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Abstract— Repetitive strain injury (RSI) is a major health
issue with 200,000 new cases being reported per year within the
UK alone, and common symptoms include cramping, prolonged
pain, stiffness and weakness. This is especially prevalent within
electrical assembly jobs, with a 40.2% chance that a worker
suffers from some form of upper limb injury before retirement.
A significant RSI cause is continuing to work after the onset of
muscular fatigue. Existing solutions only focus on post-injury
rehabilitation or support. Here, we introduce the SOFT glove
which is able to detect fatigue through resistive bend sensors
mounted to key locations on the hand, enabling workers to be
notified of fatigue and potentially preventing the development
of RSI. The viability of this design was validated in both a
controlled study and a live sorting task. The trained classifier
detected fatigue within both scenarios, with a minimum average
accuracy of 95.67% when trained on only 15 seconds of data
for controlled movements and 96.01% for 3 minutes of training
data for a real-world task. Therefore, the SOFT glove can
confidently predict the main RSI warning sign for repetitive
work, potentially reducing RSI in the workplace.

I. INTRODUCTION

Manual workers performing repetitive actions frequently
suffer from long-term health conditions, such as carpal
tunnel and RSI (Repetitive Strain Injury) with 200,000 cases
reported in an average year in the UK [1]. These conditions
lead to pain, cramping and stiffness of the hand if left
untreated, severely reducing the quality of life [1]. The
most common causes of RSI are over-exertion of the joints
through repetitive motion and poor posture during work [2].
24% of cases [3] are in manufacturing jobs, with electrical
workers having a 40.2% chance of developing upper limb
disorders [4]. These injuries lead to 2.6 million workdays
lost in the UK per year, [1] culminating in a cost of £5-
20 billion annually [5]. Early detection is key to avoiding
injury and loss of work [2], but diagnosis requires a physical
examination and X-ray [6]. Current devices only support
post-injury patients, motivating the need for a real-time
tracking device to highlight warning signs avoiding injury
[7].

Working whilst over-exerted is a common cause of RSI
[2], with the fatigue of the worker during the day being
the most important warning signal [8]. Several systems for
on-line fatigue detection have previously been presented in
the literature: For example, some systems look at the force
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Fig. 1. The SOFT glove system. A) the experimental setup was used to
test the viability of the glove by sorting coloured Duplo blocks into two
categories. B) The SOFT glove consisting of 8 bend sensors sewn into
a MaxiFex Glove, C) Results gathered from the glove for several fatigue
cycles

produced by the user’s grip on a steering wheel or track
facial movement [9] [10]. These methods are impractical for
manual assembly as they require either fixed cameras which
don’t work within a moving environment or sustained grip
force which doesn’t allow for moving hand positions. Jerk
analysis has been measured by optical fibres [11] enabling
analysis of acceleration during movements, suggesting joint
accelerations become less uniform as fatigue increases, likely
due to the body reducing energy consumption through mus-
cle prioritisation [12].

Many commercial systems such as the Cyber Glove [13]
exist to measure joint data. However, these systems contain
an overabundance of sensing leading to large costs. One
interesting approach to reducing the needed computation for
real-time monitoring is to utilise postural hand synergies
[14]. Here finger movements are combined into postural
synergies based on the covariance of finger joints with
the first two covering 84% of day-to-day movement [14].
Attempts have been made to utilise the synergies as control
methods [15] [16] with some achieved via low-cost sensing
techniques [17], but fatigue has not been measured in this
way.

As fatigue monitoring has not been measured accurately
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through hand positioning similar methods can be observed in
gesture control, another more researched field. Optimisation
of hand and gesture tracking techniques have been attempted
[18] using postural synergies, allowing for accurate mea-
surement and prediction but due to using optical markers
on the hand a loss of reliability is noted if markers are
misaligned on the user. Some gesture control systems use
the forearm and wrist muscles [19], coupled joints within the
fingers [20] or EMG/FMG systems detecting user movement
through muscle intention [21]. Soft approaches [22] [23]
[24] exist to detect hand gestures but require more complex
manufacturing techniques and designs which are not robust
enough for the manufacturing sector. Hybrid systems exist
to battle this [25] producing results capable of accurately
detecting hand motion up to a 97% hit rate, but require
static gestures to do so making them unsuited for a constantly
moving environment.

Overall fatigue is difficult to track as it cannot be di-
rectly measured through a single quantitative scale such as
temperature, and current systems often struggle to predict
fatigue within a moving environment. This is due to systems
either relying on cameras or fixed hand positions which
do not function with a moving user completing dexterous
tasks. EMG systems [26] [27], which are the most common
detection approach, can keep up with a moving environment
but suffer greatly from long setup times, misalignment errors
and accuracy reduction due to hair or skin colour [28] making
them ill-suited for a working environment where time is
money [29].

Here we introduce the SOFT glove which combines bend-
sensing and a random forest classifier to detect fatigue.
This approach allows for a less intrusive device compared
to EMG which is usually mounted onto the forearm and
wrist, with the SOFT glove being about as restrictive as a
normal MaxiFlex glove, but able to detect fatigue quickly
and accurately both in a controlled environment and a real-
world repetitive task, without the user being confined to a
zone.

The key contributions of this research are:
• The introduction of the SOFT glove concept and its

ability to detect joint movement and fatigue.
• Evaluation of the SOFT gloves’ ability to detect fa-

tigue in both a controlled and real-world environment,
showing performance comparable to the gold standard
of EMG fatigue detection.

The following section will discuss the fabrication and
working principles of the SOFT glove, with sections III and
IV introducing the idealised and real-world fatigue detection
tasks. Section V will discuss the overall system with the
paper being concluded in section VI.

II. WORKING PRINCIPLE OF THE SOFT GLOVE

A. Glove Fabrication

Joint positions are collected through 8 resistive flex sensors
(Spectra symbol FS, PiHut UK, 55mm length), at a rate
of 100Hz, placed over the MCP (Metacarpal) joint and

Fig. 2. Working principle of the SOFT glove showing the 8 sensor
locations mounted across the fingers A-E. A pull-up resistor circuit and
data collection box gather the 8 Sensor readings. The data goes into the
classifier to determine if the user is fatigued. A median Filter is applied
across every 25 samples to reduce error

the DIP ( Distal Inter-Phalangeal) and PIP (Proximal Inter-
Phalangeal) joints within the hand as shown in figure 2.
The locations were chosen to cover all finger joints, with
initial experimentation showing only the MCP joints of the
pinky and ring finger added accuracy to the system. The
sensors are sewn onto the inside of an ATG-Maxiflex glove
at the selected locations with the uncovered side of the
sensor facing towards the glove. These positions allow for the
measurement of hand movement with a finer detail focusing
on fingers A-C which are preferred for precision work. The
flex sensor data is fed through a potential divider to a 16-bit
data acquisition box (National Instruments, NI-USB-6211).

B. System and Classifier Design

To determine whether a user is suffering from fatigue, data
is collected pre/post an isometric exercise known to cause
fatigue [30]. The recorded data from the glove is used to
train a random forest classifier, selected over others because
of its high generalization accuracy for high dimensional data
(1 x 8 data array collected 100 times a second) and fast
training phase time [31] [32]. Testing data is fed through the
random forest using readings from all 8 sensors to ascertain
a prediction, and then through a rolling median filter of
25 values to smooth the output and reduce the impact of
abnormal results. Raw position readings are used as this
was the quickest approach to test the fatigue-predicting
capabilities. Velocity, acceleration or jerk were not input as a
variable into the system. Due to the high accuracy predictions
observed from the raw readings, the extra calculation time
was deemed unnecessary for this initial proof of concept.

A median filter of 5 (98.97%), 15 (99.55%), 25 (99.75%)
and 50 (99.957%) were tested giving the corresponding
relative accuracies for the controlled task. Therefore the
sampling was set to 25 readings as it allowed for a significant
smoothing of noise, without reducing the fidelity of the
results or delaying the prediction of fatigue severely, as past
that point very little accuracy improvement was noted.
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Fig. 3. Table depicting the various hand poses seen within the experiment
with synergies 1 & 2 the desired movements for the idealised experiment

Training data was collected within an idealised environ-
ment and a real-world task. Various models were trained to
determine the minimum calibration time needed for clas-
sification. This is a priority; the lower the training time,
the less work is lost due to setup. To further reduce this,
synergistic movements as shown in figure 3 a-f are used
to group joints based on co-variances. This allows for the
calibration movements to represent around 85% of everyday
motions reducing the movement set to 2 grips whilst still
having a high chance of predicting the fatigue.

III. FATIGUE DETECTION VIABILITY STUDY

A. Data Aquisition

Initial viability was tested by repeating 2 controlled move-
ments called Synergy 1 (figure 3a-c) and Synergy 2 (figure
3d-f). The data was collected at a rate of 100Hz with the
following method.

The user was told which synergy to start with and asked to
switch between the maximum and minimum positions every
1.5 seconds. The movement set was repeated for 1 minute or
40 cycles before swapping to the other synergy and cycling at
the same rate. Both cycles are repeated a further time to gain
2-minute-long cycles of each synergy. A small rest of 10s
was given between each synergy change so the user would
not become fatigued prematurely. A 40BPM metronome was
used to keep timing with users being advised to start the
movement transition on the click and aim to complete it just
before the next click to have continuous movement.

To introduce fatigue into the hand an isometric exercise
was used where the movement was restrained using a roll
of masking tape (as shown in figure 3.h), and the user was
asked to push their fingers out equally so that they could
lift the masking tape without it falling, holding the muscle
pulse for two minutes [30] or until fatigue was self-reported
or observed. The above procedure of synergy cycling was

Fig. 4. A box and whisker plot showing the accuracies for the 5 models
each trained on a reducing amount of data when tested on the full dataset

repeated with the fatigued hand for only 30 seconds per
sample, giving a total of 2 minutes of data comprising 2
sets of each synergy movement.

Data was collected from 20 participants aged 19-62 (aver-
age age 27.71, split 7:13 male to female). Data was collected
following the ethical practices of The University of Bristol
and The University of the West of England.

B. Results

Four models were trained using 6 minutes, 4.5 minutes,
3 minutes, 1.5 minutes and 15 seconds of training data
per participant respectively. The models were then fed the
complete controlled data set and their prediction accuracy
can be seen in figure 4 demonstrating the average and per-
participant accuracy.

Figure 4 shows the 6-minute and 4.5-minute models have
little deviation, with this stepping up slightly for the 3 and
1.5-minute models with all accuracies being above 98%. The
15-second data shows the largest deviation with an average
accuracy of around 95.57%. To minimise training time a
value of 3 minutes of training data per participant was chosen
for the subsequent tests.

C. Discussion

These results show that the SOFT glove can predict fatigue
within a controlled environment with up to 100% accuracy
when using 80% of the data to train. This is a large section
of the dataset, but for only 15 seconds of data, an accuracy of
95.57% can still be observed allowing for a minimal initial
calibration time per user decreasing lost work time.

The median filter introduced into the processing pipeline
has a large effect on the accuracy raising it by an average
of 8.17% per model. The downside is that it reduces the
prediction rate to once every 5 seconds instead of 5 times
a second. However, RSI is due to prolonged working whilst
fatigued where an accurate prediction happening at a fre-
quency greater than once a minute is sufficient. This accuracy
could be further increased through a threshold filter forcing
values to be fatigued or non-fatigued, but this results in a
loss of analogue or intermediate states where fatigue may
have started to occur but be lower than the threshold.
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Fig. 5. An extract of EMG data showing the onset of the isometric exercise
marked with a red line and the reduction in amplitude demonstrating fatigue
following the exercise

Compared to previous studies looking at fatigue prediction
from either bend sensing [33], or IMU jerk sensing [11] an
improvement can be seen in repeatability and noise reduc-
tion. More developed systems such as driver fatigue detection
[10] showed detection rates of 86.6% for 36 participants. The
SOFT glove system can detect fatigue with a much higher
accuracy of 95.57% requiring only 15 seconds to train.

IV. DETECTION OF FATIGUE WITHIN A REPETITIVE
SORTING ACTIVITY

A. Data Acquisition
We now show that fatigue detection can be repeated in a

real-world scenario. Participants were asked to sort Duplo™
blocks one at a time into either pink or blue areas, marked
on the table in front of them to mimic a repetitive assembly
task. The participants could only use their gloved hand and
had to sort the blocks one by one preferably slowly. The
experiment consisted of an initial 3-minute non-fatigued
sorting session, before introducing fatigue into the hand
using the same isometric process as described in section III.A
for two minutes. The sorting task was continued for a further
2 minutes to collect the fatigued data set for each user.

During this experiment, 2 Delsys Trigno EMG sensors
were placed on the user’s forearm over the palmaris longus
(1) and extensor digitorum (2) as seen in figure 1, sampling at
100 readings a second for the completion of the experiment
(7 minutes). This was used to validate that fatigue had
occurred via an amplitude drop in the MVP (Maximum
Voluntary Pulse) of the EMG readings [34].

B. Results

Predictor T-Positive F-Positive T-Negative F-Negative
Controlled 0.9993 0.0007 0.9930 0.0070
Real World 0.9595 0.0405 0.9207 0.0793

TABLE I

Fatigue was predicted using a Random Forest model
trained on the controlled and non-controlled task data. Figure
6 shows the prediction accuracy per participant with the
average value of 96.01%.

Fig. 6. A histogram showing the accuracies per participant for prediction
during the sorting task.

C. Discussion

This study shows fatigue can be predicted for all users with
an average accuracy of 96.01%. A slight reduction in true
positive and negative rates can be noted in Table I compared
to the controlled dataset. There is a reduction of accuracy
for participants 14, and 4 but on examination of the EMG
data, a lower change in amplitude can be seen post-exercise
suggesting lower fatigue levels. This variation could be due
to the participant’s fitness level causing a lower fatigued
state post-exercise. The effect of physical fitness on EMG
fatigue reliability has been well noted [33]. Furthermore, the
recovery time of 6 minutes after the idealised experiment
may not have been sufficient for some users.

For surface electrode EMG fatigue systems, the best
accuracies measured on healthy patients are 95.18% on
the lower limbs, [35] and 94.09% on bicep brachii [36]
which is comparable to the 96.01% from the SOFT glove.
The increase in accuracy could be due to the SOFT glove
using high-level movements for its predictions giving 8 input
variables, whereas the EMG systems use low-level muscle
impulses with 4 inputs into the system. Additionally, the
SOFT glove system is based on binary classification which
helps to improve accuracy and uses repetitive non-anaerobic
movements compared to the sustained periods of exercise
used across the EMG studies [35] [36] making it more suited
to an assembly. Furthermore, the improvement in accuracy is
only within the specific tasks undertaken during the studies.
Surface EMG-based systems are more easily generalised to
other tasks as they depend on muscle maximum contraction
so are agnostic of the task the hand is completing. This is less
important for manual assembly tasks though as they consist
of repeated actions that can be predicted.

V. DEMONSTRATION OF CONTINUOUS FATIGUE
MONITORING

Finally, we demonstrate that the SOFT glove can detect
multiple switches between fatigued states by having a single
user repeatedly form a fist grip whilst under various states of
fatigue. EMG readings were collected with Delsys Sensors
following the positions shown in figure 1 to give the baseline.
The fatigue states were achieved using the isometric exercise
in figure 3.h. and a period of rest without recording to return
to a normal state. Figure 7 shows that the trained model was
able to predict fatigue with 98.79% accuracy with the EMG
data showing MVP amplitude drops at the fatigued state
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Fig. 7. A Graph showing the predictions for a continuous fatigue study
with periods of isometric exercise marked with red lines followed by rest
periods marked in green, with the corresponding EMG data above

Fig. 8. A Graph showing the mean predictions(blue) and EMG data (pink)
for a continuous run study where no exercise was performed and fatigue
was entered through continuous repetition of movement

lining up with the labelled data. A further study was done
where a single participant repeated the synergy 1 movement
(figure 3 a-c) for a total of 16 minutes. Fatigue was self-
reported at around 546 seconds with the EMG validating
that muscular fatigue happened at 530 seconds by a drop in
the MVP amplitude. Figure 8 shows initial fatigue forming
at around 520 seconds with a more definite change at 600
seconds. This shows that the system will start to detect
fatigue as it occurs but it takes some time for fatigue to fully
set in giving a clearer more determined signal. Initially, once
fatigue has occurred and the MVP is no longer being reached
the RMS signal will start to rise again as the user switches
to submaximal voluntary contractions [37]. This is shown in
the slow rise of amplitude after initial fatigue is noted.

VI. DISCUSSION OF SOFT GLOVE CONCEPT
EVALUATION

In this work, we have shown that SOFT glove can achieve
fatigue prediction within an idealistic (99.74%) and a real-
world picking task (96.01%). Similar joint movement-based
fatigue detection systems [38] [33] did not get coherent re-
sults across all participants, due to differences in body types
and activity levels of participants. These results make the
SOFT glove the first wearable soft device that can repeatedly
and accurately detect fatigue within the hand. Comparing
the SOFT glove to known EMG-based systems [26] [27] it

Classifier Sensitivity Specificity Accuracy
SOTF-Glove Control 98.59 99.97 99.74
SOFT-Glove Non Control 87.38 97.55 96.01
EMG Random Forest [39] 85.74 91.66 88.7
EMG SVM-polynomial [39] 90.38 88.54 89.46
Shimmer 3 IMU [40] 1 0.79 N/A

TABLE II
A TABLE COMPARING THE EFFECTIVENESS OF 5 DIFFERENT

ALGORITHMS IN PREDICTION OF FATIGUE BY OBSERVING A USER

can be seen that the gathered amplitude signals from the
Delsys sensors match the force profiles and fatigue curves
in the literature. This shows that the isometric exercise used
achieves a fatigued state and the glove’s response follows
the drop in EMG of the participants. As the SOFT glove
relies on finger movement, problems common with EMG
such as misalignment, hair on the skin, the complexion of
the skin, and residue or oils on the skin, were not observed.
The effects of hair, complexion and misalignment were noted
during the user study for the EMG, with re-adjustments of
EMG sensors having to be made to get a reliable signal.

The SOFT glove was less than ideal for users with
smaller hand sizes, and issues with the glove being baggy
for users with more slender hands meant there was a
significant amount of movement inside the glove before it
started following the user’s motion. However, fatigue was
still predicted for every user likely because the random
forest algorithm can identify differences in the movement
patterns of the user, so it is irrelevant which sensor detects
it. The addition of the bend sensors led to a stiffness increase
measured at 2.4/m In the future this could be reduced through
the use of soft bend sensors [20]. Table II shows an analysis
of the random forest predictions for both the controlled and
non-controlled experiments, compared to a shimmer 3 IMU-
based fatigue detector [40] and two EMG GA-based feature
selection predictors [39]. This data shows that the SOFT
glove can detect fatigue with higher accuracy than the other
methods, however, the specificity is rather high suggesting
that the model may be overfitting. The control scenario shows
a slightly more overfit model mainly resulting from it being
a set of controlled movements rather than allowing the user
to choose grasps. This overfitting problem may be less of an
issue if the user is repeating the same actions.

The limitations of the paper mainly focus on the reduced
amount of data collected. Although a sufficient sample size
was used to defend the initial hypothesis and prove viability
there is still room for development. Noted issues to do
with over-fitment could be addressed through increased data
collection including multiple object sets and tasks with a
larger pool of users. Theoretically, with a big enough dataset,
the glove may not need any calibration functioning using
online training to fine-tune the model to the user.

VII. CONCLUSION

The SOFT glove can predict fatigue in an idealised
environment with an accuracy of 99.74% and in a real-
world environment with 96.01%. This prediction method is
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comparable to what is seen from RMS EMG-based fatigue
systems but is minimally affected by misalignment errors
and body conditions, with a lower setup time. This fatigue
detection forms the pivotal first step in the real-time detection
of RSI warning signs and with further development could
support repetitive assembly workers within their respective
fields. Therefore the SOFT glove can be considered the first
device to detect fatigue in real time using bend sensing with
accuracy comparable to EMG-based systems.
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