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Heart patient health monitoring 
system using invasive 
and non‑invasive measurement
Qurat‑ul‑Ain Mastoi 1, Ali Alqahtani 2, Sultan Almakdi 3, Adel Sulaiman 3*, Adel Rajab 3, 
Asadullah Shaikh 4 & Samar M. Alqhtani 4

The abnormal heart conduction, known as arrhythmia, can contribute to cardiac diseases that 
carry the risk of fatal consequences. Healthcare professionals typically use electrocardiogram (ECG) 
signals and certain preliminary tests to identify abnormal patterns in a patient’s cardiac activity. To 
assess the overall cardiac health condition, cardiac specialists monitor these activities separately. 
This procedure may be arduous and time-intensive, potentially impacting the patient’s well-being. 
This study automates and introduces a novel solution for predicting the cardiac health conditions, 
specifically identifying cardiac morbidity and arrhythmia in patients by using invasive and non-
invasive measurements. The experimental analyses conducted in medical studies entail extremely 
sensitive data and any partial or biased diagnoses in this field are deemed unacceptable. Therefore, 
this research aims to introduce a new concept of determining the uncertainty level of machine 
learning algorithms using information entropy. To assess the effectiveness of machine learning 
algorithms information entropy can be considered as a unique performance evaluator of the machine 
learning algorithm which is not selected previously any studies within the realm of bio-computational 
research. This experiment was conducted on arrhythmia and heart disease datasets collected from 
Massachusetts Institute of Technology-Berth Israel Hospital-arrhythmia (DB-1) and Cleveland Heart 
Disease (DB-2), respectively. Our framework consists of four significant steps: 1) Data acquisition, 
2) Feature preprocessing approach, 3) Implementation of learning algorithms, and 4) Information 
Entropy. The results demonstrate the average performance in terms of accuracy achieved by the 
classification algorithms: Neural Network (NN) achieved 99.74%, K-Nearest Neighbor (KNN) 98.98%, 
Support Vector Machine (SVM) 99.37%, Random Forest (RF) 99.76 % and Naïve Bayes (NB) 98.66% 
respectively. We believe that this study paves the way for further research, offering a framework for 
identifying cardiac health conditions through machine learning techniques.

According to global statistics, around 735,000 Americans suffer from heart disease1. Moreover, the research 
conducted in China in 2011, named ’Report on Cardiovascular Diseases in China,’ reveals that about 230 mil-
lion patients have CVD, with 3 million cases resulting in mortality yearly. This is estimated at around 41% of 
patients suffering from various heart disease issues2. In summary, heart disease is rapidly spreading across the 
globe, leading to a swift rise in mortality rates. The increasing incidence of heart disease can be attributed to 
several common factors, including obesity, issues related to cholesterol, drug use, and the neglect of critical heart 
conditions such as arrhythmia.

The long-term effect of arrhythmias could cause severe heart diseases, leading to death. Arrhythmia manifests 
in both life-threatening and non-life-threatening. It can be represented as irregular, slow, and fast heart rhythms3. 
However, to assess the arrhythmia, patients and doctors need to manually evaluate 24-hour ECG recording to 
determine the actual condition of the heart, which is a tedious process. Furthermore, using clinical data for 
diagnosing heart disease in patients is quite complicated and expensive. Therefore, researchers are seeking the 
attention of medical specialists to improve this field, aiming to reduce the expenses and time involved in diag-
nosing cardiac health conditions. Machine learning (ML) algorithms play a vital role in heart disease detection 
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by leveraging the power of data analysis and pattern recognition. ML algorithms can continuously learn and 
adapt to new data and it is quite useful when patient is on continuous monitoring using wearable devices. ML 
help to detect subtle changes in heart rate, rhythm, and ECG patterns that might indicate the onset of a heart 
attack, arrhythmia, or other cardiac issues.Their ability to process large volumes of ECG signal data and identify 
the different variations in ECG helps healthcare providers in the early detection of patterns that may indicate 
an increased risk of heart disease.ML classifiers can provide more precise and accurate predictions compared to 
traditional methods. They can identify subtle patterns and correlations in data that might not be immediately 
apparent to human analysts, which saves patient lives, time, and healthcare costs. Several experiments have been 
performed on the automatic diagnosis of arrhythmia4–7 and heart disease classification using machine learning 
algorithms8–13. The automatic arrhythmia detection procedure includes signal processing, feature extraction, 
and implementation of learning algorithms for classification14. In contrast, the automatic heart disease detec-
tion procedure includes feature selection and classification15. Furthermore, the authors examined that the ECG 
signal is the core process or primary way to identify heart abnormality14. Therefore, the researcher used different 
techniques to assess and extract the most prominent clinical markers from the raw samples of ECG16,17 such 
as time-frequency analysis, higher-order cumulants, statistical analysis18–20, higher-order spectra18, spectral21.

The authors proposed system in study22 where they employ a fusion of three distinct sets of features: RR 
intervals, signal morphology, and higher-order statistics. The validation of this method utilized the MIT-BIH 
database following the inter-patient paradigm. Moreover, the system’s resilience to segmentation errors was 
assessed by introducing jitter to the R-wave positions extracted from the MIT-BIH database. Additionally, the 
robustness of each feature group against segmentation errors was individually tested.

Balamurugan23 introduced a system designed to rapidly detect abnormalities. The dataset, consisting of 
75 attributes and 303 instances, was sourced from the UCI repository. The data underwent preprocessing and 
normalization to facilitate the selection of pertinent features. Utilizing image classification techniques, features 
were extracted from medical images. These extracted features were then subjected to clustering using the adap-
tive Harris hawk optimization (AHHO) approach. Subsequently, a deep genetic algorithm was employed for 
further classification. The proposed system demonstrated an accuracy of 97.3%, with its performance evaluated 
on the MATLAB/Simulink platform. Notably, the precision, sensitivity, and specificity metrics for the proposed 
method were recorded at 95.6%, 93.8%, and 98.6%, respectively. Nan et al24 employed a variety of classifiers for 
heart disease prediction. They utilized the Cleveland dataset sourced from the UCI repository, which comprised 
270 records with 76 attributes. Notably, this study focused on utilizing only 13 attributes from the dataset. The 
prediction models employed included Support Vector Machine (SVM), Artificial Neural Network (ANN), and 
k-Nearest Neighbor (KNN). The SVM classifier achieved a classification accuracy of 85.18%. As for KNN, the 
accuracy steadily increased with an increasing value of k until reaching 80.74% at k=10. On the other hand, 
the ANN classifier yielded an accuracy of 73.33%.The majority of authors have relied on the UCI repository 
for heart disease detection. In our study, we explored two datasets to thoroughly examine the heart’s condition.
The most important part of heart disease detection using UCI repository dataset is feature preprocessing. In the 
literature9, authors proposed a hybrid evolutionary technique for optimal features subset25, swarm intelligence-
based artificial bee colony(ABC) feature selection26–28, genetic algorithm for heart disease features selection29. 
These feature extraction and feature selection methods are further combined with different state-of-the-art learn-
ing algorithms such as the authors used SVM+NN classifiers to predict arrhythmia31, SVM with the radial basis 
for multi-disease prediction32, KNN proposed arrhythmia detection33,34, random forest performs overwhelmingly 
in the prediction of heart disease35, Levenberg-Marquardt -NN36 and artificial neural network15,37,38. Researchers 
have done many extensive experiments in the past and demonstrated various achievements in predicting heart 
arrhythmia and heart diseases.

According to the author’s information, there is a lack of a framework that can utilize a feature preprocessing 
approach using two distinct datasets: MIT-BIH-arrhythmia (DB-1) and Cleveland heart disease (DB-2) for 
the complete analysis of cardiac health conditions is lacking. Secondly, to prevent biased diagnoses, this study 
introduces a novel approach to determining the certainty level of machine learning models using information 
entropy. The term information entropy describes the information of uncertainty in the events39,40, which was cre-
ated by mathematician Claude Shannon39. This concept is innovative in determining the effectiveness of machine 
learning algorithms and has not been previously explored in computational biology studies. The proposed study 
conducted extensive experiments to minimize biased diagnoses of cardiac health conditions. We anticipate that 
this research will pave the way for a new direction in machine learning by introducing the information entropy 
mechanism to calculate the uncertainty level of conventional learning algorithms applied in the current study.

The highlighted aim of our proposed framework: 

1.	 Extensive feature engineering was employed to extract six key features from the ECG waveforms.
2.	 To evaluate the efficiency of the proposed feature extraction approach in terms of accuracy, sensitivity, and 

detection error rate.
3.	 Proposed algorithm to analyze the behaviour of beats.
4.	 To predict cardiac health conditions by analyzing the behaviour of the beats in terms of abnormal arrhythmia 

beats and heart disease using machine learning algorithms.
5.	 To evaluate the performance of learning algorithms by using the information theory concept (information 

entropy).

Implementation of this method will significantly assist medical specialists in identifying cardiac health using dif-
ferent datasets. Our proposed methodology demonstrates exceptional performance in diagnosing cardiac health 
conditions in terms of arrhythmia and heart disease. The remainder of the paper is structured as follows: The 
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author explained the materials and methods used in this experiment step by step after the introduction section. 
The next section discusses the experimental settings. After that, we describe calculation of information entropy. 
In the end, the authors define the results, conclusion, and future work.

Materials and methods
The proposed methdology
The main goal of this research is to preprocess the datasets (DB-1) and (DB-2) and extract/choose relevant fea-
tures that aid in diagnosing cardiac health conditions related to arrhythmia, abnormal beats, and heart disease. 
Furthermore, this research includes a novel experiment that analyzes the average uncertainty level of the classifier 
using Information Entropy; applying this concept is absolutely a unique factor and not previously been explored 
in cardiac abnormality detection. The workflows of the overall proposed framework are represented in Fig. 1. 
Our proposed framework comprises four main steps, two of which involve the preprocessing of datasets (DB-1) 
and (DB-2). The last two step involve in prediction of cardiac health conditions and performance analysis of the 
learning algorithms. This section outlines the experimental process in the following steps:

Data acquisition
This step constitutes a significant part of the study. We gathered datasets from public sources and implemented 
a straightforward preprocessing technique based on the advice from these sources. The details of the dataset are 
explained below:

(DB-1): The MIT-BIH Arrhythmia Dataset and AAMI Standards.
The dataset consisted of 48 half-hour records of two leads (MLII), and V1 were obtained from 47 subjects44. 

Over a 10mV range, the signals were captured at a sampling frequency of 360Hz and a resolution of 11 bits. 
The dataset was divided into groups’ normal and arrhythmia/abnormal, 25 and 23 ECG segments, respectively. 
Furthermore, this study followed the AAMI standard for arrhythmia classification. According to the AAMI 
(Association for the Advancement of Medical Instrumentation), the MIT-BIH arrhythmia dataset has four 
recordings (102,104,107, and 217) containing paced beats because the signal did not retain sufficient signal qual-
ity for automatic prediction. Therefore, the study used the rest of the 44 recordings (Lead II) for our experiments.

(DB-2): UCI Repository for Machine Learning Dataset. The Cleveland Clinic Foundation provided the data-
base for heart disease classification42. This database consisted of 76 parameters, out of which only 14 parameters 
with 303 instances were presented for experiments (see Table 1). In the acquisition section, we observed that 33 
instances have missing values. Due to that reason, only 270 instances were taken for this experiment.

Feature prepocessing approach
The literature44–46 emphasizes that the preprocessing stage is the fundamental prerequisite step of every classifica-
tion technique because an unpreprocessed feature set directly affects their final analysis. Thus, medical diagnosis 
directly impacts human lives; therefore, ensuring unbiased feature sets during diagnosis is crucial. Our study 
emphasizes the significance of properly preprocessing cardiac-related features from (DB-1) and (DB-2) in diag-
nosing cardiac health conditions. ECG signals serve as the primary source for understanding of cardiac health 
conditions. Therefore, the author’s main focus is to preprocess ECG signals accurately. The feature preprocessing 
approach involves the following steps:

Normalization
Normalization is the process of reducing the DC offset and eliminating amplitude variance for each ECG signal. 
According to Mark et al., it is necessary to normalize the ECG signal41 due to a potential source of clicks and 
distortion. The equations of the normalization process of raw ECG signal are determined as follows:

where i represents the index of consecutive ECG signal samples, j represents the index of consecutive ECG 
signals, minxj represents the minimum signal amplitude value, and max xj represents the maximum signal 
amplitude value.

Filtering
The contaminated ECG signals were the major problem in the bio-electrical records, as discussed in47,48. ECG 
signals contain a variety of distortions, such as low-frequency noises, baseline drifting49,50, and high-frequency 
noises like the power line interface51,52. The power-line interface comprises a 50Hz pickup with an amplitude of 
50% from peak to peak. However, baseline wandering is mostly induced by the patient’s breathing or movement, 
which creates hurdles in recording ECG peaks. Due to these different artefacts, the raw ECG signals cannot be 
used directly to seek the information of interest because it may lead to the wrong diagnosis of cardiac health 
conditions. To eliminate these types of noises, this study used a simple finite impulse response(FIR) and notch 
filters to remove the contamination part from the ECG signal as proposed by53–58 for low-frequency and high-
frequency noise, respectively.

Feature extraction
This section is dedicated to extracting the essential clinical markers from ECG signals to analyse normal, abnor-
mal, and arrhythmic beats. This phase has been executed based on the recommendations of clinical experts. The 

(1)x̄j(i) = 2.

(

xj(i)−min(xj)

max(xj)−min(xj)

)

− 1
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overall process of feature extraction is explained in Fig. 2. Initially, the author established the window width 
with a constant sampling frequency of 360Hz, a parameter already set or provided by https://physionet.org/55.

This stage of the feature extraction involves modifying the Pan and Tompkins algorithm to accurately detect 
the R-peak value. The reason for modifying the conventional technique is to identify the negative amplitude 
parameter of the R-peak from ECG signals. Although the Pan and Tompkins algorithm is a common algorithm 
used in many existing studies, the conventional Pan and Tompkins algorithm did not accurately return the nega-
tive polarity values of the QRS complex. In the modification part of the Pan and Tompkins algorithm we have 

Figure 1.   The overall proposed framework of the feature preprocessing Approach.
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introduced Local Maxima and Minima Difference (LMMD) through an adaptation of discrete Morse theory36 
which enable algorithm to extract the distance between the positive and negative peaks on the QRS complex.
Adopting the modified Pan and Tompkins algorithm in this study lies in its capacity to accommodate pronounced 
variations in ECG signals and ascertain precise threshold values for R-peak extraction. To delve further into the 
analysis of ECG cycle features, 200 samples are chosen around the R-peak, comprising 75 points from the left 
side and the remainder from the right side of the R-peak. This main feature aids in the automatic detection of 
QRS by extracting the minimum values from both the left and right sides.

The signal is divided based on the window width, and the high-and lowest frequency component within that 
particular segment of the ECG signal is identified by establishing a threshold value. A vector matrix lrp is created 
to store the R-peak values with the indexes and reference points for calculating the related peaks of ECG signals.

Moreover, the identification of T and P peaks involved the use of 200 points in a similar manner. Figure 3 
illustrates the extraction of all pertinent features from ECG signals. Additionally, this research determines the 
distance between the positive and negative peaks on the QRS complex by introducing the Local Maxima and 
Minima Difference (LMMD) through an adaptation of discrete Morse theory36.This computational approach 
computes amplitude differences between high and low amplitudes by eliminating the smallest difference in each 
pass-over. This technique is applied to cancel the smallest amplitude until the desired threshold is achieved in 
the sequence. However, for the detection of the negative peaks in the QRS complex, the minimum value should 
exhibit the most significant amplitude difference ratio compared to other prominent peaks. After applying the 
appropriate threshold value using ADMT, the remaining peaks were categorized as S-waves and R-waves. To 
establish the threshold value for the largest amplitude, the authors employed the unsupervised k-means clustering 
technique. Two clusters were defined, and the threshold values were specified as Eq. (2).

where w0 is the cluster that contains the smallest amplitude value, and the largest amplitude value was contained 
by w1 . This technique aids in detecting the complete QRS area from the ECG signal. After the feature extraction 
process, all the extracted features were stored in a matrix denoted as “fpi” to classify normal, abnormal, and 
arrhythmia-beat behaviours. The extracted attributes include the time duration of the R-R interval, QRS, QT 
interval, T-wave, PR interval, and P-wave.

Proposed algorithm for predicting the behaviour of beat (normal, abnormal, and arrhythmic) The major role of 
Algorithm 1 is to classify the different behaviours of the beats for instance, normal, abnormal and arrhythmic. 
Moreover, to improve and verify the accuracy of this algorithm, we considered expert suggestions and clinical 
information to verify the results. The normal ranges of the waves and peaks are defined as follows: 

1.	 The distance between two R consecutive beats should not be greater than 1.2 seconds. If the distance ratio 
between two subsequent beats increases, it might have a chance to get an arrhythmic beat57,59,60.

2.	 The normal QRS duration value is between 0.12 s and 0.20 s. Suppose the duration of this complex increases, 
and the irregular R-R interval is also present. In that case, it may get premature ventricular contraction 
beats(PVC) because this type of arrhythmia has much higher amplitudes61.

3.	 The duration from the Q-wave to T-wave has to be less than 0.44 s62.
4.	 The normal duration between P-wave to R-wave has to be situated between 0.12 s and 0.20 s63.

(2)th = max(w0 +min(w1))

2

Table 1.   Clinical attributes of DB-2.

Features Description Values

Age Age 29–77

Sex Sex 1 = male,0=female

Cp Chest pain type 1 = typical angina, 2 = atypical angina, 3=non-angina and 4= asympto-
matic pain

Trestbps Resting blood pressure on admission (94,200)

Chol Serum cholesterol(mg/dl) (126,564)

Fbs Fasting blood sugar (>120 mg/dl) 1 = true and 0 = false

Restecg Resting ECG outcome (0,2)

Thalach Maximum heart rate achieved (71,202)

Exang Exercise induced angina 1 = yes and 0 = no

Oldpeak ST depression induced by exercise related to rest. (0.00 ,62.00)

Slope The slope of the peak exercise ST segment 1 = upsloping, 2 = flat and 3 = downsloping

Ca Number of fluoroscopy-colored vessels (0,3)

Thal Reversible defect and class 3 = normal and 6 = fixed defect



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9614  | https://doi.org/10.1038/s41598-024-60500-0

www.nature.com/scientificreports/

Figure 2.   The overall process of feature extraction.
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Algorithm 1.   Steps for predicting the behaviour of beats (normal, abnormal and arrhythmic beats

Stepwise regression for feature selection
The stepwise regression technique is the intuitive approach for including and excluding attributes from the 
dataset based on a regression analysis of their statistical data63. The primary procedure of stepwise regression is 
to analyze the data based on the regression analysis. The major benefit of this strategy is that it is a mixture of 
the forward and backward selection methods. Therefore, this method tests the variable at each step for adding 
or removing using forward for selection and backward for elimination, respectively64.The stepwise regression 

Figure 3.   Detection of main Peaks.



8

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9614  | https://doi.org/10.1038/s41598-024-60500-0

www.nature.com/scientificreports/

method can manage large amounts of potential predictor variables and fine-tune the model to select the best 
predictor variables. The most important factor to consider in this method for parameter selection is that it is 
faster than other automatic model-selection methods. This method used only to preprocess DB-2 , as this dataset 
is well-ordered,therefore we only reduce the dimension of the features .To implement this method we followed 
below procedure. 

1.	 Initially, we begin by comparing the explanatory power of successively bigger and smaller models. To test 
models with and without a potential term, the p-value of an F-statistic is generated at each stage.

2.	 At every step of the model, the algorithm calculates a p-value to test the model to get the potential term 
added to the model and this process is repeated else move to step 3.

3.	 In the third phase of the algorithm, it checks whether any possible term has a p-value larger than the exit 
tolerance, eliminates the one with the highest p-value, and repeats step 2 if necessary; otherwise, the process 
terminates65.

Assigning unique identifiers
At this stage of the study, we assign a unique identifier to each attribute in both datasets (DB-1 and DB-2) (refer 
to Fig. 4). Subsequently, a distinct input space is generated to validate the outcomes derived from learning 
algorithms.

Implementation of learning algorithms
In this section ,we select five different learning algorithms for instance k-nearest neighbour, neural network, 
support vector machine, random forest, and Naive Bayes .To validate the result ,we divided datasets in two parts 
substantial amount of data, around 80% for training and 20% for testing the learning algorithms. Moreover, this 
study chooses to utilize the k-fold cross-validation technique, setting k to 10, to properly evaluate the perfor-
mance of classifiers.

K‑nearest neighbor (KNN)
The KNN66 is one of the perspectives and non-parametric classification method based on the minimum distance 
classifier, or it can also be defined as KNN classifying objects based on the closest training values in the feature 
space64. This algorithm is widely used for arrhythmia and heart disease classification68–71. This algorithm’s learning 
procedure involves comparing the training dataset’s input feature vector with the unlabeled dataset for testing. 
We classify the normal and abnormal data by categorizing query points and their distance to points in a train-
ing dataset. However, in the KNN algorithm, the training phase is very fast, but the testing phase is too costly in 
terms of time and memory72. The k-nearest neighbors (k-NN) algorithm is based on the equation:

where:

•	 ŷ is the predicted label for the input x.
•	 mode is the function that returns the most common label among the k nearest neighbors.
•	 yi is the label of the i-th neighbor.
•	 NN(x) is the set of indices corresponding to the k nearest neighbors of x.

In this equation, the predicted label ŷ for a new input x is determined by finding the k nearest neighbors of x 
from the training dataset, and then selecting the most common label among these k neighbors.

Neural network
This algorithm comprises highly interconnected processing elements and layers that process information through 
their dynamic state to an external state of the algorithm. The neural network (NN) recognizes underlying rela-
tionships within the dataset similar to how the human brain works. In our study, we utilized this algorithm with 

(3)ŷ = mode
(

{yi}i∈NN(x)
)

Figure 4.   Assigning unique identifiers to all attributes.
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five layers, specifically two layers of input and output, and the remaining layers are hidden, containing a certain 
number of interconnected nodes. We employed the tanh activation function with seven neurons to classify the 
cardiac health condition from the dataset. The input space vector is fed through an input layer connected to 
other operational hidden layers. After processing, the output layer receives the response vector from the hidden 
layer. The neural network can adapt to variations in input, allowing the network to generate the best possible 
result without redesigning the output criteria73,74. The equation for the output y of a neural network layer is:

where:

•	 x is the input to the layer (a vector of size n).
•	 W is the weight matrix of the layer (an m× n matrix, where m is the number of neurons in the layer).
•	 b is the bias vector (a vector of size m).
•	 σ is the activation function applied element-wise to the result of Wx + b.

In this equation, the predicted label ŷ for a new input x is determined by finding the k nearest neighbors of x 
from the training dataset, and then selecting the most common label among these k neighbors.

Support vector machine (SVM)
The support vector machine is a supervised learning algorithm, formally defined by a separating hyperplane. 
SVM analyzes data through classification and regression analysis and is widely utilized in cardiac studies for 
classification problems75. Therefore, we also employed SVM to diagnose the cardiac health condition from the 
input feature vector. SVM efficiently performs non-linear classification using kernel methods to implicitly map 
feature vectors into high-dimensional feature spaces76–78. The learning method of this algorithm employed the 
radial basis function kernel method79, a real-valued function whose value depends solely on the distance from 
the main origin80. SVM classifiers construct a hyperplane with n dimensions, where n indicates the number of 
attributes in the input feature vector. Based on our training and testing criterion, the hyperplane divides the 
input feature vector into train and test, labeled and unlabeled, respectively. The equation for a linear Support 
Vector Machine (SVM) is given by:

where:

•	 y(x) is the predicted output for input x.
•	 w is the weight vector.
•	 x is the input vector.
•	 b is the bias term.

In this equation, the decision boundary is defined by the hyperplane wTx + b = 0 . The sign of y(x) determines 
the predicted class label, where y(x) > 0 corresponds to one class and y(x) < 0 corresponds to the other class.

Random forest
This algorithm was initially developed and introduced by Breiman81. In our study, we applied this supervised 
learning algorithm to our feature vector to distinguish between normal and abnormal classes. Random Forest 
(RF) generates a random vector using our feature set, where all values of the random vector are independent. 
Throughout this procedure, RF constructs a set of tree-structured classifiers for training and testing labeled 
and unlabeled datasets. The Random Forest algorithm combines predictions from multiple decision trees. The 
prediction for a Random Forest model can be represented as:

where:

•	 ŷ is the predicted output for input x.
•	 N is the number of trees in the Random Forest.
•	 fi(x) is the prediction of the i-th decision tree for input x.

In this equation, the Random Forest model aggregates the predictions of individual decision trees to make the 
final prediction ŷ for the input x.

Naïve Bayes
Naïve Bayes is a sophisticated classification algorithm based on the Bayesian theorem, belonging to the family of 
simple probabilistic classifiers82. This technique is easy to build, simple, and effective for large feature vectors. In 
our study, we utilized this classifier to assess the algorithm’s performance with our prepared dataset. Despite its 

(4)y = σ(Wx + b)

(5)y(x) = wTx + b

(6)ŷ = 1

N

N
∑

i=1

fi(x)
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apparent simplicity, the algorithm can often deliver outstanding performance in classification using our feature 
set. The Naive Bayes classifier predicts the probability of a class Ck given an input feature vector x using Bayes’ 
theorem:

where:

•	 P(Ck|x) is the probability of class Ck given input x.
•	 P(x|Ck) is the likelihood of observing x given class Ck.
•	 P(Ck) is the prior probability of class Ck.
•	 P(x) is the probability of observing x.

The Naive Bayes assumption assumes that the features are conditionally independent given the class label. This 
simplifies the likelihood term:

where:

•	 xi is the i-th feature of x.

The class with the highest probability P(Ck|x) is predicted by the Naive Bayes classifier.

Experimental settings
In the experiments, we introduced a method for preprocessing two distinct datasets (DB-1 and DB-2) to diagnose 
cardiac health conditions related to abnormal arrhythmic beats and heart disease. Our study placed a specific 
emphasis on assessing classifier performance. Information entropy was utilized to gauge the level of uncertainty, 
employing five different learning algorithms. All preprocessing of the datasets was carried out using MATLAB 
2016b. Additionally, we utilized an orange data mining Python-based tool for assigning unique IDs and training 
the learning algorithms with our preprocessed feature set. The experiments were conducted on a 64-bit Windows 
10 system with an Intel(R) Core(TM) i7-3770 CPU running at 3.40GHz and 6GB of RAM.

Performance metrics
Our study conducted a comprehensive analysis to assess the performance of our proposed method. The study 
employed ten performance metrics, including the area under the curve (AUC), classification accuracy (ACC), 
precision, recall, F1 score, Mathews correlation coefficient (MCC), false positive rate (FPR), sensitivity (Se), 
specificity (Sp), and G-mean The definitions of these metrics are provided below: 

	 1.	 The area under the curve is defined as (3) 

	 2.	 The classification accuracy is the most important metric for evaluating the performance of the classifier, 
is defined as (4) 

	 3.	 The precision or positive predictively is defined as (5) 

	 4.	 Sensitivity is defined as (6) 

	 5.	 The F1-Score is defined as (7) 

	 6.	 The Mathews correlation coefficient is defined as (8) 

(7)P(Ck|x) =
P(x|Ck)P(Ck)

P(x)

(8)P(x|Ck) =
n
∏

i=1

P(xi|Ck)

(9)AUC = 1

2

(

TP

TP + FN
+ TN

TN + FP

)

(10)ACC = TN + TP

TP + FP + FN + TN

(11)prec = TP

TP + FP

(12)Se = TP

TP + FN

(13)F1 = 2.
precision.Recall

precision+ Recall
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	 7.	 The false-positive rate is defined as (9) 

	 8.	 The specificity is defined as (10) 

	 9.	 The G-mean is defined as (11) 

	10.	 The Detection error rate is defined as (12) 

where,
True negative (TN) samples of normal records which are correctly classified as normal; True positive (TP) 

samples of abnormal records which are correctly classified as abnormal; False-positive (FP) samples of normal 
records which are classified as abnormal records; False Negative (FN) samples of abnormal records are classified 
as normal.

Information entropy
Information entropy is a fundamental concept in Information theory that characterizes the amount of infor-
mation present in an event. The concept revolves around calculating the level of uncertainty associated with 
the value of an event derived from a random variable or obtained from the outcomes of a random process83,84.

In this study, we employed the Information Entropy method on the outputs of the selected classifier to assess 
the impurity of classifiers. We consider the diagnosis of cardiac health conditions a sensitive area of study, 
emphasizing the need for a thorough evaluation of classifier performance. This aspect can be viewed as a dis-
tinctive contribution to our research, as previous studies have not extensively focused on evaluating classifier 
performance in medical contexts. Nonetheless, we applied Information Entropy to the outputs of five distinct 
learning algorithms to assess the performance of the most suitable algorithm for our preprocessed feature set.
Logarithm base is set with 2, and pi is the information entropy’s probability function, which is equal to 1

2
 . The 

following equation defines the information entropy measurement for learning algorithms.

where Pperf  and Pdiff  are defined as the classifier’s performance and difference ratio concerning 100% of classi-
fier, respectively.

Results and discussions
To showcase the effectiveness of our feature extraction process based on (DB-1), we utilized sensitivity, accuracy, 
and detection error rate (DER) to evaluate the efficiency of our extracted features. Table 2 illustrates the effec-
tiveness of the feature extraction technique. Following the feature preprocessing approach using (DB-1), our 
study then proposed a simple model, guided by medical advice, to classify normal, abnormal, and arrhythmic 
beats from the stored record of features. The primary purpose of constructing this model is to provide input for 

(14)MCC = TP ∗ TN − FP ∗ FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(15)FPR = FP

FP + TN

(16)SP = TN

TN + FP

(17)G −mean =
√

precision ∗ ReXcall

(18)DER = FP + FN

TP + FP + FN + TN

(19)H(x) = −
n

∑

i=1

pilog2pi

(20)H(x) =
∑

−Pperf log2Pperf − Pdiff log2Pdiff

Table 2.   Overall performance of feature extraction using DB-1.

Feature SE% ACC% DER%

R-R interval 99.99 99.98 0.01

QRS complex 99.99 99.98 0.01

QT interval 99.99 99.99 0.005

P-R interval 99.99 99.99 0.005

P-wave 99.99 99.99 0.004

T-wave 99.99 99.99 0.004
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classifiers by discerning positive and negative attributes of feature sets using (DB-1). However, this method is 
efficient enough to separate all normal, abnormal, and arrhythmic beat values.

The model’s performance is assessed using the DB-1 dataset, a benchmark dataset for electrocardiogram 
(ECG) analysis. the same performance metrics were employed as those used to evaluate the performance of the 
feature extraction algorithm Table 3. The model’s ability to accurately detect and classify heartbeats is crucial 
for its efficacy in real-world applications. Moreover, the model’s proficiency in determining the total number of 
beats, denoted as NCB, serves as a fundamental metric of its effectiveness. NCB represents the comprehensive 
count of all detected heartbeats within the ECG signals. A higher NCB indicates the model’s capability to accu-
rately identify individual heartbeats, essential for tasks such as heart rate monitoring and arrhythmia detection.
Moreover, the model’s prowess in analyzing missing beats (NMB) provides valuable insights into its robustness 

Table 3.   Results of the proposed algorithm for identification of beats.

Records Beats CB NMB SE% ACC% DER%

100 2272 2272 0 100 100 0

101 1862 1862 0 100 100 0

103 2084 2084 0 100 100 0

105 2570 2570 0 100 100 0

106 2026 2024 2 99.90 99.80 0.19

108 1762 1762 0 100 100 0

109 2532 2532 0 100 100 0

111 2122 2122 0 100 100 0

112 2538 2538 0 100 100 0

113 1794 1794 0 100 100 0

114 1878 1878 0 100 100 0

115 1952 1952 0 100 100 0

116 2412 2409 3 99.91 99.83 0.16

117 1534 1534 0 100 100 0

118 2276 2276 0 100 100 0

119 1986 1984 2 99.89 99.79 0.20

121 1862 1862 0 100 100 0

122 2476 2476 0 100 100 0

123 1516 1516 0 100 100 0

124 1618 1618 0 100 100 0

200 2600 2598 2 99.92 99.84 0.15

201 1962 1962 0 100 100 0

202 2136 2136 0 100 100 0

203 2978 2978 0 100 100 0

205 2656 2656 0 100 100 0

207 1860 1858 2 99.89 99.89 0.10

208 2954 2954 0 100 100 0

209 3004 3004 0 100 100 0

210 2650 2650 0 100 100 0

212 2748 2748 0 100 100 0

213 3250 3249 1 99.93 99.93 0.06

214 2262 2262 0 100 100 0

215 3362 3362 0 100 100 0

219 2154 2154 0 100 100 0

220 2046 2046 0 100 100 0

221 2426 2426 0 100 100 0

222 2482 2482 0 100 100 0

223 2604 2604 0 100 100 0

228 2052 2052 0 100 100 0

230 2256 2256 0 100 100 0

231 1570 1570 0 100 100 0

232 1780 1779 1 100 99.88 0.11

233 3078 3076 2 99.93 99.87 0.13

234 2752 2752 0 100 100 0

Avg/Total 100,694 100,679 15 99.98 99.97 0.025
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and reliability. NMB signifies the model’s capacity to detect gaps or irregularities in the ECG signals, indicating 
potential missed heartbeats or abnormal rhythms. A lower NMB suggests that the model can effectively perform 
well in identifying and analyzing missing beats, highlighting its accuracy and reliability in ECG signal analysis.
The achieved results highlight the comprehensive performance of our proposed model, boasting a sensitivity 
(se) of approximately 99.98%, an accuracy (acc) of 99.97%, and an impressively low detection error rate of 0.025.

We utilized a stepwise fit feature selection algorithm to preprocess the DB-2 clinical dataset, focusing solely 
on feature selection without the need for feature extraction. The analysis revealed that 7 attributes out of the 
total 14 exhibited notably improved efficiency. The findings of the stepwise fit algorithm are detailed in Table 4.

Performance of learning algorithms
In this study, we assess our preprocessed feature sets with five different learning algorithms to obtain the best 
classifier results. Our proposed method employs 80% of the data for training the classifiers and reserves 20% for 
testing. The rationale for using a substantial amount of data for training is to ensure that our proposed learning 
algorithm was not developed using contaminated data and that our training data did not yield biased results. 
Furthermore, a 10-fold cross-validation technique is utilized to validate the classifier’s performance.

We used five classifiers to accurately predict the cardiac health condition in terms of four classes: normal, 
abnormal beats, arrhythmia beats, and heart disease using the extracted and selected feature set. Table 5 displays 
the statistics of the MIT-BIH-arrhythmia dataset (DB-1), while Table 6 presents the results of the heart disease 
dataset (DB-2). Additionally, Tables 7 and 8 illustrate the average classifier performance values and different 
ratios of our average performance results. These results can help calculate the information of uncertainty. The 
terms defined in Tables 5, 6, 7, and 8 are area under the curve (AUC), classification accuracy (ACC), F1-score, 
precision (prec), Mathew’s correlation coefficient (MCC), false-positive rate (FPR), sensitivity (Se), specificity 
(Sp), and G-mean.

The results from Tables 5, 6, 7, and 8 were utilized to calculate the uncertainty information of five different 
learning algorithms. Additionally, we used the average classifier performance results from Table 8 and Table 9 for 
information entropy calculation. Meanwhile, Table 10 presents the results of the calculated information entropy 
of the five different learning algorithms, using the same performance metrics discussed in Tables 5, 6, 7, 8.

Table 4.   Results of the stepwise fit method.

Selected attributes P-value

Cp 0.0290

Thalach 0.0059

Exang 0.0293

Oldpeak 0.091

Slope 0.0166

Ca 0.0111

Thal 0.0368

Table 5.   Results of classifiers using (db-1) mit-bih arrhythmia dataset.

classifier AUC​  ACC​ F1 Prec MCC FPR SE SP G-mean

Nn 1.000 0.998 0.995 0.996 0.994 0.0009 0.994 0.999 0.995

Knn 0.998 0.994 0.984 0.987 0.98 0.0027 0.98 0.997 0.983

SVM 0.999 0.998 0.994 0.994 0.99 0.001 0.994 0.998 0.994

RF 1.000 0.999 0.997 0.998 0.99 0.002 0.996 0.999 0.997

Nb 0.997 0.980 0.945 0.930 0.933 0.07 0.961 0.983 0.945

Table 6.   Results of classifiers using (db-2) heart disease dataset.

Classifier AUC​  ACC​ F1 Prec MCC FPR SE SP G-mean

Nn 0.874 0.806 0.806 0.806 0.611 0.193 0.804 0.806 0.649

Knn 0.713 0.690 0.690 0.691 0.381 0.339 0.720 0.660 0.690

SVM 0.798 0.731 0.730 0.737 0.468 0.333 0.799 0.666 0.733

RF 0.858 0.783 0.783 0.783 0.565 0.220 0.786 0.799 0.783

Nb 0.885 0.803 0.806 0.804 0.527 0.215 0.822 0.784 0.803
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Table 7.   Average classifiers performance.

Classifier AUC​  ACC​ F1 Prec MCC FPR SE SP G-mean

Nn 0.937 0.902 0.900 0.901 0.802 0.096 0.899 0.902 0.822

Knn 0.855 0.842 0.837 0.839 0.680 0.170 0.85 0.828 0.836

SVM 0.898 0.864 0.862 0.865 0.729 0.167 0.896 0.832 0.8635

RF 0.929 0.891 0.89 0.890 0.777 0.111 0.891 0.899 0.89

Nb 0.941 0.891 0.875 0.867 0.73 0.145 0.891 0.883 0.874

Table 8.   Difference ratio of average classifiers performance.

Classifier AUC​  ACC​ F1 Prec MCC FPR SE SP G-mean

Nn 0.063 0.098 0.1 0.099 0.198 0.904 0.101 0.098 0.178

Knn 0.145 0.158 0.163 0.161 0.32 0.83 0.15 0.172 0.164

SVM 0.102 0.136 0.138 0.135 0.271 0.833 0.104 0.168 0.137

RF 0.071 0.109 0.11 0.11 0.223 0.889 0.109 0.101 0.11

Nb 0.059 0.109 0.125 0.133 0.27 0.855 0.109 0.167 0.126

Table 9.   Information entropy results in bits.

Classifier AUC​  ACC​ F1 Prec MCC FPR SE SP G-mean

Nn 0.325 0.461 0.468 0.464 0.716 0.455 0.471 0.461 0.662

Knn 0.595 0.628 0.640 0.635 0.903 0.196 0.608 0.660 0.642

SVM 0.469 0.572 0.578 0.570 0.841 0.650 0.480 0.651 0.574

RF 0.473 0.495 0.498 0.498 0.764 0.501 0.495 0.471 0.498

Nb 0.320 0.495 0.542 0.565 0.839 0.595 0.495 0.588 0.533

Table 10.   Comparison of proposed work with existing work.

Work Purpose Classifiers Parameter count Accuracy (%) Sensitivity (%)

Pucer et. al.36 Arrhythmia beat detection Discrete Morse theory 2 92.73 73.35

Raj et al.74 Arrhythmia detection PS optimized LS twin SVM 3 99.11 91.47

Zhu et al.75 Arrhythmia detection Maximum Margin clustering 2 95.9 97.4

with immune evolution

Donna et al.76 Heart disease KNN 3 96.68 100

Ismail et al.77 Heart disease SVM 4 79.71 NA

Luxmi et al.12 Heart disease CFS+PSO+MLP+MLR+c4.5 4 88.4 NA

 Our contribution diagnosis of 
cardiac health condition

Arrhythmia and abnormal beat Proposed classifier 6 99.97 99.98

Heart disease SVM 99.8 99.4

RF 99.9 99.96

Naïve Bayes 98.0 96.1

KNN 99.4 98.0

NN 99.8 99.4

SVM 73.1 79.9

RF 78.3 78.6

Naïve Bayes 80.3 82.2

KNN 69.0 72.0

NN 80.6 80.4
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In the comparison, we analyze that in Table 6, both neural network and random forest achieved the highest 
performance in all metrics. However, the performance of SVM and KNN is relatively lower than the others. 
Furthermore, based on the results discussed in Table 6, we discovered that the neural network’s performance 
and naïve Bayes achieved the highest performance in all metrics. Secondly, the performance of random forest 
also achieved remarkable results in all metrics, whereas SVM and KNN performance have the lowest efficiency 
compared to the others.Consequently, based on the results obtained in Table 7, this study observed that the 
average performance of the Neural network using our DB-1 and DB-2 results is much higher than the rest of the 
classifiers. However, Random Forest and Naïve Bayes also achieved remarkable results, whereas the support vec-
tor machine and k-nearest neighbor performances present the lowest efficiency. Based on the results in Table 9, 
we observed that neural networks, naïve Bayes, and random forests exhibit less uncertainty compared to others. 
In contrast, the results for KNN and SVM are acceptable.Utilizing the information theory concept to assess the 
level of uncertainty in the classifier is motivated by the understanding that a significant level of uncertainty in 
the models is not suitable to implement in the Internet of medical applications.To underscore this contribution 
in our study, it is analyzed that we achieved the lowest level of uncertainty, less than 0.5, in sensitivity for all 
models. However, only KNN returns a slightly higher range of the level of uncertainty. These results in Table 9 
demonstrate the suitability of implementing these models in real-world scenarios.

This represents an innovative contribution to our research, and we did not come across a similar study in the 
existing literature. As a result, we faced challenges in conducting a comparative analysis with state-of-the-art 
methods.

The comparison of the proposed study with related work
In this section, the proposed method is compared with state-of-the-art methods. Our study conducts unique 
experiments to explore the information entropy of learning algorithms. No state-of-the-art methods related 
to our investigation currently exist. We utilize two natural datasets concurrently within a single framework to 
analyze cardiac health conditions. We could not find any study that incorporates both datasets in their investiga-
tions to predict cardiac health in terms of arrhythmia and heart disease.

To demonstrate the effectiveness of our suggested technique, we discussed recent advancements in the field 
of arrhythmia and heart disease detection. A comprehensive summary of the results is presented in Table 10 
regarding accuracy (acc) and sensitivity (Se). The state-of-the-art method achieves highly accurate classifica-
tion performance. However, implementing our proposed method enhances the analysis of ECG signals and 
heart disease using non-invasive clinical attributes. The results of our proposed classifiers achieved the highest 
performance using (DB-1), whereas the performance of our proposed classifiers is slightly lower using (DB-2). 
The reason behind the lower accuracy and sensitivity for heart disease detection was that the dataset required 
further preprocessing steps for better classification results. However, state-of-the-art studies only focus on heart 
disease classification using several methods.Based on our study, for the preprocessing of the DB-2 dataset, we 
focus only on the feature selection phase and outliers’ removal. Therefore, we observe that heart disease classifica-
tion using UCI repository datasets requires high preprocessing methods to achieve overwhelming performance 
from learning algorithms.

The limitations
After analyzing the results, it becomes clear that there is still potential for efficient preprocessing in (DB-2). 
Furthermore, our study delves into the analysis of ECG signals, concentrating on general arrhythmia and normal 
and abnormal beats. However, the remaining classes requires attention in detection for instance atrial fibrillation, 
ventricular fibrillation,cardiomyopathy.

Conclusions and future work
A feature preprocessing approach is presented in this work to identify the cardiac health condition in terms of 
normal, abnormal(arrhythmic beat), and heart disease using two datasets. Furthermore, we introduce a new 
concept (information entropy) for determining classifier uncertainty levels when using medical datasets to 
overcome biased data diagnosis. This framework can assist researchers working in the fields of biotechnology, 
bioinformatics, and computational biology. Finally, the authors aim to conduct additional experiments based 
on the limitations discussed in section 5.3 in future work.

Data availability
The datasets generated and/or analysed during the current study are available in the Github repository, and the 
link is: https://​github.​com/q-​mastoi/​hmsys​tem.
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