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Nowadays, the huge power consumption and the inability of the conventional circuits to deal with real-time classification tasks have necessitated
the devising of new electronic devices with inherent neuromorphic functionalities. Resistive switching memories arise as an ideal candidate due to
their low footprint and small leakage current dissipation, while their intrinsic randomness is smoothly leveraged for implementing neuromorphic
functionalities. In this review, valence change memories or conductive bridge memories for emulating neuromorphic characteristics are
demonstrated. Moreover, the impact of the device structure and the incorporation of Pt nanoparticles is thoroughly investigated. Interestingly,
our devices possess the ability to emulate various artificial synaptic functionalities, including paired-pulsed facilitation and paired-pulse depression,
long-term plasticity and four different types of spike-dependent plasticity. Our approach provides valuable insights from a material design point of
view towards the development of multifunctional synaptic elements that operate with low power consumption and exhibit biological-like behavior.

© 2022 The Author(s). Published on behalf of The Japan Society of Applied Physics by IOP Publishing Ltd

1. Introduction

The discipline of neuromorphic engineering has transformed the
related information technologies by employing electronic devices
capable of emulating the functions of the biological neural
networks at a hardware level. The driving force behind this
endeavor is the perspective of imitating the human brain that has
the ability to deal—among others—with cognitive tasks under
extremely low power consumption.1,2) Currently, the conven-
tional CMOS systems operate under the von Neumann principle,
which imposes the data transfer between the processing and
storage units.3–5) However, this approach leads inevitably to the
accumulation of an enormous amount of data that demand
elevated power supply requirements. Furthermore, the relatively
big size of the CMOS transistors limits significantly their
integration density. It is interesting to notice that as far as the
implementation of an artificial synapse is concerned, a relatively
large circuit from a least ten transistors is required whereas even
more transistors are integrated towards the realization of an
artificial neuron.6,7) It is thus obvious that the current approaches
are not compatible with the practical operation of large neural
networks. Under this direction, the appearance of resistive
switching devices with rich internal dynamic processes paves
the way towards the implementation of novel hardware-based
neural networks with low leakage power dissipation, as well as
by exploiting the threshold switching effect of the devices,
spiking oscillators with bio-inspired computing capabilities have
been verified.8–12) Moreover, taking into account the tremendous
density of the human brainʼs neural networks (about 1012 spiking
neurons are interconnected by 1015 synaptic junctions), the
simple metal–insulator–metal (MIM) structure of resistive
random access memory (RRAM) offers great integration per-
spectives (especially under the light of 3D crossbar
configuration13)).
In addition, the integration of novel material configurations

(such as nanoparticles (NPs) or 2D materials) that possess

superior physical properties could also provide an additional
degree of freedom towards tuning the device reliability issues
and implementation of quite complex neuromorphic com-
puting functionalities.14,15) Although there are several reports
in the literature regarding the utilization of the resistive
switching effect towards the implementation of artificial
synaptic and neuron characteristics16–18) several challenges
should be addressed before memristive neuromorphic hard-
ware goes mainstream.19) These include the device reliability,
the degree of analogue/digital transitions, the programming
variability and energy per spike consumption. More specifi-
cally:
(a) Materials’ inherent stochasticity and lack of predict-

ability generate high write noise. As a result, it is
practically impossible to attain a large tunable conduc-
tance range, while the local chemical and thermal
instabilities of the material are also a critical issue.

(b) Implementation of synaptic property characteristics and
spiking neuron activity within the same memory ele-
ment is not trivial, since the design requirements of the
artificial synapses are quite different with respect to
artificial neurons. The role of the synapse is to control
the flow of information by weight modulation whereas
the neuron assembles the information and releases it
(fire activity) if a threshold value is met. Until now,
there are reports regarding the employment of discrete
resistive neuron and synapse electronic elements in
order to build a fully memristive neural network, which
increases dramatically the design complexity between
these two platforms.20,21)

(c) Furthermore, the main challenge related to the perfor-
mance of an artificial neuromorphic device is the
achievement of ultra-low-power operation, similar to
that recorded within the brain. More specifically, the
energy consumption by the artificial neuron should be
as low as 10 fJ within a complete firing activity cycle.22)
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For the synapses, power consumption at the range of 1–
100 fJ is required in order to be compatible with the
total power consumption of the human brain.23) This
implies that the energy losses from the leakage currents
within the crossbar array should be very small and a
strong nonlinear (threshold type) performance should be
achieved.
To address these technological challenges, it is

apparent that a physics-driven device engineering and
materials architecture is required in order to divulge the
necessary trade-offs between the above-mentioned
stringent device requirements, as well as to enhance
the various neuron and synaptic device characteristics.
The goal of this review is to provide a comprehensive

outline of valence change memories (VCM) and con-
ductive bridge memories (CBRAM)-based device ar-
chitectures and at the same time highlight the influence
of the Pt NPs on the total memristive and neuromorphic
behavior. Our work paves the way for the development
of novel artificial synaptic elements with low power
consumption and high integration density for the
potential implementation of fully memristive neural
networks for various applications. Interestingly, the
utilization of bilayer or trilayer configurations by tuning
during the fabrication of the oxygen content of each
layer is a quite simple technique to reduce the operating
current values We have to underline, that as far as VCM
structures are concerned, the total thickness of the
bilayer (Fig. 1) and trilayer (Fig. 4) was 45 and
70 nm, respectively. For the CBRAM-based devices,
the total thickness was 20 nm in all cases. Moreover, all
the fabricated devices exhibited a capacitor-like struc-
ture with square electrodes of 100 μm lateral dimension.

2. Resistive switching memories and neuromorphic
properties

RRAMs are either volatile or non-volatile memory devices
with a typical MIM structure that has a quite small
footprint.24) Several studies have revealed that the resistive
switching effect involves a series of thermal and electric field
accelerated redox reactions.25) Depending on the underlying
nature of the species involved in the atomic configuration, the
devices can be classified as either VCM—RAMs or
CBRAMs. In the former case, the conductance tuning is
originated from the migration of oxygen vacancies whereas
in the latter the migration of electrochemically active metallic
ions (e.g. Ag, Cu) generates a metallic chain that connects the

two electrodes.26) We have to underline that the rich nature of
the switching effect within the CBRAM configuration
permits the manifestation of various switching modes, such
as threshold and bipolar switching, which can be utilized for
various applications.27) However, the intrinsic stochasticity of
the switching effect, that has been extensively investigated in
Ref. 28, can jeopardize the ability to emulate all these
properties in one single memory cell.29) Although there are
some reports in the literature regarding the implementation of
both neuron and synaptic activity by a single electronic
device, they incorporate either three-terminal architecture30)

(that it is not efficient in terms of ultra-packed integration) or
relatively high operating biases31) (that are not compatible in
terms of power consumption).
Within the brain structure, neurons encrypt information

packages by releasing small voltage pulses that are called
action potentials or spiking neuronal signals. These signals
are subsequently propagated through the colossal parallel
processing network of the human brain to millions of other
neurons. Along with the distribution of neurons in the brain,
the vast grid of synapses consists of a biological neural
network that is responsible for human emotion, perception,
forgetting, learning and memory tasks.32) While neurons
operate towards the generation and propagation of action
potential, the synapses are responsible for the processing and
storage procedures. It is thus obvious that the synapses rule
the brain architecture and configure its structural plasticity
and colossal parallelism for the assigned tasks. Within the
brain there are two types of synapses: (a) electrical synapses
and (b) chemical synapses.33) The pure electrical synapses
characterize the direct contact between the pre- and post-
synaptic neurons and function with a relatively big fre-
quency. However, they do not exhibit any flexibility and
signal modulation characteristics. For that reason, they are
commonly detected at the early fetus stages, where no large-
scale functional neural networks still exist. The most regular
type of synapses is the chemical synapses that possess a small
gap (∼20–50 nm) between the pre- and post-synaptic layers.
Accordingly, the synaptic efficiency or the junction strength
can be adjusted according to the activities of the neurons. We
have to underline that this quite important principle lies
behind all the biological procedures that evolve within the
human brain. Therefore, it is not surprising that a variety of
synaptic plasticity properties have been found over the
decades of intensive research in the neuroscience discipline.
The impressive characteristic of all the reported properties

is that they cover a time constant between a few micro-
seconds to several years. In this light, we can argue that the
synaptic properties are generally divided into two major
categories: short-term plasticity (STP) and long-term plasti-
city (LTP).34) The STP is associated with quick response and
information filtering whereas LTP is connected with the
memory capacity and the dynamic modifications in synaptic
strength. As concerns the STP properties, several types of
plasticity effects that evolve within the range of microse-
conds to several minutes have been discovered, including
analog conductance modulation (potentiation/depression),
paired-pulse facilitation (PPF), paired-pulse depression
(PPD) and augmentation. In contrast with short term memory
(STM), long term memory (LTM) includes the long-term
potentiation (LTPot), long-term depression effects, as well as

Fig. 1. (Color online) Schematic illustration of the cross-section of the
(a) reference and the (b) Pt NPs-based memory devices.
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the transition from STP to LTP. The synaptic efficacy under
LTP mode has a typical duration from several hours to years.
Moreover, the distribution and firing activity of the incoming
signals to the synapses from the neurons network, as well as
the local dynamic synaptic weight modulation, resulting in
the realization of some high-order synaptic plasticity char-
acteristics with both long-term and short-term dynamics.
These include the spike-time-dependent plasticity (STDP),
the spike-rate-dependent plasticity,35) the metaplasticity36)

and the hetero-synaptic plasticity effects.37) Although the
above-mentioned list of synaptic properties seems daunting
and it is almost impossible to devise an electronic element
capable of performing all these tasks, memristors arise as an
ideal candidate in that direction. Despite their relatively
simple MIM structure, resistive switching devices possess
extremely rich and complicated internal mechanisms capable
of emulating a variety of bio-realistic synaptic properties.38)

The critical issue is, however, to find a way in order to attain
all these properties in one memristive device on-demand and
in a reproducible and reliable manner.

3. Analog conductance tuning with bilayer and
Trilayer-based VCM elements

The majority of the artificial neural networks (ANNs) operate
under the backpropagation scheme,39) which is strongly depen-
dent on the linearity of the various conductance states to alleviate
the relative synaptic weight update processes, as well as the
peripheral circuit design.40) Along these lines, TiO2–x-based
bilayer devices were fabricated by employing a room-tempera-
ture technique,41,42) while the impact of the embedded Pt NPs
was also explored.43–45) A schematic illustration of the fabricated
devices is presented in Fig. 1, while a thin film of pure Ti (4 nm)
was used as an oxygen scavenging layer to enhance the stability
of the switching effect.46–49)

The recorded hysteresis curved are depicted in Fig. 2(a),
where some distinct differences can be observed between the
two samples. Interestingly, no electroforming procedure is
required prior to device operation, which is regarded as of
great importance for the peripheral circuit design.
Additionally, the embedded Pt NPs facilitate the oxygen
vacancy generation and thus enhanced switching ratios are
recorded.50) The switching effect is interpreted in terms of the
formation of percolating CFs, whereas their existence is
attributed to concrete results from atomic force microscopy

images,51,52) as well as the independence of the LRS from the
total device area.53) Besides, an intermediate surface density
of Pt NPs of about 1× 1012 NPs cm−2 was used with an
average diameter of 3 nm [Fig. 2(b)]. It is also interesting to
notice that the existence of NPs improves remarkably the
statistical dispersion of the switching characteristics since
impose the formation/annihilation of the conducting filament
(CF) into specific locations.54,55) Furthermore, the gradual
modulation of the memristive effect is leveraged to precisely
tune various conductance states and induce the respective
potentiation/depression procedures. As can be ascertained
from Fig. 3, although the Reference sample reveals a good
degree of linearity during the potentiation process, the
response of the depression procedure and the total cycling
performance are not good.
As far as the Pt NPs embedded sample is concerned, smaller

external signals are required to observe the continuous
synaptic weight modulation pattern and the acquired responses
are more stable. Nevertheless, the extracted conductance
values quickly saturate after the application of about 3–5
pulses, due to the steeper switching transition of the Pt NPs
sample, resulting in a poorer degree of linearity. As a result,
there is a trade-off between the low-power consumption and
the linearity factor. This effect is nicely captured when a
trilayer configuration is employed for the implementation of
artificial synaptic properties.56,57) As can be observed from
Fig. 4, the operating current values are just beyond 10 nA
during the SET process, which greatly improves the power
consumption of such types of devices. In addition, the
switching transitions during both the SET/RESET cycles are
quite smooth, which yields a quite linear pattern during the
enforcement of the synaptic weight modulation measurements
(Fig. 5). The device-to-device variability was also studied by
examining the synaptic responses from 20 different memory
elements [Fig. 5(b)]. However, relatively large pulses are
acquired to implement the continuous conductance modulation
pattern that could lead to an excess burden, in terms of
incorporating the necessary peripheral circuits capable of
delivering such big pulses.

4. Impact of the switching mode of CBRAM on the
synaptic weight modulation properties

By considering that the VCM devices operate under the
application of relatively big signals, CBRAM-based memory

Fig. 2. (Color online) (a) I–V hysteresis curves of the two bilayer configurations under the application of 4V cycling bias. No compliance current (Icc) limit
was enforced during the implementation of the bipolar switching effect. The arrows in the graphs signify the switching direction while the sweep rate was
10 mV s−1. Similar switching patterns were captured by starting the sweeps from 0V to Vmax∣ ∣ (not shown here). The underlying idea to start sweeps from
negative voltage is to automate the consecutive cycling measurement procedure. (b) TEM plan view image of the Pt NPs. The scale bar corresponds to
20 nm.53)
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cells were explored to investigate their properties in emu-
lating artificial synaptic characteristics. Figure 6 depicts the
acquired I–V responses and the structure of the employed
memory element. It is interesting to notice that the devices

operate under the application of small DC signals (∼250–
500 mV), whereas two different switching modes are cap-
tured. More specifically, a threshold or volatile switching
mode and a bipolar of non-volatile switching mode are

Fig. 3. (Color online) Synaptic potentiation and depression responses by enforcing identical pulse sequences. For the Reference sample ±5 V, 1 μs were
applied whereas for Pt NPs embedded sample square pulses with lower amplitude were employed (±3 V, 1 μs). The conductance values were extracted at a
read-out voltage of 0.5 V after each pulse.53) (c) Depiction of the applied pulse sequence for the Pt NPs sample. A similar protocol was enforced for the
reference sample by applying square pulses with higher amplitude. The rise and delay time of the pulse sequence was 1 μs.

Fig. 4. (Color online) (a) I–V hysteresis pattern under the application of 5 V cycling bias. No Icc is applied during the manifestation of the memristive effect.
(b) Schematic illustration of the cross-section of the trilayer configuration.

Fig. 5. (Color online) (a) Continuous conductance modulation during the implementation of the synaptic potentiation and depression procedures. (b) Cycling
variability of the synaptic weight modulation.56)
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recorded. For the threshold switching mode, no negative
polarity bias is required to reduce the total resistance of the
memristive element since the operating current is abruptly
reduced before the 0 V. In striking contrast, for the bipolar
switching mode, a negative polarity bias is enforced to induce
the RESET transition and switch the device to the LRS state.
Although in the literature there are reports concerning the
interpretation of this effect,58,59) they cannot deal with the
ultra-small relaxation times (<1 μs) of the proposed devices.
For that reason, a comprehensive numerical model was
developed to interpret the coexistence of threshold and
bipolar switching by considering the size-dependent melting
process of the Ag nanoclusters (NCs),60) which are formed
due to material precipitation from the enhanced solid-
solubility of Ag,61) due to their thermal-out diffusion. In
particular, three partial differential equations were simulta-
neously and self-consistently solved to simulate the whole
memristive pattern and calculate the effective diameter of the
CF. The effective diameter is a single compact value. The
term effective is introduced since the bottom diameter of the
CF (fB) exhibits a different distribution of the respective
diameter at the top electrode/dielectric interface (fA). On top
of that, bilayer-based CBRAM devices were fabricated to
investigate material-based strategies to tune the manifestation
of the two switching modes.62) The acquired results are
depicted in Fig. 7, whereas the impact of the active electrode
on the switching performance has been also extensively
studied.63) The SiO2-based bilayer configuration was used to
reduce the operating current values. More specifically, as can
be observed from Figs. 6(a) and 7(a), the current values for
the ON-state have been reduced by about two orders of
magnitude. Moreover, for the bilayer structure, only one
switching mode is recorded (i.e. bipolar switching), in
striking contrast with the single-layer SiO2 CBRAM where
two switching modes (i.e. threshold and bipolar) co-exist in
the same device. This effect is quite important since
significant opportunities arise for the emulation of the
synaptic depression characteristics without reversing the
polarity of the applied signal. It is interesting to notice that
the coexistence between threshold switching and bipolar
memristive cycling permits the implementation of the sy-
naptic depression process by just tuning the frequency of the
pre-synaptic signal [Fig. 8(a)], whereas no such effect is
attainable when the devices operate only with the bipolar
switching mode. Moreover, as can be ascertained from
Fig. 8(a), the application of a low/high frequency leads to a
decrease/increase of the current responses for the single-layer

structure, whereas no such effect is recorded for the bilayer
configuration [Fig. 8(b)]. The origins of this effect are closely
connected with the CF growth mechanism. Under the
threshold switching mode, the formed CF is quite unstable
and the enforcement of external signals with relatively small
frequency cannot sustain a permanent conductive path
between the two operating electrodes. This phenomenon is
also of great importance since alleviates the design of the
respective circuit that supplies with the train of pulses the
memory cell, since pulse with the same polarity has to be
delivered.

5. Enhanced conductance linearity with bilayer
CBRAM

The impact of Pt NPs,64) as well as the incorporation of a
hetero-bilayer configuration was also examined to investigate
the linearity of the conductance update procedure.65) The
extracted hysteresis spectra are depicted in Fig. 9, where it
can be ascertained the quite different responses of the
fabricated samples. As far as the Pt NPs sample is concerned,
the switching transitions are quite steep and only the
threshold switching mode is recorded, regardless of the
amplitude of the applied signal or the enforced Icc. The
underlying reason for this effect is the limited thermal
conductivity value of the Pt NPs. Actually, the thermal
conductivity value of Pt NPs is significantly smaller than
the respective value of TiN.66) Consequently, the generated
heat during the device operation cannot efficiently be
removed, and the formed CF can easily rupture. What’s
more, in case of a large increase of temperature within the
deviceʼs active core, the thermal boundary conductance
should also play a role in the whole memristive pattern. In
addition, the interface roughness could affect the operation of
CBRAM. More specifically, the high surface roughness of Pt
NPs (∼5 nm) could lead to the formation of sharp tips that
can significantly enhance the local electric field
distribution.65,67) On the other hand, a different effect takes
place for the VOx-based sample. Due to the bigger diffusivity
value for Ag ion migration within this layer,68) the operating
current values are reduced below 1 μA. Moreover, only the
bipolar switching mode is recorded for this specific device
configuration, whereas the switching transitions are quite
smooth, in striking contrast with the Pt NPs sample. This
outcome has a unique influence on the implementation of a
quite linear synaptic update pattern, as can be observed from
Fig. 10. In more detail, the conductance adjustment proce-
dures take place in a complete way between the two samples.

Fig. 6. (Color online) (a) I–V hysteresis pattern under the application of 0.25 and 0.5 V cycling bias. A constant Icc of 100 μA was enforced during the
manifestation of the bipolar switching effect. (b) Schematic illustration of the SiO2-based structure.60)
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As far as the Pt NPs sample is concerned, the recorded
conductance values grow/fall after the enforcement of only 5
positive/negative pulses, whereas then a saturation effect is
captured. As a result, a relatively high value for both αρ and
αd nonlinearity coefficients is measured. On the other hand,
for the VOx-based configuration, a different pattern is
extracted. No saturation effect is recorded after the applica-
tion of 15 positive and 15 negative square pulses, whereas the
induced conductance values seem to follow a quite linear
pattern. Therefore, the employment of the suitable material
configuration is of great importance for the emulation of
biological properties on demand.

6. Emulating various synaptic functionalities with Pt
NPs-based CBRAM

The influence of the dense layer of Pt NPs, which was used as
a bottom electrode, was examined for mimicking a wide
range of artificial synaptic functionalities.67,69) By taking into

Fig. 7. (Color online) (a) I–V hysteresis pattern under the application of 0.5 V cycling bias. No Icc was enforced during the manifestation of the bipolar
switching effect. (b) Schematic illustration of the SiO2-based bilayer structure.62)

Fig. 8. (Color online) Synaptic weight modulation properties of (a) the single-layer and (b) the bilayer-based CBRAM configurations.62) The data have been
extracted after the application of square pulses with 0.3 V amplitude and 100 ns width.

Fig. 9. (Color online) I–V hysteresis pattern of (a) the Pt NPs-based CBRAM, as well as the respective reference sample,65) and (b) the bilayer configuration.
A constant Icc of 100 μA was enforced in all cases. The small variations between (a) and Fig. 6(a) are attributed to the device-to-device variability since the
same sample was used in both cases.

Fig. 10. (Color online) Continuous conductance modulation during the
implementation of the synaptic potentiation and depression procedures for
the Pt NPs-based device and the bilayer configuration.65) The αρ and αd

coefficients stand for the degree of nonlinearity during the update of the
conductance for the potentiation and depression procedures, respectively.
The data have been collected after the application of 32 square pulses
with ±V amplitude and 100 ns width (read-out voltage 100 mV/100 ns).
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account that the manifestation of various neuromorphic
properties is directly correlated with the growth mechanism
of the percolating CFs, a reconfigurable synaptic pattern can
be achieved by adjusting the effective diameter of the CF.
Along these lines, the presence of NPs can impact the thermal
accelerated migration of the ionic species, due to the local
Joule heating distribution. Besides, a thin layer of 15 nm of
TiN was used directly above the Pt NPs to induce the bipolar
switching mode, which is required for the storage of the
imposed synaptic weights. Figure 11(a) depicts the acquired
hysteresis curve, where a huge switching ratio is obtained
(∼106), while the SET/RESET transitions take place at about
∼220/−50 mV. Additionally, the TEM plan view image of
the deposited NPs is presented in Fig. 11(b), where it can be
observed that the deposited NPs do not follow any preferred
morphology. An intermediate switching slope of

∼30 mV dec−1 (A) was recorded, which is beneficial for
the implementation of the various synaptic functionalities.
With the “intermediate switching slope” expression we imply
that the transition slope is not as steep as in the case where a
dense layer of Pt NPs is present [<1 mV dec−1 (A)] and not
as smooth as in the case of the reference sample composed of
Ag/SiO2/TiN [∼80 mV dec−1 (A)]. The switching slope has
been calculated from the inverse transition of the SET
transition (the respective direction is indicated by arrow
number 2).
Figures 12 and 13 display the pre and post-synaptic

responses of the memristive element, respectively, which
clearly illustrate the successful emulation of the PPF and PPD
characteristics. According to this biological principle, during
the application of two identical pre-synaptic signals, the
second post-synaptic response becomes either bigger (PPF)

Fig. 11. (Color online) (a) Measured I–V characteristics under the application of Icc = 100 μA, respectively, for the Ag-based CBRAM. The sweep rate was
10 mV s−1. (b) TEM plan view image of the dense layer of the Pt NPs. The scale bar corresponds to 10 nm.69)

Fig. 12. (Color online) Evolution with the time of the pre-synaptic pulse profiles during the employment of the (a) potentiation and (b) depression
procedures, under the application of a total of 60 pulses with 100 ns width and amplitudes of ±0.1 V, ±0.3 V and ±0.5 V, respectively.69)

Fig. 13. (Color online) Evolution with the time of the post-synaptic current responses during the application of the (a) potentiation and (b) depression
procedures, under the application of a total of 60 pre-synaptic pulses with 100 ns width and amplitudes of ±0.1 V, ±0.3 V and ±0.5 V, respectively.69)
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or smaller (PPD), with respect to the first signal. It is also
interesting to notice that we have the ability to reproduce
such types of effects under the enforcement of signals as
small as 100 mV. Earlier it was shown (Fig. 8) that one can
achieve synaptic depression via positive pulse sequences at
appropriate frequencies through structures in which threshold
switching coexists with bipolar memristive cycling. Here is
demonstrated that by reducing the amplitude of the applied
signal the same effect can be also attained. It is also
interesting to notice that the proposed devices possess the
ability to reproduce such types of effects under the enforce-
ment of signals as small as 100 mV. Interestingly, the

application of a pre-synaptic signal with high amplitude
leads to an abrupt increase in the post-synaptic response in a
shorter period of time. More specifically, after the enforce-
ment of 16 square pulses with +500 mV amplitude, the
recorded current response is increased, whereas a comparable
pattern is captured under the application of pulses with
negative polarity. An inset has been also provided to high-
light the corresponding current response of the device stack
to more clearly the appropriate implementation of the PPF
(depression) mechanism [Fig. 14].
On top of that, the STP and LTP effects were also attained

from our devices by just tuning the frequency of the applied

Fig. 14. (Color online) (a) Depiction of two consecutive input pulses (with various amplitudes) of (a) positive or (c) negative height and the corresponding
current response of the SiO2-based device, where the appropriate implementation of the paired-pulse (b) facilitation and (d) depression mechanism is
demonstrated.

Fig. 15. (Color online) (a) Demonstration of the PPF effect by observing the post-synaptic current response after the application of a train of 70 pulses with
the same width (100 ns), amplitude (0.5 V) and different frequency, (b) evolution with the time of the normalized current decay as a function of time
demonstrating LTP synaptic behavior. The data have been collected after enforcing a train of 95 pulses with frequency 100 kHz after the application of 60
pulses with frequency 1 MHz, (c), (d), (e) schematic representation of the CF growth procedure during the application of the consecutive pulsing scheme. The
symbol f represents the effective diameter of the CF.69)
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pre-synaptic signal. The STM is related to the sensory part of
the human memory, whereas the LTM describes the long-
term memories of the human brain, according to the well-
established model of Atkinson and Shiffrin.70) As it is
presented in Figs. 15 and 16, the acquired outcomes are
attributed to the modulation of the effective CFʼs diameter,
which influences the total current of the device. Along these
lines, to deeply investigate the ability of the proposed devices
to emulate the transition from the STP to LTP mode, a train
of square pulses with different amplitude and frequency was
applied. As can be observed from Fig. 16(a), under the
application of pre-synaptic signals with +500 mV amplitude,
the final current response that is recorded after the 70th pulse

is maintained even when the applied frequency has been
reduced from 1MHz to 100 kHz since a robust CF has been
formed, which cannot be ruptured easily [Figs. 16(c)–16(e)].
The decay rate of the post-synaptic current has been also
monitored by enforcing a different number of square pulses,
as can be seen from Fig. 16(b), where relatively big
relaxation times (τ) were recorded that signify the successful
implementation of the LTP effect. On the other hand, under
the application of smaller pre-synaptic pules, in terms of
amplitude, in combination with the previously reported
frequency modulation process, the STM mode is captured
[Fig. 17(a)] since quite short relaxation times (τ) have been
measured [Fig. 17(b)]. This effect could be ascribed to the

Fig. 16. (Color online) (a) Demonstration of the PPF to PPD transition effect by examining the post-synaptic current response after the enforcement of a train
of 70 pulses with the same width (100 ns), amplitude (0.5 V) and different frequency, (b) evolution with the time of the normalized current decay as a function
of time demonstrating STP synaptic behavior. The data have been collected after implementing a set of 95 pulses with frequency 100 kHz after the enforcement
of 60 pulses with frequency 1 MHz, (c)–(e) schematic illustration of the CF growth procedure during the application of the consecutive pulsing scheme. The
symbol f denotes the effective diameter of the CF.69)

Fig. 17. (Color online) Experimental verification of the PPF effect as a function of the time interval between the pre-synaptic pulses. 17 different pulse
intervals were investigated by enforcing two successive pulses of 0.5 V/100 ns while (a) and (b) reveal the post-synaptic responses for a delay time of 100 and
200 ns, respectively. (c) Distribution of the SRDP index (In/I1) calculated by two consecutive pulses with time interval 100 ⩽ Δt ⩽ 900 ns (I1: 1st post-synaptic
current, In: nth post-synaptic current, n = 1, 2, 3, ..., 17).69)
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formation of a small CF, in terms of diameter, which
becomes thinner when the applied pre-synaptic pulses are
delivered with a smaller frequency. The only relation
between the graphs depicted in Figs. 16(a) and 16(b) is the
frequency modulation process. Moreover, under the applica-
tion of high frequency (1 MHz) and regardless of the
amplitude of the applied signal, a PPF is recorded.
Except for the above-mentioned synaptic plasticity proper-

ties, with the proposed device configuration we were able to
imitate four different types of spike-dependent plasticity,
namely SRDP, spike-voltage dependent plasticity (SVDP),
spike-number dependent plasticity (SNDP) and spike-dura-
tion dependent plasticity (SDDP). All these neuromorphic
functionalities were recorded by applying a train of square
pulses with increasing amplitude (from 0.5 to 2.5 V), with a
different number of pre-synaptic pulses (from 1 to 54) and
with increasing width (from 100 to 500 ns). The acquired
outcomes are presented in Figs. 17 and 18, whereas the fitting
result that is presented in Fig. 17(c) was carried out by

considering a Hebbian type STDP effect.71,72) For the STDP
effect, the values of 90 and 110 ns were estimated for the
time scales of the respective effect, which are closely
associated with the stability of the formed CF. This result
is of great significance since denotes that the key factor that
affects the dynamics of the whole memristive effect and
permits the realization of bio-synaptic properties is the
effective size of the percolated CF. Consequently, finding
various ways, from a material point of view for tuning the
properties of the CF lies behind the implementation of
various neuromorphic functionalities. All these properties
are quite important for the development of another type of
ANNs, which are called spiking neural networks that exhibit
enhanced properties in terms of low power consumption and
elevated capabilities in processing real-time events.73–76)

From the above-mentioned results, it can be argued that in
the light of a crossbar configuration, the bipolar synaptic
elements will be used as active elements for the synaptic
weight update process, whereas the threshold switching cells

Fig. 18. (Color online) Experimental verification of the PPF effect as a function of the amplitude between the pre-synaptic pulses. 21 different pulse
amplitudes were investigated by applying two successive pulses of 100 ns width and delay time while (a) and (b) disclose the post-synaptic responses for pulse
amplitude of 0.6 V and 0.8 V, respectively. The amplitude of the first pre-synaptic pulse was always kept constant at 0.5 V, (c) distribution of the SVDP index
(In/I1) calculated by two consecutive pulses with amplitude 0.5 ⩽ Vp ⩽ 2.5V (I1: 1st post-synaptic current, In: nth post-synaptic current, n = 1, 2, 3, ..., 21).
Experimental verification of the PPF effect as a function of the number of pre-synaptic pulses. 7 different pulse sequences were explored by applying pulses of
0.5 V amplitude, 100 ns width and delay time while (d) and (e) divulges the post-synaptic responses by applying a total number of pulse train of 6 and 12,
respectively. The train of the pulses was applied after the enforcement of a single pulse of 0.5 V amplitude and 100 ns width, whereas the delay time was set to
1 μs, (f) distribution of the SNDP index (In/I1) estimated by the number of spikes (n = 1, 2, 6, 12, 24, 36, 54). Experimental verification of the PPF effect as a
function of the width of two consecutive pre-synaptic pulses. 9 different pulse durations were studied by applying pulses of 0.5 V amplitude and 100 ns delay
time, while (d) and (e) illustrate the post-synaptic responses for a pulse width of 150 ns and 200 ns, respectively. The width of the first pulse was always kept
constant at 100ns, (f) Distribution of the SDDP index (In/I1) calculated by the number of spikes (n = 1, 2, 3, ..., 9).69)
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will be employed within a simple RC circuit to produce
spikes.77,78) From a material point of view, currently the
CBRAM-based memory devices exhibit great advantages in
contrast with their VCM counterparts, due to their low power
consumption and their ability to operate under a dual switching
mode (i.e. threshold and bipolar). For the implementation of
artificial spiking activity, the Pt NPs-based samples seem quite
promising due to the quite steep switching transitions, whereas
the linear synaptic weight update property of the VOx-based
CBRAM is also attractive for reproducing artificial synaptic
functionalities. The main focus of this work is the reproduction
of synaptic behaviors, while neuron emulation will be the
object of future research studies.

7. Conclusion

A thorough analysis was presented towards emulating a wide
range of synaptic properties from a material point of view.
VCM and CBRAM device configurations were examined to
investigate their capability to emulate various neuromorphic
properties. More specifically, the influence of the metal oxide
stack, including the incorporation of one-layer, bilayer, or
trilayer structures, as well as the integration of Pt NPs as
bottom inactive electrode or as an intermediate layer with the
memory stack were thoroughly examined. The common
denominator of these approaches is to tune the properties
of the CF for acquiring the desired synaptic pattern. In
addition, the low power consumption of the proposed devices
in combination with their inherent stochasticity characteris-
tics offer unique advantages in mimicking the respective
biological procedures of the human brain. It is thus apparent
that the selected material structure direct impacts the ability
of the memristive devices to operate as functional building
blocks of an ANN as robust synaptic elements.
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