmax layer to obtain the
prediction results.

V. EXPERIMENT AND RESULTS

A. Implementation and Experimental Setup

We implement our experiments on Keras/TensorFlow by
using NVIDIA GeForce RTX 3090 GPU servers. The categor-
ical crossentropy of Keras is used as the loss function of the
entire network and predicts one probability distribution over
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Slipping Dropping Stable grasp

Fig. 7. 3D-like images in the lifting object phase.

classes by one softmax function. For the optimizer, we use an
Adam [48] (batchsize = 32, β1 = 0.9, β2 = 0.999, ε = 0.001,
lr = 0.0001), and we do not use learning rate decay. Based
on the collected dataset, we train the network on 30 epochs.
We perform some preprocessing on these videos: 1) we crop
these videos into the spatial resolution 680×680 pixels; 2) we
convert colour images to grayscale images; 3) we resize each
frame of these videos into images size 256×256 pixels.

B. Evaluation Methods

The assessment of our method is conducted through classifi-
cation accuracy. The metric is defined by a ratio of the number
of correct predictions and the total number of predictions
made. As we prioritize a balanced distribution of data during
the data collection process, achieving a high classification
accuracy from the combined impact of both the proposed
classification network and the collected dataset.

C. Results and Discussion

The classification accuracy is shown in Table. I. Compared
with these state-of-the-art classification methods that are pre-
trained on ImageNet, our proposed classification network
achieves the best results in an average accuracy of 92.97% for
predicting grasp stability. Since the objects in the test dataset
never appear in the training dataset, the experimental results
can explain the generalization ability of the classification
model. To prove the superiority of our proposed method, we
further perform a perturbation experiment on the test dataset.
Captured images are susceptible to light intensity and noise.
Hence, to test the performance of the proposed method on
contrast and noise variations, we use the contrast function
Eq. 5 of image augmentation tool [52] to change the contrast
of the captured images, and add gaussian noise from a normal
distribution N(0, β) to images by gaussian noise function of
image augmentation tool [52], where β is sampled per image
and varies between 0 and β × 255. Finally, some changed
images are shown in Fig. 8.

Ic (T, x, y) = 255×
(

I (T, x, y)
255

)α

(5)

where α is used to change the image contrast, and we set the
α to 0.4, 0.6, and 0.8, respectively.

In Table. I, the classification accuracy of the proposed
method does not decrease with contrast changes. The proposed
method has good stability to contrast changes. The classifi-
cation accuracy decreases when adding Gaussian noise into

Original image (α=1) α=0.4 α=0.6 α=0.8

β=0.02 β=0.04 β=0.06 β=0.08

Fig. 8. Images for different α and β.

Fig. 9. Grasp stability prediction on the robotic platform. Ignoring the
optimal grasping positions of objects, random grasping is done by the two
jaw parallel grippers with our designed Mini-TacTip.

images, but the classification accuracy of the proposed method
degrades more slowly than other state-of-the-art methods,
which proves that the proposed method is robust to noise.

We have also conducted an ablation study to analyze
the significance of our proposed NDConv in enhancing the
generalization ability of the classification model in Table. II.
First, we compare the impact of using/not using NDConv on
classification accuracy. Utilizing NDConv outperforms non-
use by a margin of 3.34% in terms of classification accuracy.
We then replace NDConv with two standard convolutional
layers with 3×3 convolution kernels, each producing an output
feature map, however, our proposed method maintains a 1%
performance advantage even when the number of parameters
is almost the same. Moreover, the classification results prove
that the proposed NDConv layer plays an important role in
facing contrast and noise variations.

In order to verify the effect of transferring our proposed
method to a real robot platform. We installed our designed
Mini-TacTip on the end effector of the Franka Emika Panda
as shown in Fig. 9. Facing different objects, we complete
three phases: approaching, grasping and lifting objects. Ran-
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TABLE I
CLASSIFICATION ACCURACY/% OF STATE-OF-THE-ART CLASSIFICATION METHODS ON TEST DATASET

Method
Accuracy%

α β
1 0.8 0.6 0.4 0.02 0.04 0.06 0.08

VGG16 [29] 89.78 78.73 69.03 60.56 87.66 80.67 75.33 56.43
VGG19 [29] 85.57 70.21 61.53 53.22 81.85 73.55 58.78 53.93

ResNet50 [31] 90.11 81.19 72.31 63.55 89.04 85.34 78.90 69.32
InceptionV3 [49] 89.97 79.17 64.12 55.13 88.04 84.79 72.33 62.03
DenseNet121 [50] 90.62 80.26 70.18 59.51 89.93 86.19 80.11 69.41

LSTM [51] 89.05 82.43 67.22 58.48 88.91 85.15 77.24 57.23
Ours 92.97 92.13 91.93 91.66 92.25 91.48 88.36 80.45

TABLE II
CLASSIFICATION ACCURACY/% OF OUR PROPOSED CLASSIFICATION NETWORK WITH/WITHOUT NDCONV ON TEST DATASET

Method
Accuracy%

Parametersα β
1 0.8 0.6 0.4 0.02 0.04 0.06 0.08

Without NDConv 89.63 77.64 68.75 61.36 87.49 79.38 73.22 53.44 202,501,058 (∼20M)
With Conv.+Conv. 91.90 79.11 69.99 59.67 90.95 81.25 74.50 59.46 202,499,444 (∼20M)

With NDConv (ours) 92.97 92.13 91.93 91.66 92.25 91.48 88.36 80.45 202,499,489 (∼20M)

dom grasping is performed without considering the optimal
grasping positions of objects, and then the grasping stability
is predicted by our proposed method. Finally, the accuracy of
grasp stability prediction remains at around 92%.

We need to emphasise the importance of considering all
three phases - approaching, grasping, and lifting - when
predicting grasping stability in robotic systems. This is a valid
point, as each of these phases contributes unique information
and challenges to the overall stability of the grasp:

1) Approaching Phase: The approaching phase involves the
robot’s movement toward the grasping object. This phase
is crucial because the robot must align itself correctly
with the object before attempting to grasp it. Misalign-
ment during the approaching phase can lead to instability
during grasping and lifting. By including this phase, it
ensures that the robot’s initial position and orientation
are appropriate for a stable grasp.

2) Grasping Phase: The grasping phase is when the robot’s
end effector (such as a gripper) makes contact with
the object and attempts to secure it. During this phase,
temporal information from Mini-TacTip can be valuable
for assessing the stability of the grasp. This information
can indicate an unstable grasp.

3) Lifting Phase: The lifting phase occurs after the object
has been grasped, and the robot begins to lift it. The
stability of the grasp during lifting is vital to avoid
dropping the object. Factors like the object’s weight,
shape, and the robot’s control strategy play a role in the
lifting phase’s stability. Neglecting this phase may lead
to unsuccessful manipulation. As shown in Fig. 7, facing
unstable grasps (dropping or slipping), obtaining 3D-like
images enhances motion information compared with the
stable grasp.

Furthermore, robots lack the intuition and adaptability of hu-
mans in assessing and adjusting their grasp. Humans naturally
incorporate all three phases when handling objects, making the
grasping process robust and stable. Robots, being less intuitive,

must rely on sensors and algorithms to ensure stability at each
step. Incorporating information from all three phases allows
the robot to make real-time adjustments, ensuring a stable
grasp and successful manipulation. Failing to consider any
of these phases might result in a less accurate prediction of
grasping stability, which can lead to potential issues or failures
in robotic manipulation tasks.

VI. CONCLUSIONS

In this paper, we propose a novel binary classification
network with normalized differential convolution (NDConv)
layers for predicting grasp stability. Firstly, we build a grasping
dataset on 15 daily objects by using Mini-TacTip and the
dexterity of human hands, which can transfer human grasping
experience to robotic systems. Then, to distinguish grasp-
ing features from different phases and enhance the motion
information, we stack three consecutive tactile images as
inputs, and use the proposed NDConv layer to fully learn
spatio-temporal information of tactile data. Finally, we use the
proposed classification network to combine features of differ-
ent grasping phases, achieving the grasp stability prediction.
In our experiment, the proposed model achieves an average
classification accuracy of 92.97% and provides an assessment
of grasp stability. In the future, we will continue to provide
corrective action for unstable grasp to improve grasp success
rates.
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