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Abstract 

This thesis develops a novel algorithm to solving the inverse problem for Ground 

Penetrating Radar when used to detect potatoes during the growing phase. It does 

so by reviewing current analytical approaches to solving the inverse problem. It then 

explains the creation of a 2D image creation method with the aim of demonstrating 

how deep learning can solve the inverse problem. It then uses a similar methodology 

to map between a single radar scan and usable 3D images with the intention to 

demonstrate that the technology is viable in both applications, and that by using a 

single scan it is possible to reduce the investment and computational costs required 

for the hardware and overall system solution. The 2D results demonstrate that it is 

possible to utilise the 2D mapping approach to create images based on a single 

radar scan. The 3D results, while not perfect, demonstrate that there is a potential 

in the method contained within this thesis. Overall, the results show that there are 

severe limitations which still need to be overcome in the current commercial 

scanning hardware available and in the computational resource. Some solutions to 

these limitations have been suggested and should be incorporated in future 

developments of the system.  
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1 Introduction 

The agricultural sector is under constant economic strain due to market pressures 

to keep food plentiful and cheap in the context of an increasing global population, 

environmental awareness and the uncertainties of climate change. The introduction 

of technology into the farming industry, such as will be investigated within this 

project, has the potential to address these challenges, help improve crop yield 

forecasts, and get crops to the marketplace at the optimum time. Other secondary 

benefits include improving crop health monitoring. 

This research builds on prior field work already performed on 3D tomography of 

subsurface objects. Its principal aim is to develop a system for the visualisation of 

plant tubers and root stock in 3D during the growing phase to monitor plant health 

and make informed interventions prior to the harvesting phase to maximise yield. 

Imaging will be coupled with state-of-the-art deep learning algorithms to process the 

signal, using image analysis to identify shape, size and condition of the root stock 

and tubers in real time. In this manner, the principal technology will be using deep 

learning algorithms to achieve the project’s aim to produce results in the field and in 

as close to real time as possible.  

A wide range of subsurface imaging techniques, for example Electro-Resistance 

Tomography, Seismic Attenuation Profile, and Ground Penetrating Radar are 

currently employed across a variety of sectors such as archaeology, forensic 

science, civil engineering, geology, and unexploded ordinance detection. Therefore, 

it seems reasonable to also expand the application of these technologies into the 

agriculture sector, where only limited progress was made to date. 
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The major problem with subsurface imaging techniques is that the results are highly 

influenced by the content of the soil, its structure, organic material, and different 

levels of moisture. These factors affect the strength of the response and the speed 

at which the signal propagates through the soil, leading to confusing results and 

false positives. Other complicating factors include the amount of foliage limiting 

access to the ground, and reluctance by the farmers to unnecessarily disturb the 

fields during the growing phase. 

These factors can result in erroneous distance measurements. Machine learning 

will be employed to reduce the shortfalls in the Ground Penetrating Radar (GPR) 

hardware. GPR utilises electromagnetic waves to penetrate the surface. These 

waves then reflect off objects to a receiver. GPR traditionally creates a 2D slice, 

which shows subsurface objects in the form of a hyperbolic curve.  

The inverse problem is where a known output exists, and the aim is to find what 

caused the output. Over the years, many empirical solutions to the inverse problem 

were proposed, some of which are discussed in section 2.2, however they mainly 

focus on a 2D results. The purpose of this thesis is to create an alternative solution 

to the inverse problem using deep learning to map between two solution spaces.  

This thesis will take the reader through an attempt to create an empirical solution to 

the inverse problem in Section 3 and highlight the problems associated with this 

solution. It will then give a review of GPR and the use of numerical simulation 

software to create both 2D and 3D potato simulations to create a dataset for the 

deep learning training which is discussed in detail in chapter 4. The data set will be 

created using a commercially available antenna.  It will explain the creation of a 2D-

to-2D solution to the inverse problem using deep learning in section 5.3 and finally 
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detail a 2D to 3D solution in section 5.4 to realise a proposed system capable of 

accurately imaging tubers in the ground. 

The main contributions that this work provides are as follows: 

• Develop a data driven approach to the inverse problem. 

• An investigation into the use of deep learning to speed up the solution of the 

inverse problem. 

• Investigation into the possibility of creating 3D images from a single GPR 

scan, and to show that accurate 3D representations of sub-surface tubers 

can be produced from GPR data. 
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1.1 Problem Statement and Method 
This section is split into three: aims, objectives and the approach taken. The 

principal problem that this work attempts to tackle is that it is difficult to see what is 

happening subsurface without disturbing the ground, and disturbing the ground 

changes the measurements, not to mention can harm crops. 

A non-intrusive technology that presents itself is GPR, but mapping the scan results 

to the actual locations and sizes of object that caused the observed scan is not 

straightforward. This is a classical inverse problem, and this research will explore 

the implementation of an analytical solution to the inverse problem as well as a data 

driven approach. It will also highlight that the need for high computation times and 

inability to transform between the 2D and 3D spaces are significant drawbacks of 

the analytical solution.  

1.1.1 Aims 

The aim of this research is to develop a system for the visualisation and data 

extraction from plant tubers and root stock in 3D during the growing phase of 

potatoes or other subsurface organic produce to monitor crop health prior to the 

harvesting phase, which will allow growers to take appropriate actions to maximise 

yield. This will be coupled with deep learning algorithms to process the signal, using 

image analysis to identify the shape, size and overall condition of the root stock and 

tubers in real time.  
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1.1.2 Objectives 

The objectives of this research are:  

• Identify and size individual tubers using existing geophysics techniques. 

• Demonstrate that deep learning can significantly improve the accuracy of 

quantification (count, size, and location) of tubers whilst below ground. 

1.1.3 Approach  

The approach adopted in this work is to use simulation software to generate a 

representative GPR scan dataset for both 2D and 3D geometries, which represent 

known subsurface organic objects. These simulations will be compared to a set of 

GPR scans and an attempt to correlate between the real world GPR scans and the 

predicted scans will be undertaken.  

The 2D dataset contains 15,998 samples and the 3D dataset contains 16,000 

samples. The pilot studies undertaken as part of this PhD showed that there was 

adequate convergence after 15,000 samples with the 2D dataset. 

The deep learning networks are all bespoke for this research project and are 

developed using Python and the Pytorch framework.  
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2 Literature Review 

“Artificial Neural Networks and Machine Learning techniques applied to Ground 

Penetrating Radar: A review” by (Travassos, Avila and Ida, 2018) performs a review 

of published articles which combine GPR and machine learning. The conclusion of 

the review is that machine learning has the potential to process GPR signals for 

object identification. However, two challenges are associated with the use of 

machine learning in this field. The first is reducing false positives and negatives. The 

second is improving the object localisation and handling of multiple objects. The 

paper also notes that the problem is becoming more complicated by the requirement 

to produce 3D volumes and the additional complexity of weather, vegetation, and 

terrain. It is also clear from the literature review that very little work has been done 

using deep learning to solve the inverse problem.  

Following on from the work undertaken by (Travassos, Avila and Ida, 2018), this 

research builds upon peer reviewed literature in the fields of machine learning and 

signal processing detailed in sections 2.1 to 2.1.3.  
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2.1 Deep Learning Applied to GPR Signals 

2.1.1 Laplace Neural Network Proposal for Processing GPR Signals (Szymczyk and 

Szymczyk, 2015a). 

The paper proposes a method of implementing artificial neural networks to process 

GPR signals. The approach put forward in the paper is adopted because GPR 

traces have been historically difficult to interpret automatically due to the large 

number of variables which are outside of the user’s control. The paper outlines a 

proposal to use a neural network architecture based on Laplace transforms to 

process GPR signal traces. The proposed architecture uses the dynamic nature of 

the waveforms to solve a given problem. The proposed architecture for the Laplace 

Neural Network (LNN) is shown in Figure 2-1.  

 

Figure 2-1 Laplace Neural Network Architecture (Szymczyk and Szymczyk, 2015a) 
As with all neural networks, there is a requirement to include a learning algorithm 

which minimises the error by adjusting the weights on each node in the fully 

connected layer. As seen in Figure 2-2, in this architecture this is done by using the 

output signal 𝑌𝑌(𝑠𝑠) in response to input signals X(𝑠𝑠). The learning algorithm 



17 | P a g e  
 

proposed is based on the Widrow-Hoff proposal which leads on to the back-

propagation algorithm.  

The fully connected layer is replaced with the Laplace artificial neuron, while the 

weights and linear activation functions are replaced with transmittances. In this case 

the outputs are differences between a known signal and the supplied signal, and 

these differences can be used as classification.  

A subsequent paper (Szymczyk and Szymczyk, 2015b) was published by the same 

authors which shows how the Laplace Neural Network has been used with GPR 

signals. In the second paper (Szymczyk and Szymczyk, 2015b) the learning method 

proposed is with a known input signal 𝑍𝑍(𝑠𝑠), which is compared to the output signal 

that creates the error. The basic learning method is shown in Figure 2-2. It aims to 

minimise the difference between Y(s) and Z(s). In their subsequent paper, the 

learning algorithm was expanded as shown in Figure 2-3, there the feedback is 

identified in red. 

 

Figure 2-2 Supervised Learning Method (Szymczyk and Szymczyk, 2015a) 
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Figure 2-3 Revised and Updated Learning Method (Szymczyk and Szymczyk, 2015b) 
In the approach used in both papers the transmitted signal is modelled as a Laplace 

transform of sine wave and the Heaviside function whilst the received signal is 

modelled as a Laplace transform of a large order polynomial. From this the transfer 

function can be calculated. 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 =
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

The transmittance variables F(s) are calculated for known signals (a sinkhole, loose 

zone, and no object), these are then compared to the received signal and from this 

a classification can be deduced.  

The paper does not extensively detail how successful this architecture is, and a 

review of citations does not reveal any works which compared the results from this 

paper to alternative architectures. This therefore leads to some scepticism about the 

success in real world applications. However, using the ideas in this paper, it may be 

possible to use the wavelet domain to create a filter bank such that the filter 

constants are optimised to extract the most information from the signal, as well as 
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compressing the signal which would help to maintain the efficiency of the system. It 

is possible to then use alternative deep learning techniques to classify the signal 

and generate a point cloud, from which a useful image can be generated. 

In Summary, the paper proposes a novel approach for processing the GPR signal 

using Neural Networks. 

2.1.2 Detection and Classification of Landmines Using GPR and R-CNN’s 

(Kafedziski, Pecov and Tanevski, 2018) 

The main theme of this paper is the use a faster Region-Convolutional Neural 

Network (R-CNN) based on the Inception-v2 architecture which delivered accurate 

results. The input data was a mixture of real-world scans and simulated results. The 

authors used the numerical Ground Penetrating Radar simulation tool GPRMax to 

simulate 48 B-scans of various anti-personnel and anti-tank mines that were 

combined with 109 real world scans of mines, which resulted in a total of 157 B-

scans, containing 351 objects. The test data was split into 75 random object 

hyperbolic images, 24 anti-tank mine signatures and 25 signatures of empty space. 

It is difficult to comment on the approach used without fully understanding how much 

variation there is in the B-Scan simulations. The obvious comment is that the dataset 

is rather small, which would impact on the overall generalisability of the approach.  

The paper does not discuss how well the GPRMax models correlate to the real-

world scan. If this was explored in more detail, the approach would be easier to 

comment on as well as giving more confidence about the validity of this research. 

However, the approach itself is sound, and a mixture of simulated data and real-

world data will allow the generation of a dataset efficiently and, in the case of 

unexploded ordnance (UXO), safely. 
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As a result of this article, in  Appendix A, it has been demonstrated that it is possible 

to count the number of items using pretrained deep learning networks with a limited 

dataset with some success, albeit with a significantly larger dataset. 

Figure 2-4 is the confusion matrix for the two classes: objects and Anti-Tank mines, 

where background is added to create false positives and negatives (FP & FN).  

 

Figure 2-4 Confusion Matrix for the Classification Model (Kafedziski, Pecov and 
Tanevski, 2018) 
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The results in Figure 2-5 are further refined by summing various components of 

Figure 2-4, for example the true positive (TP) values are obtained using the sum of 

the values in the four cells (it does not say which four cells). The FP entry is obtained 

by summing the first two entries in the last column of Figure 2-4, and the FN value 

is the sum of the first two entries in the last row. The TP entry in Figure 2-5 is 

overstated, since there are five miss-classification (FN) and as a result the true value 

for FN is 85% and TP (correct object classed as correct object is 68% and AT 

classed as AT is 19%) should be 87.88%. 

 

Figure 2-5 Detection Confusion Matrix (Kafedziski, Pecov and Tanevski, 2018) 
This was then used to a retrain a pretrained Regional CNN. The results are not 

overly clear as to the success level, however when dealing with highly dangerous 

objects such as UXO a 92.9% (or 87.88%) does seem low. More information on the 

application of this approach to organic material is in Appendix A. 

2.1.3 GPRInvNet: Deep Learning-Based Ground-Penetrating Radar Data Inversion 

for Tunnel Linings  (Liu et al., 2021a) 

This is a highly relevant paper because the methodology is similar to the one 

employed in this thesis. The main differences are firstly that the authors utilise a 

MATLAB simulation to create a large 2D dataset (more than 400,000 files), with an 

architecture based on an encoder and decoder deep learning model. The second 

key difference is that they are not trying to recreate an image of the subsurface 

feature, but instead calculate the permittivity (the ability of a substance to store 
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energy in the electrical field) map. The model is run using a batch size of 12 with a 

learning rate of 5e-5 and run for 100 epochs.  

The loss function used is a combination of the L2 (Mean Squared Error – MSE) loss 

and a multiscale structural similarity (MS-SIM) loss. The main benefit of the MS-SIM 

loss function is that it allows for a method of predicting the perceived quality of an 

image by creating parameters which define the relative importance of different 

scales and was originally proposed in (Wang, Simoncelli and Bovik, 2003) 

The results in this paper are very encouraging when compared to actual measured 

data, even though no absolute error margin is shown and no statistical comparison 

of the results against actual data carried out. Furthermore, the authors do not appear 

to attempt an analytical solution, or any reasoning as to why the data driven 

approach is preferred. One possible answer for this is explored in section 3 of this 

report.  

There is also no validation of the MATLAB code within the paper. That said, are 

several options are freely available. One such was explored as an alternative to 

GPRMax by (Irving and Knight, 2006) but it was found to be limited in its application.  

2.1.4 DMRF-UNet: A Two-Stage Deep Learning Scheme for GPR Data Inversion 

under Heterogeneous Soil Conditions (Dai et al., 2022) 

This paper proposes the use a two-stage Deep Neural Network consisting of a UNet 

and a Deep Multi-Receptive Field (DMRF) with the aim of reconstructing the 

permittivity distributions of buried objects of interest. The first stage uses a DNN to 

remove clutter caused by an inhomogeneity of the soil. The second stage uses the 

cleaned B-scan from the first stage along with noisy B-Scan data to learn the inverse 

relationship and then reconstructs the permittivity of the subsurface objects. The 
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system employs an end-to-end training regime with the aim of minimising 

information loss. The architecture is shown in Figure 2-6 below. 

 
Figure 2-6 The Structure of the Proposed DMRF-Unet. ‘MRF Module’, ‘Max Pool’, 

‘Concat’, ‘Up-Conv’, ‘Conv’, and ‘Relu’ Represent The Multi-Receptive-Field Module 
(Dai et al., 2022) 

An example of the output from the model for a single case is shown in Figure 2-7 

below and across all test cases summarised Table 2-1. The results show that the 

approach performs better for single object detection than for two separated or two 

interfaced scenarios.  
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Figure 2-7 Inversion Results Comparison when Two Interfaced Objects are Buried. 

(Dai et al., 2022) 

 
Table 2-1 Summary Of Results Across All Test Scenarios In The Paper (Dai et al., 

2022) 
The paper comments that it takes about 1.5 hours to complete a single inversion 

and 24 iterations for the FWI approach. This approach takes 0.01 seconds to 

generate an image, while training the model takes 16 hours. The results from the 

model were compared against real-world test data and it was found to outperform 

existing approaches as shown in Table 2-2 below.  
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Table 2-2 Comparison On Evaluation Metrics Of Real Measurement Data (Dai et al., 

2022) 
2.1.5 Geophysical model generation with generative adversarial networks (Puzyrev 

et al., 2022) 

In this paper, the authors have proposed the use GANs to generate a 2D subsurface 

dataset which can be used in future applications for deep learning inverse problem 

applications. The approach is to use 2D models extracted from five 3D stratigraphic 

models generated using an open-source modelling code called Badlands. Each 

model is between 8km and 16km long with a depth range between 2km and 4km. 

The approach used to generate the training data assigns different lithological types 

representing shale-sand proportions. The data is created using the standard GAN 

configuration of generator and discriminator which is derived from StyleGAN2 

(Karras et al., 2020). It creates a realistic generator with either 24.03 and 24.85 

million parameters and an output size of 1x512x512. The training results are shown 

in Table 2-3.  

 

Table 2-3 Training Statistics and FID scores from the paper (Puzyrev et al., 2022) 
The quality of the generated image is measured using the Fréchet Inception 

Distance (FID) score where a lower score is better. The paper concludes that the 



26 | P a g e  
 

approach adopted has the ability to generate sufficiently detailed and varied artificial 

models which have features that are comparable to those used in the training 

dataset in real-time. This allows the artificial dataset to be generated in a cost-

effective manner. This is a flexible approach that can be applied to several different 

data types.  

Future development of the method has included the use of conditional GANs 

allowing the generation of data based on class labels. 
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2.1.6 Deep Learning for Geophysics: Current and Future Trends (Yu and Ma, 2021) 

This review paper has looked at applications of deep learning models to geophysical 

applications. The conclusion is that most of the work has been centred around 

application in exploration geophysics, earthquakes, and remote sensing. Several 

deployments have used a u-net to predict the velocity model (see Figure 2-8 below)  

 

Figure 2-8 Predicting the velocity model with U-Net from raw seismological data 
(Yang and Ma, 2019) 

The paper also summarises how the use of semi-supervised and unsupervised 

approaches like CAEs and GANs have a great benefit to offer the geophysics 

community as a way of mitigating the time consuming and expense of labelling 

datasets.  
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2.1.7 How Deep Learning Can Help Solving Geophysical Inverse Problems (Picetti, 

2023) 

This paper provides a summary of the advantages and limitations found of deep 

learning on seismic survey results from the author’s PhD studies. The particular 

focus was using Deep Convolutional Neural Networks. The author uses GANs to 

improve the quality of the reflectivity of images from surveys, then applies a 

technique called deep priors which uses a CNN to precondition the inverse problem. 

The final stage uses feature extraction techniques developed from work using GPR 

in landmine detection.  

In the final stage the author uses a convolutional autoencoder on patches of mine 

free B-scans and uses a CNN on the output as shown in Figure 2-9 below, where v 

is the input to the autoencoder with 𝑣𝑣� being the output from the encoder. The CNN 

then classifies any objects of interest as a ‘1’ and otherwise as ‘0’. 

 

Figure 2-9 Proposal for Anomaly Detection Scheme (Picetti, 2023) 
Once all the results are processed, they are merged into a mask which has the same 

size as the input, and then the final label is computed by hard thresholding the 

maximum value in ‘e’. 

The approach uses the maximum value in ‘B’ scan energy which is a constant false 

alarm rate technique to compare against other methods. The results were presented 

using the Receiver Operating Characteristic (ROC), which represents the probability 

of correct detection and is shown in Figure 2-10 below. It can be seen that the 
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approach presented in the paper achieves the best Area Under Curve when 

compared to competitive solutions.  

 

Figure 2-10 ROC Curves for the Landmine Detector when Compared to other 
Solutions (Picetti, 2023) 

2.1.8 A Deep Learning Approach for Urban Underground Objects Detection from 

Vehicle-Borne Ground Penetrating Radar Data in Real Time (Zong et al., 2019) 

This paper proposes a method of detection and classification of objects found by 

GPR systems in 2D. The approach uses a two-stage process as shown in Figure 

2-11 below. The first step is to use the Darket53 and train it on a 2D set of images 

taken from the ImageNet, COCO, and PASCAL VOC datasets, thus allowing 

classification. The second step is a two-step process, the first freezes the first 50 

layers and uses transfer learning with a GPR based dataset, the second step is to 

unfreeze these layers to allow the model to predict the location of multiple bounding 

boxes.  

Once training has been completed, the inference is used to obtain both the category 

and the location of objects detected.  
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Figure 2-11 The Proposed Method for Training of the CNN (Zong et al., 2019) 
The GPR hardware for this was a 400MHz vehicle-based system and was used to 

identify rainwater wells, sparse/dense steel mesh, bridges, pipelines and cables 

over a 4.5km scanning length. These detected items were then augmented to create 

the full dataset of 3033 items.  

The results from the testing are shown in Figure 2-12 below. Interestingly, the 

traditional confusion matrix is not used. Precision terms, recall and the F1 score are 

shown instead. In the paper, the formula for the recall and the precision are the 

same, however in the table the values are different. The results do show that the 

ability to detect objects correctly is relatively high (89%) while the accuracy of the 

model is slightly lower (87%). The approach seems to have the most success 

classifying rainwater wells and having the lowest success in detecting voids. 

Whereas the paper does not explain the reason for the apparent lack of success on 

nonconductive items (nonmetal pipes and voids), it can be assumed that the signals 

were not dominant enough compared to the metallic and water-based signals.  
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Figure 2-12 The Results from Testing of the Network (Zong et al., 2019) 
2.1.9 Deep Learning Based Subsurface Target Detection from GPR Scans (Hou et al., 

2021) 

This paper proposes an improvement over existing Regional Convolutional Neural 

Networks (R-CNN) as a method of automation in object detection of GPR scans. 

This paper enhances the Masked Scoring method, achieved by the introduction of 

new anchoring schemes.  

The proposed method aims to address several challenges when adapting deep 

learning to GPR based problems. The identified issues are firstly the physical 

attributes of the scanning hardware and the objects being detected. The second 

issue is the properties of the medium being scanned (moisture content, 

homogeneity, etc.). The final issue is that when passing GPR scans into a model, 

the model may lose useful information and lead to redundant processing. The 

proposed architecture is shown in Figure 2-13 below.  
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Figure 2-13 The Proposed GPR Framework (Hou et al., 2021) 
The proposed methodology can be considered in 2 stages. The first stage of a 

traditional mask scoring approach is modified by first analysing the hyperbolic 

signatures to develop a customisable anchoring scheme which improves the object 

detection performance. The second stage is extracting the signatures from a 

cluttered background and then the hyperbolic fitting is performed to find a peak, thus 

identifying the approximate location.  

For real world data collection, the GSSI 2GHz antenna coupled with an SIR-4000 

was used and had a predicted penetration depth of around 0.5m (depending on 

moisture content).  

In Figure 2-14 below, a sample of the results are shown for the new improved 

methods. The first step is to identify and extract the hyperbolic signatures (figures b 

& c) and then these hyperbolic signatures are identified and using the method to 
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predict the peak of the hyperbola. The method also demonstrates a resilience to 

small and dense hyperbola.  

 

Figure 2-14 (a) Pre-processed root GPR scan. (b) Detected and Segmented Results. 
(c) Only Picked Mask Clusters. (d) Hyperbolic Fitting Results with Peaks (red point) 

(Hou et al., 2021) 
A comparison of the average precision (AP) for different intersection over union 

values of 50 & 75 and for small and medium objects are shown in Figure 2-15 below.  

 

Figure 2-15 Comparison Of Segmentation Results Via Different Instance 
Segmentation Frameworks (In Percent) (Hou et al., 2021) 
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The paper has proposed an improved method for automated signature detection 

and segmentation using deep learning technique, however there are several 

limitations of the work identified, which include: 

• The size of the datasets used. 

• The deep learning model needs to be designed to accept the input 

characteristics.  

• The root dataset was dependent on the soil parameters, which, in wet 

conditions could result in missing some plant root images.  

• The recognition of roots is inferior when compared to linear objects such as 

rebar.  

2.1.10 A Novel Method of Hyperbola Recognition in Ground Penetrating Radar (GPR) 

B-Scan Image for Tree Roots Detection (Zhang et al., 2021) 

This paper proposes an alternative method to the root detection problem in the 

previous paper. In this paper, the team proposes to use both multidirectional 

features as well the symmetry of the hyperbola in the B-scans. A faster RCNN was 

trained on a mixed set of GPR B-Scans in order to locate any potential hyperbolas. 

The peak area was then identified from any connected data from the 4 directional 

gradient graphs. Any intersecting hyperbolas were separated using the symmetry 

hypothesis. The final stage was to use a Hough transform to detect the lines and 

coordinates of the hyperbolas. From this data it would be possible to identify root 

radius and position.  

The dataset was made by combining synthetic data from GPRMax with field data 

from 35 ancient tree root systems and fresh grapevine. 
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In the GPRMax Simulation the antenna frequency was 900MHz. The actual 

hardware used in the field was the GSSI SIR3000T tree radar and a 2D domain was 

used. The Architecture used for the RCNN is shown in Figure 2-16 below, with the 

backbone using VGG, Resnet50 and Resent100 for feature extraction. The output 

from this was sent into a region proposal network and a regression network.  

 

Figure 2-16 The framework of hyperbola region detection (Zhang et al., 2021) 
The results of the feature extraction are shown in Figure 2-17 below and show that 

the ResNet101 has the best Average Prediction). When the paper compares the 

results for the hyperbolic extraction (see Figure 2-18 below), the relative error is 

inversely proportional to the diameter of the root and is 60% in the multi root 

assessment.  

 

Figure 2-17 The Comparison for the mAP, TPI And FPS of Three Different Backbone 
Networks. (Zhang et al., 2021) 

 

Figure 2-18 Single Root Radius and Location of Single Root 
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The paper concludes that the method adopted shows a significant effect in tree root 

detection as well as position and size estimation. In a real-world situation this 

method could not guarantee capture of vertical roots because the amount of water 

content in the soil has a detrimental effect on the detection system. 

2.2 Inverse modelling 

The papers mentioned in this section demonstrate the complexities of solving the 

inverse problems using numerical techniques when applied to RADAR sources.  

2.2.1 Reconstruction of 3D objects from multi-frequency experimental data with a 

fast DBIM-BCGS method (Yu, Yuan and Liu, 2009) 

This paper is applied to airborne RADAR, which is less complicated due to the 

removal of impurities contained within the transmitted medium (air in this case and 

soil in GPR). 

This paper presents a solution to the inverse problem using the Distorted Born 

Iterative Method – Stabilised Biconjugate Gradients (DBIM-BCGS). The approach 

used in the paper has great potential as it is based on the Born series expansion, 

which is explained in section 3.5.1 in this thesis. The paper is generally light on 

technical detail, and only includes a rudimentary explanation of the theory used. It 

also doesn’t include a discussion of the results which leaves the reader to infer the 

quality of the reconstruction using this method based on a single graph at the end. 

The images in this paper show that there is a reasonable degree of reconstruction 

accuracy, and this is validated by the graph at the end of the paper though the reader 

is left to assume that the accuracy is 0.33% and not 33%.  

DBIM is an iterative approach that implements the Distorted Wave Born 

Approximation by updating the Green's functions in every iteration. In the case of 
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noiseless solutions DBIM has been demonstrated to be superior to the Born Iterative 

Method. The approach taken in this paper is to further enhance the capability of the 

DBIM approach.   

The paper has no recommendations of where the theory can be improved and what 

possible avenues can be explored. There is no dimensional accuracy comparison 

between the calculated data and actual data and, while the 3D reconstructions are 

plotted against the XYZ Cartesian coordinates, the actual output from the method 

has not been produced.  

Several things are left unexplained. They include the choice of a frequency band of 

3 to 8 GHz, the effects if this frequency band is changed, and what if any affect it 

has on the results.  

In addition, the rig setup is very specific, and no explanation as to the reasoning 

behind the setup has been given, e.g., as to why the angular increments or the radial 

distance of the antennas have been chosen and what are the impacts on the results 

if these are changed.  

The paper suggests that the use of the Born Method is suitable to the solution of the 

inverse GPR problem.  
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2.2.2 Two-Dimensional Linear Inversion of GPR Data with a Shifting Zoom along 

the Observation Line (Persico, Ludeno and Lambot, 2017) 

This paper presents an alternative method to the linear inverse scattering GPR 

problem. One of the main difficulties with the inverse problem is that the size of 

matrices can become intractably large or too large for computational analysis. This 

in turn leads to a large expenditure in both computational hardware and time.  

The proposed method in this paper is a way of minimising this expenditure using a 

shifting zoom approach. This approach uses is a modified windowing technique, 

which effectively slides over the data allowing only a section of data to be processed 

at a time. There is no comparison of the results from this approach against a more 

traditional approach, so it is very difficult to make a judgement on the effectiveness 

of this approach. 

Besides the shifting zoom approach, the inverse problem is solved using a 

traditional Born approximation of the solution, so it is difficult to say whether the 

novel introduction of a shifting zoom or the well-trodden path of the Born 

approximation method of solving the linear inverse problem is responsible for the 

accuracy of the results.  

Neither of these the two papers in sections 2.2.1 and 2.2.2 make any reference to 

the inherent issues with solving the inverse problem or discuss how the boundary 

conditions at the antenna have been derived. The simplest way of calculating this 

would be to use a Green’s function (these are discussed in detail section 3.4.1). This 

then allows an estimation of the internal behaviour of a system based on the external 

known properties. As can be deduced, the derivation of this is therefore critical to 

the success of the approach. 
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From both papers, it seems that the Born approximation or a derivative is the most 

suitable empirical process to be used in solving the inverse problem, and as a result 

this is going to be employed in the inverse problem solution section of this thesis.  

2.2.3 Interpreting complex, three-dimensional, near-surface GPR surveys: an 

integrated modelling and inversion approach (Millington et al., 2011) 

The paper presents results for the development of integrated Finite Difference Time 

Dependent (FDTD) and a linear tomographic inversion method in order to interpret 

near surface 3D GPR data. The method uses the Born approximation and truncated 

Single Value Decomposition (SVD) to create the reconstructions. The approach 

adopted is very similar to the method described in chapter 3 of this thesis. The 

results are shown in Figure 2-19 below. 

 

Figure 2-19 3D Inversion Results for a Clandestine Burial Target (Millington et al., 
2011) 

This method works by performing an inversion model on each individual B-Scan, 

which are then sewn together to create a 3D iso-surface with a threshold value of 

approximately 70%. It is noted in the report that the relative depths of the upper 

parts of the skeleton have been maintained, and even individual limbs have been 
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reconstructed. However, there are also smearing effects which produced false 

dimensionality as well as issues with the reconstruction of the shallowest parts of 

the skeleton.  

The paper goes on to add clutter to the signals, in an attempt to assess the 

robustness of the algorithm. It is found that while the legs and pelvis are resolved 

albeit more loosely than without the clutter. The level of smearing is also worse in 

the cluttered model. 

The paper concludes that the approach has overcome a problematic closely spaced 

objects area of the Born approximation and that the approach is invariant to initial 

selection parameters.  

2.3 Image Mapping 
This section reviews two papers taking different approaches to the mapping of 3D 

images. The first utilises an approach based on the use of spherical wavelets and 

included in this section as a potential solution to hardware limitations in both the 

GPR and deep learning training. The second paper utilises a Deep Learning 

approach.  

2.3.1 Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial 

Networks (Zhu et al., 2017) 

Cycle Generative Adversarial Networks (GANs) as described in (Zhu et al., 2017) 

have demonstrated some success in mapping between two different images, for 

example mapping an image of horse colours onto a zebra, which results in the Zebra 

losing its stripes and vice versa (resulting in the horse gaining stripes). If it is possible 

to map from one latent space, a hidden space which is a dimensionally reduced 

representation in which similar data points are close together, and is explained in 
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more detail in section 5.2.6, to another, then this is the key to mapping from the 

GPR domain into the image domain and solving the inverse problem. The mapping 

can also be employed by mapping from a 2D domain into a 3D domain. Further 

explanation on how this relates to this research is in section 5.3. 

The approach adopted in this paper is to utilise unpaired mapping, which consists 

of a source set and a target set with no information provided as to which item in the 

source set matches the target set. This approach ignores the supervision at the item 

level. However, it does require some level of supervision at the set level, in other 

words: 

 𝑦𝑦� = 𝐺𝐺(𝑥𝑥),𝑥𝑥 ∈ 𝑋𝑋 2.1 

And this is identical to images that belong in the mapped to set 𝑌𝑌. This is achieved 

using adversarial training to classify 𝑦𝑦� apart from any member of set 𝑌𝑌(𝑦𝑦). This 

approach is not without difficulties and using the adversarial approach on its own 

has led to mode collapse (one of the main issues of GANs, discussed in section 

5.2.5) resulting in all input images mapping directly to the same output image. This 

is tackled by using cycle consistency. In this case the practise of mapping from 

𝐺𝐺:𝑋𝑋 → 𝑌𝑌 and then using another translator 𝐹𝐹:𝑌𝑌 → 𝑋𝑋. 

The results are very promising when mapping between 2D spaces, in this case from 

a zebra to a horse or between 2 different styles of painters. The authors did compare 

the output from their proposed architecture to several existing architectures and 

demonstrated that this approach leads to a significant improvement in the mapping 

between the two spaces as shown in Figure 2-20. 
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Figure 2-20 Showing the Results of a Cycle GAN on Images of Horses and Zebras 
(Zhu et al., 2017) 

The authors also compared the image quality of the output using the FCN metric, 

which evaluates how interpretable the generated images by a Fully Connected 

Network (FCN) to compare a predicted label of a generated image, and have found 

that the data quality is high (as shown in Figure 2-21).  

 

Figure 2-21 FCN Scores for Different Methods Evaluated on Cityscapes (Zhu et al., 
2017) 

A section of the paper identifies several limitations to this approach: 

1. There is little success in tasks which require geometric changes, for example 

the task of dog to cat transfiguration. 
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2. There is a gap between what can be achieved by using paired data and 

unpaired data. 

2.3.2 This paper does seem to push the boundaries forward of what can be achieved 

through using unpaired data in an unsupervised setting.  Learning a 

Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial 

Modelling (Jiajun et al., 2016) 

The paper (Jiajun et al., 2016) uses a 3D Generative-Adversarial Network (GAN) 

combined with a Variational Auto Encoder (VAE) in order to generate high resolution 

images of objects from 2D probabilistic space. This allows objects to be explored 

without the underlying Computer Aided Design (CAD) models. The input data used 

consists of 3D voxel elements (a voxel is, in effect a volumetric representation of a 

Pixel) which represent the object, in what may be considered an alternative to the 

marching cube approach. This work shows with success that it is possible to map 

from a 2D image into a 3D voxel representation. The paper also demonstrates that 

the size of the latent space between the encoder and the decoder has a direct effect 

on the quality of the output, the smaller the latent vector, the lower the resolution, 

and larger the latent vector, the higher the resolution. 

Overall, the paper provides a good description of the architecture, but the mapped 

3D images are in some cases less than finalised, with no suggestions as to how to 

improve the quality of the mapping. The paper gives some description of the training 

parameters used, however fails to mention the dataset size and the number of 

epochs used in training.  
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In addition to the mapping between 2D and 3D spaces, there is a classification 

section which shows that the unsupervised model approach adopted is better than 

other networks currently available. 

The size of the 2D image used in the input is unclear and never fully specified, 

however it is deduced that the size is at least 257 pixels. The paper also suggests 

that multiple images are taken at different viewpoints. The main purpose of the 3D 

GAN paper is to create a method of creating 3D images based on a latent vector 

supplied, whereas in this work the intention is to recreate a 3D image from a 2D 

array of values which represent the GPR response.  

The paper does not fully show how well the 2D image is mapped to the 3D space 

for any given image of an object. In other words, what is the accuracy of the 

recreation. The focus of this paper seems to be about how well the classification is 

achieved.  

2.4 Geophysics in Agriculture 

2.4.1 Ground penetrating radar (GPR) detects fine roots of agricultural crops in the 

field (Liu et al., 2018) 

(Liu et al., 2018) outline their attempts to detect roots of agricultural crops in the field 

using GPR. The study was conducted in 4 locations with different soil types, 

moisture content and several different types of cereal crops and scanned using a 

1.6GHz GPR system.  

The study sites were spread across Texas in different types of soil (silty clay loam, 

clay, sandy clay, and sandy soils). The crops used for the study were winter wheat 

and Bio energy sugar cane. The team have selected an off-the-shelf GPR system 

with a frequency of 1.6GHz. At each location the team measured the wave speed 
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velocity, with the dielectric constant being determined by the relationship between 

the wave speed and soil dielectric permittivity (Al Hagrey, 2007). 

The soil surface was cleared of debris before each scan, which is unrealistic in a 

real-world application, and the scan was performed between the two middle rows of 

each test plot. After scanning took place, soil cores were collected to measure the 

root parameters. An example of a scan is shown in Figure 2-22 below. 

 

Figure 2-22 Example GPR Scan of Root Biomass Taken Within 15cm of the Surface 
(Liu et al., 2018) 

Statistical analysis and linear regression models were used to verify that GPR could 

detect root radius and mass. The results show that there are significant relationships 

between the signal and the root characteristics. The results lead to 3 general 

conclusions: 

1) Root characteristics of wheat can be detected in a wet field. 

2) The use of average pixel intensity without a threshold compared to intensities 

threshold range is better to reflect the information on root mass. 
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3) Negative correlations were detected in dry fields. This is because high levels of 

water content within the soil have a beneficial effect on the ability to assess root 

characteristics.  

The paper concludes that there is significant potential in the use of GPR to detect 

fine roots in cereal crops. However, the relationship between root characteristics 

and GPR signal varies significantly and is generally better in moist soils than in drier 

soils.  

The results from this paper are concerned with the prospect of detecting the 

biomass of the root cluster and not with any image generation of the root cluster. 

According to the paper only one type of crop was planted in each location. Perhaps 

it would have been better to grow each of the 4 types of crops in each of the 4 

locations, thus confirming if the relationship is linked to crop or soil and moisture 

content. The report comments on the effect of water within the soil, however there 

is no mention of water content within the root system and the effect that this may 

have on the quality of the returned signal. This is significant for this research since 

a potato tuber contains a large proportion of water. 

GPR has been chosen for this research project as opposed to other imaging 

techniques such as ERT and Seismic Attenuation Profile, because it is a non-

invasive approach, with little health and safety concerns. It is beneficial to consider 

alternative imaging technologies. 
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2.4.2 3D X-Ray CT Phenotyping of Plant Roots (Xu, Valdes and Clarke, 2018) 

The paper on 3D X-Ray CT Phenotyping of Plant Roots (Xu, Valdes, and Clarke, 

2018) reviews existing and potential approaches for the analysis of 3D X-ray CT 

phenotyping images of plant root structures. An example of a typical output from a 

CT scan of a root system is shown in Figure 2-23. The paper also mentions the use 

of deep learning algorithms in the form of a 3D recursive Convolutional Neural 

Network (CNN) used in the medical industry. However, it has not been used in root 

imaging in this case. It is noted that the main detriment to using deep learning is that 

CNNs require large volumes of training data, which at present are not always 

available. The main bottleneck to using this technology is the existence of 

established commercial grade software.  

 

Figure 2-23 CT Scanned Root System, Before and After Filtering (Xu, Valdes, and 
Clarke, 2018) 
The CT scanning technology used is an offshoot of the medical imaging technique. 

In medical imaging, the tubular structures of interest are highlighted using higher 

greyscale colours than the surrounding structure, due to different X-Ray absorption 

rates. Roots do not possess this characteristic and as a result the largest source of 

error is in the root-soil boundary. 
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CT Scanning is deemed impractical outside of the lab as it will be difficult to place 

the receivers without disturbing the ground and hence the crops. Other 

considerations are the effects of X-Rays on crops and the final product. For 

example, there may be legal requirements that limit the use of X-rays on food. It is 

unknown whether the use of X-Rays render the crops unfit for human consumption. 

Such issues will limit the capability of an X-Ray based system. 

2.4.3 Data Acquisition Methodologies Utilizing Ground Penetrating Radar for 

Cassava (Manihot esculenta Crantz) Root Architecture (Delgado, Novo and 

Hays, 2019) 

This paper compares the functionality of two GPR antennas when scanning for 

Cassava roots. The paper describes in detail the test rig setup, the size, position 

and orientation of the roots. The distance between the scans was controlled by using 

a plate with recesses cut out and then the approach adopted to create the 3D iso-

surfaces. This approach uses GPRSlice to signal process the GPR signal and then 

AutoCAD to create the surfaces based on several lateral scans and a significant 

amount of signal processing. The distances chosen between each radargram were 

2.5cm, 5cm, and 10cm and the results show a severe drop off with the increasing 

space, such that for the medium result, the RMSE and standard deviation are 

significant.  

The paper found that as the roots became obliquely angled, so the error becomes 

significant. It also found that there were no root features evident when the root ran 

parallel to the direction of the scan.  
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This paper is of interest because it uses GPR on sub surface tubers and shows 

some of the issues with a traditional approach. It does also conclude that current 

hardware could be used to accurately estimate single root metrics.  

2.5 Chapter Summary 

In this Chapter, a review of literature related to this thesis has been performed. It 

evaluated published contemporary papers that use GPR and deep learning, 

propose analytical solutions to the GPR based inverse problem, image mapping 

techniques for both 2D-2D and 2D-3D as well as using GANs to generate 3D 

images. The final group of papers studied imaging techniques applied to agricultural 

applications, covering the GPR and CT scanning of root systems. The literature 

review has demonstrated that this is an active area of research, and while there has 

been significant work on the use of deep learning to process GPR signals, it has 

been largely confined to munition detection. There have also been attempts to solve 

the inverse problem using deep learning, but this has focused on civil engineering 

applications or a general empirical approach. 

The following work builds upon existing methods and introduces a novel approach 

to the inverse problem solution with relation to agricultural applications.  
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3 Inverse Modelling 

In section 2, the literature review has shown that there are two possible solutions to 

the inverse problem. an analytical solution, and a data-driven solution. This chapter 

investigates the empirical solution and serves two purposes. The first is to explain 

in detail what the inverse problem is and why it is so complicated, which would aid 

the understanding of the data-driven solution. The second is to highlight the rigidity 

of the mathematical solution, which is unsuitable for real time processing and the 

reason it was discounted as a solution. 

Generally, mathematical models are created when the influence of a known set of 

inputs have created a measured set of outputs. Examples include: 

• Spring-Mass oscillations. 

• Thermal conductance. 

• Newton’s laws of gravity.  

In each of these approaches, there is a set of known parameters (the model), and 

from the understanding of these it is possible to make predictions for a given set of 

inputs. This is known as the forward problem. There are two steps to solving 

classical forward problems: 

1. Use the physical parameters to define the system. 

2. Use the measured data to make a prediction.  

There are, however, some cases where instead of wanting to know the output of the 

model for a set of inputs, the opposite is required, or in other words here is a 

measured value, but what caused it? The best example of this is the detection of 

cosmological bodies, e.g. for a set of gravitational measurements and given the 
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Newtonian gravitational model, what bodies are causing the gravitational changes? 

This is a classical inverse problem.  

Placing the above description into a more general mathematical language gives 

equation 3.1:  

 𝑟𝑟 = ℱ(𝑚𝑚) 3.1 

where r is the existing set of observed data and (ℱ)  is a forward model of known 

parameters (m).  

One important concept in the inverse problem is “residuals”. Residuals are the 

differences between the forward model prediction and the data, which show how 

accurate the inverse model is. If the forward problem is linear, then the inverse 

problem will be linear. Conversely, if the forward problem is nonlinear, then so will 

be the inverse problem. In general, solutions to the wave and scattering problems 

are nonlinear. As an interesting aside, in general, linear inverse problems were 

solved theoretically towards the end of nineteenth century. Of the nonlinear inverse 

problems, only the inverse 1D scattering and inverse spectral problems were solved 

before 1970. Due to the relatively simplistic nature of these two problems, they were 

solved by numerical methods, as opposed to the more complicated problems which 

are better suited to computational approaches.  

This chapter discusses the general approaches used in solving inverse problems in 

section 3.1, then using this knowledge creates a general solution to Maxwell’s 

equations in section 3.2. This is then applied to a simplified forward model to show 

the application of the physics in an ideal solution in section 3.3 and finally to a real-

world problem and to show some of the issues with this approach in sections 3.4 

and 3.5.  
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This chapter is included to demonstrate the complexity of existing numerical 

approaches used to solve inverse problems. These include: 

1. The numerical models are computationally complex. 

2. Therefore, the models require long processing times.  

3. The numerical solutions are sensitive to noise in the data which can cause 

the convergence of the algorithms to be difficult. 

The data driven approaches adopted in chapter 5 aim to address these points and 

create a more robust approach to this problem. 

3.1 General Solution Approach 
As stated in the introduction to this chapter, in order to solve a nonlinear inverse 

problem, the forward problem has to be known, so for a given forward model (ℱ), a 

noisy measurement set (𝑟𝑟) can be reordered based on a set of inputs (𝑚𝑚) which can 

be written as in the simplest form in equation 3.2. 

 ℱ𝑚𝑚 = 𝑟𝑟 3.2 

The aim of the inverse problem is to find the set of inputs, based on a forward model 

and a set of measurement data, or in other words gives equation 3.3.  

 ℱ−1𝑟𝑟 = 𝑚𝑚 3.3 

However, solving an inverse problem is rarely simple. There are many issues when 

performing an inverse problem. The first, and possibly the most significant is that 

the solution to 3.3 is often ill-posed. An inverse problem is classed as ill-posed when 

the one or more of the following conditions are met: 

• There is more than one possible solution for each data point. 

• The solution is not unique. 



53 | P a g e  
 

• The problem is unstable, for example if while solving the problem changes to 

the inputs (𝛿𝛿𝛿𝛿) and changes to the measurements (𝛿𝛿𝛿𝛿) become large.  

Regularization is employed to solve ill-posed problems. Regularization involves 

introducing a parameter into the solution that allows the solution to be changed in a 

stable way while maintaining an outcome that is close to the original solution as this 

parameter approaches zero. Three main approaches are adopted for solving linear 

ill-posed problems.  

•  Tikhonov Regularization, also known as ridge regression. 

• Spectral Cut-off, which approach utilises single value decomposition. 

• Iterative Regularization.  

The following sub-sections cover these approaches in more detail. 

3.1.1 Tikhonov Regularization 

This approach is often used in problems where there are large numbers of 

parameters and offers an improved efficiency solution at the expense of a tolerable 

amount of bias. The general form is shown in equation 3.4, where y is the input data, 

X is the design matrix, I is the identity matrix and α is the ridge parameter, which is 

greater than 0. The reason this is known as the ridge regression is the “αI” term 

adds positive values along the diagonal “ridge” of the covariance matrix 𝑿𝑿𝑇𝑇𝑿𝑿.  

 𝛽̂𝛽𝑟𝑟 = (𝑿𝑿𝑇𝑇𝑿𝑿 + 𝛼𝛼𝑰𝑰)−1𝑿𝑿𝑇𝑇𝑦𝑦 3.4 

The main benefit of this approach is that it yields stable solutions by shrinking the 

coefficients, however it is sensitivity to the input data.  
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3.1.2 Spectral Cut-off 

Spectral cut off uses Singular Value Decomposition (SVD), which is fully explained 

in section 3.1.3. The main application areas for this type of approach are in small to 

medium size problems due to the heavy computational cost associated with SVD. 

3.1.3 Singular Value Decomposition 

Single Value Decomposition is a linear algebraic tool which decomposes a M x N 

matrix into three. Conventionally, these matrices are called the S, U & V matrices. 

The S matrix is a diagonal matrix of size M x N, the U matrix is of size M x M and 

the V is of size N x N. In this application, the outer products of the first column of the 

U matrix and the first row of the V matrix are taken and this forms a matrix of size M 

x N which is then multiplied by the first entry in the diagonal matrix S to give it the 

correct magnitude.  

Since the first row and column of the U & V matrices represents the common parts 

of the original data (which corresponds to the soil and the air/ground boundary), this 

can then be subtracted from the original matrix thus removing a lot of unwanted 

background data as shown in section 4.2.2.  

3.1.4 Iterative Regularization 

In this method, the iteration count is used as the regularization parameter when 

iterative methods are employed in solving the problem. The approach adopted is 

shown in equation 3.5 to solve the linear problem in equation 3.2.  

 
𝑚𝑚0 = 0 

𝑚𝑚𝑛𝑛 = 𝑚𝑚𝑛𝑛−1 − 𝜏𝜏ℱ𝐻𝐻(ℱ𝑥𝑥𝑚𝑚−1 − 𝑦𝑦�), 𝑛𝑛 = 1,2, … 
3.5 

In certain values of 𝜏𝜏, the scheme is known as the Landweber iteration and care 

must be taken in the presence of noise. This is because the error of reconstruction 
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decreases during initial calculations, but then starts increasing, although the 

objective function continues to decrease in a process known as semi-convergence. 

This approach is more complex than the other two approaches mentioned here.  

3.2 Electromagnetic physics 
This section walks the reader through a general solution to Maxwell’s equations, the 

equations that summarise the classical properties of an electromagnetic field, which 

is the underlying principle of GPR. Therefore, they are a fundamental building block, 

not only of the inverse problem that cannot be solved without them, but of GPR itself. 

GPR is used to extract data from below the ground’s surface, but additional 

computational process is required to translate it into images that are useful to human 

operators. These images are used to make informed decisions about the nature of 

the sub surface area. Then into a derived solution to the forward model and finally 

into the complexity of building and solving an inverse model. This section is using 

existing methods to solve the inverse problem. 

In order to define the equations, it is important to first build the forward model, and 

then from this the inverse model can be created. Both models must exist in order to 

minimise the error between the two, leading to a valid solution. 

Ground Penetrating Radar (GPR) is described in two parts. The first is Maxwell’s 

equations and the second is the relationships that quantify the material properties. 

Maxwell’s equations are shown in equations 3.6 thru 3.12: 

 ∇.𝐸𝐸� = −𝑗𝑗𝑗𝑗𝑗𝑗𝑯𝑯�  3.6 

 𝛻𝛻.𝐻𝐻� = 𝑗𝑗𝑗𝑗𝜖𝜖𝑐𝑐𝑬𝑬� + 𝐽𝐽 3.7 

 𝛻𝛻.𝐵𝐵 = 0 3.8 
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 𝛻𝛻.𝐷𝐷 = 𝑞𝑞𝑣𝑣 3.9 

Where: 

• ω is the angular velocity 

• ε is the emissivity 

• μ is permeability 

• 𝑞𝑞𝑣𝑣 is the volume electric charge density. 

• E is the electric field. 

• B is the magnetic field. 

• J is the current density. 

• D is the electric displacement vector.  

• H is the magnetic field intensity. 

And the relationship equations are: 

 𝐽𝐽 = 𝜎𝜎�𝐸𝐸 3.10 

 𝐷𝐷 = 𝜀𝜀̃𝐸𝐸 3.11 

 𝐵𝐵 = 𝜇𝜇�𝐻𝐻 
3.12 

In the above equations: 

• 𝜎𝜎� (siemens/metre) is the parameter governing the creation of an electric 

current in the presence of an electric field. 

• 𝜀𝜀̃ (unitless) is the Dielectric Permittivity which governs the amount of energy 

stored by the material in the presence of an electric field.  

• The final parameter 𝜇𝜇� (Henries per metre), is the magnetic permeability, 

which describes how the material responds to a magnetic field.  
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These three parameters are vector quantities, but for GPR purposes are treated as 

field independent scalar values. 

The following approach is one of many solutions taken from (Ulaby and Ravaioli, 

2015) to these equations and is based on the following assumptions to create the 

model: 

1. The permittivity does not vary in space. This allows the use of a mathematical 

identity that the curl of a vector is equal to the gradient of the divergence of a 

vector minus the Laplacian of that vector. 

2. There is no free charge. 

3. The material is not conductive (this will be addressed later in section 3.4).  

4. The wave form is a plane wave. This assumption is valid for small distances from 

the source, however, to make the mathematics easier this will be applied.  

5. The wave form is sinusoidal.  

6. Scattering is negligible. 

Assumption 1 gives rise to the following identity:  

 𝛻𝛻 × 𝛻𝛻 × 𝐸𝐸�⃗ = 𝛻𝛻�𝛻𝛻 ⋅ 𝐸𝐸�⃗ � − 𝛻𝛻2𝐸𝐸�⃗  3.13 

And Gauss law from Maxwell’s equations: 

 𝛻𝛻.𝐷𝐷 = 𝜇𝜇𝑣𝑣 3.14 

Which means that 3.13 can be rewritten as: 

 𝛻𝛻 × 𝛻𝛻 × 𝐸𝐸�⃗ = −𝛻𝛻2𝐸𝐸�⃗  3.15 

Using Faraday’s law (3.6), gives: 

 𝛻𝛻 ×
𝛿𝛿𝐵𝐵�⃗
𝛿𝛿𝛿𝛿 = −𝛻𝛻2𝐸𝐸�⃗  3.16 

Since assumption 1 has been made, and using 3.7: 
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 −
𝛿𝛿
𝛿𝛿𝛿𝛿 𝜇𝜇 �𝜎𝜎𝐸𝐸

�⃗ +
𝜕𝜕𝐷𝐷��⃗
𝜕𝜕𝜕𝜕 � = ∇2𝐸𝐸�⃗  3.17 

Assumption 3 means that σ=0 and using 3.11 means that: 

 −
𝛿𝛿
𝛿𝛿𝛿𝛿 𝜇𝜇𝜇𝜇 �

𝜕𝜕𝐸𝐸�⃗
𝜕𝜕𝜕𝜕 � = ∇2𝐸𝐸�⃗  3.18 

And this can be arranged to the wave equation: 

 ∇2𝐸𝐸�⃗ − 𝜇𝜇𝜇𝜇 �
𝜕𝜕2𝐸𝐸�⃗
𝜕𝜕𝑡𝑡2 � = 0 3.19 

Assumptions 4 and 5 allow the following form for a circular polarised, sinusoidal 

wave to be used for the source (where 𝑘𝑘 is the wave number): 

  𝜓𝜓(𝑥𝑥, 𝑡𝑡) = 𝐴𝐴 cos(𝜔𝜔𝜔𝜔 − 𝑘𝑘𝑘𝑘) 3.20 

And in complex notation (ignoring the imaginary part): 

 𝜓𝜓(𝑥𝑥, 𝑡𝑡) = 𝐴𝐴𝑒𝑒𝑗𝑗(𝜔𝜔𝜔𝜔−𝑘𝑘𝑘𝑘) 3.21 

This ultimately gives the following solution to Maxwell’s equation for a plane 

sinusoidal waveform where z is the distance travelled in space:  

 𝐸𝐸�⃗ (𝑧𝑧, 𝑡𝑡) = 𝐸𝐸0����⃗ 𝑒𝑒𝑗𝑗(𝜔𝜔𝜔𝜔−𝑘𝑘𝑘𝑘) 3.22 

Where: 

• 𝜔𝜔𝜔𝜔 − 𝑘𝑘𝑘𝑘 is the representation of sinusoidal waves. 

This was a very quick outline solution to Maxwell’s equations. Equation 3.22 will be 

the basis for all the following work. This solution is acceptable if the wave is travelling 

through space, however when it is through a lossy medium such as soil, losses in 

the strength of the wave are inevitable. These loses are caused by the 

heterogeneous nature of the media which the electromagnetic (EM) wave 

propagates. Each of the heterogeneities that the wave encounters, in some way,  
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will extract energy from the EM wave and scatter it in multiple directions. It has been 

proven in (A.P., 2005) that the electric field will attenuate with a coefficient 𝛼𝛼𝑠𝑠 and in 

distance travelled (𝑟𝑟) as shown in 3.23 below.  

 𝐸𝐸 = 𝐸𝐸0𝑒𝑒−𝛼𝛼𝑠𝑠𝑟𝑟 3.23 

The scattering coefficient is derived using equation 3.24. 

 𝛼𝛼𝑠𝑠 =
𝑁𝑁𝑁𝑁
2  3.24 

Where A is the scattering cross section and N is the number density, IE atoms or 

molecules per unit volume.  

Other factors affecting the total attenuation of the signal include the scattering 

attenuation which is frequency dependent (equation 3.25) and must be added to the 

𝛼𝛼𝑠𝑠 to get the total attenuation as the wave travels through the heterogeneous lossy 

medium. 

 𝐴𝐴 = 𝐶𝐶𝑎𝑎6𝑓𝑓4 3.25 

Where C is a constant with units 1/m4 Hz4, a is the sphere radius and f is the 

frequency. 

The total attenuation is the linear sum of the scattering and material attenuation 

value. The final source of attenuation is volumetric; however, it is only present in ice 

where the material attenuation is smaller than more common materials for GPR use 

cases such as soil and rock.  

The final source of loss for an EM wave is the effect of relaxation. This is caused by 

the relationship between the permittivity of the wave and the propagation wave. 

When a wave interacts with molecules in a medium, energy is transferred to medium 

in the form of a “separating charge”. This in turn generates a small displacement 
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current. This current also produces localised EM energy, which acts a brake on the 

propagating wave if it is out of phase with the wave. In addition to this effect, should 

these local waves be free to move, such as in water, this movement converts some 

of the EM energy into heat. This effect is frequency dependent and is demonstrated 

by the frequency relaxation value, whereby below this threshold the effect is 

minimal, above this threshold this causes significant losses in the form of heat into 

the surrounding matrix. This is shown in Figure 3-1 below for an idealised damp 

lossy material.  

 

Figure 3-1 Permittivity Response of an Idealised Lossy Dielectric Media (Cassidy,  
2009).  

It is possible now to describe an electromagnetic sinusoidal plane wave as it passes 

through the medium, the next thing to assess is the effect of the wave form at 

boundaries. 

Expanding the ideas above into real materials as mentioned in (Cassidy, 2009) 

gives the equations for α which is the attenuation coefficient (Np/m) and β which is 

the phase coefficient (rad/m) (relaxation) in 3.26. 
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𝛼𝛼 = 𝜔𝜔�𝜇𝜇𝜀𝜀′�
1
2 �
�1 + �

𝜎𝜎
𝜔𝜔𝜔𝜔′�

2
− 1� 

𝛽𝛽 = 𝜔𝜔�𝜇𝜇𝜀𝜀′�
1
2 �
�1 + �

𝜎𝜎
𝜔𝜔𝜔𝜔′�

2
+ 1� 

3.26 

Where: 

𝜔𝜔 is the angular frequency (rads/sec) 

𝜀𝜀′ is the absolute permittivity 

𝜎𝜎 is the conductivity  

𝜇𝜇 is the relative permeability 

Incorporating the equations in 3.26 into the equations 3.22 gives the following 

equation by using an exponential decay term e-αz with k being replaced by the term 

β so: 

 𝐸𝐸�⃗ (𝑧𝑧, 𝑡𝑡) = 𝐸𝐸0����⃗ 𝑒𝑒−𝛼𝛼𝛼𝛼𝑒𝑒𝑗𝑗(𝜔𝜔𝜔𝜔−𝛽𝛽𝛽𝛽) 3.27 

Like any other type of waveform, when EM waves hit a boundary, they obey the 

laws of conservation of energy. Depending on the solidity of the boundary, some 

energy is transferred across the boundary, while the remaining energy is either 

absorbed or reflected at the boundary wave. The amount of energy absorbed is 

often negligible so this can be ignored. The amount of energy reflected and 

transferred is governed by Fresnel’s Laws. The reflection portion is governed by 

Snell’s law. If it is assumed that the waveform is polarized perpendicularly to the 

plane of incident, then the following holds true: 



62 | P a g e  
 

 𝐸𝐸𝑟𝑟⊥������⃗ = 𝑟𝑟⊥𝐸𝐸𝑖𝑖⊥ and 𝐸𝐸𝑡𝑡⊥������⃗ = 𝑡𝑡⊥𝐸𝐸𝑖𝑖⊥ 3.28 

Where 𝑟𝑟⊥  and 𝑡𝑡⊥ are related to the angle of incident (θi) the angle of transmission 

(θt), the index of refraction for both the initial medium (ni) and the transmission 

medium (nt) as follows.  

 𝑟𝑟⊥ = 𝑛𝑛𝑖𝑖 cos𝜃𝜃𝑖𝑖−𝑛𝑛𝑡𝑡 cos𝜃𝜃𝑡𝑡
𝑛𝑛𝑖𝑖 cos𝜃𝜃𝑖𝑖+𝑛𝑛𝑡𝑡 cos𝜃𝜃𝑡𝑡

 and 𝑡𝑡⊥ = 2𝑛𝑛𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑖𝑖
𝑛𝑛𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑖𝑖+𝑛𝑛𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑡𝑡

 3.29 

It is possible for both 𝑟𝑟⊥ and 𝑡𝑡⊥ to be negative, which would mean a reversal in the 

phase of the wave occurred. 

Using the equations in 3.23, 3.24, 3.25 and 3.29 it is possible to start constructing 

the forward model of a GPR wave propagating through a lossy medium and hitting 

a target. As stated above, the plane wave is an oversimplification as the wave form 

is in fact a circular wave and emits from a source in a manner like ripples in a pond 

and would form in accordance with equation 3.30. 

 𝑢𝑢(𝑟𝑟, 𝑡𝑡) =
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 �𝑘𝑘��𝑟𝑟 − 𝑟𝑟𝑗𝑗� − 𝜔𝜔𝜔𝜔 + 𝜑𝜑𝑗𝑗��

��𝑟𝑟 − 𝑟𝑟𝑗𝑗�
 

3.30 

Where: 

• 𝑢𝑢(𝑟𝑟, 𝑡𝑡) is the displacement of the surface from a datum 

• 𝐴𝐴 is the amplitude 

• 𝑘𝑘 is the wave number 

• 𝑟𝑟 is the position of the wave front 

• 𝑟𝑟𝑗𝑗is the position of the wave source 

• φj is the phase angle of the wave 

The approach detailed above is a simplified solution to the forward model for an 

electromagnetic wave propagating through a solid medium such as soil. Should the 
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analytical based approach to the inverse problem be adopted, then the techniques 

mentioned above will form the core of any solution. 

3.3 Simplified GPR Model 

The most common technology used in subsurface imaging is that of GPR, as will be 

discussed in Chapter 4. In this section, the theory from the previous section will 

therefore be applied to the GPR scenario. Initially it is best to consider the case 

where an antenna is above the ground and interrogate the air/ground interface as 

shown in Figure 3-2 below. 

 

Figure 3-2 Diagram of the Propagation of an EM Wave Through a Medium with the 
Return Signal and Ground Interactions Labelled.  

In the diagram above, “s” is the source and “r” is the receiver. A significant amount 

of energy is transmitted parallel to the ground, called the direct signal. The wave 

then propagates through the medium until it interacts with an object, at which point 

there is some reflection back towards the source, shown in brown dotted line in the 

Figure 3-2, as well as transmission and reflection into the body. Using Snell’s law to 

find θt  and equations 3.28 and 3.29 will allow a very simplistic method for calculating 

s
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the amount of energy that is reflected and the amount of energy transmitted into the 

medium.  

The same approach can be adopted when the wave hits an object of interest. The 

wavefront in 2D is circular and the wave will continue propagating through a medium 

until it runs out of energy. Assuming that there are 3 locations that can monitor the 

wave represented by 3 discrete time points, t1, t2 & t3 then it is possible to construct 

a forward map based on the equations in the previous section while maintaining the 

assumption that it is a plane wave as long as all wave paths and interactions are 

taken into account.  

In the first instance (t1), the angle of incidence is 0 and both the observed values at 

the other stations are 0. As the wave propagates so the values of the observed 

values increase while the values at the other stations decrease. This is a very simple 

solution and gives the following solutions for a plane boundary of infinite length and 

is given in 3.31. 

 

𝐸𝐸1𝑟𝑟 = 𝛤𝛤𝐸𝐸1𝑖𝑖 , where 𝜂𝜂2−𝜂𝜂1
𝜂𝜂2+𝜂𝜂1

= 𝛤𝛤 

𝐸𝐸2𝑟𝑟 = 𝛤𝛤𝐸𝐸2𝑖𝑖 , where 𝜂𝜂2−𝜂𝜂1
𝜂𝜂2+𝜂𝜂1

= 𝛤𝛤 

𝐸𝐸3𝑟𝑟 = 𝛤𝛤𝐸𝐸3𝑖𝑖 , where 𝜂𝜂2−𝜂𝜂1
𝜂𝜂2+𝜂𝜂1

= 𝛤𝛤 

3.31 

Considering the case for oblique angles the refraction and transmission coefficients 

at a boundary are independent of the polarisation of the incoming wave. A wave 

form of arbitrary polarisation is described by using superposition back to the 

perpendicular and parallel polarisation models. The approach taken here is to 

decompose the wave into perpendicular and parallel polarised waves for both the 

transmitted and the reflected wave forms.  
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Figure 3-3 shows a simplified model of how a wave is reflected and refracted upon 

contact with a medium boundary. This diagram is then used to define the angles 

used in the following equations.  

 

Figure 3-3 Diagram Showing the Reflected Plane Wave  

 
𝑥𝑥𝑖𝑖 = 𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑖𝑖 + 𝑧𝑧 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑖𝑖 

𝒚𝒚�𝑖𝑖 = −𝒙𝒙� 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑖𝑖 + 𝒛𝒛� 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑖𝑖 
3.32 

When 3.32 is substituted into the general wave equation, this gives for the incident, 

reflected and transmitted wave the following: 

 

𝐸𝐸�⃗ ⊥𝑖𝑖 = 𝑦𝑦�𝐸𝐸⊥𝑖𝑖 𝑒𝑒−𝑗𝑗𝑗𝑗(𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝜃𝜃𝑖𝑖+𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝜃𝜃𝑖𝑖) 

𝐸𝐸�⃗⊥𝑟𝑟 = 𝑦𝑦�𝐸𝐸⊥𝑟𝑟𝑒𝑒−𝑗𝑗𝑗𝑗(𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝜃𝜃𝑟𝑟−𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝜃𝜃𝑟𝑟) 

𝐸𝐸�⃗⊥𝑡𝑡 = 𝑦𝑦�𝐸𝐸⊥𝑡𝑡 𝑒𝑒−𝑗𝑗𝑗𝑗(𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝜃𝜃𝑡𝑡+𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝜃𝜃𝑡𝑡) 

3.33 

Using Snell’s equations, it is possible to reformat 3.33 into coefficients Γ⊥ and 𝜏𝜏⊥ as 

shown in 3.35. The coefficients in equation 3.35 are applied as scalar values to the 

wave equation.  

 𝜃𝜃𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠−1 �
𝑟𝑟
𝑋𝑋�  𝑎𝑎𝑎𝑎𝑎𝑎 sin 𝜃𝜃𝑡𝑡 =

𝑛𝑛𝑖𝑖
𝑛𝑛𝑡𝑡

sin 𝜃𝜃𝑖𝑖 3.34 
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Γ⊥ =
𝑛𝑛1 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑖𝑖 − 𝑛𝑛2 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑡𝑡
𝑛𝑛1 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑖𝑖 + 𝑛𝑛2 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑡𝑡

 

𝜏𝜏⊥ =
2𝑛𝑛2 cos 𝜃𝜃𝑖𝑖

𝑛𝑛2 cos𝜃𝜃𝑖𝑖 + 𝑛𝑛1 cos 𝜃𝜃𝑡𝑡
𝐸𝐸𝑖𝑖⊥ 

3.35 

Putting everything together for the reflected waves, the following hold true: 

• Sii is given by perpendicular incident case 𝐸𝐸1𝑟𝑟 = 𝛤𝛤𝐸𝐸1𝑖𝑖 , where 𝜂𝜂2−𝜂𝜂1
𝜂𝜂2+𝜂𝜂1

= 𝛤𝛤 

• Sij and Sij are given by the case 𝐸𝐸�⃗⊥𝑟𝑟 = 𝑦𝑦�𝐸𝐸⊥𝑟𝑟𝑒𝑒−𝛼𝛼𝛼𝛼𝑒𝑒−𝑗𝑗𝑗𝑗(𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝜃𝜃𝑟𝑟−𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝜃𝜃𝑟𝑟) 

While the transmitted waves are given by: 

• Sii is given by perpendicular incident case 𝜏𝜏 = 1 + 𝛤𝛤 

• Sij and Sij is given by the case 𝐸𝐸�⃗ ⊥𝑡𝑡 = 𝑦𝑦�𝐸𝐸⊥𝑡𝑡 𝑒𝑒−𝑗𝑗𝑗𝑗(𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝜃𝜃𝑡𝑡+𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝜃𝜃𝑡𝑡) 

Similar equations can be derived for the magnetic field.  

Where X is the distance between the points, r is the distance from the source to the 

point of interaction and ni and nt are the index of refraction of the two mediums either 

side of the boundary. 

Now that Maxwell’s equations have been applied to GPR, we will move to the next 

step, introducing real-world complexities to the mathematical solution. 

3.4 Realistic Forward Model 

The approach adopted in section 3.3 is intentionally very simplistic. However, in the 

real-world soil is not homogenous, and as a result scattering occurs when a wave 

interacts with non-uniformities. The effects of scattering have been a source of study 

in physics over the years and several approaches are available in literature. The 

maths can be complicated depending on the nature of the medium and the geometry 

of the boundary. This section demonstrates some of the complexities and offers 

resolutions. 
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The most widely adopted approaches for the creation of the forward model is the 

Lippmann-Schwinger equation (Lippman and Schwinger J, 1950) (3.36) which 

describes the wave–scatter interaction in the 2D domain of interest (D). The second 

equation describes the scattered field in terms 3.36 of the induced contrast current 

(3.37) taken at the surface (S). 

𝐸𝐸𝑡𝑡(𝒓𝒓) = 𝐸𝐸𝑖𝑖(𝒓𝒓) + 𝑖𝑖𝑖𝑖𝜇𝜇0 ∫ 𝑔𝑔(𝒓𝒓,𝒓𝒓′)[−𝑖𝑖𝑖𝑖𝜖𝜖0
⬚
𝐷𝐷 (𝜖𝜖𝑟𝑟(𝒓𝒓′) − 1)𝐸𝐸𝑡𝑡(𝒓𝒓′)𝑑𝑑𝒓𝒓′ for 𝒓𝒓 ∈ 𝐷𝐷 3.36 

𝐸𝐸𝑠𝑠(𝒓𝒓) = 𝑖𝑖𝑖𝑖𝜇𝜇0 ∫ 𝑔𝑔(𝒓𝒓,𝒓𝒓′)[−𝑖𝑖𝑖𝑖𝜖𝜖0
⬚
𝐷𝐷 (𝜖𝜖𝑟𝑟(𝒓𝒓′) − 1)𝐸𝐸𝑡𝑡(𝒓𝒓′)𝑑𝑑𝒓𝒓′ for 𝒓𝒓 ∈ 𝑆𝑆 3.37 

These two equations form the cornerstone to the remainder of this section, although 

in slightly different formats.  

The best solution to 3.36, is the Born approximation (Born, 1926), which takes the 

form of equation 3.38: 

𝐸𝐸𝑠𝑠(𝑥𝑥𝑠𝑠,𝜔𝜔) = 𝑘𝑘𝑠𝑠2 ∫ 𝐺𝐺(𝑥𝑥0,𝜔𝜔, 𝑥𝑥′, 𝑧𝑧′)⬚
𝐷𝐷 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥𝑠𝑠,𝑥𝑥′, 𝑧𝑧′;𝜔𝜔)𝜒𝜒𝑒𝑒(𝑥𝑥′, 𝑧𝑧′)𝑑𝑑𝑥𝑥′𝑑𝑑𝑧𝑧′  3.38 

Where: 

• ks is the wave number. 

• G is the Green’s Function (see section 3.4.1). 

• Einc is the incident wave (see section 3.4.2). 

• Χe is the permittivity (see section 3.5). 

3.4.1 Green’s Functions  

Green’s functions are a method for solving ordinary differential equations with initial 

value conditions. They can also be used in the solution of partial differential 

equations with known boundary conditions. In (Persico, 2014), the rather intense 

algebraic derivation of a set of Green’s functions for above and below the surface 

have already been derived, and these will be used in this section (equations 3.39 & 
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3.40). It is worth noting that the derivation of the equations is performed in the 

Fourier domain, and at the end the inverse Fourier transform is taken.  

𝐺𝐺𝑖𝑖(𝑥𝑥,𝑥𝑥′, 𝑧𝑧, 𝑧𝑧′) = −𝑗𝑗
4𝜋𝜋 ∫

exp (−𝑗𝑗𝑗𝑗�𝑥𝑥′−𝑥𝑥�)
𝑘𝑘𝑧𝑧𝑧𝑧

∞
−∞ �exp(−𝑗𝑗𝑘𝑘𝑧𝑧𝑧𝑧|𝑧𝑧 − 𝑧𝑧′|) +

𝜇𝜇0𝑘𝑘𝑧𝑧𝑧𝑧−𝜇𝜇𝑠𝑠𝑘𝑘𝑧𝑧0
𝜇𝜇0𝑘𝑘𝑧𝑧𝑧𝑧+𝜇𝜇𝑠𝑠𝑘𝑘𝑧𝑧0

exp (−𝑗𝑗𝑘𝑘𝑧𝑧𝑧𝑧(𝑧𝑧′ + 𝑧𝑧))� 𝑑𝑑𝑑𝑑 , (𝑥𝑥, 𝑧𝑧) (𝑥𝑥′, 𝑧𝑧′) ∈ 𝐷𝐷 
3.39 

 

𝐺𝐺𝑒𝑒(𝑥𝑥0,𝑥𝑥′𝑧𝑧0, 𝑧𝑧′) = −𝑗𝑗𝜇𝜇0
2𝜋𝜋 ∫ exp (−𝑗𝑗𝑘𝑘𝑧𝑧𝑧𝑧𝑧𝑧′) exp(𝑗𝑗𝑘𝑘𝑧𝑧0𝑧𝑧)exp (−𝑗𝑗𝑗𝑗�𝑥𝑥′−𝑥𝑥0�)

𝜇𝜇0𝑘𝑘𝑧𝑧𝑧𝑧+𝜇𝜇𝑠𝑠𝑘𝑘𝑧𝑧0

∞
−∞ 𝑑𝑑𝑑𝑑,  

(𝑥𝑥0, 𝑧𝑧0)  ∈ Σ , (𝑥𝑥′, 𝑧𝑧′) ∈ 𝐷𝐷 
3.40 

Where: 

• (𝑥𝑥0, 𝑧𝑧0) ∈ Σ is the observation point. 

• 𝑘𝑘𝑧𝑧𝑧𝑧 = �𝑘𝑘𝑠𝑠2 − 𝑢𝑢2 where 𝑘𝑘𝑠𝑠2is the wave number of the propagation medium 

• 𝑘𝑘𝑧𝑧0 = �𝑘𝑘𝑜𝑜2 − 𝑢𝑢2 where 𝑘𝑘𝑜𝑜2is the wave number at the origin 

• 𝑧𝑧′ depth 

• 𝑥𝑥′ lateral distance 

• 𝑥𝑥0 origin location 

• 𝜇𝜇0 is the above ground permeability 

• 𝜇𝜇𝑠𝑠 is the below ground permeability 

3.4.2 Incident Field 

The incident field is critical in this solution, and again in (Persico, 2014) the 

significant derivation of the incident fields (equations 3.41 and 3.42) have been 

performed and are going to be used in this section. In the derivation, the impulsive 

source in air has been considered. The equations can be further enhanced by 
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inserting into them a characteristic equation of a source more similar to the one used 

in the real world.  

𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥, 𝑧𝑧;𝜔𝜔) = −𝑗𝑗𝑗𝑗𝐼𝐼0𝜇𝜇0
4𝜋𝜋 ∫ exp (−𝑗𝑗𝑗𝑗(𝑥𝑥𝑠𝑠−𝑥𝑥))

𝑘𝑘𝑧𝑧0(𝑣𝑣)
∞
−∞ �exp(−𝑗𝑗𝑘𝑘𝑧𝑧0(𝑣𝑣)|𝑧𝑧 − 𝑧𝑧𝑠𝑠|) +

𝜇𝜇𝑠𝑠𝑘𝑘𝑧𝑧𝑧𝑧(𝑣𝑣)−𝜇𝜇𝑜𝑜𝑘𝑘𝑧𝑧𝑧𝑧(𝑣𝑣)
𝜇𝜇0𝑘𝑘𝑧𝑧𝑧𝑧(𝑣𝑣)+𝜇𝜇𝑠𝑠𝑘𝑘𝑧𝑧0(𝑣𝑣)

exp (−𝑗𝑗𝑘𝑘𝑧𝑧𝑧𝑧(𝑣𝑣)(𝑧𝑧′ + 𝑧𝑧𝑠𝑠))� 𝑑𝑑𝑑𝑑 , 0 < 𝑧𝑧 
3.41 

 

𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥, 𝑧𝑧;𝜔𝜔) = −𝑗𝑗𝑗𝑗𝐼𝐼0𝜇𝜇0𝜇𝜇𝑠𝑠
2𝜋𝜋 ∫ exp (−𝑗𝑗𝑘𝑘𝑧𝑧𝑧𝑧(𝑣𝑣)𝑧𝑧)exp(𝑗𝑗𝑘𝑘𝑧𝑧0(𝑣𝑣)𝑧𝑧𝑠𝑠)exp (−𝑗𝑗𝑗𝑗(𝑥𝑥𝑠𝑠−𝑥𝑥))

𝜇𝜇0𝑘𝑘𝑧𝑧𝑧𝑧(𝑣𝑣)+𝜇𝜇𝑠𝑠𝑘𝑘𝑧𝑧0(𝑣𝑣)
∞
−∞ 𝑑𝑑𝑑𝑑,  

𝑧𝑧 < 0 
3.42 

Where: 

• I0is the plane wave of a filamentary current (Persico, 2014) 

In the previous few sections, the forward models have been discussed, first in terms 

of a simplistic solution to the Maxwell’s equations and then an in-depth review into 

a more realistic solution for the forward model that is going to be used in the 

remainder of this chapter.  

3.5 Distorted Born Iterative Method (DBIM) 

One of the most commonly used numerical approaches used in inverse modelling 

is the DBIM approach as discussed in section 2.2.1. 

Several approaches are available to solving the Born approximation: Born 

Approximation Inversion Method, Rytov Approximation Inversion Method, Extended 

Born Approximation Inversion Method are all useful when using weak scatters. 

Here, an iterative solution to the Distorted Born Iterative Method will be used as 

proposed in (Chew and Wang, 1990). 
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The solution iteratively applies the distorted Born wave approximation and starts 

with equations 3.36 and 3.37. The equations are simplified using Green’s functions 

for the surface and for the domain of interest and yield equation 3.43. 

 𝐸𝐸𝑠𝑠 = 𝐺𝐺𝑆𝑆𝜒𝜒(𝐼𝐼 − 𝐺𝐺𝐷𝐷𝑥𝑥)−1𝐸𝐸𝑖𝑖 3.43 

Where: 

• GD will be below the surface in the forward problem, in the inverse problem it 

is the location where the scatterer sits.  

• GS will be the surface on which the receivers exist, in this case the area above 

ground. 

• 𝜒𝜒 is the contrast  

• 𝐸𝐸𝑖𝑖 incident wave 

The scatter field consists of two parts, the first is the background scatterer 𝜒𝜒0 and 

the second part is the perturbation field due to the presence of an inhomogeneous 

medium (𝛿𝛿𝛿𝛿). The next step is to follow the approach listed in the previous text: 

1. Define an initial value for 𝜒𝜒. 

2. Then calculate the 𝐺𝐺𝑠𝑠 for 𝜒𝜒 using: 

 𝐺𝐺𝑠𝑠
𝜒𝜒(𝐽𝐽) = 𝑘𝑘02 �𝑔𝑔𝜒𝜒(𝑟𝑟, 𝑟𝑟′)𝐽𝐽(𝑟𝑟)𝑑𝑑𝑟𝑟

𝐷𝐷

 3.44 

Solve the forward problem for each incident wave using the single step Born 

approximation.  

 𝐸𝐸𝑡𝑡 = 𝐸𝐸𝑖𝑖(𝑟𝑟) + 𝐺𝐺𝐷𝐷𝜒𝜒𝐸𝐸𝑡𝑡 3.45 



71 | P a g e  
 

The next thing is to assume that the object creates a small perturbation 𝛿𝛿𝛿𝛿 and solve 

the following equation for all incidences. Regularization will be required due to the 

nonlinearity the problem.  

 𝐸𝐸𝑠𝑠 = 𝐸𝐸𝑠𝑠 + 𝐺𝐺𝑆𝑆𝛿𝛿𝛿𝛿𝐸𝐸𝑡𝑡 3.46 

 Update the solution for 𝜒𝜒= 𝜒𝜒 + 𝛿𝛿𝛿𝛿 

3. Check the error and return to step 2 or terminate.  

The DBIM method is a well-trodden path for the solution of the inverse problem and 

is reliant on several key assumptions, all of which will affect the outcome of the 

solution. These include the quality of the Green’s functions, the amount of noise and 

the ability of the optimiser to avoid local minima. In addition, there is a great deal of 

computer hardware investment in the solution of the optimization.  

3.5.1 Theoretical solution of the Born Approximation 

This section creates the solution to the inverse problem for the case shown in Figure 

3-4 below. Following the path of the wave forward, that is from the source to the 

object, two equations are in effect. The first covers the transmitted portion across a 

boundary (𝐸𝐸𝑡𝑡) and the second is the reflected or scattered portion (𝐸𝐸𝑟𝑟). Both values 

are related to the incident wave form.   

 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐸𝐸𝑡𝑡 + 𝐸𝐸𝑟𝑟 3.47 
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Figure 3-4 Diagram of the 2D GPR Problem Setup 
In the inverse problem, the aim is to derive the dielectric constants from the 

scattered field measured at the antenna across the domain of interest. As will be 

explained in section 3.5.2, the actual solution is highly nonlinear due to the amount 

of noise in the system, and therefore the solution approach is to minimise the error 

in the dielectric constant matrix.  

The traditional solutions to the DBIM are derived for a situation where there are 

multiple reception surfaces around the domain of interest as shown in Figure 3-5. In 

this picture the object of interest is shown in yellow, with the domain of interest (D) 

in blue. The surfaces over which the receiving points exist (S).  
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Figure 3-5 Traditional DBIM Model Setup 
In the traditional GPR model there are in effect two Surfaces and two Domains 

(labelled S1 and S2 and D1 an D2 in Figure 3-6). The first domain is where the 

receiver is located and the second is the Domain of interest. The impact of this 

requirement is that the forward problem becomes more complicated and as a result 

there is a requirement for two separate Green’s functions: one on the surface and 

one inside the domain of interest (denoted as Gi and Ge in equations 3.39 and 3.40). 

The transmitted wave considers the Domain properties, while the scattered field 

considers the contrast of the Surface and Domain properties. 

SS

S

S

D
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Figure 3-6 GPR DBIM Model Setup 

This means that in the DBIM, there are now two values of 𝑍𝑍 to find (one for the air 

and one for the soil), suddenly the solution has got even more complicated. 

As highlighted, the Green’s functions (3.39 and 3.40) are in the Fourier domain It is 

therefore possible to use an empirical inverse Fourier transform, such as the Inverse 

Fast Fourier Transform to convert the solution to the Green’s functions back into the 

geometry base, as long as the Fourier equation is solved using the correct values 

for 𝑢𝑢, which in this case will be taken as 𝑋𝑋−1.  

Since the transmitter and receiver points move in unison, the incident field is only 

calculated at a single point in space and again these functions (3.41 and 3.42) are 

in the Fourier domain. Using the same approach as for the Green’s function, it is 

possible to convert the incident wave back into the geometry base by adopting the 

transform for 𝑣𝑣 as 𝑍𝑍−1. 

The wave numbers are calculated using the following equations.  

S1

D1
S2

D2
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𝑘𝑘0 = 2𝜋𝜋
𝜆𝜆

 where 𝜆𝜆 is the wave number 

𝑘𝑘𝑠𝑠 = 𝑘𝑘0�𝜇𝜇𝑠𝑠𝜀𝜀𝑠𝑠 

𝑘𝑘𝑧𝑧0 = �(𝑘𝑘0 − 𝑢𝑢2) 

𝑘𝑘𝑧𝑧𝑧𝑧 = �(𝑘𝑘𝑠𝑠 − 𝑢𝑢2) 

3.48 

In 3.48 𝜇𝜇𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝜀𝜀𝑠𝑠 are known dielectric properties (magnetic permeability and 

permittivity) of the background medium. The magnetic properties are considered to 

be uniform and negligible, however in most real-world cases this is not the case. 

The approach adopted to solve this equation is to discretise the domain of interest 

using the following sign convention shown in Figure 3-7. Here, anything above the 

Air/Ground boundary is considered as 𝑍𝑍<0, and below this 𝑍𝑍>0, with 𝑋𝑋0 and 𝑍𝑍0 being 

the top right corner of the domain of interest, thus x increases from left to right. 

 

Figure 3-7 Sign Convention Used in Setting up the Inverse Problem 
Using a combination of equations 3.39, 3.40 and 3.49 it is possible to solve for the 

Green’s function, while 3.41, 3.42 and 3.49 can be used to solve the incident field 

equations. The next stage is to take all these equations and use the DBIM model to 

try and find a value for 𝑋𝑋.  

+z

-z
+xx0,z0
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In order to use the DBIM it is necessary to calculate 𝐺𝐺𝑠𝑠
𝜒𝜒 for each of the iterations 

and for each incident wave the forward problem needs to be solved to calculate the 

total field across ‘D’ as well as the scattered field (step 2 in the DBIM algorithm). 

From this step changes in 𝑋𝑋 can be found, and hence 𝑋𝑋 can be updated. 

3.5.2 Known Issues with the Inverse Scattering Problem 

This section will expand on the main characteristics of the DBIM approach, 

highlighting the reasons that the mathematical theory described in this chapter is 

difficult to employ in a real-world scenario due to the iterative approach. 

It has been demonstrated in (Jin et al., 2017) that the inverse scattering problem is 

ill-posed. This means that the solution does not depend continuously on the data. 

As a result, regularisation techniques are often implemented. Another complication 

in the solution of inverse problems is nonlinearity. Nonlinearity in the solution of an 

inverse problem can often lead to false results due to the presence of local minima 

in the convergence process. To minimise this obstacle, the solution can be started 

from several points and the results compared.  

In order to improve the empirical solution accuracy of the inverse problem the 

optimisation has been modified to use a gradient descent approach, as this involves 

a momentum term which “carries” the solution over some local minima. The 

nonlinearity of the solution (Yu, Yuan and Liu, 2009) is caused due to the impurities 

contained within the soil and hence the internal field changes.  

Based on the papers in section 2.2, it is applicable to use the Born approximation in 

the numerical solution of the inverse scattering problem. The Born approximation is 

based on expressing the total wave field as the sum of the incident field plus a small 
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perturbation. There are several limitations to this approach, chiefly that it is only valid 

when the scattered field is significantly weaker than the incident field.  

In order to solve the Born approximation, it is often coupled with the use of Green’s 

functions. As shown in section 3.4, these are a method of solving the differential 

equations by introducing a function which allows the prediction of what is happening 

inside a system based on the boundary values (and is often written as 𝑔𝑔(𝒓𝒓,𝒓𝒓′)). In 

general terms, the Born series is defined in 3.49. 

 |𝜓𝜓⟩ = |𝜙𝜙⟩ + [𝐺𝐺0(𝐸𝐸)𝑉𝑉]|𝜙𝜙⟩ + [𝐺𝐺0(𝐸𝐸)𝑉𝑉]2|𝜙𝜙⟩+. . . [𝐺𝐺0(𝐸𝐸)𝑉𝑉]𝑛𝑛|𝜙𝜙⟩ 3.49 

In the above equation, 𝐺𝐺0 is the Green’s function, 𝜓𝜓 is the total wave field and 𝑉𝑉 is 

the interaction potential. Applying the Born series in 3.49 to the inverse problem 

takes the form in equation 3.50, with 𝑘𝑘𝑠𝑠 being the spatial circular frequency.  

 

𝐸𝐸(1) = 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖  

𝐸𝐸(2) = 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑘𝑘𝑠𝑠2 � 𝐺𝐺𝑖𝑖𝐸𝐸(1)𝜒̅𝜒𝑒𝑒𝑑𝑑𝑥𝑥′𝑑𝑑𝑧𝑧′
1 1

−1 0

 

𝐸𝐸(𝑛𝑛) = 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑘𝑘𝑠𝑠2 � 𝐺𝐺𝑖𝑖𝐸𝐸(𝑛𝑛−1)𝜒̅𝜒𝑒𝑒𝑑𝑑𝑥𝑥′𝑑𝑑𝑧𝑧′
1 1

−1 0

 

3.50 

The Green’s functions in 3.50 need to be derived based on the response of the 

receiving antenna which are a function of the reflected wave, and since the total 

wave energy is known, the quantity of the transmitted wave across the first boundary 

can be derived, which then means that for an object in a medium 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖  is the 𝐸𝐸𝑇𝑇. The 

major issue with including the antenna is that this has the effect of pushing the 

solution from the 2D domain into a 3D domain as the antenna has current flow in 

the third dimension.  
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3.6 Chapter Summary 
This chapter discussed the overall theoretical approach to solving a nonlinear 

inverse problem. The chapter explained in detail what inverse problems are and how 

they are generally solved by using a mixture of forward problems and regularization 

to iterate the solution until the error is minimised.  

The next step was to show the general solution to Maxwell’s equations which are 

fundamental in understanding how GPR, or any radar system, work and how with 

the help of Snell’s equations they can be applied to an idealised forward model for 

a GPR system. This simplified model was then built on to create a more 

representative case for a useable forward model, which can predict the behaviour 

of the GPR.  

The final sections built on all the knowledge gained in the previous sections to use 

existing solutions to the Born scattering approximation, the DBIM model, and then 

to show the approach adopted in a solution of this model.  

The Inverse model is not being pursued as a method because it requires a 

significant amount of processing resource to solve each problem. Therefore, it would 

be unrealistic to use when mapping into the 3D domain. However, the examination 

and inclusion of the mathematical model and its application to GPR provide the 

theoretical background for the data-driven solution.   

The next chapter will discuss how GPR systems work and highlight some of the 

problems associated with the technology when used for scanning potatoes 

underground. Chapter 5 will then provide a walkthrough of the data-driven solution 

to this problem. 
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4 GPR Hardware, Simulation Validation and Data Collection 

This chapter is split into 3 sections building on the GPR physics discussed in the 

inverse problem description presented in chapter 3.  

Section 4.1 describes how the theory presented in Chapter 3 is applied to GPR 

Systems and some common issues with this application.  

Section 4.2 is a review of the commercial GPR system used in this project 

manufactured by GSSI (GSSI, 2022) which, when compared to other systems, not 

only proved to be the most reliable but also has validated antenna models in the 

simulation software used.  

Finally, section 4.3 details the rig testing performed for the purpose of this project in 

an attempt to validate the simulated signals to the real-world signals. 

Section 4.4 reviews the numerical simulation code used to solve the equations 

governing the real-world physics of GPR. As mentioned in section 1.1.3, the main 

paradox arising from trying to correlate the GPR signals to the real-world data is the 

need to disturb the tubers during the growing phase to validate the accuracy of the 

signals generated, thus rendering the plant unusable in the future. To get around 

this, the use of simulation code has been chosen as a way of generating the ground 

truth data for the deep learning data. Examples of other research that has been 

performed to validate the GPRMax results against actual test data are included in 

section 4.4.1.  
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4.1 Introduction to GPR 
This section will describe how the theoretical properties of Maxwells equations 

described in chapter 3 are applied to real world application of a GPR system. 

Depending on the relationship between energy loss and energy storage (𝜎𝜎�  and 𝜀𝜀̃) 

an object will either diffuse or propagate Electro-Magnetic (EM) waves and the 

waves amplitude will decay with time and distance. An in-depth review of GPR 

Physics is made in section 3.2 and its application to the inverse problem solution.  

The next key property is how the waveform changes across a boundary. The GPR 

approach used in this study is looking at reflections as opposed to direct 

transmission between emitter and receiver. Direct transmission occurs where the 

receiver and transmitter are both buried in separate boreholes at a predefined 

distance apart. The signal at the receiver is degraded by the transmitted medium 

and objects in the ground, as opposed to the signal being reflected by objects in the 

medium. 

The behaviour of EM waves across the boundary is governed by two factors. The 

first factor is the Fresnel reflection coefficients, which dictate how the magnitude of 

an EM wave varies across a boundary of two materials. The second factor is Snell’s 

law which shows how the waveform’s direction of travel is changed as detailed in 

section 3.3.  

The penultimate properties of interest are how well objects can be detected and 

what information can be recovered, as captured by the resolution. The resolution of 

a GPR system consists of two parts: depth and lateral resolution. For the depth 

resolution, if two responses are received simultaneously, they will be determined to 

be the same and be combined. However, if the responses overlap, then they are 
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only considered separate if they overlap by more than half the width of the waveform 

at 50% of its amplitude as shown in Figure 4-1Figure ‘A’. The amount of dispersion 

and attenuation of the pulse will also affect the depth resolution. Lateral resolution 

is governed by the velocity, pulse width and the distance between the object and 

the system. In effect the lateral resolution can be described as a function of the 

wavelength and the distance. 

 

Figure 4-1Figure ‘A’ Describes the Half Width and Figure ‘B’ Demonstrates how 
Signals may Combine  

The final parameter of interest is scattering. The signal strength decreases as a 

function of distance, and the rate of decay is governed by impurities. Therefore, 

while a wave propagates through a heterogenous medium such as soil, the wave 

form loses energy as it encounters impurities because the signal strength decreases 

as a function of distance, the rate of decay is governed by impurities. The scattering 

attenuation is dependent on the frequency of the signal and is measured using 

Rayleigh’s formula (equation 4.1) (Annan, A.P., 2009), where C is a constant with 

units 1/m4Hz4 a is the sphere radius and f is the frequency. Once the scattering 

attenuation and the resistance scattering are known, these are simply added 

together to calculate the total scattering loss value. 

 

half-width

A B
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 𝐴𝐴 = 𝐶𝐶𝑎𝑎6𝑓𝑓4 4.1 

Taking all these parameters into consideration allows the accurate prediction of the 

behaviour of an EM wave as it propagates to, from, and through an object below the 

surface. This will be discussed in the next section. 

4.2 GSSI GPR System 
Despite including the same components, each commercial hardware system has a 

different approach for processing the data, and what data it stores and displays to 

the user. At the start of this project, experiments were conducted with three different 

hardware systems. However, as the project progressed, it became clear that the 

best results we obtained using GSSI Structure Scan Pro, which will be discussed in 

section 4.2.1. The data driven solution was then developed using the GPRMax 

simulation of this GRP system.  

4.2.1 GSSI Structure Scan Pro 

The Structure Scan Pro System comprises of the scanning unit and the SIR4000 

data logger and signal processing unit, as shown in Figure 4-2. In addition to the 

items shown, a signal generator creates the pulses for the system to function. 
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Figure 4-2 GSSI Structure Scan Pro Unit (GSSI, 2022) 
A second, horn antenna, was supplied from GSSI which are often used in remote 

sensing applications (not ground coupled). No GPRMax model exists for it, but it 

would be possible to create a model if required. This was deemed out of scope for 

this project. The main advantage of a horn antenna is that it allows the system to be 

mounted at a distance from the ground, which in this application would allow the unit 

to be placed above the plant canopy thus minimising damage during the growing 

phase. Future development of this work could focus on this aspect if desirable. 

The GPRMax software offers two models based on commercially available 

antennas. While these models are not exact replicas of the commercially available 

antennas due to intellectual property constraints, they have been validated so that 

they behave in a manner that is consistent with the commercial antennas (Warren 

and Giannopoulos, 2011) and (Giannakis, Giannopoulos and Warren, 2019). It was 

decided that the antennas which would be used are the 1.5GHz bowtie palm 

antenna from GSSI, which is one of the models available in GPRMax. While it is 

SIR 4000 data 
logger

Scanning unit
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acknowledged that the antennas are different in power rating, after discussions with 

the UK distributor for GSSI equipment, it is expected that the frequency pulse will 

be the same, and since the frequency drives the antenna, the antenna dimensions 

should be the same assuming that the antennas are both straight bowties and not 

a derivative of the bowtie, for example paddle or rounded.  

The simulated results for a traverse over 3 hollow PEC spheres are shown in Figure 

4-3 and in the field are shown in Figure 4-4. When a GPR signal interacts with a 

metallic object, 100% of the signal is reflected back, hence there is only weak 

responses from the subsurface materials and instead the output is dominated by 

echo effects from the metallic target, which is known as ringing, as shown in Figure 

4-3. 

 This is in part due to the additional, unknown signal processing adopted by the 

system. Eventually, the model is predicting the antenna response, while the 

commercial display is processing that signal. As with all signal processing activities, 

the readability of the output is always at the detriment of the resolution, which has 

been the toughest hurdle to overcome in this package of work. 
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Figure 4-3 3 Hollow Spheres in a Lossy Medium – GSSI Antenna Simulation 

 

Figure 4-4 3 Image ‘A’ Shows Hollow Spheres (circled in red) in a Lossy Medium 
Image ‘B’ Shows Hollow Sphere After SVD is Applied – GSSI Antenna Real World 

(B-Hive and Lewis, 2021) 

A B 
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4.2.2 GSSI performance in the real world 

The GSSI antenna was taken to the tuber field after the field had been desiccated 

(the removal of the foliage to prevent additional tuber growth prior to harvest). It is 

at this point that the tubers are hardened prior to harvesting.  

Figure 4-5 shows the effects of different processing techniques aimed at bringing 

out the scan details of interest, for example individual parabolic curves which 

represent an object of interest below the surface. The options selected were: 

1. Raw data + linear time varying gain 

2. Normalised + linear time varying gain 

3. 25x25 Median filter + linear time varying gain 

4. 9x9 Median filter + linear time varying gain 

5. Mean value removal + linear time varying gain 

6. SVD + linear time varying gain 
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Figure 4-5 GSSI Scan of Bulk Sites of Tubers (B-Hive and Lewis, 2021) 
A linear time varying gain was added across all the plots as a relatively simple 

method of counteracting the dissipation of the radar wave as discussed in section 

3.2, other more complicated approaches are available. The data was normalised to 

a mean value of 0 and with a standard deviation of 0.5, the data was then clipped 

to [-1,1]. The two sizes of median filter were tested to see if there is any benefit in 

reducing noise. If this demonstrated success, then it would be further explored with 

either a band pass filter or a combination of low and high pass filters. Another simple 

method of trying to reduce the background noise in the signal is to take the mean of 

the signal and then subtract it from every data point within the signal. The final option 

was to perform SVD. When looking at the options listed above across the supplied 
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scans from B-Hive, it was clear that the SVD method results in the clearest signal, 

which can be used in the trained network, which is described in section 3.1.3. 

4.3 Rig Test 

While providing useful data, the work performed on all the antennas in the field has 

shown that there is a need to create a controllable space, which will allow repeatable 

experiments to be performed to assess the capabilities of the antennas.  

The GPR hardware used in this section is as described in section 4.2.  

4.3.1 Design 

Several considerations were taken when designing the rig including: 

• The need to create a space which has sufficient depth that the 

interactions of the floor can be removed. 

• Due to the cost of lining the rig space with radar absorbing material 

(RAM), the scanning space must be sufficiently large to reduce the 

boundary effects of the sidewalls.  

• Soil selection - topsoil was chosen as it tends to have very small levels 

of contaminants like rocks, organic debris, clay and sand and is more 

homogenous than other types of soil.  

• The rig therefore had to be strong enough to contain the volume of 

topsoil.  

• The topsoil medium needs to be as homogenous as possible with no 

significantly large contaminants (rocks, clay, sand, etc). While this is 

unrepresentative of the real world, it removes noise from the scans and 

would generate a cleaner signal than testing in the real world where 

there may be pockets of water and the general inhomogeneity in the 
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environment. However, for this very reason, it is useful for the proof of 

concept. 

Since the antenna has a maximum scanning depth of 0.7 metres, the depth of the 

medium was set to 0.9 metres, to minimise the side wall interactions. The width and 

length were both set to 1.4 metres. To keep the costs as low as possible, the 

sidewalls were made from 9mm MDF board and screwed onto a frame made from 

70mm square posts. The rig is shown in Figure 4-6 with dimensions in Figure 4-7 

and a diagram of the subframe in Figure 4-8.   

 

Figure 4-6 Showing the Final Rig with Topsoil in (Before Levelling) 
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Figure 4-7 Basic Dimensions of the Test Rig 

 
Figure 4-8 Image Showing the Subframe with a View on ‘A’ to the Right 

To facilitate the smooth running of the scanner unit across the top of the rig, a sheet 

of Perspex (of depth 2mm) was placed on top the soil before each scan (as shown 

in Figure 4-9). Perspex was used because it has a negligible EM footprint, and 

therefore would not affect the results. The orientation of the antenna is shown in 

Figure 4-10 As the antenna traversed across the top of the soil readings were taken 

every 20mm, which was the smallest distance resolution before the antenna would 

1.4m

1.4m

A
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beep to warn of reading failure. The depth resolution was set to 4096 with a sampling 

frequency of 19kHz. 

 

Figure 4-9 Illustration Demonstrating the Rig Testing Approach 

 

Figure 4-10 A Plan View of the GSSI Antenna Cart Showing the Antenna Orientation 
in Terms of Direction of Travel 

GSSI Scanner

Perspex

Object

Direction of travel

Direction of travel
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4.3.2 Testing Approach 

This section describes the methodology adopted for data collection in a controlled 

environment. The testing approach adopted for the scans was that there would be 

an initial scan of a known metallic object at a measured depth to act as a calibration 

(shown in Table 4-1). The aim of this is to ensure that the hardware is working 

correctly while being able to generate data which can be used to correlate the 

simulation results as described in section 4.4. This would be performed at the start 

of each day and through the course of the day to ensure that parameters are not 

changing.  

The next stage is to use groupings of potatoes which are of known volumes and 

sizes. The potatoes are measured and recorded in Table 4-2 and Table 4-3. The 

next step is to perform tests comprising of both individual and combinations of potato 

groupings to generate data which will be used for deep learning. 

 

Table 4-1 Geometry of the Calibration Sphere 

 
Table 4-2 Singular Potatoes Geometry Data 

Calibartion
Outer Radius 

(mm)
Wall Thickness 

(mm)
Volume 
(mm3)

Sphere 120 3 529409

Potato
Volume 
(mm3)

Length 
(mm)

Width 
(mm)

Height 
(mm)

1 403.8 108 85 65
2 373.9 105 90 67
3 373.9 115 85 65
4 403.8 115 88 65
5 284.2 9.5 80 65
6 329.1 120 76 63
7 314.1 10 85 60
8 344.0 125 80 65
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Table 4-3 Group Potato Geometry Data 
The scanning was performed as a forward and reverse traverse across the top of 

soil, with the objects buried at specific depths.  

4.3.3 Rig-Test Results 

The stored B-scan result for a single sphere is shown in Figure 4-11. The image on 

the left is the raw forward and reverse traverse, and clearly shows the metallic 

sphere in each traverse. However, it also became clear that the back side wall was 

having an impact on the scans which is indicated by the blue 45° line in the left 

image of Figure 4-11, though interestingly enough the front side wall remains 

invisible. To reduce the effect of this, the empty soil box was scanned (in the middle 

of image of Figure 4-11) and the two files were subtracted in the image on the right.  

It is clear that the GSSI pro scan antenna is capable of detecting a sphere in soil 

with some success.  

 Potato 
group

Volume 
(mm3)

Number 
in Group

1 785.3982 4
2 596.9026 5
3 1005.31 6
4 862.141 5
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Figure 4-11 The Results of Scanning a Single metallic Sphere (Image ‘A’ is the 
Forward and Reverse Scan, Image ‘B’ is Forward only, and the Image ‘C’ is the 

Processed Forward Scan) 
Taking a closer look at the final image in Figure 4-11 and highlighting 4 zones of 

interest in Figure 4-12 listed as Zones A to D below: 

Zone A – The air to soil boundary.  

Zone B - The back wall reflection. 

Zone C – Interaction between objects, an example can be seen in Figure 4-13. 

Zone D – The object of interest (in this case the sphere) which always forms a 

hyperbolic curve as described in in introduction. 

The next step is to try and detect actual potatoes in the soil box. The first objects 

buried were single potatoes (1, 2, 3 and 4 from Table 4-2). The results are shown in 

Figure 4-14, with images of the potatoes shown in Figure 4-15.  

A B C
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Figure 4-12 Explaining What the Important Features are in the GPR Scan 

A

D

B

C
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Figure 4-13 2D GPRMax Simulation of Two Cylinders 
The next set of experiments was to bury a mixture of large potatoes and smaller 

potatoes, some of the results of this are shown in Figure 4-16 and Figure 4-17. The 

groups buried were group 1 and large potato number 5 from Table 4-2 and Table 

4-3.  
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Figure 4-14 GPR Scans of Single Large Potatoes in the Test Rig 

 

Figure 4-15 Showing Actual Buried Potatoes for Figure 4-14 From the Test Rig 
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Figure 4-16 Showing GPR Scans of Clustered Potatoes in the Test Rig 

 

Figure 4-17 Showing Actual Image of Clustered Potatoes for Figure 4-16 From the 
Test Rig 
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There are minimal configurable parameters available to increase the resolution to 

the user and increasing the number of scans per cm to 2 scans every cm has the 

benefit of increasing the resolution, however, as can be seen in Figure 4-18 this still 

fails to show the wave reflection from individual potatoes. 

 
Figure 4-18 Increased Number of Scans per cm 

This work demonstrated that in all the images it is possible to detect a buried tuber, 

however the issue is that commercial software is decreasing the resolution when 

compared to the simulation predictions and it is difficult to see individual potatoes. 

This is the main issue when using hardware and software which is not designed for 

the specific purpose. The system is more than capable of detecting subsurface 

defects in concrete and building materials, however the detection of individual 

organic matter in soil is beyond its capability. As a result, for this approach to 

succeed it will be required to create an additional map, between the high-resolution 

simulation results and the lower resolution. The mechanism to achieve this, using 

GPRMax, is explained in the next section. 
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4.3.4 Correlation With GPRMax  

A GPRMax model has been created with a single sphere in the middle of the 

medium and the GSSI simulated antenna was passed across the model is shown in 

Figure 4-19. 

 

Figure 4-19 The 3D GPRMax Model of a Single Hollow Metal Sphere from the Test 
Rig 

 

Figure 4-20 GPRMax Predicted Antenna Response B-Scan from the Test Rig 
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The model was created in 3D (1.2m by 0.5 by 0.5 with a cell dimension of 0.002m) 

using the inbuilt GPR max model for the GSSI 1500 MHz bowtie antenna (Warren 

and Giannopoulos, 2019), orientated such that it moved along the x-axis and the 

target object had dimensions and properties shown in Table 4-4. 

Object Diameter 
(meters) 

material 

Outer Shell 0.12 PEC 
Inner Shell 0.114 Free space 

Table 4-4 Metal Sphere Properties for GPRMax Validation Study 
The predicted response at the antenna is shown in Figure 4-20. This response is 

the raw analogue and is what would be expected if an analogue measurement would 

be taken at the antenna output. The most noticeable difference is that the thin 

spherical wall can clearly be seen in the analogue data, as well as the ringing of the 

sphere (section 4.2.2), these are more clearly seen in the A-Scan taken from 

position 26. In Figure 4-21, the following zones can be clearly seen. 

1. Zone 1 is the Air/Soil boundary.  

2. Zone 2 Outer shell of the Sphere. 

3. Zone 3 GPR Ringing (as discussed in section 4.2.2). 

4. Zone 4 GPR Ringing (as discussed in section 4.2.2). 
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Figure 4-21 Section 26 of A-Scan of a Hollow Sphere from the Test Rig with Zones 
1-4 Labelled. 

Even a cursory glance at the results (e.g. Figure 4-5 and Figure 4-18) from the GSSI 

equipment shows that there is a significant reduction in resolution of the signal, 

which is going to have a substantial impact on the testing results of clustered 

objects. The signal has to undergo significant signal conditioning and processing for 

it to be recorded in digital format. Just applying the best guess of processing filters 

on the data, without the Analogue to Digital and low/high pass filters etc, begins to 

improve the correlation between the simulation and the GSSI data, this can be seen 

in section 5.5.  

  

1 2 3 4
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Figure 4-22 Image ‘A’ Shows the Test Rig Hollow Sphere B-Scan. Image ‘B’ is the 
Simulated GPRMax Image and Image ‘C’ is the Simulated GPRMax Image Along 

with a Filtering Applied 
The predicted image in Figure 4-22 is still showing the ringing effect of the hollow 

sphere, however the correlation between the two images is improved. Since it has 

been shown that the output from GPRMax can be adapted to simulate the GSSI 

measured data, the next stage is to look at the digital conditioning of the signal.  

The first step is to make an approximation of the number of bits used in the Analogue 

to Digital Convertor (ADC), taking the maximum and minimum values from the 

testing performed. The most likely is a 24-bit encoder, which gives a range of 

between ±8388608. The sampling rate will be assumed to be the same as an off the 

shelf ADC, which gives 5 million samples per second and has a differential voltage 

input. Once the sample has been converted, the A-scan signal needs to be up 

sampled to 4048 samples long.  

It is clear that the system is capable of detecting a single metallic sphere, and it is 

possible to detect to the bulk response to the potatoes, however the issue remains 

that it is very difficult to identify individual potatoes within the soil medium using a 

A B C 
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commercial antenna system. The reason for this is down to a combination of 

frequency of the signal and also the discrimination of the signal as a result of limited 

survey data. If the system was to be optimised in both frequency and antenna 

arrangement, then the results will be closer to the GPRMax prediction.  

4.4 Simulations 

GPRMax allows virtual environments to be created. An example of the output can 

be seen in Figure 4-23 which shows the input model and the numerical solution for 

the GPR responses (the vertical depth and the horizontal is the scan number – or 

axial distance). The software allows the user to create different soil distributions and 

to add roots and moisture contents.  
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Figure 4-23 GPRMax Physical Model (Image ‘A’) and the GPRMax Simulated B-Scan 
Results (‘B’) numbers 1-5 in image ‘A’ match the GPRMax responses 1-5 in ‘B’ 

The simulation code (Warren and Giannopoulos, 2019) generates analytical 

predictions for the Maxwell parameters by using Finite Difference Time Domain 

(FDTD) methods. This approach allows the prediction of the signal for a given object 

and is employed in software (Warren and Giannopoulos, 2019). 

A GPRMax Model

1
3

2 4 5

GPRMax B-Scan Image B

21

3
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By using the GPRMax software, it is possible to select and optimise any signal 

processing requirements, train the deep learning architecture, and verify the 

feasibility of creating virtual 3D representations. A sample of the properties applied 

to the simulation models are shown in Table 4-5. 

MATERIAL εr CONDUCTIVITY 
(mS/m) 

Air 1 0 
Water Fresh 81 0.5 

Soils 
Clay (dry) 2-5 2-100 
Clay (wet) 8-40 20-1000 

Agricultural Land 15  
Pastoral Land 13  

Soil (fine) 41-49 40 
Average Soil 16 5 

Rocks 
Limestone (dry) 4 to 8  
Limestone (wet) 6-15 10-100 
Sandstone (dry) 4-7 10-3-10-7 
Sandstone (wet) 6 10-2-10-3 

Shale (wet) 6 to 9 10 to 100 
Table 4-5 Properties for Common Geological Materials (Reynolds, 2011) 

4.4.1 GPRMax Validation Studies 

Significant validation of the software has been performed independently and is 

available on the provider’s website (Warren and Giannopoulos, 2019). An example 

is found in (J. Ježová , L. Mertens, 2016) who compared 2D simulations to laboratory 

experiments on a circular tree trunk and found the predicted results correlated to the 

measured results. A second report, (Sonoda and Kimoto, 2019) whilst not 

mentioning GPRMax specifically, does reference using Finite Difference Time 

Domain (FDTD) software to generate a deep learning training database. In 
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(Kafedziski, Pecov and Tanevski, 2018) a mixed training dataset of 109 anti-tank 

mines was created along with a number of simulated results using GPRMax for use 

as a deep learning training set.  

Additional validation of the application of GPRMax within a botanical setting was 

performed in (Guo et al., 2013). In this paper, the authors were interested in learning 

how the spacing between roots and soil water content affect the root investigation 

using GPR. The method adopted was to create a forward simulation model in 

GPRmax which were then compared to in situ collected radargrams, which were 

found to be of similar resolution along with similar trends between radargrams and 

root water content, root spacing, root depth and antenna frequency. The correlation 

coefficients range from between 0.87 and 0.96 between the GPR data taken from 

the simulated data and the field collected data. As a result, the paper concludes that 

using the simulation is an effective approach to assessing the limiting factors on root 

detection and quantification.  

A comparison of the simulation results and collected data is shown in Figure 4-24, 

where figure ‘a’ is the location of and diameter of the samples, ‘b’ is the in situ 

collected radargram, ‘e’ is the simulation radargram from GPRMax, ‘c’ & ‘f’ are the 

respective radargrams after a Kirchhoff migration and ‘d’ & ‘g’ are after a Hilbert 

transform.   
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Figure 4-24 Comparison of Collected (‘A’) and Simulated Data (‘B’) from Root Study 
(Guo et al., 2013) 

4.4.2 GPRMax Software 

The output from a 2D GPR scan (B-Scan) is a hyperbolic representation of the 

object. This is because the signal response is in the time domain and will receive a 

reflection at increasingly smaller time points the closer the antenna approaches the 

object. The 2D output is a stacking of amplitude vs time signals (A-Scan as shown 

in Figure 4-25), which represents the antenna response to the returning 

electromagnetic waves.  

The simulation predicts a response which is based on the properties defined for the 

materials, making classification a lot easier. Later sections of this chapter will show 

that it is possible to recreate the image that created the signals using only the 

signals, without any other parameters, effectively solving the inverse problem.  

B 

A 
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Figure 4-25 Amplitude-Time Trace (A-Scan) for 3 Materials (PEC, Stone & Wood) 

To generate a suitable dataset for the training, 15,000 simulations were run using 3 

different materials: two materials representing stone (limestone and sand) and one 

organic (modelled as wet wood) with the properties shown in Table 4-6 below.  

Material εr 
CONDUCTIVITY 

(S/m) 
Limestone 10.5 5.5e-2 

Sand 21 5.5e-5 
Wood 20 5.5e-4 

Table 4-6 Material Properties for the 2D GPRMax Simulations 
Wet sand was chosen because of the similarity to the wood, and it was felt that 

having an inorganic material (sand) with similar properties to the target (wood) would 

be representative of the any real-world application.  
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A random number of circular objects scattered through each simulation of a perfect 

medium of homogeneous material with no contaminants. The term “no 

contaminants” means that the medium is free of any impurities such as water, clay 

or any other medium which would create noise in the solution. Within the GPRMax 

software suite there are options to add real-world soil models. 

The sizes of objects were random between a diameter of 40mm and 80mm and 

material was randomly allocated. The results of the simulation are combined into 2 

datasets, one containing the GPR B-Scan result, quantity label, material identifier 

and size label (small, medium, and large), the second contains an additional image 

representation of the model.  These will be discussed in more detail in chapter 0. 

The B-scan and image are shown in Figure 4-26, where the 3 materials are 

distinguished by 3 greyscale colours dark grey, light grey and white. Dark grey and 

light grey are the in organic material and white is organic material. 
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Figure 4-26 GPRMax Physical Model with 3 Materials (Image ‘A’) and the GPRMax 
Simulated B-Scan Results (‘B’) numbers 1-5 in image ‘A’ match the GPRMax 

responses 1-5 in ‘B’ 
4.4.3 Assumptions 

In the final model, the following assumptions have been made: 

1. The depth of the object is of little consequence, and since the properties of 

the surrounding material affect the time taken to propagate through and 

dampening (see Figure 4-27) then a simple medium will be used, and any 

dampening effect can be adjusted with time varying gain.  

2. The surrounding medium is homogenous. 

3. The air-surface interface will be removed. 

4. The material properties are secondary as the important components are the 

contrast between the surrounding medium and the decay because of 

moisture.  
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Figure 4-27 Impact of Using Different Background Mediums 
4.4.4 3D Tuber Generation 

One of the features within GPRMax is that it allows a user to define their own 

geometry for the modelling. In a separate project, UWE has taken 400 scans of 

tubers (Liu et al., 2021b) which are surface point clouds, that have been then used 

to create the dataset used in the deep learning training within this project.  

Using Python code written for this PhD project, the 400+ scans of tubers have been 

placed within a geometry block which is 600x500x500mm at random around the 

centre of the space. Once placed, a basic clashing routine was used to try and 

minimise any overlaps between the objects. The tubers were then filled and saved 

to a file ready for the use in GPRMax. A random quantity of between 0 and 10 was 

inserted into each model. Random locations and random orientations were used to 

try and create enough depth in the dataset to define the design space of the real-
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world plants, which tend to be more ordered in distribution. In order to maintain a 

consistent vertical depth, the minimum depth of the upper most surface was set to 

100mm below the soil/ground interface. Samples of the models are shown in Figure 

4-28 and Figure 4-29 below.  

 

Figure 4-28 Distribution and Selected Sizes of one of the 3D Models 
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Figure 4-29 Distribution and Selected Sizes of one of the 3D Models 
The main problem with using any numerical simulation is accurate input data, and 

this was no exception. A study was performed on unprocessed potatoes and chips 

in (PACE et al., 1968), however this paper is unavailable to the public. It is assumed 

that since a potato is approximately 80% water, then general data for “wet organic” 

material is suitable. Therefore, since the data is normalised, the most important 

property is the contrast between the surrounding medium and the objects of interest, 

and as a result the approach has been to adopt a generic organic value.  

The presence of air or water in the medium has a noticeable effect on the GPR 

signal. The presence of either of these materials will distort the wave velocity due to 

the EM responses are significantly different to other materials, with water being 

more likely to distort the transmission velocity, which can result in incorrect depth 

readings. In the case of peat based soils it is possible to have a transmission velocity 

as low as 0.035m/ns (Utsi, 2017). In the presence of air, the EM waves will travel 

faster and thus have the opposite effect on the transmission velocity. The presence 

of water in a scanning region contributes to attenuation of the signal, which will 

present itself as a loss of signal in the B-scan. The more similar the surrounding 

medium in moisture levels to the object of interest results in an object which are 
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more difficult to distinguish from the surroundings. The surrounding “dry” medium 

will not attenuate the EM wave significantly so it will be clear when the EM crosses 

the boundary between “wet” and “dry”.  

The contrast is derived from the ratio between the dielectric properties of the 

medium and the object of interest. This property therefore helps to identify the 

difference between an object and the surroundings. Using a dielectric property 

which is based on a high volume of water is reasonable in the models as this will 

take into account the presence of water, which will have the desired effect on the 

signal attenuation expected more appropriately than using dielectric properties 

taken from “dry” materials.  

It is expected that this will have a limited impact on the accuracy of the models 

because the data is normalised to between 0 and 1 in the models so a high response 

will always be 1 and a low response will be 0. 

4.5 Chapter Summary 
This chapter summarised the efforts to collect data to be used to validate the model 

developed as the core part of this project for generating 2D and 3D images of 

potatoes, along with a discussion regarding the simulation software and then how 

well the results from the simulation correlate to the tested data points using existing 

validated antenna models. The GSSI antenna had more success at detecting the 

potatoes, but due to a significant amount of signal processing resulted in a below 

expected level of resolution in the output signal. The critical issue in using any GPR 

system is to be able to collect the signal straight from the antenna, as any processing 

after this point only reduces the resolution of the signal.  
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As concluded in chapter 3, the theoretical solution for solving the inverse problem 

is too complex and too rigid. As seen in this chapter, getting reliable data from the 

field has also been fraught with difficulties and limitations beyond the scope of this 

work. Chapter 5 will move on from these issues to describe the selected solution to 

the Inverse Problem in the context of this work, which is a data-driven model.  
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5 Data Driven Solution  

Now that the inverse problem has been defined, and the methods for collecting data 

explained, this chapter describes the data-driven solution to resolve the inverse 

problem. The data driven solution, which was developed to form this thesis, will be 

detailed in sections 5.1 to 5.1.2, whilst section 5.1.4 to 5.2.6 will walk the reader 

through the key technologies and concepts employed in developing the solution. 

The remainder of the chapter discusses the results of the two methods adopted in 

this thesis. The first set of results, described in section 5.7 is to demonstrate that it 

is possible to map between the 2D GPR and the 2D image space using an 

unsupervised learning-based architecture. In principle the approach adopted in this 

section will create both a forward and reverse map such that: 

 

𝑓𝑓: 2𝐷𝐷 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 → 2𝐷𝐷 𝐺𝐺𝐺𝐺𝐺𝐺 

𝑓𝑓: 2𝐷𝐷 𝐺𝐺𝐺𝐺𝐺𝐺 → 2𝐷𝐷 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 

(𝑥𝑥,𝑦𝑦) ∈ 2𝐷𝐷 there is a (𝑥𝑥′, 𝑦𝑦′) ∈ 2𝐷𝐷 

5.1 

That is, for every location in the 2D GPR space there is a function which relates to 

the 2D Image space, as shown in Figure 5-1. 

 

Figure 5-1 Principle of 2D Cycle GANs using Simulated Data 
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The second set of results are detailed in section 5.4, is to demonstrate that it is 

possible to map between different dimensional spaces such that: 

 
𝑓𝑓: 2𝐷𝐷 𝐺𝐺𝐺𝐺𝐺𝐺 → 3𝐷𝐷 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 

(𝑥𝑥,𝑦𝑦) ∈ 2𝐷𝐷 there is a (𝑥𝑥′, 𝑦𝑦′) ∈ 3𝐷𝐷 
5.2 

That is, for every location in the 2D space there is a function which relates to the 3D 

space, as shown in Figure 5-2. 

 
Figure 5-2 Principle of 3D Cycle GANs using Simulated Data 

5.1 Design Principals of the Data Driven Solution 
This section will discuss in detail the main concepts and features selected for the 

design of the Data Driven Solution developed to solve the inverse problem in this 

work. It will explain the computational representation of 3D data, the autoencoder 

used to process is, the algorithms it builds on, and the reasons that these were 

selected over other candidates. 

5.1.1 Computational Representation of 3D Data 

Once GPR data is processed as explained in chapter 4, the next challenge is 

generating a 3D image from the output. This section describes the challenges of 3D 

image generation and the approach to resolve them.  

The input into the 2D portion of the network is a 2D tabular array. The 3D portion of 

the network, however, is based on voxels. Voxels are volume pixels, 3D 

representations of colour, and the cornerstone of 3D computer graphics. The data 

structure selected in this application is a 3D position vector for each voxel which is 
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subsequently encoded with a three channel RGB (Red, Green and Blue) value 

between 0 and 1 (equivalent to 0 and 255). Each voxel grid is related back to the 

input point cloud. The point cloud is a discrete set of datapoints which have been 

generated from the real-world potatoes. Currently the python library used for this is 

open3D (MIT, 2021). There are several limitations to this library, the major one being 

the inability to save voxel grids directly. The main benefit of this library is that it 

allows the user to rescale the size of a point cloud and hence the voxel 

representation. The importance of this is discussed in section 5.4.4.  

5.1.2 Design Philosophy 

With the objectives set, the next step is to define how to achieve them. In chapter 2, 

The main focus on applying deep learning has been based on the identification of 

the object based on the signal as shown by (Kafedziski, Pecov and Tanevski, 2018), 

(Zhang et al., 2021) and (Hou et al., 2021), attempts have been made to use GANs 

to enhance a dataset (Puzyrev et al., 2022) and it seemed only logical to use the 

power of deep learning to solve the inverse problem (which has been justified by 

another team adopting this technology (Dai et al., 2022). It was demonstrated by 

(Zhu et al., 2017) that it is possible to map between two spaces using a cycle GAN 

with a degree of accuracy, however the work performed in this paper maps an image 

on top of another image, this is in fact only part of the solution. Using the paper on 

3D GAN’s (Jiajun et al., 2016) and on cycle GANs (Zhu et al., 2017) as inspiration 

it seemed to be the next logical step forward to use the generative Deep Learning 

techniques highlighted by the cycle GAN as the cornerstone for the solution adopted 

address this problem.  

  



120 | P a g e  
 

The main difference between the application in this thesis and the one in the paper 

is that here we need to map between two different modalities. In other words, what 

is required is to create a system which can encode the B-scan and decode it into an 

image. This can be done using an autoencoder based architecture, as described in 

more detail sections 5.1.3. The main drawback from using just autoencoder based 

architecture is that the results tend towards the “fuzzy” image which is a result of the 

limited amount of information that passes between the encoder and the decoder 

(the input is reduced to an ‘n’ dimensional vector). Some techniques which can be 

used to try and minimise this effect such as using Maximum Mean Discrepancy as 

discussed in section 5.1.4. It is well documented that using a GAN (Goodfellow et 

al., 2016) to generate an image overcomes this fuzziness as described in section 

5.2. It is for this reason that the autoencoder architecture has been supplemented 

with a combination of using MMD the GAN architecture. This results in a CVAE-

GAN and the components are discussed in sections 5.4.3.  

5.1.3 Explanation of Conditional Variational Autoencoders 

Conditional Variational Autoencoders are a foundation of the solution adopted. 

Therefore, this section explains how an autoencoder works and how it can be 

trained such that the objects in the latent dimension are grouped together based on 

a property. This process is known as conditioning.  

Autoencoders are a form of unsupervised deep learning, which learn to encode and 

then decode an input data signal. There are several types of Autoencoders. The 

one selected at this point is a Conditional Variational Autoencoder Encoder (CVAE), 

which is a development of the Variational Autoencoder. An early proposal for a 

Variational Autoencoder was (Pu et al., 2016).  
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The architecture of the Convolutional VAE consists of a convolutional encoder layer 

and an inverse convolutional decoder, which are joined together by a fully connected 

layer as shown in Figure 5-3 below. 

 
Figure 5-3 VAE Architecture 

The main difference between the Variational Autoencoder and a standard 

Autoencoder is that the latent spaces are continuous, which allows easy random 

sampling and interpolation. This is achieved by having the output of the encoder 

consist of two vectors: standard deviation σ, and mean, μ which form a vector of 

random variables, which is then passed into the decoder. The mean vector centres 

the encoding zone, and the standard deviation controls the area. The encodings can 

occur anywhere within this zone, as the decoder learns to not only focus on a single 

point but that nearby points can all be representative.  

An improvement in controlling the latent space is achieved by using a conditioning 

vector before and after the fully connected layer. The fully connected layer is a layer 

within the neural network in which each input node is connected to each output 

node. A Conditional VAE (CVAE) uses a one-hot vector, an n-bit binary vector with 

a 1 in a particular position that signifies the variable to condition. For example, if the 

numbers were between 0 and 9, a one in position 4 would signify the number was 
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a 5. The one-hot vectors are appended to the feature matrix before the fully 

connected layer in the encoder side and appended before the fully connected layer 

in the decoder side, as shown in Figure 5-4.  

 

Figure 5-4 Conditioning Variables in the VAE Architecture  
Once the latent space has been conditioned then it becomes easier to create a 

mapping between different latent spaces.  

The Autoencoder incorporates the Kullbeck Leiber Divergence (KLD) within the loss 

function as a method optimising the latent space embedding. The KLD between two 

Gaussian functions is shown in equation 5.3. 

 �𝜎𝜎𝑖𝑖2
1

𝑖𝑖=1

+ 𝜇𝜇𝑖𝑖2 − log(𝜎𝜎𝑖𝑖) − 1 5.3 

Where 𝜎𝜎 and 𝜇𝜇 are the standard deviation and mean respectively of a gaussian 

distribution. In a VAE, the KL loss is equivalent to the sum of all the KLD between 

the component and the standard normal (when 𝜎𝜎=1 and 𝜇𝜇 = 0). 
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5.1.4 Introduction to Maximum Mean Discrepancy 

Maximum Mean Discrepancy (MMD) was proposed in (Gretton et al., 2006) and is 

based on the assumption that two distributions are the same if and only if the 

moments are the same. MMD defines the divergence as the difference between the 

moments of two distributions using the kernel embedding techniques shown in 

equation 5.4.  

 

MMD�p(z) ∥ q(z)�

= Ep(z), p(z′)[k(z, z′)] + Eq(z), q(z′)[k(z,z′)]

− 2Ep(z), q(z′)[k(z,z′)] 

5.4 

Where k(z, z′) is described as the universal kernel and is often represented using 

the Gaussian Kernel. The purpose of this kernel is to measure the similarity of the 

two samples by having a large value if they are similar and low values for dissimilar. 

MMD works by comparing the average similarity between samples from each 

distribution and the average similarity between mixed samples from both 

distributions. If these values are identical then the distributions are the same. 

The reason for incorporating MMD in the model is to solve the following two 

problems: 

1. Uninformative latent code – it has been observed (Chen et al., 2017) that it 

is possible that the AE has failed to learn a meaningful representation of the 

input.  

2. Over Estimation in the Feature Space – VAE’s can over-fit data which leads 

to encoder variance tending to infinity.  
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5.2 Introduction to Generative Adversarial Networks 
As highlighted in the literature review, the Generative Adversarial Network (GAN) 

was first conceived in 2016 (Goodfellow et al., 2016). GANs fall into the category of 

unsupervised learning models, similar to the CVAE in the previous section.  

The architecture of a GAN consists of two parts, the first is the generator, the second 

is a discriminator, with the latent space as shown in Figure 5-5. The GAN operates 

by using an adversarial process to train the generator. The GAN works by training 

the generator to increase the probability of causing the discriminator to make a 

mistake.  

 

Figure 5-5 GAN General architecture 
An example of the training process for a GAN is shown in Figure 5-6. The first step 

is to take the real data and train the discriminator so that the output is a “1” for true. 

The second step is to train the discriminator on all fake data so that the output is a 

“0” for false. Once the discriminator has been trained to identify the real and fake 

data, the third step is to train the whole network. This is done by using fake data in 

the generator but setting the label to a “1”.  
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Figure 5-6 GAN Training Process 

Early GANs had several disadvantages. The main disadvantage is that the 

discriminator must be synchronised with the generator during training. This means 

that the generator cannot be overtrained without updating the discriminator as this 

can result in the generator collapsing the latent space. The main advantage over 

other adversarial networks is that back propagation is sufficient to obtain the 

gradients, compared with Markov chains required with other adversarial networks, 

which results in computational improvements. The main advantage of adversarial 

networks over unsupervised networks that rely on the use of Markov Chains is that 

the network generates clear outputs, whereas the outputs from a Markov chain are 

blurrier. 

5.2.1 Understanding the Details of a GAN 

This section provides more details of GANs with the aim to make it clearer to the 

reader how and why GANs were used to develop the Data Driven solution. As has 

been stated, there are two models within the GAN: the discriminator and the 

generator, and hence two different loss functions. The key to understanding how 

GANs work is to understand how these loss functions behave.  
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5.2.2 The Discriminator Loss Function 

As stated in the introduction of this section, the sole purpose of the discriminator is 

to identify the output from the generator as either real (‘1’) or fake (‘0’) and hence 

the loss function can be described as shown in 5.5 below. 

 𝐿𝐿𝐷𝐷 = 𝔼𝔼(𝐷𝐷(𝑥𝑥), 1) + 𝔼𝔼�𝐷𝐷�𝐺𝐺(𝑧𝑧)�, 0� 5.5 

Where: 

• D(x) is the discriminator evaluation of real ‘x’ 

• D((G(z)) is the discriminator evaluation of fake ‘x’ 

• 𝔼𝔼 is the error 

The error function is a way of measuring the distance or difference between the two 

distributions, similar to the Kullback-Leibler Divergence criteria discussed earlier. 

The most common loss function employed by the discriminator is Binary Cross 

Entropy (BCE), which is described in Equation 5.6. 

 𝐻𝐻(𝑝𝑝, 𝑞𝑞) = 𝔼𝔼𝑥𝑥~𝑝𝑝(𝑥𝑥)[−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥)] 5.6 

In terms of a classification application, it can be expressed as:  

 𝐻𝐻(𝑝𝑝,𝑞𝑞) = −�𝑝𝑝(𝑥𝑥)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥)
𝑥𝑥∈𝜒𝜒

 
5.7 

Since there are only two labels in a binary classification, problem 5.7 can be written 

as: 

 𝐻𝐻(𝑦𝑦,𝑦𝑦�) = −�𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑦𝑦�) + (1 − 𝑦𝑦)log (1− 𝑦𝑦�) 5.8 

Equation 5.8 is the error function mentioned in 5.5.  

BCE measures how different two distributions are in the context of binary 

classification, as well determining if the input is true or false. This allows the loss 
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functions to be derived by inserting into 5.5, which gives the loss function required 

to train the discriminator in equation 5.9.  

 𝐿𝐿𝐷𝐷 = − � 𝑙𝑙𝑙𝑙𝑙𝑙 �𝐷𝐷(𝑥𝑥)� + log (1− 𝐷𝐷�𝐺𝐺(𝑧𝑧)�
𝑥𝑥∈𝜒𝜒,𝑧𝑧∈𝜁𝜁

 
5.9 

5.2.3 The Generator Loss Function 

The next loss function to consider is for the generator. As previously stated, the 

primary aim of the generator is to create believable fake data, such that the 

discriminator misidentifies the input and wins the adversarial game (as discussed in 

the introduction of this section). The loss function employed is shown in 5.10 below.  

 𝐿𝐿𝐺𝐺 = 𝔼𝔼�𝐷𝐷�𝐺𝐺(𝑧𝑧)�, 1� 5.10 

Where D(G(z)) is the discriminator’s evaluation of fake data. It should be noted that 

the aim of the generator is to try and minimise the loss between real data ‘1’ and the 

fake data which is labelled as ‘1’. Using the BCE function approach outlined in 

section 5.2.2 and applying to 5.10 gives the following loss function for the generator 

in equation 5.11: 

 𝐿𝐿𝐺𝐺 = −� log 𝐷𝐷�𝐺𝐺(𝑧𝑧)�
𝑧𝑧∈𝜁𝜁

 
5.11 

Which results in a small loss function when the output is close to 1 (log (1) = 0), or 

in other words, the better the generator becomes at faking the results, the lower the 

loss is.  

In some papers, the loss function for the discriminator has slight variations. The only 

difference is whether the aim is to minimise, as shown in 5.9, or by removing the 

negative sign at the beginning of the loss function, the aim is to maximise the loss 

function (Goodfellow et al., 2016). The important point to note is that in (Goodfellow 
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et al., 2016), the game is framed as a min-max one, where the discriminator is 

aiming to maximise the reward, while the generator is aiming to do the opposite. 

This approach leads to a one-line equation which demonstrates the nature of the 

adversarial competition. In the real world though, it is better to define separate loss 

functions for the generator and discriminator.  

Now that the loss functions have been described the next stage is to explain how 

the GAN is trained.  

5.2.4 Training 

The training of the GAN is done in stages. The first stage is to train the discriminator 

with real and fake labels while fixing the generator, then the generator is trained 

while fixing the discriminator. The quantities of interest in the discriminator are how 

well the generator (G) is working and the discriminator (D) in equation 5.12.   

 𝑉𝑉(𝐺𝐺,𝐷𝐷) = 𝔼𝔼𝑥𝑥~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  𝑙𝑙𝑙𝑙𝑙𝑙 �𝐷𝐷(𝑥𝑥)�+ 𝔼𝔼𝑧𝑧~𝑃𝑃𝑔𝑔  log (1− 𝐷𝐷(𝐺𝐺(𝑧𝑧))) 5.12 

The aim of the discriminator is to maximise the integral of this function, and as a 

result the optimal value discriminator is achieved when equations 5.13 and 5.14 are: 

 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥)
𝐷𝐷(𝑥𝑥) −  

𝑝𝑝𝑔𝑔(𝑥𝑥)
1 − 𝐷𝐷(𝑥𝑥) = 0 5.13 

 𝐷𝐷(𝑥𝑥) =  
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥)

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥) + 𝑝𝑝𝑔𝑔(𝑥𝑥) 
5.14 

It follows that, when a sample (x) is genuine, then 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥) is 1 and 𝑝𝑝𝑔𝑔(𝑥𝑥) is 0, and 

in the case of a generated data point the discriminator should be 0.  

The next stage is to look at training the generator, this is done by fixing the 

discriminator, and then combining 5.12 and 5.14 to give equation 5.15: 
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𝑉𝑉(𝐺𝐺,𝐷𝐷) = 𝔼𝔼𝑥𝑥~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  𝑙𝑙𝑙𝑙𝑙𝑙 �

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥)
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥) + 𝑝𝑝𝑔𝑔(𝑥𝑥)�

+ 𝔼𝔼𝑥𝑥~𝑃𝑃𝑔𝑔  log �
𝑝𝑝𝑔𝑔(𝑥𝑥)

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥) + 𝑝𝑝𝑔𝑔(𝑥𝑥)� 

5.15 

Rewriting this using log identities gives equation 5.16:  

 𝑉𝑉(𝐺𝐺,𝐷𝐷) = 𝔼𝔼𝑥𝑥~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  𝑙𝑙𝑙𝑙𝑙𝑙 (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥)) − log �𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥) + 𝑝𝑝𝑔𝑔(𝑥𝑥)�

+ 𝔼𝔼𝑥𝑥~𝑃𝑃𝑔𝑔  log�𝑝𝑝𝑔𝑔(𝑥𝑥)� − log �𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥) + 𝑝𝑝𝑔𝑔(𝑥𝑥)�   

5.16 

It is possible to write 5.16 in the form of the Kullback-Leibler divergence by dividing 

log�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥) + 𝑝𝑝𝑔𝑔(𝑥𝑥)� by 2 and taking the log(4) out, 

 𝑉𝑉(𝐺𝐺,𝐷𝐷) = − log(4) + 𝔼𝔼𝑥𝑥~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  𝑙𝑙𝑙𝑙𝑙𝑙 (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥))

− log ��𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥) + 𝑝𝑝𝑔𝑔(𝑥𝑥)� /2�+ 𝔼𝔼𝑥𝑥~𝑃𝑃𝑔𝑔  log�𝑝𝑝𝑔𝑔(𝑥𝑥)�

− log ��𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥) + 𝑝𝑝𝑔𝑔(𝑥𝑥)� /2�   

5.17 

Equation 5.17 can be rewritten as equation 5.18. 

 
𝑉𝑉(𝐺𝐺,𝐷𝐷) = − log(4) + 𝐷𝐷𝐷𝐷𝐷𝐷 �𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃‖

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑝𝑝𝑔𝑔  
2 �

+ 𝐷𝐷𝐷𝐷𝐷𝐷 �𝑝𝑝𝑔𝑔�
𝑝𝑝𝑔𝑔 + 𝑝𝑝𝑔𝑔  

2 �   

5.18 

Which means that the goal of the generator is to minimise the function V(G, D) so 

that the difference between the real and fake data has to be as small as possible, 

or in other words Pg should be as close to Pdata as possible.  

5.2.5 Mode Collapse in GANs 

GANs pose a number of challenges. One of the significant issues with them is the 

concept of mode collapse. Mode collapse is where the generator is able to produce 

a single output, or a small set of outputs, for example if trained to produce numbers 
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on the MNIST dataset the generator only generates the number ‘8’ as shown in 

Figure 5-7. The reason for this is often found during training, where the generator 

finds a particular set of data that is able to fool the discriminator and, since in the 

GAN algorithm there is no incentive to change from this space, the generator will 

optimise around that given space. This over-training results in random output. 

 

Figure 5-7 An Example of Mode Collapse in a GAN (Shen, 2020) 
5.2.6 Latent Space 

A key parameter of the neural networks used in this research is the latent space. 

The latent space is the mathematical region to which the learned parameters are 

mapped. This space is often multidimensional, however an example of a 2D latent 

space is shown in Figure 5-8, where each colour blob represents a collection of 

common features, for example the orange blobs are the number 4, the green blobs 

are the number 3, blue are the number 2, and red blobs are the number 1. Inevitably 

there will be some blobs that encroach on each other’s learned space which 

accounts for misrepresentations.  
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Figure 5-8 Diagram of the Learned Latent Space from Unsupervised Model 
Now that the core features of the model design and underlying concepts are 

explained, the next sections will discuss the outputs of the computational model. 

5.3 Conversion of GPR signal to images 
As mentioned in Chapter 3 the aim of this thesis is to find the real-world objects that 

create GPR response curves. This can be done by either solving a system of linear 

equations as suggested in section 3.1 or by using a data driven model. The 

approach described in this section is to adopt the data driven model by using the 

GPR output and physical models, convolve them into two different latent spaces and 

create a mapping between the two zones. These latent spaces have high 

dimensionality, 100 in this case, and have been conditioned on the material types 

in the model. The idealised form of this model is shown in Figure 5-9. 

Diagram Demostrating How Latent Space is Organised
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Figure 5-9 The Idealised Proposed Forward and Reversed Mapping System 
Developing the Data Driven solution required multiple experiments and iterations of 

the computational model. During the iterative process it was often found that the 

output from the models would be random noise and not show any detail of required 

images which sometimes failed to converge onto a solution, or the models would 

exceed the GPU memory limits. The first version which showed convergence was 

Version 1, and then after further refinement on the training protocols and layer 

details Version 5 showed an improved output, both of these versions will be 

described in detail in this section. 

  

GPR
ResultsImage

Forward Transform

Inverse Transform
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5.3.1 2D to 2D Cycle GANs 

The cycle GAN as proposed by (Zhu et al., 2017) and described in section 2.1.3 

was conceived as an image-to-image translation system. The mapping is under 

constrained and as a result a second mapping is performed for the inverse process. 

This results in the requirement for two GANs to perform the mapping between two 

inputs, the first will map from GPR -> Simulation Image -> GPR and the second will 

map from Simulation Image -> GPR -> Simulation Image. As shown in Figure 5-1, 

this results in the creation of mappings between two latent spaces of the two GANs. 

In this application, the cycle GAN uses two CVAEs which has the advantage of 

being able to organise or condition the latent spaces based on a user defined 

criterion. In this case, the latent spaces will be organised by the material in the 

model. The conditions are shown in Table 5-1. The final column shows the decimal 

value of the conditional variable, which can be translated into a “one-hot vector”, 

such that the position in the vector relates to the condition. For example, if the input 

consisted of only organic objects, the condition variable would be 5, which would 

then translate to a vector [0,0,0,0,1,0,0] and the Inorganic 1 and Inorganic 2 is 3, 

which would be [0,0,0,1,0,0,0,0].  

Physical Model Active = 1 Inactive =0 Numeric 
No material 0 0 0 0 
Inorganic 1 0 0 1 1 
Inorganic 2 0 1 0 2 

Inorganic 1 & Inorganic 2 0 1 1 3 
Organic 1 0 0 4 

Organic & Inorganic 1 1 0 1 5 
Organic & Inorganic 2 1 1 0 6 

Organic, Inorganic 1& Inorganic 2 1 1 1 7 
Table 5-1 Conditional Variables 
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5.3.1.1 Version 1 Architecture and Training 

The first part of the model is to incorporate two CVAEs sequentially with a 

discriminator on the output of the first CVAE, which also feeds the input into the 

second CVAE. These latent spaces have been defined by CVAEs mentioned in 

section 5.2.6. The architecture adopted is shown in Figure 5-10. The Kernels are 

shown in Figure 5-11 and Figure 5-12. The decoder side of the model uses the same 

parameters as the encoder except to invert the convolutions. The fully connected 

layers are 32,768 to 512 with a latent dimension of 100.  

The first version of the approach only used two CVAEs in each GAN, and the 

discriminator runs off the output from the first cycle GAN. The model was trained for 

250 epochs over 3 days on a windows 10 PC using a 1080Ti Graphics card with 

11GB memory. An epoch in machine learning terms is used to describe a single 

pass through the entire training dataset and the corresponding update of the weights 

using back propagation. The data set was 15,000 simulated scans. Version 1 of the 

model was conditioned on the number of objects and not the type of objects and not 

their types. At this point there were no distinctions made about object type.  
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Figure 5-10 Version 1 Architecture Approach 
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Figure 5-11 Version 1 Convolution Kernels for the GPR CVAE 

 
Figure 5-12 Version 1 Convolution Kernels for the Image CVAE 

  

No. Out Channels 96 
Filter size (18,15)
Stride 1 
Padding (6,5) 

No. Out Channels 96  
Filter size (4,4)
Stride 2
Padding (1,1) 

No. Out Channels 128 
Filter size (5,5)
Stride 1 
Padding (2,2)

No. Out Channels 128 
Filter size (4,4)
Stride 2 
Padding (1,1)

No. Out Channels 384  
Filter size (3,3) 
Stride 1
Padding (1,1)

No. Out Channels 192 
Filter size (3,3)
Stride 1
Padding (1,1)

No. Out Channels 128
Filter size (3,3)
Stride 1
Padding (1,1)

No. Out Channels  128
Filter size (4,4)
Stride 2,2
Padding (1,1)

No. Out Channels 96
Filter size (18,15)
Stride 1
Padding (6,5)

No. Out Channels 96
Filter size (4,4)
Stride 2
Padding (1,1)

No. Out Channels 128
Filter size (5,5)
Stride 1
Padding (2,2)

No. Out Channels 128
Filter size (4,4)
Stride 2 
Padding (1,1)

No. Out Channels 384 
Filter size (3,3) 
Stride 1
Padding (1,1) 

No. Out Channels 192
Filter size (3,3)
Stride 1
Padding (1,1)

No. Out Channels 128 
Filter size (3,3)
Stride 1
Padding (1,1)

No. Out Channels 128 
Filter size (4,4)
Stride 2
Padding (1,1)
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5.3.1.2 Version 5 Training and Architecture 

Following from Version 1, several iterations of the model were attempted, each one 

aiming to improve the quality of the output by increasing the complexity of the model. 

This activity converged in the 6th iteration of this version which adopts a more 

traditional Cycle GAN Approach, as shown in Figure 5-13. The model uses the two 

CVAEs with the Convolution Kernels shown in Figure 5-14 for the GPR and Figure 

5-15 for the Image processing. The Decoder modules use the same parameters as 

the encoder to perform the transpose convolutions. The fully connected layers are 

4096 to 1024 with a latent dimension of 100. The training method for this version is 

shown in Figure 5-16. 

 
Figure 5-13 Version 5 Cycle GAN Mapping System used 
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Figure 5-14 Version 5 Convolution Kernels for the GPR CVAE 

 

Figure 5-15 Version 5 Convolution Kernels for the Image CVAE 
  

No. Out Channels 64
Filter size (10,8)
Stride 4,4
Padding (1,0)

No. Out Channels 128
Filter size (7,7)
Stride 1,1
Padding (2,3)

No. Out Channels 256
Filter size (4,4)
Stride 2,2
Padding (2,1)

No. Out Channels 512
Filter size (5,5)
Stride 1,1
Padding (0,1)

No. Out Channels 756
Filter size (5,5)
Stride 1,1
Padding (0,1)

No. Out Channels 1024
Filter size (4,4)
Stride 2,2
Padding (1,1)

No. Out Channels 1536
Filter size (3,3)
Stride 3,3
Padding (0,0)

No. Out Channels 2048
Filter size (2,2)
Stride 2,2
Padding (0,0)

No. Out Channels 64
Filter size (10,8)
Stride 4,4
Padding (1,0)

No. Out Channels 128
Filter size (4,2)
Stride 2,2
Padding (1,0)

No. Out Channels 256
Filter size (4,2)
Stride 2,2
Padding (1,0)

No. Out Channels 512
Filter size (4,2)
Stride 2,2
Padding (1,0)

No. Out Channels 1024
Filter size (4,2)
Stride 2,2
Padding (1,0)

No. Out Channels 2048
Filter size (4,2)
Stride 2,2
Padding (1,0)
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Figure 5-16 Training Philosophy for the 2D-2D cycle GAN’s Showing Both GAN1 

(GPR to Image) and GAN2 (Image to GPR) 
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5.3.2 2D Results 

The following section discusses the results from the first successful version of the 

software written for this project and the latest version. The total size was 15,998 

images and simulated B-Scan results, and the batch size 10. The Version 1 models 

were run for 250 epochs, and the Version 6 models were run for 300 epochs.  

5.3.2.1 Version 1 

The results at the end of training are shown in Figure 5-17. The first image shows 

the GPR simulation input into the network, the second image shows the “mapped” 

output and the final image shows the actual simulation model. Overall, when visually 

reviewing the results, it seems that the number and position of the objects 

demonstrates a good correlation, however the level of noise in the background 

needs to be addressed since it prevents an accurate approximation of the corelation 

to be made. An in-depth review into the images will be performed on the testing 

images shown in Figure 5-18 

 

Figure 5-17 Training Data after 250 Epochs (Image ‘A’ is the Input, Image ‘B’ is the 
Mapped Output and Image ‘C’ is Simulation Output) 

A B C
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While Figure 5-17 shows there is a good correlation between the prediction and the 

data used during training, and that the model is learning latent space effectively, 

Figure 5-18 shows that the network performs well when previously unseen data are 

used, that is data that are separate to the training set. To allow the visual 

comparisons to be made, the matching values have been highlighted with yellow 

ellipses. Although a few locations are not mapped accurately, this shows that the 

model behaves as expected.  

 

Figure 5-18 Testing Data after 250 Epochs (Image ‘A’ is the Input, Image ‘B’ is the 
Mapped Output and Image ‘C’ is Simulation Output ) 

Taking images 1 and 15 in the sequence shown in Figure 5-18 and enlarging in 

Figure 5-19 shows the following observations can be made: 

1) The position and clustering are consistent between the generated image 1 

and the actual image 1. 

2) In the generated image there a significant amount of background noise which 

is detrimental to the image usefulness. 
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3) In image 15 the generated image is too obscured by the noise level to prove 

any useful comparisons; however, the image does not look consistent with 

the actual image in shape, position looks reasonable though.  

 
Figure 5-19 Enlarged image showing in image ‘A’ the details of testing data for a 

good match and in Image ‘B’ poor match 
5.3.2.2 Version 5 

Based on the results above, it was obvious that significant improvements had to be 

made in order to demonstrate that the mapping is possible. Several iterations were 

performed until the results shown in Figure 5-20 and Figure 5-21 were created. 

There are some changes to results, the first being that the GPR plots have been 

normalised in a slightly different manner to help the training process. The data is 

normalised as a method of improving both the performance and stability during the 

training process. In this update the data normalised to between 0 and 1 and A-Scan 

field strength values limited to 4000. 

In order to simplify the GPR image, the grey background used in the previous 

dataset was switched to be white, this has the benefit of reducing the number 

variables which the model has to optimise. In addition, this allowed the data to be 

much more easily normalised to between 0 and 1.  

A B
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The improvements have resulted in a reduction of training time from 250 epochs to 

just 100 epochs. The most striking difference between the version 1 and version 5 

results is the background noise was eliminated due to the optimised parameters in 

version 6’s results. 

 

Figure 5-20 Training results after 100 Epochs (Image ‘A’ is the GPRMax Input, ‘B’ 
Shows the Mapped Output and ‘C’ is the Target Output) 
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Figure 5-21 Testing results after 100 Epochs (Image ‘A’ is the GPRMax Input, ‘B’ 
Shows the Mapped Output and ‘C’ is the Target Output) 
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The results above are assessed using 3 metrics, these are: 

1. Pixel Values 

2. Mean Squared Error 

3. Intersection over Union 

In the following sections the term ground truth. In this context ground truth is the 

reality the model knows and covers both the input and testing data. The generated 

data is then compared to this data as a method of comparing the accuracy of the 

output. In the context of this project, the term is applied to the actual images which 

the machine learning generated images should match.  

Using the actual mapped pixel values and comparing the values to the ground truth 

data gives an indication of the accuracy achieved by the mapping, since there are 

three different colours in the grey scale (two grey values and one white).  

Mean Squared Error (MSE) is used in statistics to measure the average squared 

difference between estimated and real values. MSE is often used to measure the 

quality of the estimator, since it is always positive and tends to zero as the accuracy 

increases the equation is shown in 5.19.  

 
𝑀𝑀𝑀𝑀𝑀𝑀 =

1
𝑛𝑛�

�𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖�
2

𝑛𝑛

𝑖𝑖=1

 
5.19 

When the pixel values in Figure 5-21 are compared with the predicted and target 

outputs it is found that 42% of the actual values are within ±15% of the target for the 

training data, while 25% are within the target for the testing data. The black 

background has been ignored in this calculation. While the value is low, this is not 

as bad as it seems because the value calculated is based on the pixel value and not 

the location of the pixels, which is a very harsh metric. The mean square errors 
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between the actual and generated images are shown in Table 5-2. The ideal target 

for the MSE value is 0, however this is rarely achieved and as a result the metric 

should be viewed as a comparator instead of in absolute terms. This means that the 

smaller the number the better corelation between the ground truth and predicted 

results, while larger numbers indicate poor corelation. In Table 5-2 the training data 

has a standard deviation of 673.2 and mean of 717, while the testing data has a 

standard deviation of 548.4 and a mean of 965. Comparing these values suggesting 

that the testing generated images are closer together, however the this is around a 

lower accuracy (this is shown Figure 5-22 below). 

      
Table 5-2 Showing the Mean Squared Error for Training Data and Testing Data  

Image Number MSE
0 932
1 942
2 14
3 2357
4 1048
5 469
6 241
7 1170
8 942
9 242

10 160
11 720
12 2383
13 1076
14 1099
15 14
16 243
17 238
18 14
19 14
20 1083
21 383
22 201
23 243
24 158
25 781
26 1921
27 866
28 14
29 1535

Training Data
Image Number MSE

0 1078
1 145
2 2572
3 1025
4 922
5 650
6 1249
7 1625
8 766
9 307

10 1205
11 306
12 1475
13 267
14 1254
15 804
16 632
17 226
18 1457
19 1213
20 858
21 1035
22 280
23 1367
24 241
25 1351
26 1384
27 1320
28 507
29 1433

Testing Data
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Figure 5-22 Comparing the Normal Distributions of the MSE for Training and 
Testing Data 

Intersection over Union (IoU), this metric measures the accuracy of an object 

detector and is often used as a method to evaluate the performance of R-CNNs. 

Using two bounding boxes, one for the ground truth and the second for the prediction 

results, this allows the intersected areas to be compared. For example, in the left 

image in Figure 5-23, the actual bounding box is in green, while the predicted box 

is in red and the simple ratio of the two areas is calculated using equation 5.20: 

 𝐼𝐼𝐼𝐼𝐼𝐼 =  
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈  5.20 

Where the Area of Overlap (middle image of Figure 5-23) is the area of overlap of 

the two boxes, while the Area of Union is the Total area denoted by the perimeter 

of the two boxes right hand image of Figure 5-23. 
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Figure 5-23 Example Showing the Two Bounding Boxes in Image ‘A’, Image ‘B’ is 
the Area of Intersection and Image ‘C’ Shows the Area of Union (Anon, 2023) 

z  

Table 5-3 The IoU details for selected images for the Training dataset  

image object 1 object 2 object 3 object 4
0 0.9 1.0
1 0.0 1.0
2 0.0
3 0.5 0.9 0.0
4 0.0 0.0 0.0 0.0
5 0.3 0.0 0.0
6 0.3 1.0
7 0.0 0.0 0.0
8 0.0 0.0
9 0.3 0.0
10 0.0 0.0
11 0.5 1.0
12 0.9 1.0
13 0.0 0.2 1.0
14 0.0 0.0
15 0.0
16 0.0 0.0
17 0.2 1.0
18 0.0
19 0.0
20 0.0 0.0 0.0
21 0.0 0.0
22 0.0 0.0
23 0.2 1.0
24 0.3 0.0
25 0.0 0.0
26 0.8 1.0
27 0.0 0.0
28 0.0
29 0.0 0.0 0.0

A 

B C 
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Table 5-4 The IoU details for the Testing dataset 
However, this metric is not without issues, in (Redmon and Farhadi, 2018) the 

author discusses the IoU metric and questions the applicability of this metric. In 

images 7 and 8 from Figure 5-20 and Figure 5-21, which is enlarged in Figure 5-24 

and Figure 5-25 below the IoU metric shows that there is minimal correlation 

between the two images with only 2 images correlating (Table 5-5). It can be seen 

that the images are actually representative after thresholding to perform the IoU, the 

shape, and clustering is all reasonable and the positional accuracy looks correct. 

Overall, it could be considered that despite the metrics there is an adequate 

correlation between the target and predicted values. 

image object 1 object 2 object 3 object 4 object 5 object 6 object 7 object 8 object 9 object 10
0 0.4 0.6 0.6 1.0
1 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 0.1 0.0 0.7 0.8 1.0
5 0.0 0.0 0.0 0.0
6 0.0 0.0 0.0 0.0 0.0 0.0 0.0
7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
8 0.0 0.0 0.0 0.0 0.0 0.3 1.0
9 0.4 1.0
10 0.0 0.0 0.0 0.0 0.0 0.0 0.0
11 0.0 0.0 0.0
12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
13 0.0 0.0 0.6 0.0
14 0.0 0.3 0.0 0.0
15 0.3 0.0
16 0.0 0.0 0.0 0.0 0.0
17 0.7 1.0
18 0.0 0.0 0.0 0.0
19 0.0 0.0 0.0 0.1 0.0 0.0
20 0.6 0.9 1.0
21 0.4 0.0 0.0 0.0 0.0 0.0 0.0
22 0.0 0.0 0.0
23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
24 0.5 0.6 1.0
25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
26 0.0 0.0 0.0 0.1 0.0 0.0 0.0
27 0.0 0.0 0.0 0.0 0.0 0.0 0.0
28 0.0 0.0 1.0
29 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0
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Table 5-5 Image 7 & 8 IoU Issues 

 
Figure 5-24 7 IoU issues for Image 7 Training Data Actual (‘A’) and Predicted (‘B’) 

Figure 5-25 7 IoU issues for image 8 Testing Data Actual (‘A’) and Predicted (‘B’) 
  

image object 1 object 2 object 3 Image object 1 object 2 object 3 object 4 object 5 object 6 object 7
7 0.0 0.0 0.0 8 0.0 0.0 0.0 0.0 0.0 0.3 1.0

Training Data Testing Data

A B 

A B 
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5.3.3 Multi-Dimensional Conditioning on the CVAE.  

The intention of multi-dimensional conditioning is to attempt to condition the latent 

space based on two variables, such as material and size. The reason for looking 

into this is to improve the segmentation and thus gain better correlations between 

the two latent spaces. Whilst some attempts have been made, the results are far 

from conclusive, though are looking promising.  

5.4 2D to 3D Image Generation 

The previous sections described transitioning between 2D images in different 

spaces which was done to prove that the algorithm works. This section will focus on 

implementing a 2D to 3D transition. This was done by building on Version 1 and 

Version 5, with the addition of a new Version 6 of the software, all will be described 

below. 

The primary aim of this project is to perform a 3D reconstruction of GPR images, for 

deep learning this leads to a fundamental problem of size and capacity of hardware. 

A 2D array of size [64, 64] is 4096 cells, where as a 3D array of size [64,64,64] is 

262,144 cells. Mathematically, this means that a 2D tensor array expands at the rate 

of n3 in size when converted into a 3D tensor array, which is a memory usage 

problem in the neural network when mapping between the 2D and 3D domains. An 

example is that a 2D table of size containing the coordinates of 196,133 pixels takes 

up 2.24Mbytes, however converting this into a 3D array, where a 1 represents an 

active voxel and 0 is empty takes up 84Mbytes. 
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Several options were assessed in order to try and minimise this issue and will be 

discussed in the following sub-sections: 

• Use bigger Voxels 

• Down sample the point cloud 

• Resample the Voxel space 

5.4.1.1 Increase the Size of Voxels 

Figure 5-24 uses stock images of a scene to demonstrate the options available 

when processing Voxels. The first is to use bigger voxels, which encompass more 

points but reduces resolution. The image on the right is 0.095 Mbytes compared to 

84Mbytes on the left.  

 

Figure 5-26 Comparison Between a Small Voxel Image and Large Voxel Sample 
Image 

5.4.1.2 Down Sample the Point Cloud 

The second alternative is to down sample the point cloud, this has the impact of 

reducing every other voxel from the image thus having the same impact on file size 

as changing the voxel size, without detrimentally reducing the resolution as shown 

in Figure 5-27. 
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Figure 5-27 Effect of Down Sampling on A Voxel Image 
5.4.1.3 Resize the Voxel Array 

The final option is to treat the voxel array in the same approach as an image and 

effectively rescale the image to a much smaller grid, this is shown in Figure 5-28 

below.  

 

Figure 5-28 Image ‘A’ Shows the Original image and Image ‘B’ shows the effect of 
Resizing the Voxel Array to 1/64th of the Original 

5.4.1.4 O-CNN 

The O-CNN (Wang et al., 2017) approach (see section 6.2) solely focuses on the 

efficiencies within the convolutional kernels by combining groups of similar regions 

into a super region, thus reducing the number of computations required, for this 

reason it is expected give the biggest impact on reducing computation resources. 

This technique would require significant effort to migrate to the transpose 

convolutional required for this project, and it was felt that while the memory 

efficiency was attractive it was not the best use of time on the project.  

A 
B 
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The options discussed in this section all show potential. Of the three identified 

options, the down sampling and reduced resolution were not the best application 

since this would reduce the resolution of the output. Instead, the approach taken 

forward was to resize the voxel array in a similar manner to a 2D pixel array as this 

is assumed to give the best compromise of quality, memory, and effort. 

5.4.2 2D-3D Mapping 

In this section, the intention is to show that by building on the knowledge gained 

from the 2D-to-2D mapping, it is possible to map between the spaces populated by 

the GPR B-scan results (2D) and the space populated by the point cloud 

representation of the tubers (3D). In other words, the intention of this activity is to 

define: 

 

𝑓𝑓: 2𝐷𝐷 → 3𝐷𝐷 

𝑓𝑓: 3𝐷𝐷 → 2𝐷𝐷 

(𝑥𝑥,𝑦𝑦) ∈ 2𝐷𝐷 there is a (𝑥𝑥′, 𝑦𝑦′) ∈ 3𝐷𝐷 

5.21 

Or in other words, for every location in the 2D space there is a function which relates 

to the 3D space.  

5.4.3 Version 6 

The aim of this section is to use the 2D-to-2D mapping as a way of creating an 

optimised 2D-to-3D mapping architecture. If hardware resources were infinite, or 

this solution was developed commercially, the same architecture developed in the 

previous chapter would be read directly across to this section, with the only change 

made being converting the 2D decoder into a 3D decoder. This, however, is not 

possible due to the issues discussed in section 5.4.2, where the main problem is 

one of memory resources.  
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As a result, a new more simplified architecture had to be found and tested in order 

to be used as a springboard for the 2D-to-3D mapping. To this end, the Version 6 – 

series was created and tested. This is a significantly less complicated and more 

streamlined approach with respect to the architecture, which uses a single CVAE 

and GAN to perform the mapping between the two spaces. However, the training 

process is slightly more complicated. There is only a forward pass and no cycle 

consistency checks performed. The result of this was to optimise the 2D dataset 

over 90 epochs and the results in the 2D space were really promising – see Figure 

5-29 where the top set of images are the actual images, and the bottom set of 

images are the predicted values. 

 

Figure 5-29 Version 5 2D Improvements to the 2D Mapping between the B-Scan and 
2D Image (the top images show the target, and the bottom images show the 

predicted)  
5.4.4 Architecture of the Computational Model 

Several variations of the same architecture have been attempted, with varying levels 

of success. Some did not create a mapping at all and just generated noise, and 

some had too many parameters for the graphic card GPU memory. Generally, all 

the architecture is based on Figure 5-30, as stated in section 5.1.2 the core is a 

CVAE-GAN and the output is mapped 3D data, which allows the mapping between 

the 2D and 3D spaces to be achieved with the CVAE and the improvement in clarity 

being performed by the GAN. 
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Figure 5-30 Version 6 Revised Architecture  
During training, the model would often collapse, with values in the convolutional 

areas going to NaN. The reason for this was never fully conclusive, however all 

indications point to the gradients going to zero. A large amount of effort was put into 

trying to overcome this and several modifications were made to the training 

algorithm resulted in the convergence of the model without the gradients collapsing 

to zero, however there was an impact on the time taken to train the model. In all the 

variations, the deep learning side did not change much, the biggest change was to 

add an extra layer after increasing the 2D image size from 64 to 128 pixels square. 

However, changes were made to the way in which the training was performed.  

The input 3D image size and hence the generated 3D image size is limited to a 

three-channel tensor of 64 voxels in each of the three dimensions. The size of the 

output is constrained by the memory available in the Graphical Processor Unit 

(GPU). Increasing the image size increases the memory requirements by a cubed 

relationship. The [64,64,64] size was found to be suitable at this stage for the 

network. When the final postprocessing happens, it is possible to scale these 

images back up to the “real-world” size to get a true representation of the tubers. In 

order to increase the resolution of the voxel array, care has to be taken in order to 

Input 1 Output 2

Discriminator 1/0Reparamatisation layer

Back 
Propagation
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not introduce numerical errors by interpolating the between the existing volumes 

and this can be done using affine transformations or a simple B-spline type 

approach which would use the existing voxel positions as the control points. Issues 

do exist at with end-effects, and this will need to be explored in future work.  

5.4.5 Results 

5.4.5.1 Version 1 

Using a very limited dataset of only 8,000 images and 3D models the results shown 

in Figure 5-32 were produced. While the images were promising, the model was 

unstable, and it took a lot of care to get the model to converge as discussed in 

section 5.4.4. The model was considerably more unstable when the larger dataset 

(16,000) was used. It was paramount to try and improve the stability of the model 

without impeding the quality of the mapping. After a significant amount of trial and 

error, the source of the instability has been identified as the retention of the graph 

in the back propagation.  

In terms of machine learning, backpropagation is the method used to calculate the 

gradients of the parameters in the neural network. This is done by traversing the 

network starting at the output and finishing at the inputs. The graph is computed 

during the forward pass through the network and during the reverse pass the 

gradients are calculated. Ordinarily the stored graph is reset after each iteration, 

however using the retain_graph=true statement keeps the graph history after each 

iteration. Retaining the graph during the back propagation of the model forces the 

model to retain necessary information such as gradients as well as intermediate 

values that are required to calculate the 3D mapping. This leads to a constantly 

increasing size array and eventually instability. As a result, this parameter was 

removed by recoding this section and resulted in increased stability of the model. 
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The results for the increased stability model are shown in Figure 5-31 and Figure 

5-32 below. In the following images, the colours do not hold any significant and are 

used as an aid to  identify individual potato representations.  

 

Figure 5-31 Comparison of Version 1 Results for the 3D Output (‘B’) vs the 3D 
Target Image (‘A’). 

 

  

A B 

A B 
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Figure 5-32 Comparison of Version 1 Results for the 3D Output (‘B’) vs the 3D 
Target Image (‘A’). 

In Figure 5-32, the index value in the title is based on the number generated, i.e. 

index 0 is the based on the first item in the dataset, and index 3 is the fourth item in 

the dataset (this convention is used in all proceeding images). It can be seen that 

the model is very adept at recreating the deeper objects, but consistently struggles 

with the shallow objects. One reason for this is that the near surface signal is 

“swamped” by the air-soil interface as discussed in chapter 3. 

5.4.5.2 Version 5 

Taking the optimised 2D mapping tool described in section 5.4.3 above and 

translating it into the 2D-3D mapping space leads to a specific problem created the 

version 5 of the 2D-3D mapping. The problem came when the architecture principles 

were read across to the 3D models as shown in Figure 5-33 and Figure 5-34 and 

the model was run over 200 epochs. It can be seen that the 3D results are starting 

A B 

A B 
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to converge, however they are not as good as version 1 results after only 150 

epochs. 

 
Figure 5-33 Version 5 Mapping Between the B-Scan and 3D Image - Training Data 

Images 1 & 2 

2

1

1 2 3 4 5
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Figure 5-34 Version 5 Mapping Between the B-Scan and 3D Image - Training Data 
Images 3 to 5 

  

5

4

3
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The discrepancy between 2D and 3D results for the same architecture may be due 

to the additional dimensions - the 2D output is a single channel 2D array, while the 

3D output is a 3-channel 3D array, which, as discussed in section 5.4.4 leads to an 

additional level of complexity. Therefore, it might be a case of leaving the model to 

run on for additional epochs and wait for further results.  

Alternatively, the 2D model utilises the Maximum Mean Discrepancy (MMD) 

function- as described in section 5.1.4 and MSE loss as opposed to the Kullback-

Leibler Divergence (KLD) and MSE loss as a way of trying to overcome a 

fundamental problem with the CVAE based architecture, where a limited amount of 

information passed between the encoder and decoder (Zhao, Song and Ermon, 

2018). This was attempted within the 2D-3D translation; however, the solution was 

unstable and as a result never converged, this caused the 2D-3D uses only the KLD 

and MSE loss functions. 

Two changes to the above architecture were made in an attempt to make the model 

perform better: 

1) The inclusion of dropout layers in an effort to try and reduce over fitting on 

the 2D encoder side of the model.  

2) The addition of a median filter as discussed in section 4.3.4, with the aim of 

trying to improve deep learning architecture’s ability to utilise real world data.  
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The results for this model are shown in Figure 5-35 and Figure 5-36 The testing data 

is shown in Figure 5-37 and Figure 5-38. 

 

Figure 5-35 Filtered GPR B-Scan Input Data 
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Figure 5-36 Mapped 3D Training Images (predicted top and actual bottom 
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Figure 5-37 Testing Filtered GPR B-Scan Input Data 
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Figure 5-38 Mapped 3D Testing Images (predicted top and actual bottom) 
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In Figure 5-38, there is a large “blob” on the extreme edge of the output. Since this 

does not exist in the input data, it is assumed that this is the result of a lack of 

conversion in the model, and not as a result of the preprocessing of the input data 

which creates “edge effects” when the convolutional kernel tries to smear values 

close to the boundary. It is unlikely to be down to issues within the model, since the 

models which use the “clean” GPRMax data does not exhibit this behaviour. 

5.5 Testing the Model with Real data 

A special test zone was set up in a field, which used two ridges. These ridges were 

approximately 20m long with groups of potatoes placed at regular intervals 

consistent with a field. The scanning equipment ran parallel along the axis of the 

ridge as shown in Figure 5-39 below. The potatoes were clustered either individually 

or in groups which represented different yield ratings (high, medium and low) 

 

Figure 5-39 Showing how the Real-World Data was Collected (GSSI Antenna 
Direction of Travel is into the Page).  

In section 4.2.2, attempts were made to find the best way of pre-processing the raw 

data from the field to minimise noise and enhance the signal. It was found that using 

the SVD along with a Time Varied Gain gave the most consistent results. In the last 

days before the harvest was performed, several scans of crops were made along 

with photos taken as shown in Figure 5-40 to Figure 5-43.  

Ridge 1 Ridge 2



168 | P a g e  
 

 

Figure 5-40 Showing the Raw Data and Pre-Processed Data Scan Sections 0 to 800. 
(B-Hive and Lewis, 2021) 

 

Figure 5-41 Actual Tubers in the Ground Scan 0-200 (B-Hive and Lewis, 2021) 

Singular

High Yield Low Yield

Single Scan Survey Direction

Rubbish

Single Scan Survey Direction
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Figure 5-42 Showing the Raw Data and Pre-Processed Data Scan Sections 800 to 
1600. (B-Hive and Lewis, 2021) 
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Figure 5-43 Showing the Raw Data and Pre-Processed Data Scan Sections 1600 to 
2200. (B-Hive and Lewis, 2021) 

Within the initial GPR data, it was found that there were duplicated columns 

randomly through each of the 200 data sets. This data has been removed and then 

a linear interpolation has been performed between the columns either side of the 

missing data. In Table 5-6, a sample of the raw data from the GSSI hardware is 

shown, each column is an A-scan, and each row is a measurement point, it can be 

seen that columns 20 and 22 are duplicates of 19 and 20 respectively. The reason 

for this duplication is unknown.  

The revised data is shown below in Table 5-7. The revised data is a linear 

interpolation between the columns either side, so column 20 is effectively the mean 
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of columns 19 and 21. This has the effect of smoothing the data out between the 

individual A-Scans.  

There is a lot of noise on the individual A-Scan which becomes more obvious once 

a time varying gain has been applied to counter the damping effects as discussed 

in section 3. This was removed using a Savitzky-Golay filter as this was found to be 

the best option for cleaning up the signal. The before and after samples are shown 

in Figure 5-44 and Figure 5-45 below. In the following images the term “Depth 

Increment” is used to identify the position in the time series, for example Depth 

Increment=0 is the first value in the series.  
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  Horizontal Increment 

D
ep

th
 In

cr
em

en
t 

 18 19 20 21 22 23 
0 -391.3 3013.65 3013.65 8034.32 8034.32 4607.95 
1 576.988 3589.64 3589.64 8143.94 8143.94 5040.39 
2 1473.91 4136.69 4136.69 8234.28 8234.28 5440.85 
3 2303.23 4656.42 4656.42 8307.32 8307.32 5811.63 
4 3068.68 5150.48 5150.48 8365.02 8365.02 6155 
5 3774.01 5620.49 5620.49 8409.36 8409.36 6473.25 
6 4422.96 6068.1 6068.1 8442.31 8442.31 6768.66 
7 5019.3 6494.94 6494.94 8465.82 8465.82 7043.52 
8 5566.75 6902.65 6902.65 8481.89 8481.89 7300.12 
9 6069.07 7292.86 7292.86 8492.47 8492.47 7540.73 

10 6530.01 7667.21 7667.21 8499.53 8499.53 7767.65 
11 6953.3 8027.33 8027.33 8505.05 8505.05 7983.15 
12 7342.7 8374.87 8374.87 8510.99 8510.99 8189.53 
13 7701.96 8711.46 8711.46 8519.33 8519.33 8389.06 
14 8034.81 9038.73 9038.73 8532.03 8532.03 8584.03 
15 8345.01 9358.32 9358.32 8551.07 8551.07 8776.72 

Table 5-6 Sample of the Raw Data from the GSSI Hardware showing duplicate 
columns. 

 

  Horizontal Increment 

D
ep

th
 In

cr
em

en
t 

 b 19 20 21 22 23 
0 -391.3 3013.6 5524 8034.3 6321.1 4608 
1 576.99 3589.6 5866.8 8143.9 6592.2 5040.4 
2 1473.9 4136.7 6185.5 8234.3 6837.6 5440.9 
3 2303.2 4656.4 6481.9 8307.3 7059.5 5811.6 
4 3068.7 5150.5 6757.8 8365 7260 6155 
5 3774 5620.5 7014.9 8409.4 7441.3 6473.2 
6 4423 6068.1 7255.2 8442.3 7605.5 6768.7 
7 5019.3 6494.9 7480.4 8465.8 7754.7 7043.5 
8 5566.8 6902.6 7692.3 8481.9 7891 7300.1 
9 6069.1 7292.9 7892.7 8492.5 8016.6 7540.7 

10 6530 7667.2 8083.4 8499.5 8133.6 7767.6 
11 6953.3 8027.3 8266.2 8505 8244.1 7983.2 
12 7342.7 8374.9 8442.9 8511 8350.3 8189.5 
13 7702 8711.5 8615.4 8519.3 8454.2 8389.1 
14 8034.8 9038.7 8785.4 8532 8558 8584 
15 8345 9358.3 8954.7 8551.1 8663.9 8776.7 

Table 5-7 Sample of the Interpolated Data from the GSSI Hardware 
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Figure 5-44 Sample of an A-scan Before and After Filtering 

 
Figure 5-45 Sample of an A-scan Before and After Filtering 
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The B-scans after pre-processing are shown in Figure 5-46, and were used in the 

trained model version 1.5, 1.5b and version 5. In the following images the index 

reference refers to the number of the B-scan in the corresponding image. The 

results for version 1.5 are shown in Figure 5-47 and Figure 5-48. Using the SVD 

process described in section 6, has an input B-scan shown in Figure 5-49, with the 

mapped results shown in Figure 5-50 and Figure 5-51. The results for 1.5b are 

shown in Figure 5-52 and Figure 5-53. The results for version 5 are shown in Figure 

5-54 and Figure 5-55. In the following figures the ‘X’, ‘Y’ and ‘Z’ axis are 

dimensionless and represent the position in the 64x64x64 array which is used to 

create the image.  

 
Figure 5-46 GSSI B-scans (B-Hive and Lewis, 2021) 
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Figure 5-47 Version 1.5 Real World 3D Predictions from B-scans 0 to 5  
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Figure 5-48 Version 1.5 Real World 3D Predictions from B-scans 6 to 10 
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Figure 5-49 GSSI B-scans after SVD Background Removal  

  

Figure 5-50 Version 1.5 with Real World SVD 3D Predictions from B-scans 0 to 5 
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Figure 5-51 Version 1.5 with SVD Real World 3D Predictions from B-scans 6 to 10 
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Figure 5-52 Version 1.5d 3D Real World Predictions from B-scans 0 to 5 
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Figure 5-53 Version 1.5d Real World 3D Predictions from B-scans 6 to 10 
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Figure 5-54 Version 5.1 Real World 3D Predictions from B-scans 0 to 5 
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Figure 5-55 Version 5.1 Real World 3D Predictions from B-scans 6 to 10 
This section has shown that Version 6 can produce good results on GPR data 

produced in an actual field, and not just synthetic training data. More work can be 

done to improve the results further, as will be discussed in section 5.10. 
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5.6 Discussion 
The approach adopted in this thesis differs from existing methods of employing 

Deep learning to this field rely on identifying the nature of the response as described 

in Chapter 2 until the application of a UNET to solve the inverse problem was 

proposed by (Dai et al., 2022). The approach used by this team is to use a two-

stage method. 

The 2D-to-2D mapping has given some promising results. Version 5 created the 

clearest and most accurate results based on the IoU and the MSE values, however 

it will be very difficult to use these results for estimating yield, since there is no 

knowledge of the third dimension and hence the volume will be difficult to 

approximate. It does show the benefit of the cyclic consistency in creating readable 

and usable results.  

When comparing the results back to the alternative solution used by (Dai et al., 

2022), it can be seen that they have experienced similar problems, the approach 

works well when a single shape/response is used. However, once the scan includes 

multiple objects close together, the accuracy of the system starts to decline. It is 

also clear that, while the approach has created images which are geometric 

representations of the input data, the approach has struggled to create 

distinguishable representations based on the permittivity, which the UNET approach 

has succeeded in doing. The significant difference between the inputs for these two 

approaches is that use of RGB based inputs by the UNET method, as opposed to 

grey scale used in this thesis which was selected due to computational limitations. 

In hindsight it would have been better to utilise an RGB format for the images as the 

contrast between colours would be significantly higher than with Greyscale (light 

grey is very close to white and dark grey is very close to black). In Figure 5-29, there 
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are signs that the model is differentiating between the Dark Grey object and the 

other two colours, however there is little evidence that the model is differentiating 

between the light grey and white, which further suggests that there is an issue with 

contrast in the model. In Table 5-8 below it can be seen that as the objects become 

closer together, so the MSE deteriorates. 

 

Table 5-8 Results for MSE for a UNet based Inversion Model (Dai et al., 2022) 
The results displayed in the 2D-3D mapping section 5.4.5 are also promising, 

however it is clear that the most promising version is version 1. Version 1 is a hybrid 

between the CVAE and GAN, while versions 5 & 6 use a second optimiser to train 

the generator of the CVAE as part of the GAN separately in addition to the optimiser 

for the CVAE. While using the SVD approach has removed a lot of the background 

clutter, the results look less encouraging than without SVD. Nevertheless, the 

results, though encouraging, are not inconclusive, the reason for this is thought to 

be due to the lack of resolution in the GPR system compared to the simulations. The 

main issue with the approach adopted in this thesis is that the training time is too 

long, and the results are not conclusive enough With this in mind, the main focus of 

development has to be in making the process more efficient, using examples such 

as quantisation or octree convolutions both of which are discussed in more detail 

within chapter 6.  
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In the 2D inversion model paper (Dai et al., 2022), it has been identified in the future 

work section that the next stage is to identify a suitable architecture to perform 3D 

reconstructions. A suitable architecture has been identified in this work and with 

some additional research it should be possible to improve the results contained 

within this thesis.  

It is expected that running the model for longer iterations should improve the 

convergence, however there is a danger that this could lead to overfitting the data 

(which means that it is less able to create approximations outside of the fixed points 

and is often considered detrimental to a machine learning model. That said it would 

be worth experimenting with and if overfitting starts to be a problem, then using a 

second GAN to generate additional data could be a way to reduce this effect. 

Using a B-spline to interpolate between the existing points has been demonstrated 

to be both a faster conversion in under-determined and if over determined lead to a 

more accurate result (Fomel, 2000), from the b-splines it will also be possible to 

create surfaces using techniques such as B-spline surfaces. B-Splines are defined 

using a knot sequence (a vector) and a set of control points. The main drawback is 

that each vertex is given their own basis function which leads to a more complex 

description, however that said they are more flexible than other splines and it is 

possible to change a b-spline by altering either its knot-sequence or the control 

points.  

It is clear that by adding filters to the input that this actually degrades the mapping. 

This is due to reducing the variation between the scans that the models require. If 

the resolution is going to be reduced, then additional scans need to be taken to allow 

for the recovery of resolution. 
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Further improvements to the learning algorithm could be made by performing 

additional pre-processing on the GPR data by removing the air-ground boundary 

spike. Doing this not as straight forward as taking just the air-ground signal from all 

and could involve a deconvolution technique as discussed in later in this section, or 

even using blind source separation (BSS). BSS is an established method of 

separating out individual signals from a mixed signal and has been used in fields 

such as the cocktail party problem (Cherry, 1953), image processing and EEG 

analysis.  

From the results so far, it is clear that some additional processing of the input data 

is required to try and improve the final data. The real-world data will involve several 

layers of processing, including an Analogue to Digital Convertor (ADC), up sampling 

and filtering. There is also the need to increase the level of background noise in the 

simulations, which can be done by using the heterogeneous soil models built into 

GPRMax, using the same 3 Sphere model as Figure 4-3, but with a chaotic 

distribution of water, clay and sand through the model as proposed in (Peplinski, 

Fawwaz and Myron, 1995) is shown in Figure 5-56 below.  
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Figure 5-56 GPRMax Simulation of 3 Spheres within a Chaotic Soil Medium 
Using a very basic ADC signed 12-bit convertor, which converts the analogue signal 

into a digital signal ranging from -2048 to 2048 (the 12 bit is for the sign) on each A-

scan is shown in Figure 5-57. The analogue signal is plotted against the right-hand 

axis and the digital sampling points are the stick graphs plotted on the left-hand side. 

In Figure 5-58, the resulting digital signal can be seen.  

 

Figure 5-57 Analogue Signal and Digital Discretisation Points  
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Figure 5-58 Digitised Signal of Figure 5-57 
A sample of the stored data by the GSSI equipment is show in Table 5-6, which is 

not a raw digital signal, but it has had some signal processing performed by the GPR 

system as discussed in chapter 4. It can be deduced that there must be an up-

sampling step or a digital to analogue conversion step which would further reduce 

the data size and then an interpolation step to up sample the data. A simplistic 

demonstration is shown in Figure 5-59 with the resulting data in Table 5-9 and the 

revised B-Scan image is shown in Figure 5-60. 
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Figure 5-59 Before and After Up Sampling (Green and Blue) 

 

Table 5-9 Showing a Sample of Data Before and After Sampling 

 

Figure 5-60 B-Scan of 3 Spheres in a Chaotic Medium after Resampling 
The inclusion of a median filter in the pre-processing part of the network actually 

reduces the overall effectiveness of the mapping between the spaces.  

0 1 2 3 4 5 6 7 8 9 10
Before -85 -1798 -2048 -1285 -260 416
After -85.00 -853.17 -1731.24 -2186.30 -2102.77 -1762.26 -1393.89 -973.96 -457.41 30.66 337.78
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While the above process does not fully recreate the GSSI data, it does show that it 

is possible to go some way to replicating the GSSI process. However, the better 

approach would be to use the signal generator and the antenna from the GSSI and 

develop bespoke signal processing hardware which would allow the simulation suite 

to fully represent the data and improve the corelation between the model and the 

real-world data.  

The technology presented in this thesis shows that it is possible to map between a 

GPR B-scan into the 3D graphical domain. This opens exciting opportunities in the 

field of unexploded ordnance detection, archaeological and defect detection in civil 

engineering as well as agriculture. The main improvement over the current systems 

is that it will reduce the number of required scans performed to get an overall view 

of the subsurface. This leads to the main commercial benefit, namely the reduction 

in costs by both reducing hardware costs and the time taken to scan a location. 

Using current technology requires several B-scans to be taken over the site of 

interest, and then using software methods similar to that described in chapter 3 it is 

possible to predict an image. In reducing the number of traverses across a field 

which farmers prefer to avoid as it causes soil compression and reduction of 

drainage, an array of antennas would be required. It can therefore be seen that if 

the is a single traverse with a single antenna, this would be both a significant saving 

in cost and time. 

This reduction in costs and increase in functionality, should allow the use of GPR to 

become more prevalent for viewing the subsurface world. 

The principal limitation of the approach adopted is that the scanning resolution of 

the system does not match the resolution of the resolution of the simulation. One 
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method of improving the resolution is to apply a deconvolution technique 

(BENEDETTO et al., 2017), which works on the assumption that the GPR signal is 

a convolution between a transmitted wavelet 𝑤𝑤(𝑡𝑡) and target reflectivity 𝑒𝑒(𝑡𝑡) as 

shown in 5.22. This approach requires isolating the term e(t) by accounting for the 

reflected signal and retrieval of the source wavelet.  

 𝑥𝑥(𝑡𝑡) = 𝑤𝑤(𝑡𝑡) ∗ 𝑒𝑒(𝑡𝑡) 5.22 

The main limitation is that, by default deconvolution is an ill-posed problem and 

therefore creates an approximation and not an exact solution, and a secondary 

issue is that since in GPR the wavelet is non-stationary and mixed has led to some 

issues in the effectiveness of this approach. 

Existing approaches to the inverse problem require bespoke models for specific 

use-cases, if the boundary conditions change, then the model needs to be updated. 

Using the approach proposed in this thesis allows for more flexibility in the boundary 

conditions since, once trained it is relatively simple via transfer learning (the process 

of retraining models to new situations) is simple and relatively low resource 

requirement. That said, if the initial training data is sufficiently representative of 

conditions in the real-world, then retraining would be rarely required.  

Using existing approaches requires multiple scans to be able to interpolate the 3rd 

dimension accurately, however with this approach the principal benefit is that, whilst 

additional scans would improve the accuracy of the model it is not a necessity. Since 

the approach generates 3D solids, it is possible for the farmers to perform 

harvesting, based on accurate information and determining the state of the crop 

based on a small section of the field and experience. In addition to this if the farmer 
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has an accurate image of the field, they will be able to harvest areas that are ready 

to harvest and leave other areas to mature.  

It can also be concluded that computationally this does not seem to be the most 

efficient approach. The resources deployed in solving this problem were insufficient. 

Since the start of this project, transformer architecture (Vaswani et al., 2017) 

developed to become a dominant force in the generative field with well-known 

applications such as Chat-GPT (OpenAI, 2022) and in the field of image-to-image 

translation (Zheng et al., 2022) it has been shown to perform better than CycleGAN 

discussed in section 2.1.3. The results for this are shown in Table 5-10 below. 

 
Table 5-10 Comparison between ITTR and state-of-arts on three datasets. 

Evaluation metric with sign ↓ indicates that lower is better, while ↑ indicates 
higher is better (Zheng et al., 2022) 

It became clear that the main limitation for this work was a hardware one, this could 

have been addressed by using the power of the cloud to train the model.  

5.7 Chapter Summary 

In this chapter, the design principles have described in detail in sections 5.1 to 5.1.2. 

The solution adopted utilise combinations of CVAEs & GANs both in cycle GANs 

and CVAE-GAN configurations. The theory behind the various building blocks for 

the architecture used in the implementation has been described in sections 5.1.3 to 



193 | P a g e  
 

5.2. In sections 5.3 and 5.4 it has been shown that it is possible to use deep learning 

to achieve the following aims: 

a) Map a 2D B-scan to a corresponding 2D image (section 5.3.2).  

b) Map a 2D B-scan to a corresponding 3D image (section 5.4.5). 

The theoretical solutions have then been tested on real world data as described in 

section 5.5. in section 5.6, the results are discussed along with suggestions to 

improve the outputs which form the backbone of chapter 6. 
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6 Further Work 

During the research towards this thesis and the development of the computational 

solution, several items have been identified that could benefit from further work in 

order to make the solution commercially viable. These could not be pursued within 

this work due to cost and time constraints.  

The following items were identified for further work: 

• Change the 2D-to-2D architecture to a colour based one to improve the 

results in section 5.3.2.  

• Investigate the best approach for resampling the voxel grid to a real-world 

value by using affine transforms or b-splines as mentioned in section 5.4. 

• Further enhancements, including the use of additional lateral B-Scans to 

improve the 3D mapping. 

• The use of the unprocessed antenna signal from the field to better match the 

simulation data.  

• Improvements are required to reconstructing the GPR scan resolution using 

deconvolutional techniques as discussed in section 5.6. 

• Quantization of the final model to allow deployment into the field, explained 

in section 6.1. 

• Improvements in computational efficiency, for example 3D kernels, 

discussed in section 6.2. 

• Using additional scans (more than 1) per row.  

• Using better computer hardware to allow for bigger models required to use a 

traditional cycle GAN type architecture. 
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6.1 Quantization 
Quantization is the process used to minimise trained deep learning models, so they 

use minimal resources to perform. Quantization techniques could be applied to the 

model to reduce its size and make it executable on edge devices such as tablets or 

smart phones. The benefit would be ease of use by farmers in the field. 

During quantization, the floating-point numbers used in the weights and bias of the 

model are converted into low bit width numbers often in base 2 integer increments. 

The most common values for this are 8- and 4-bit integer numbers. This has an 

impact on the accuracy of the model, but using modern techniques it can be 

minimised, as shown in Table 6-1 below. Looking on the diagonal of the table shows 

an error rate of 8.3% for 4-bit quantisation, 6.95% for 8 bit and 6.98 for floating point 

errors.  

 
Table 6-1 CIFAR-10 Classification Error Rate with Different Bit-Width Combinations 

(Lin, Talathi and Annapureddy, 2016) 
Quantization was not investigated during the thesis, which focused on developing a 

viable solution to the inverse problem rather than its implementation in the field. 

6.2 3D Convolution Kernels 

The incorporation of a 3D convolutional kernel based on the octree data structure 

was suggested in section 5.4.1.4. 

There are a few options for improving the allocation of computer hardware resources 

to optimise the solution further. One option is to change the data structure used in 
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the 3D convolution Kernels. This can be achieved by using an octree instead of a 

3D array.  An octree is a derivative of the binary tree, but instead of two child nodes 

there are eight child nodes for each root. This data structure is mainly used in 3D 

graphical applications and is a highly efficient way of storing data as only areas 

where fidelity is required are divided as shown in Figure 6-1.  

 

Figure 6-1 3 Level Octree Data Structure 
Each node can be made to represent a region of space, where the point stored in 

each node represents the centre of the subdivision, while the root node defines the 

whole space. This is a very efficient way of storing data and an example of their use 

is demonstrated in  (Wang et al., 2017) which shows that it is possible to build an 

octree-based CNN with a comparison of memory requirements shown in Figure 6-2 

below. This data structure has potential to make 3D convolutions a realistic 

proposition at high resolutions. 

 

Figure 6-2 Memory Requirements Comparison for a batch size of 32 (Wang et al., 
2017) 

The convolutional operations work by identify the neighbouring octants at the same 

level within the tree, and the convolutional operator is written as 6.1. 
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 Φ𝐶𝐶(𝑂𝑂) = ����𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛).𝑇𝑇(𝑛𝑛)�𝑂𝑂𝑖𝑖𝑖𝑖𝑖𝑖�

𝑘𝑘𝑗𝑗𝑖𝑖𝑛𝑛

 
6.1 

𝑂𝑂𝑖𝑖𝑖𝑖𝑖𝑖 is the neighbouring octant of O, 𝑇𝑇(𝑛𝑛) represents the nth channel feature vector 

associated with 𝑂𝑂𝑖𝑖𝑖𝑖𝑖𝑖 with 𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛) being the weighting for the convolution operation. In 

this form, it is possible to convert the convolution operation into a matrix product. 

For a given kernel size “K”, the operator requires K3-1 neighbouring cells. When “K” 

is large, this requires a large amount of I/O processing, which leads to a large 

memory footprint. To counter this a hash table is used. The approach adopted in 

this paper results in stride levels which are of size equal to 2n level. Introducing 

octrees to the architecture will results in the memory requirements being O(n2) 

compared to O(n3) of a conventional full voxel solution. This approach has not been 

fully developed as part of this thesis but could be a basis for future enhancements 

to the technology presented here. 

6.3 Summary 

In this chapter, future work has been identified to take the project forward with the 

aim of improving the results from the methods deployed in this thesis. These 

approaches are focused in two main regions, the first looks at the performance of 

the both the hardware and the deep learning approaches, the seconds approaches 

attempt to improve efficiency within the deep learning by looking at methods to 

reduce the computational requirements deployed to solve the mathematical 

problems.  
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7 Conclusion 

This thesis has investigated a data driven approach to solving the inverse problem 

using deep learning. Chapter 2 presented a review of current literature on the use 

of deep learning and GPR systems, along with current analytical solutions. Chapter 

3 delved into an explanation of an empirical solution currently used to solve the 

inverse problem, and the reasons it was found lacking in the case of tubers in soil. 

Chapter 4 discussed the GPR scanning hardware selected for use in this thesis, its 

limitations, the experiments conducted, the method used for collecting real data, and 

the simulation tools utilised. Chapter 5 explained the design principles for the data 

driven solutions that was tested with both simulated and real-world data. In this 

chapter the results have been compared back to state-of-the-art academic papers. 

The final chapter builds on the findings from chapter 5 and suggests future directions 

for this work to address the issues highlighted. 

The thesis has achieved the objectives defined at the outset to: 

7.1. Identify and size individual tubers using existing geophysics techniques. 

Working with B-hive there has been some success in detecting and identifying 

potatoes, though the resolution of the data leaves a lot to be desired. The signal 

strength is representative of the bulk biomass however the individual tuber size 

is unobtainable with the current system.  

7.2. Investigate whether deep learning can significantly improve the accuracy 

of quantification of tubers whilst below ground. This research has shown 

that it is possible to correlate the simulation results against the GPR signals, 

and that it is possible to create a 2D image from a single B-Scan.  It is also 

possible to create a mapping using the B-scan to generate 3D images, however 
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this is reliant on improving the scanning hardware and gaining access to signal 

straight from the antenna before any processing apart from filtering and 

digitising.  

A comprehensive literature review was conduct and has shown that although some 

foundation work was done in this field that was built upon to create this solution, no 

published work has achieved this solution thus far. It has been identified in (Dai et 

al., 2022) that a suitable architecture to produce the 3D mapping results has yet to 

be found, a gap that this thesis goes someway to closing.  

Along the way, the thesis explained in detail what an inverse problem is, the 

mathematics required to solve it, and why a data driven solution is more applicable 

in this case. 

The work proved it is possible to utilise machine learning to solve the inverse 

problem of ground penetrating radar and its application to potato farming. This was 

accomplished by developing a novel algorithm, based on published papers in similar 

fields. The algorithm was developed to generate 3D scans from 2D B-scans, which 

has proven to produce positive results for predicting the size and quantity of tubers 

in the growing stages. While developing the computational solution, the theoretical 

model has been studied and explained, and a 2D-to-2D transformation model was 

developed as an intermediary approach for mapping the 2D space. The proof of 

concept can be used in agriculture but would have further implementations in other 

fields, such as civil engineering, airport security, geological surveying, and 

humanitarian mine disposal systems. 

Although the novel algorithm can be improved on further with additional 

computational hardware and development of some novel concepts mentioned in this 



200 | P a g e  
 

thesis, the thesis has proven the concept and detailed possible next steps. If these 

recommendations are implemented, there is no reason deep learning cannot be 

used to create improved 3D images from B-scan data further. Additional 

improvements to the pre-processing of the input data will also have a beneficial 

effect on the results for the real-world data. 

The algorithm developed and tested as part of this thesis, with the improvements 

identified in chapter 6 will further enhance the results achieved thus far and facilitate 

the transformation of the research project into a commercially viable solution.  
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Appendix A Classification using 2D Pretrained CNNs 

The aim of this appendix is to classify the quantity of objects based on the GPR 

responses, later in this section the work classifies on two features; size and material 

with the view of removing false positives from the solution and gaining an accurate 

prediction of both the biomass and the best time to intervene with chemicals to boost 

yield. Based on the published work in section 2.1.2, it was thought that CNNs could 

be used to identify organic material in the 2D B-scan. However, the work in this 

chapter was not progressed further because the direction chosen was to use to 

generate images directly from B-scan as discussed in chapter 0. 

The CNNs chosen are existing networks, available for download from MATLAB as 

part of the deep learning toolbox. Each of the networks were trained for 60 epochs 

with the training accuracies and number of layers summarised in Table Appendix 

A-1. Once trained, 16 images are passed through the network to assess the 

performance. The results are shown in Figure Appendix A-1, Figure Appendix A-2 

& Figure Appendix A-3. Each figure shows the 16 images selected at random with 

the predicted number of items and the probability that the network has associated 

to the identification. The predicted results are then compared against the actual 

results in the truth tables shown in Table Appendix A-2 for transfer learning on 

quantity. 
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Architecture Layers Training 
Accuracy 

Alex Net (Krizhevsky, Sutskever and Hinton, 
2012) 25 80.25% 

GoogleNet (Szegedy et al., 2015) 144 73.46% 
RESnet101 (Ketkar, 2017) 347 64.81% 

Table Appendix A-1 Transfer Learning Accuracy 

 

Table Appendix A-2 Transfer Learning Truth Table for Quantity 
The following sections will detail the results achieved with publicly available CNNs. 

Appendix A.1 Alex Net 

During training, the accuracy for Alexnet becomes stable and alternates around 80% 

after epoch 30. Despite having the highest level of convergence accuracy, the truth 

table (Table Appendix A-2) shows that using 16 random samples shown in Figure 

Appendix A-1 Alexnet performed the worst of the 3 selected models. Further work 

is required to understand if this down the to the random selection, the amount of 

training data or due to the architecture of the model.  

image AlexNet GoogleNet ResNet 101
1 F T T
2 T T T
3 F T T
4 T F F
5 F T F
6 T T T
7 F T F
8 T T T
9 T T T
10 T T T
11 F T T
12 T T T
13 T F T
14 F T T
15 T F F
16 T T F

Accuracy 62.50% 81.25% 68.75%

1 432

5 876

9 121110

13 161514
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Figure Appendix A-1 Alexnet Training Results for Quantity & Predicted Confidence 
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Appendix A.2 GoogleNet & RESnet101 

During training, the accuracy for both GoogleNet and RESnet101 shows a similar 

behaviour to Alexnet (with the exception of 70% & 64% accuracy respectively) 

however the validation loss is increasing on both networks. This phenomenon is 

often caused by overfitting. The results for both of these models are shown in Figure 

Appendix A-2 & Figure Appendix A-3 for quantity. 

 

Figure Appendix A-2 GoogleNet Training Results for Quantity & Predicted 
Confidence 
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Figure Appendix A-3 RESnet101 Training Results for Quantity & Predicted 
Confidence 

Appendix A.3 Inception net 

It can be clearly seen from the previous section that the model which has the best 

reliability for the classification on quantity of the GPR B-Scan result is inception net. 

Because the classification is going to be on images and not the GPR signal, 

inception net has been chosen as the way forward as it is expected to be both the 

most reliable and provide flexibility should the problem increase in complexity.  

Currently the convolutional filters are the same as per the baseline (Szegedy et al., 

2015) model with the exception of the interim and output layers which are controlled 

by the use of the cross-entropy loss function.  The cross-entropy loss function allows 

multiple classification problems to be solved.  

When creating the network, it was found that the loss based solely on the output vs 

target term the loss function did not seem to have enough “power” to propagate 
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through the whole network, as a result interim loss functions are calculated in 

inception modules 4 & 7. These values are then weighted by 30% for inception 

module 4 and 25% for inception module 7.  

The first version of the classifier only classified on XXX or YYY, the second version 

started to look at multiple classification by classifying on size (Small, Medium and 

Large) and the third version (results presented in Appendix A.4) classifies using 10 

“buckets” for size and 3 materials.  

Appendix A.4 Results 

The condensed output is a 10x3 array, where the rows are buckets of sizes, and the 

columns represent the material shown in Table Appendix A-3. The testing size is 

200 unseen images.  

Object Radius  
(m) Organic Inorganic 

1 
Inorganic 

2 
0.020 – 0.022 0 0 0 
0.022 - 0.024 0 0 0 
0.024 - 0.026 0 0 1 
0.026 - 0.028 0 0 0 
0.028 - 0.030 0 0 1 
0.030 - 0.032 1 1 0 
0.032 - 0.034 0 0 0 
0.034 - 0.036 0 0 0 
0.036 - 0.038 0 0 0 
0.038 - 0.040 0 0 0 
Table Appendix A-3 Output from the Inception Net 

An example of the results from testing are in Table Appendix A-4. Incorrect 

classifications are highlighted in red. The total number of entries misclassified from 

the 200-sample size is 247 out of 6000 entries, this gives an error of 4.1%, or 95.9% 

of entries were classified correctly.  
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 Actual Predicted 
Object 
Radius 
(mm) 

Organic Inorganic 
1 

Inorganic 
2 Organic Inorganic 

1 
Inorganic 

2 

0.020 – 
0.022 

1 1 0 1 1 0 

0.022 - 
0.024 

0 0 0 0 0 0 

0.024 - 
0.026 

0 2 0 0 1 0 

0.026 - 
0.028 

0 1 1 0 1 0 

0.028 - 
0.030 

0 0 0 0 0 0 

0.030 - 
0.032 

0 1 0 0 1 0 

0.032 - 
0.034 

0 0 0 0 0 0 

0.034 - 
0.036 

0 0 0 0 0 0 

0.036 - 
0.038 

0 0 0 0 0 1 

0.038 - 
0.040 

0 0 1 0 0 0 

Table Appendix A-4 Sample Output Classification  
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