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Abstract: This study evaluated the efficacy of using Tween 80 surfactant (TW80) and food-waste
anaerobic digestate fibre (FWAD) as soil amendments for the remediation of wetlands contaminated
by crude oil. A 112-day mesocosms experiment was carried out to simulate hydrocarbon degradation
under typical acidified wetland conditions. Soil was spiked with 50,000 mg kg−1 crude oil and TW80
and FWAD were added to mesocosms at 10%, 20% and 30% w/w. The soil basal respiration, micro-
bial community dynamics, environmental stress, alkanes, and PAHs degradation were monitored
throughout the mesocosm experiment. Amending the mesocosms with FWAD and TW80 enabled the
recovery of the soil microbial activities. This was evidenced by soil basal respiration which was the
highest in the 30% FWAD and 30% TW80 mesocosms and translated into increased degradation rate
of 32% and 23% for alkanes, and 33% and 26% for PAHs compared to natural attenuation, respectively.
Efficient total hydrocarbon degradation was achieved in soil mesocosms with 30% FWAD and 30%
TW80 at 90% and 86.8%, respectively after 49 days. Maize seed germination results showed significant
improvement from 29% to over 90% following the FWAD and TW80 treatment.

Keywords: remediation; wetlands; food-base digestate; surfactant; hydrocarbons

1. Introduction

Wetlands are poorly drained areas subject to permanent or periodic water satura-
tion [1]. Wetlands (WLs) are both ecologically and economically important because of their
high agricultural productivity, complex biogeochemistry, and nutrient cycling ability [2,3].
Studies has shown that acidification is ongoing on account of low pH, high sulphate, and
nitrate concentration in the WLs of Niger Delta [4,5], that is one of the most important and
biodiverse WLs ecosystems in the world [6]. Acid rainfall caused by oil field gas flaring
and continual industrialization has been linked to the acidification of the wetlands [7]. The
acidification of wetlands is of primary concern because of its effects on WLs ecosystems,
dissolved metal ions, water quality, and agriculture [8]. The wetlands of the Niger Delta
house most of the crude oil fields in Nigeria. The exploration and exploitation of crude oil
in the WLs have led to contamination through spillages and subsequent alteration in the
wetland’s ecosystems [9].

The consistent occurrence of the petroleum hydrocarbons (HCs) spillages on acidified
wetlands is of public concern for the severe public health, economic, and ecological risks
correlated [10,11]. This is a particularly severe and widespread problem in the Niger Delta
Region, which has been well documented in several previous studies [12–14]. Certain
groups of HC contaminants in the acidified WLs, mainly medium and heavy molecular
weight alkanes and polycyclic aromatics hydrocarbons (PAHs), are of concern due to their
high mobility, availability, recalcitrant and carcinogenic nature [15–17]. The remediation of
these contaminants in acidified WLs using conventional remediation methods including
soil excavation and physiochemical treatments were not suitable [18–20].
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Previous studies showed that biostimulation using nutrient rich soil amendments
can increase the soil microbial activities and subsequently improve the biodegradation of
contaminants [21]. Cipullo et al. [22] reported how using compost as nutrient amendment
in a bioremediation of soil contaminated by petroleum HCs resulted in a 46% degrada-
tion efficiency after 180 days, from their initial concentration of 9163 mg/kg. Typically,
biostimulation as a remediation strategy is less intrusive to the environment. Especially
when using non-commercial nutrient supplement, including compost, and farmyard ma-
nure, the overall remediation costs, and carbon emissions during the treatment process is
significantly reduced [23–27].

Digestate from anaerobic digestion (AD) of organic feedstock is a by-product of the
AD process [28]. It contains high nutrients including nitrogen, phosphorus, and potassium.
When applied to land, it is a high-quality bio-fertilizer which provides readily available
nutrients to the soil [29–31]. The solid fraction of the digestate (digestate fibre) are better
bio-fertilizers, more hygienic, and stabilized when compared with the whole or liquid
fraction of digestate [28,32]. The feedstock to produce digestate includes biodegradable
materials such as food waste, farmyard manure, municipal waste, and sewage [33–35].
Sewage digestate has been successfully applied as biostimulant for the remediation of
diesel-contaminated soils [32]. However, sewage digestates are known to have high avail-
able metal and metalloids content and introduces pathogenic bacteria into the remediated
soils [36,37]. Therefore, the land application of sewage digestate has caused environmental
and public health concerns [32,33]. Food waste (FW) digestate possess higher nutrients con-
tents when compared to the digestate of other feedstocks [36,38]. FW digestate are known
to have low metal and metalloids contents, high nitrogen, phosphorus, and potassium
content, which could increase soil nutrient value after hydrocarbons remediation [28,38].
Bacteria from FW digestate can easily adapt to degrade various organic contaminants (such
as hydrocarbons), and grow exponentially, by showing the wide metabolic capacities of
this digestate [32]. The increased bacteria growth subsequently leads to an increased HC
degradation rate at a reduced time.

While the addition of anaerobic digestates, composts, or biochar have all shown
promising results in enhancing the degradation of petroleum hydrocarbons, the extent of
degradation can be highly variable. This is often related to the accessibility of the hydrocar-
bon compounds to the microbes, such as to the bioavailability of the hydrocarbons [39,40].
Enhancing the bioavailability of the contaminants by using a surface-active substance
like non-ionic surfactant have been demonstrated to be more suitable for soil remediation
than cationic and amphoteric surfactants [41]. The non-ionic surfactants are also cost-
effective with minimal toxicity to the soil microbial communities [42]. Tween 80 (TW80)
is a non-ionic surfactant with a low ecological toxicity, that increases the solubility and
mass transfer of hydrophobic organic compounds including hydrocarbons [43]. Despite
these benefits, Tween 80 primarily has been used for ex situ soil washing [41], and has
rarely been considered as a supplement during in situ hydrocarbon remediation. In this
context, this research focuses on evaluating the potential of TW80 and digestate as soil
amendments for remediating petroleum HC contaminants in acidified WLs, by establishing
their corresponding remediation endpoints.

2. Materials and Methods
2.1. Mesocosm Soil and Experimental Design

Pristine soil with no record of petroleum hydrocarbons contamination was collected
from a construction site in Cranfield University (52.0746 N, 0.6283 E). An amount of 160 kg
of soil was collected from top to 30 cm soil depth using trowels and shovels. After the soil
collection, the soil was air dried at room temperature, sieved through a 2 mm aperture
sieve and the sieved soil was stored in a soil cupboard for 4 days at 20 ◦C before use for
the experiment. Triplicate soil mesocosms were set up using 1 kg soil in 2.5 L transparent
polytetrafluoroethylene (PFTE) containers. Nine different mesocosms conditions were
evaluated as summarised in Table 1.
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Table 1. Overview of the biostimulation treatments evaluated along with the controls.

Mesocosm Conditions Abbreviations

Pristine soil (freshly collected from field) Control
Pristine soil acidified at pH 5.8 (using HNO3) Acidified
Pristine soil acidified at pH 5.8 and spiked at 50,000 mg/kg with crude oil Crude oil
Pristine soil acidified at pH 5.8 and spiked at 50,000 mg/kg with crude oil + 10% (w/w) FW digestate 10% FWAD
Pristine soil acidified at pH 5.8 and spiked at 50,000 mg/kg with crude oil + 20% (w/w) FW digestate 20% FWAD
Pristine soil acidified at pH 5.8 and spiked at 50,000 mg/kg with crude oil + 30% (w/w) FW digestate 30% FWAD
Pristine soil acidified at pH 5.8 and spiked at 50,000 mg/kg with crude oil + 10% (w/w) Tween 80 10% TW80
Pristine soil acidified at pH 5.8 and spiked at 50,000 mg/kg with crude oil + 20% (w/w) Tween 80 20% TW80
Pristine soil acidified at pH 5.8 and spiked at 50,000 mg/kg with crude oil + 30% (w/w) Tween 80 30% TW80

The mesocosms except the pristine soils (control) were all acidified to pH of 5.8 by
using HNO3 (PrimarPlus-trace analysis grade, supplied by Fisher Scientific UK, Limited).
HNO3 was added as rainfalls in most part of the Niger Delta wetlands are weak nitric
acid with pH between 5.7–5.9 [44,45]. The acidified soil mesocosms were spiked with
60 mL of Crude oil (<0.5% sulphur) to achieve a target hydrocarbons concentration of
50,000 mg/kg. The adopted concentration fell within the range of most HC contaminated
wetlands in the Niger Delta [46,47]. The mesocosms were incubated at 28 ◦C to mimic the
mean temperature of the Niger Delta, Nigeria [48].

FWAD was air dried and particles larger than 2 mm were removed using a 2 mm
aperture sieve (model: BS410 manufactured by: Endecotts, London, England). Dried FWAD
were mixed with crude-oil-spiked acidified soil at 10, 20 and 30% (w/w) in triplicates
following the methods described by Nwankwo [49].

TW80 (Polyoxyethylene (20)sorbitan monooleate) was applied at 10, 20 and 30%
(w/w) to the crude oil spiked acidified soil samples in triplicates. The application of the
non-ionic surfactants (TW80) was as described by Trinchera and Baratella [50]. Three
controls (pristine soil, acidified soil (without HCs) and crude oil spiked acidified soil
with no treatment (natural attenuation) were maintained through the experiment. The
soil moisture content of 13.75% was increased and maintained at saturation with 54.54%
moisture increase. Moisture at saturation was maintained to depict the wetland condition
in all mesocosms. Deionised water was used to maintain moisture in all mesocosm. The
deionised water was added at 7 days intervals to maintain the soil saturation.

2.2. Soil and FWAD Physicochemical Properties Determination

Physical characteristics of the samples such as moisture content, dry matter, organic
matter, water holding content and particle size distribution were analysed. The soil mois-
ture and dry matter content were measured according to BS 7755: Section 3.1 [51]. A
quantity of 50 g of air-dried soil samples were oven dried at 105 ◦C for 24 h. The organic
matter content was determined through the loss on ignition (LOI) according to BS EN
13039 [52]. The water holding capacity at saturation and field capacity were determine by
using BS 7755 Section 5.5 [53]. The particle size distribution was carried out by sedimenta-
tion according to BS-ISO 11277 [54] and ISO 11277 [55] using a Laser Analyzer Master-sizer
(MS3000, Malvern Instruments Ltd., Worcestershire, UK), equipped with a hydro adaptor.
The soil textural classification was based on percentage clay, silt, and sand using the United
State Department of Agriculture soil textural classification scheme.

The chemical characteristics analysed were pH, phosphorus, potassium, magnesium,
total nitrogen, total and organic carbons. pH values of the samples were measured with a
pH meter (Jenway 3540, Cole-Palmer, Staffordshire, UK). Soil was diluted with deionised
water, with a 1:5 soil to water ratio. The mixture was shaken for 60 min at 300 rpm by using
an orbital shaker and then it was left to settle for further 60 min before measuring the pH
values. The phosphorus content was determined according to BS 7755: Section 3.6:1995 [56],
whilst potassium and magnesium were determined according to BS 3882 [57]. The total
and organic carbons and total nitrogen were determined by using BS 7755 Section 3.8 [58].
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2.3. Soil Biological Properties Determination

Soil basal respiration being the measurement of the steady rate of microbial respiration
in soil was used to quantify the CO2 generation rate [59]. Soil basal respiration was
measured at the onset of the experiment and, respectively on days 7, 14, 28, 49, 77, and
112 of the mesocosm experiment. The soil samples basal respiration was determined by
using the Rapid automated bacterial impedance technique (RABIT) (Don Whitley Scientific,
Bingley, UK) as a respirometer. An amount of 1 g of soil samples moistened to saturation
in a glass boat was used as described by Pawlett et al. [60] for the determination of soil
basal respiration. The microbial respiratory response ran for 48 h at 25 ◦C. The changes in
conductivities (micro siemens) were determined and quantified to CO2 according to [61].
The RABIT software (RABIT version 2.31, 01-1999) was used for quantification of the
conductivities.

The soil microbial community profiles and dynamics were determined based on
phospholipid fatty acids (PLFA) analysis using a modified method from Frostegård and
Bååth [62]. The PLFA were measured at 30-day intervals. Lipids were extracted from 10 g of
freeze-dried soil samples using 1:2:0.8 (v/v/v) of chloroform: methanol: citrate buffer and
30 mg of Butylhydroxytoluene (BHT). The extracted lipids were fractionated by solid phase
extraction, and the phospholipids fraction was derivatized by mild alkaline methanolysis
according to Dowling and White [63]. The resulting fatty acids methyl esters (FAMEs) were
analyzed by gas chromatography as explained in Pawlett et al. [60]. The fatty acids were
used as an indicator of the presence of groups of microbes (biomarkers). The biomarkers
were categorized into Gram-positive bacteria, Gram-negative bacteria, actinobacteria and
fungi according to Quideau et al. [64] and Frostegård and Bååth [62].

The soil microbial count was determined through the use of colony forming unit (CFU)
plate counting technique [65]. Soil suspensions were prepared by 10-fold serial dilutions
with 1 g of soil in triplicates, using deionized water as diluents. The plates were incubated
for a period of 24 h in an incubator (Heraeus Incubator, Thermos Scientific, Germany) at
37 ◦C.

2.4. Hydrocarbons Analysis

The total petroleum hydrocarbons (TPHs) were extracted and analysed by using the
procedure described by Risdon et al. [66]. The readily available hydrocarbons fraction was
extracted using 15 mL of methanol (HPLC grade, Merck Life Science Limited, Gillingham,
UK) while the bioavailable hydrocarbons fraction was extracted using 50 mL of 50 mM
of 2-Hydroxypropyl-β-cyclodextrin (HPCD; Merck Life Science Limited, UK) according
to Cipullo et al. [22]. The hydrocarbons fractions of each extraction were analysed using
a Shimadzu TQ8040 gas chromatography–mass spectrometer (GCMS) equipped with an
AOC 6000 auto-sampler (Shimadzu UK, Milton Keynes, UK) and operated in positive
ion mode at +70 eV. Quality control and assurance procedures were carried out with the
whole procedure blank, clean soil matrix spike recovery and comparison with reference
materials. TPHs and readily available hydrocarbons were analysed, respectively, on days
0, 7, 14, 28, 49, 77 and 112 while the bioavailable hydrocarbons were measured on days
0, 28 and 112. Alkanes were grouped into C11–C18 which are prominently liquids and
are medium molecular weight, made up of undecane, dodecane to octadecane. The other
group was C19–C37, which are prominently wax and heavy molecular weight, made up of
nonadecane, octadecane to heptatriacontane. The petroleum PAHs were similarly grouped
into C10–C18 and C19–C27.

2.5. Metal(Loid)s Analysis

Metal(loid)s including molybdenum, chromium, nickel, arsenic, cadmium, lead, and
mercury of the soil samples were determined using US EPA Method 3051 [67] and BS7755
Section 3.13 [68]. The soil acid digestion was carried out with 0.5 g of the soil samples added
with 6 mL of hydrochloric acid (1.18 specific gravity) and 2 mL of nitric acid (1.42 specific
gravity) in the liner of a pressure vessel. The vessels were loaded into a microwave machine
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(model: Mars 240/50, manufacturer: CEM corporation, Charlotte, NC, USA) for digestion.
After that, 10 mL of the filtrate were used for a flame atomic absorption spectrophotometer
analysis (model: Jenway 6850, manufacturer: Jenway, Staffordshire, UK).

2.6. Ecotoxicity Assay

Germination assay for this experiment was carried out by using maize crop (Zea
mays). Maize crop was chosen for the ecological risk assessment since it exhibits high
toxicity sensitivity to high and low molecular weight hydrocarbons based on shoots, and
germination delays and root biomass [69,70]. Maize is the second most important cereal
crop in Nigeria ranking behind sorghum and is the most-consumed cereal crop within the
Niger Delta region of Nigeria [48]. The maize crop was planted using the dibbling method
which requires less seeds and gives rapid and uniform germination and good yield [71].
This method is most suited for laboratory-based experiments, and it is commonly practiced
among local farmers of maize crops [72]. Five seeds of maize were planted per cell and the
germination response and days of germination after planting were recorded at the onset
and on day 112.

2.7. Statistical Analysis

Descriptive statistical analysis was carried out including mean, standard deviation,
standard error by using Microsoft Excel (Version 2111 Build 16.0.14701.20278). The standard
error was used to evaluate the variability across germination assays and the applied
environmental stress while the standard deviation was used to ascertain the variability
within sample measurements and applied to the metal(loid)s data. The JMP pro (version
16) software was used for spearman correlation. Differences in respiration, hydrocarbons,
and concentrations between treatments were compared using spearman correlation at a
99.99 percent confidence level. The difference was significant if p < 0.01.

3. Results and Discussion
3.1. Soil Characterisation

The pristine soil is a sandy silt loam soil with a pH of 8.7 and moisture content of
13.75% (Table 2). The C: N: P ratio of soils are important indicators of soil fertility and soils
with high C: N: P ratios are referred to as organic-rich soils [73]. The optimal soil C: N: P
ratio for effective biodegradation of contaminants by microbes has been recommended at
100:10:1 [74]. The C: N: P ratio of 60:2:1 for the pristine soil samples suggests low carbon
and nitrogen (Table 3) in the soil. When soil C: N: P ratios are below the optimal value, it
can result in limited microbial activities [75], therefore, supplementation of C and N can
aid in stimulating soil microbial activities. FWAD with C: N: P ratio of 250:13:1 indicated
that the digestate has a higher quantity of nitrogen and organic carbons to improve the
C: N: P ratio in the pristine soil and potentially stimulate microbial activities. This was
confirmed by the higher degradation rates of petroleum HCs (shown in Tables 4 and 5)
after addition FWAD. The soil total and organic carbons for the pristine soil were 3.09%
and 2.25%, respectively (Table 2). These were increased by the spiking of the soil with
crude oil to 5.08% and 1.93%, respectively. Acidifying the soil increased the availability
of the soil metals and metalloids (Table 6). This observed increment in availability of the
metals and metalloids agreed with the findings of Chintala et al. [76] and Ning et al. [77].
The researchers concluded that the availability of metals increased as the soil becomes
more acidic.
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Table 2. Physical characteristics of the pristine soil used in the mesocosm experiment.

Soil Physicochemical Characteristics

Soil Moisture content (%) 13.75
Loss on ignition (%) 3.66
Dry matter content (%) 86.25
Water holding capacity (%) 54.54
TOC (%) 3.09
Org C (%) 2.25
TN (%) 0.12
TP (mg/kg) 5.58
TK (mg/kg) 236.00

Soil Particle size distribution
Sand (%) 46.67
Silt (%) 45.89
Clay (%) 7.44

FWAD characteristics
TOC (%) 17.22
Org C (%) 4.97
TN (%) 0.98
TP (mg/kg) 300.25
TK (mg/kg) 8107.50
C:N: P 250:13:1

Table 3. Mean chemical properties and bacteria count of soils in the various triplicate mesocosms.

Mesocosm Treatment K (mg/kg) C: N: P Bacteria Count
(×105 CFU/g)

FWAD
10% FWAD 1310.00 ± 2.1 128:9:1 20 ± 0.48
20% FWAD 1694.17 ± 2.3 167:10:1 10 ± 0.4
30% FWAD 1806.67 ± 2.9 180:9:1 30 ± 0.47

TW80
10% TW80 224.75 ± 1.6 60:2:1 1 ± 0.32
20% TW80 151.58 ± 1.98 65:2:1 3 ± 0.48
30% TW80 141.50 ± 1.7 75:3:1 4 ± 0.48

Controls
Control 236.00 ± 2.2 60:2:1 102 ± 0.8

Acidified 243.83 ± 3.1 58:4:1 2 ± 0.4
Crude oil 157.08 ± 1.6 60:2:1 7 ± 0.48

Table 4. Soil basal respiration versus PAHs degradation models and degradation rates.

Mesocosms Treatment Slope equation R2 Degradation Rates
(mgCO2/mg PAHs/Day)

FWAD
10% FWAD y = −0.2741x + 513.83 0.98 −0.27
20% FWAD y = −0.3282x + 688.55 0.97 −0.33
30% FWAD y = −0.45x + 819.33 0.97 −0.45

TW80
10% TW80 y = −0.3672x + 721.46 0.92 −0.37
20% TW80 y = −0.412x + 726.83 0.97 −0.41
30% TW80 y = −0.5206x + 867.58 0.98 −0.52

Control Acidified HCs y = −0.2433x + 469.52 0.90 −0.24
Where y = basal respiration rate and x = PAH degradation rate.
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Table 5. Soil basal respiration versus alkanes degradation models and degradation rates.

Mesocosms Treatment Slope Equation R2 Degradation Rates
(mgCO2/mg Alkanes/Day)

FWAD
10% FWAD y= −0.2x + 744.6 0.97 −0.2
20% FWAD y= −0.31x + 1182.3 0.97 −0.31
30% FWAD y= −0.416x + 1363.7 0.91 −0.42

TW80
10% TW80 y= −0.18x + 789.1 0.95 −0.18
20% TW80 y= −0.32x + 1022.4 0.94 −0.32
30% TW80 y= −0.34x + 1421.1 0.96 −0.34

Control Acidified HCs y= −0.15x + 752.4 0.96 −0.15
Where y = basal respiration rate and x = alkanes degradation rate.

Table 6. Baseline mean concentrations of metal and metalloid and standard deviation in triplicates
soil samples.

Metal (Loid) (mg/kg) Control Acidified Crude Oil FWAD

Mo 0.93 ± 0.08 1.27 ± 0.13 1.21 ± 0.07 1.20 ± 0.49
Cr 45.24 ± 1.23 59.56 ± 2.94 50.87 ± 1.50 36.05 ± 2.17
Ni 29.65 ± 1.24 42.60 ± 0.93 35.25 ± 0.79 23.79 ± 1.58
As 14.83 ± 0.98 20.21 ± 0.74 17.18 ± 0.78 10.13 ± 0.52
Cd 0.59 ± 0.09 0.83 ± 0.09 0.73 ± 0.07 0.72 ± 0.10
Pb 17.00 ± 0.91 23.31 ± 0.45 21.41 ± 0.8 15.62 ± 0.94
Hg 0.29 ± 0.01 0.12 ± 0.01 0.12 ± 0.02 0.14 ± 0.04

3.2. Soil Respiration and Its Relationship with Hydrocarbons Degradation

The pristine soil cumulative respiration rate resulted to be about 946 µg CO2/g soil by
day 112. The acidification of the pristine soil reduced its cumulative respiration rate by 56%
(Figure 1). The poor respiration can be attributed to the stress induced by the acidification
on the soil microbial community. Similar conditions have been reported in several studies
in the Niger Delta [78,79]. Kaur et al. [80] reported that environmental stresses such as
soil acidification can limit microbial communities’ performance. The acidified soil with
crude oil (crude oil mesocosm) has a better respiration than that acidified pristine soil
(Figure 1a,b). The slight increment observed could be linked to the biodegradable HCs by
the surviving soil microbes.

The application of digestate and Tween 80 surfactant to the spiked soils caused an
increase in the soil respiration (Figure 1). This indicated that the TW80 and FWAD resusci-
tated the microbial communities by providing the required nutrients (shown in the C:N:P
ratio) for improved microbial activities. The 30% FWAD and 30% TW80 mesocosms showed
44% and 43% increment in respiration rate, respectively if compared to the crude oil meso-
cosms. Similar trends were observed with the other digestate and Tween 80 mesocosms
(Figure 1). The reported increments in CO2 production rate can be linked to increased
activities of hydrocarbons degrading microbial communities that used the hydrocarbons
as carbon and energy source under the thriving environment provided by the digestate.
This finding agreed with the research of Sándor [81], where the researcher posited that
when the soil nutrients quality is improved, it stimulates the activities and stability of the
soil microbial community. The level of evolution of biogenic CO2 (CO2 from biomass or
organic matter) is an indication of the organic level in soil after effective remediation of
organic contaminants from the soil and indicates the extent of crop germination, growth
and yield [82,83]. This hypothesis corroborates the high germination percentages recorded
in the highly remediated samples of TW80 and FWAD mesocosms which showed higher
cumulative CO2 values. The Tween 80 surfactant aided in changing the microbial cell
surface hydrophobicity and improving the cell surface absorbing ability of the available
hydrocarbons [41]. This subsequently caused more petroleum HCs to be degraded and led
to increment in the CO2 generation rate [41,84].
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Figure 1. Cumulative respiration (CO2 µg/g soil) per day for various mesocosms. (a) Soil cumula-
tive respiration per day for FWAD mesocosms; (b) Soil cumulative respiration per day for TW80
mesocosms.

The interrelation of the soil basal respiration and the hydrocarbons content showed
that an inverse relation was established for all the mesocosms spiked with crude oil
(Tables 4 and 5). Negative degradation rates were established for the FWAD and TW80
mesocosms, which implied that the higher the gradients (that is the degradation rates) the
more CO2 that are produced and the more reduction in the soil PAHs and alkanes. The
reduction in PAHs and alkanes allowed for improvement of the remediated soil economic
value, whilst the increasing CO2 generation implied that a habitat was gradually restored
on the soil. 30% FWAD and 30% TW80 mesocosms showed the highest degradation rates
for both alkanes and PAHs (Tables 4 and 5) indicating the fastest HC degradation. A strong
positive correlation was established in all the mesocosms between the respiration rate and
hydrocarbons degradation rates using spearman correlation techniques at a probability
p < 0.01. At p < 0.01, spearman coefficient ( ) is considered significant if it is greater than
absolute p but less than 1 (Table 7). This strong correlation shown implied that the more
the respiration rates, the more the hydrocarbons that are degraded by the active microbial
communities. These suggestions were supported by Jiang et al. [85] stating that the more
the hydrocarbons degraders, the more the CO2 produced in mesocosms.
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Table 7. Correlation between basal respiration and TPH degradation.

Treatment Spearman
Coefficient ( ) Prob > |p| Correlation Strength

Control 0.8104 <0.0001 ++++++++
Acidified 0.87 <0.0001 +++++++++
Crude oil 0.8805 <0.0001 +++++++++

10% TW80 0.8395 <0.0001 ++++++++
20% TW80 0.8732 <0.0001 +++++++++
30% TW80 0.8949 <0.0001 +++++++++
10% FWAD 0.8588 <0.0001 +++++++++
20% FWAD 0.8358 <0.0001 ++++++++
30% FWAD 0.8327 <0.0001 ++++++++

3.3. Soil Microbial Community Dynamics, and Environmental Stress

At the onset of the experiments, the soil microbial community was composed of 42%
Gram-positive bacteria, 30% Gram-negative bacteria, 15% actinobacteria and 13% fungi
(Figure 2). Crude oil contamination and acidification induced a shift in the soil microbial
community towards the Gram-positive and Gram-negative bacteria. The application of
FWAD and TW80 to the soils further induced the shift towards the Gram-positive bacteria
(Figure 2). The observed dominance by the Gram-positive and negative bacteria could
be linked to the degradation of the long chains and recalcitrant PAHs and alkanes [86,87].
Studies by Cipullo et al. [22] correlated hydrocarbon degradation to PLFA specific to the
microbial communities that survived the stress from the hydrocarbons’ contamination. The
observed dominant microbial communities (Figure 2) survived and adjusted to the applied
stress from both the acidification and crude oil spike. Dunfield [88] and Lewe et al. [89]
stated that resistant microbial groups can survive severe environmental stresses.

The applied environmental stress was examined using a trans/cis ratio (Figure 3) from
PLFA of Figure 2. The high environmental stresses observed on day 30 of remediation
dropped across the mesocosms on day 112 of remediation. The conversion from cis to
trans unsaturated fatty acids causes a reduction in microbial membrane fluidity, which
counteracts against induced stress [80,90]. However, the trans/cis ratio (Figure 3) for the
acidified and crude oil mesocosms were greater than 10. This implied that the microorgan-
isms in the acidified and crude oil mesocosms experienced nutrient starvation. This is in
agreement with the research of Zhang et al. [87] on the characteristics analysis of PLFA in
sediments. The researchers concluded that at a trans/cis ratio >10, the sediments bacteria
were in an unhealthy situation and were experiencing severe starvation due to the applied
environmental stress. The reduction in environmental stress (trans/cis ratio) at the FWAD
and TW80 mesocosms could be linked to the observed shift in the dominant Gram-positive
microbial communities. This subsequently implied that there was a drop in soil toxicity and
improvement in the soil ecological quality [87,91], which can be attributed to the FWAD
and TW80. The trans/cis ratio has higher predicted efficiency for environmental stress
when compared with percentage actinobacterial PLFA and G+/G- ratio [92].
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Figure 2. Soil microbial communities’ dynamics based on PLFA abundance changes. (a) FWAD mesocosms; (b) TW80 mesocosms.
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3.4. Crude Oil Degradation

In the Tween 80 mesocosms (TW80), the extent of alkanes and PAHs degradation
was greatest in soil mesocosms with 30% TW80 in comparison with 20% and 10% TW80
(Figure 4a). On day 49, 75.5% of alkanes and 98% of PAHs in the 30% TW80 mesocosm
were degraded (Figure 4a). These results agreed with the study of Feng et al. [93], in which
the researchers observed that surfactant increases dissolution of PHCs in the aqueous
phase which aids in bioaccessibility of the contaminants to the microbes for degradation.
Ceschia et al. [43] confirmed that surfactants in wet soils reduced the interfacial tension and
attraction between the contaminants, soil particles and soil moisture. This subsequently
makes the contaminants more accessible to the cell walls of the bacteria leading to the
mineralisation of the hydrocarbons. It was observed that the bioavailability of the contami-
nants in the TW80 mesocosms decreased following the degradation of the hydrocarbons
(Figure 4a,c). A more significant degradation for medium molecular weight hydrocarbons
(C11–C18) was observed compared with heavy molecular weight hydrocarbons (C19–C37)
(Figure 4a,c).

The medium molecular weight alkanes which include undecane, dodecane, tride-
cane to octadecane showed more than 99% degradation by day 112 of remediation for
the 30% TW80 mesocosms (Table 8 and Figure 4a). Previously reported hydrocarbons
contaminant degradation on wetlands using biochar showed reduced degradation, with
50% degradation of 500 mg/kg alkanes at the same period [94]. The heavy molecular
weight hydrocarbons (C19–C37) which include pristane, phytane, nonadecane, hexatri-
acontane, and heptatriacontane degraded at a reduced rate with the heavier molecular
weights showing lesser degradation and availability (Table 9). On day 112, about 85% of
the total C19–C37 alkane degradation was achieved at the 30% TW80 mesocosms. Other
TW80 mesocosms showed similar degradation but with reduced degradation rates. Wartell
et al. [95] stated that medium weight alkanes are more easily degraded by microorgan-
isms if compared to the heavy molecular weight alkanes. The fast degradation observed
can be linked to the TW80 which changed the soil bacteria cell surface hydrophobicity
by absorbing the surfactants molecules to the bacteria cell surface which subsequently
improved the transmembrane transport of the hydrocarbons to the bacterial cell [41]. The
degradation pattern observed with the alkanes were similar to that of the soil PAHs. The
medium molecular weight compounds degraded on the average 1.25 times faster than the
heavier molecular weight PAHs for the TW80 mesocosms. Naphthalene, Fluorene, Phenan-
threne, Benz[a]anthracene and Chrysene (that is C10–C18) on day 49 showed about 99%
degradation for 30% TW80 (Figure 4a and Table 10). The heavier molecular weight PAHs
such as Benzo[b]fluoranthene, Benzo[k]fluoranthene to Indeno(123)[cd]pyrene showed 96%
degradation (Figure 4a and Table 11) for 30% TW80. On day 112, both medium and heavy
molecular weight PAHs showed more than 99% degradation. Wang et al. [40] researched
on surfactant-enhanced remediation of PAHs in farmlands. The researchers concluded
that surfactant weakens soil contaminants’ sorption, thereby enhancing PAHs desorption
from soil.
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Figure 4. Total and bioavailable hydrocarbon fractions degradation. (a) Total TPH degradation for TW80 mesocosms; (b) Total TPH degradation for FWAD
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Table 8. Mean alkanes concentrations (c) and percentage degradations for C11–C18 alkanes.

Alkane Group Initial Alkanes Percentage Degradation (%) on Day 112

C11–C18 (mg/kg) Crude
Oil

10%
FWAD

20%
FWAD

30%
FWAD

10%
TW80

20%
TW80

30%
TW80

Undecane 2339.0 93.7 99.7 99.8 99.8 99.7 99.7 99.8
Dodecane 1226.2 59.8 99.3 99.5 99.7 99.3 99.4 99.6
Tridecane 1710.5 74.8 99.7 99.7 99.8 99.6 99.7 99.8

Tetradecane 1658.9 68.5 99.6 99.6 99.7 99.5 99.5 99.6
Pentadecane 1669.2 67.4 99.5 99.5 99.5 99.3 99.4 99.6
Hexadecane 1597.1 62.8 99.2 99.2 99.3 98.2 99.2 99.3
Heptadecane 1648.6 75.1 98.7 98.7 99.3 98.7 98.2 98.8
Octadecane 1576.5 65.2 98.2 98.2 98.5 98.4 98.4 98.5

Overall % degradation 70.9 99.2 99.3 99.5 99.1 99.2 99.4

Table 9. Mean alkanes concentrations and percentage degradations for C19–C39 alkane groups.

Alkane Group Initial
Alkanes Percentage Degradation (%) on Day 112

C19–C37 (mg/kg) Crude
Oil

10%
FWAD

20%
FWAD

30%
FWAD

10%
TW80

20%
TW80

30%
TW80

Pristane 1100.0 80.0 90.8 91.7 96.4 91.8 94.9 96.3
Phytane 1151.8 82.5 91.0 92.2 96.4 90.4 95.5 96.6

Nonadecane 1296.9 75.8 91.9 94.6 96.1 91.4 93.8 96.7
Eicosane 1416.3 75.5 91.7 92.3 95.6 91.3 94.3 97.2

Heneicosane 1714.9 81.2 93.0 93.6 95.3 89.5 94.5 96.5
Docosane 1808.8 75.4 90.4 93.2 96.6 90.6 94.3 95.0
Tricosane 1798.9 79.4 90.2 92.4 96.1 90.0 94.4 95.0

Tetracosane 1775.7 77.7 89.8 92.6 93.1 89.3 95.0 96.5
Pentacosane 1743.9 79.3 89.6 93.0 94.5 89.1 94.2 95.9
Hexacosane 1890.3 77.3 88.7 93.2 94.2 86.5 94.4 94.9
Heptacosane 1070.9 69.7 71.8 87.8 90.5 68.9 90.5 92.3
Octacosane 1936.8 79.5 83.1 91.7 94.1 80.0 89.8 94.9
Nonacosane 1953.8 78.4 83.5 87.7 89.7 74.5 89.3 94.9
Triacontane 1612.5 67.7 74.8 79.2 87.3 67.3 86.2 93.8

Hentriacontane 1569.9 66.9 73.9 75.3 81.0 65.0 77.0 84.7
Dotriacontane 1313.9 45.2 60.6 62.6 81.8 55.4 61.6 81.0
Tritriacontane 1058.0 22.3 51.1 52.8 72.7 43.5 51.6 78.0

Tetratriacontane 1183.6 38.6 56.5 58.7 81.2 44.6 48.5 65.0
Pentatriacontane 1245.7 35.6 58.6 60.0 81.1 45.7 50.3 55.9
Hexatriacontane 1176.4 32.3 56.2 57.7 78.9 42.3 43.9 44.9
Heptatriacontane 1254.6 20.4 59.3 61.7 68.4 44.3 46.6 48.1

Overall % degradation 63.8 77.9 81.1 88.6 72.9 80.0 85.4

Table 10. Mean alkanes concentrations and percentage degradations for C10–C18 PAH groups.

PAH Group Initial PAHs Percentage Degradation (%) on Day 112

C10–C18 (mg/kg) Crude
Oil

10%
FWAD

20%
FWAD

30%
FWAD

10%
TW80

20%
TW80

30%
TW80

Naphthalene 224.1 91.4 99.9 99.9 99.9 99.9 99.9 99.9
Fluorene 458.5 91.6 99.1 99.9 99.9 99.9 99.9 99.9

Phenanthrene 931.1 95.5 99.9 99.9 99.9 99.9 99.9 99.9
Anthracene 297.2 96.7 99.7 99.9 99.9 99.3 99.1 99.9

Pyrene 67.9 87.9 98.5 99.9 99.9 97.0 98.1 99.9
Benz(a)anthracene 212.3 90.4 98.6 99.9 99.9 98.1 98.9 99.5

Chrysene 356.6 88.8 98.6 99.9 99.9 98.0 99.4 99.0
Overall % degradation 91.8 99.2 99.9 99.9 98.9 99.1 99.7
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Table 11. Mean alkanes concentrations and percentage degradations for C19–C22 PAH groups.

PAH Group Initial PAHs Percentage Degradation (%) on Day 112

C19–C22 (mg/kg) Crude
Oil

10%
FWAD

20%
FWAD

30%
FWAD

10%
TW80

20%
TW80

30%
TW80

Benzo[b]fluoranthene 334.8 93.0 99.1 99.9 99.9 99.0 99.9 99.9
Benzo[k]fluoranthene 186 93.5 99.3 99.6 99.7 99.0 99.2 99.9

Benz(a)pyrene 176.7 87.3 99.1 99.7 99.9 98.4 99.4 99.9
Benzo(ghi)perylene 818.4 89.4 99.1 99.7 99.7 98.1 99.1 99.6

Benzo[b)triphenylene 604.5 89.8 99.3 99.4 99.7 98.0 99.1 99.7
Indeno(123)[cd]pyrene 344.1 86.5 98.5 99.2 99.8 97.9 98.9 99.1
Overall % degradation 89.9 99.1 99.6 99.8 98.4 99.3 99.7

The fastest hydrocarbon degradation for the FWAD mesocosms was at the 30% FWAD
mesocosms (Figure 4b). 82% of alkanes and 98% of PAHs were degraded by day 49
compared to the natural attenuation (crude oil mesocosms), which has less than 65% for
both alkanes and PAHs. Gielnik et al., [96] hypothesized that the metabolic potential
of soils can be enriched by the bacteria contained in digestate which can provide new
HCs degrading taxa and increase the alkB gene content. AIkB genes encoding alkane
hydroxylases belonging to monooxygenases are effective in alkanes degradation [60,97,98].

This hypothesis corroborates with the high CFU/g count in the FWAD mesocosms
(Table 4), which can be linked to the high metabolization of the petroleum HCs by the
dominating Gram-positive bacteria communities. On day 49, it was observed that the
undecane, dodecane, tridecane to octadecane (medium molecular weight HCs) degraded
faster than the heavy molecular weight hydrocarbons. The medium molecular weight HCs
(C11–C18) showed about 99.5% degradation on day 112 for the 30% FWAD mesocosms
(Figure 4b and Table 9). This increased degradation could be linked to the availabil-
ity of the medium weight hydrocarbons and the increased microbial activities caused
by the availability of nutrients (supplied by FWAD) needed for optimal performance of
the microbes (Table 4 and Figure 4d). It was observed that the heavy molecular weight
hydrocarbons which include pristane, phytane, nonadecane to hexatriacontane and hepta-
triacontane on day 112 showed reduced degradation as the molecular weight increases to
achieve 88.6% degradation (Table 9). The PAHs in the FWAD mesocosms degraded faster
than the alkanes (Figure 4b,d). On day 112, more than 99% of the PAHs were degraded
(Tables 10 and 11) [99] and [100] stated the application of stimulants (such as FWAD) could
cause an increase in surface area of the samples which could allow for increased microbial
attacks on the PAHs.

3.5. Remediation Endpoint

At the onset of the experiment, germination was only recorded at the control (pristine
soil). The acidification of the soil to pH of 5.8 and spiking with crude oil increased the soil
toxicity and inhibited the germination of the maize crops (Figure 5). This result corroborates
the research of [101] on the response of crops to soil acidity. The researchers concluded that
soil acidity severely affects crops’ root development and germination. The bioavailability
of the PAHs and alkanes (from the spiked crude oil) to the maize crops may have increased
the soil toxicity level leading to the no-germination recorded at the onset of the experiments
(Figure 5). Bioavailability, the freely available fraction of contaminants in soil is an impor-
tant feature in risk assessment as it explains contaminants partitioning and degradation
in the environment [22]. Seed germination bioassays alongside bioavailability, despite
being cost effective, have the potential to evaluate the establishment of the remediation
endpoint [22,102,103].
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Figure 5. Mean germination of maize crops and bioavailable HCs for various mesocosms. (a) Mean initial germination and bioavailable PAHs for FWAD; (b) Mean
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On day 112 of the experiment, the highest germination was recorded at the 30%
and 20% FWAD with 100% germination, while the 30% TW80 and the control had 93%
germination and the crude oil mesocosms had 26% germination (Figure 5a,b,f,h). The above
90% germination in the various remediated mesocosms corroborates the low bioavailable
PAHs and alkanes in the mesocosms. These agreed with the ecotoxicity evaluation research
of [104] who stated that the response of crops to germination on polluted soils varies with
ability of the nutrient to remediate contaminants from the soil. This implied that the FWAD
and TW80 treatments aided in the recovery of the soil contaminated with crude oil. Overall,
the extent of recovery shown by the soils through the maize germination and the low
bioavailable alkanes and PAHs was an indication that remediation endpoint was achieved
on day 112.

4. Conclusions

This research has shown that acidified wetlands contaminated by petroleum HCs can
be effectively remediated using low carbon stimulants such as FWAD and TW80 surfactant.
The Gram-positive bacteria were the dominant microbial group in the FWAD and TW80
surfactant mesocosms. The application of 30% FWAD, and 30% TW80 degraded the HCs
contaminants in the acidified wetlands by 90% and 86.8% of TPH in 49 days, respectively.
The 30% FWAD were the least metabolically stressed mesocosms, followed by 30% TW80 at
the end of remediation when compared with the other mesocosms. Therefore, 30% FWAD
and 30% TW80 mesocosms showed the least environmental toxicity to the soil ecosystems
and achieved remediation endpoints faster. This conclusion was further confirmed by the
more than 90% maize crops germination alongside no bioavailable HCs recorded at the
end of the experiment in the 30% FWAD and 30% TW80 mesocosms. The extent and rate of
HCs degradation was dependent on the CO2 generation rate from the basal respiration of
the soil microbial communities since the HCs were mineralized by the microbes to generate
the CO2.
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